Control System Toolbox ${ }^{\text {Tm }}$

Reference

MATLAB $^{\circ}$

How to Contact MathWorks

Latest news:
Sales and services:
User community:
Technical support:
Phone:
www. mathworks.com
www.mathworks.com/sales_and_services
www. mathworks.com/matlabcentral
www.mathworks.com/support/contact_us

508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098
Control System Toolbox ${ }^{\mathrm{TM}}$ Reference
© COPYRIGHT 2001-2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014 Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks. com/patents for more information.

Revision History

June 2001	Online only	New for Version 5.1 (Release 12.1)
July 2002	Online only	Revised for Version 5.2 (Release 13)
June 2004	Online only	Revised for Version 6.0 (Release 14)
March 2005	Online only	Revised for Version 6.2 (Release 14SP2)
September 2005	Online only	Revised for Version 6.2.1 (Release 14SP3)
March 2006	Online only	Revised for Version 7.0 (Release 2006a)
September 2006	Online only	Revised for Version 7.1 (Release 2006b)
March 2007	Online only	Revised for Version 8.0 (Release 2007a)
September 2007	Online only	Revised for Version 8.0.1 (Release 2007b)
March 2008	Online only	Revised for Version 8.1 (Release 2008a)
October 2008	Online only	Revised for Version 8.2 (Release 2008b)
March 2009	Online only	Revised for Version 8.3 (Release 2009a)
September 2009	Online only	Revised for Version 8.4 (Release 2009b)
March 2010	Online only	Revised for Version 8.5 (Release 2010a)
September 2010	Online only	Revised for Version 9.0 (Release 2010b)
April 2011	Online only	Revised for Version 9.1 (Release 2011a)
September 2011	Online only	Revised for Version 9.2 (Release 2011b)
March 2012	Online only	Revised for Version 9.3 (Release 2012a)
September 2012	Online only	Revised for Version 9.4 (Release 2012b)
March 2013	Online only	Revised for Version 9.5 (Release 2013a)
September 2013	Online only	Revised for Version 9.6 (Release 2013b)
March 2014	Online only	Revised for Version 9.7 (Release 2014a)
October 2014	Online only	Revised for Version 9.8 (Release 2014b)
March 2015	Online only	Revised for Version 9.9 (Release 2015a)
September 2015	Online only	Revised for Version 9.10 (Release 2015b)
March 2016	Online only	Revised for Version 10.0 (Release 2016a)
September 2016	Online only	Revised for Version 10.1 (Release 2016b)
March 2017	Online only	Revised for Version 10.2 (Release 2017a)
September 2017	Online only	Revised for Version 10.3 (Release 2017b)
March 2018	Online only	Revised for Version 10.4 (Release 2018a)
September 2018	Online only	Revised for Version 10.5 (Release 2018b)
March 2019	Online only	Revised for Version 10.6 (Release 2019a)
September 2019	Online only	Revised for Version 10.7 (Release 2019b)
March 2020	Online only	Revised for Version 10.8 (Release 2020a)
September 2020	Online only	Revised for Version 10.9 (Release 2020b)
March 2021	Online only	Revised for Version 10.10 (Release 2021a)
September 2021	Online only	Revised for Version 10.11 (Release 2021b)
March 2022	Online only	Revised for Version 10.11.1 (Release 2022a)
September 2022	Online only	Revised for Version 10.12 (Release 2022b)
March 2023	Online only	Revised for Version 10.13 (Release 2023a)

Classes
1

Functions

2

Blocks

3

Classes

TuningGoal.ConicSector class

Package: TuningGoal
Sector bound for control system tuning

Description

A conic sector bound is a restriction on the output trajectories of a system. If for all nonzero input trajectories $u(t)$, the output trajectory $z(t)=(H u)(t)$ of a linear system H satisfies:

$$
\int^{T} z(t)^{\mathrm{T}} Q z(t) d t<0,
$$

for all $T \geq 0$, then the output trajectories of H lie in the conic sector described by the symmetric indefinite matrix Q. Selecting different Q matrices imposes different conditions on the system response.

When tuning a control system with systune, use TuningGoal. ConicSector to restrict the output trajectories of the response between specified inputs and outputs to a specified sector. For more information about sector bounds, see "About Sector Bounds and Sector Indices".

Construction

Req = TuningGoal.ConicSector(inputname,outputname, Q) creates a tuning goal for restricting the response $H(s)$ from inputs inputname to outputs outputname to the conic sector specified by the symmetric matrix Q . The tuning goal constrains H such that its trajectories $z(t)=$ $(H u)(t)$ satisfy:

$$
\int_{0}^{T} z(t)^{\mathrm{T}} Q z(t) d t<0
$$

for all $T \geq 0$. (See "About Sector Bounds and Sector Indices".) The matrix Q must have as many negative eigenvalues as there are inputs in H.

To specify frequency-dependent sector bounds, set Q to an LTI model that satisfies $Q(s)^{\mathrm{T}}=Q(-s)$.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink ${ }^{\circledR}$ model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points u1 and u2. Use 'u1' to designate that point as an input signal when creating tuning goals. Use \{' $u 1$ ', ' u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include ' $A P_{-} \mathbf{u}^{\prime}$ '. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use ' y 1 ' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named

AP_u, then outputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

Q
Sector geometry, specified as:

- A matrix, for constant sector geometry. Q is a symmetric square matrix that is ny on a side, where ny is the number of signals in outputname. The matrix Q must be indefinite to describe a welldefined conic sector. An indefinite matrix has both positive and negative eigenvalues. In particular, Q must have as many negative eigenvalues as there are input channels specified in inputname (the size of the vector input signal $u(t)$).
- An LTI model, for frequency-dependent sector geometry. Q satisfies $Q(s)^{\mathrm{T}}=Q(-s)$. In other words, $Q(s)$ evaluates to a Hermitian matrix at each frequency.

For more information, see "About Sector Bounds and Sector Indices".

Properties

SectorMatrix

Sector geometry, specified as a matrix or an LTI model. The Q input argument sets initial value of SectorMatrix when you create the tuning goal, and the same restrictions and characteristics apply to SectorMatrix as apply to Q .

Regularization

Regularization parameter, specified as a real nonnegative scalar value.
Given the indefinite factorization of the sector matrix,

$$
Q=W_{1} W_{1}^{\mathrm{T}}-W_{2} W_{2}^{\mathrm{T}}, \quad W_{1}^{\mathrm{T}} W_{2}=0
$$

the sector bound

$$
H(-j \omega)^{\mathrm{T}} Q H(j \omega)<0
$$

is equivalent to

$$
H_{1}(j \omega)^{\mathrm{H}} H_{1}(j \omega)<H_{2}(j \omega)^{\mathrm{H}} H_{2}(j \omega),
$$

where $H_{1}=W_{1}^{\mathrm{T}} H, H_{2}=W_{2}^{\mathrm{T}} H$, and $(\bullet)^{\mathrm{H}}$ denotes the Hermitian transpose. Enforcing this condition might become numerically challenging when other tuning goals drive both $H_{1}(j \omega)$ and $H_{2}(j \omega)$ to zero at some frequencies. This condition is equivalent to controlling the sign of a $0 / 0$ expression, which is intractable in the presence of rounding errors. To avoid this condition, you can regularize the sector bound to

$$
H(-j \omega)^{\mathrm{T}} Q H(j \omega)<-\varepsilon^{2} I
$$

or equivalently,

$$
H_{1}(j \omega)^{\mathrm{H}} H_{1}(j \omega)+\varepsilon^{2} I<H_{2}(j \omega)^{\mathrm{H}} H_{2}(j \omega)
$$

This regularization prevents $\mathrm{H}_{2}(\mathrm{j} \omega)$ from becoming singular, and helps keep evaluation of the tuning goal numerically tractable. Use the Regularization property to set the value of ε to a small (but not negligible) fraction of the typical norm of the feedthrough term in H. For example, if you anticipate the norm of the feedthrough term of H to be of order 1 during tuning, try:

Req. Regularization $=1 e-3$;
Default: 0

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req. Focus = [1,100];
Default: [$0, \mathrm{Inf}$] for continuous time; [$0, \mathrm{pi} / \mathrm{Ts}$] for discrete time, where Ts is the model sample time.

Input

Input signal names, specified as a cell array of character vectors. The input signal names specify the inputs of the constrained response, initially populated by the inputname argument.

Output

Output signal names, specified as a cell array of character vectors. The output signal names specify the outputs of the constrained response, initially populated by the outputname argument.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;

When Models $=$ NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Conic Sector Goal

Create a tuning goal that restricts the response from an input or analysis point ' u ' to an output or analysis point ' y ' in a control system to the following sector:

$$
S=\left\{(y, u): 0.1 u^{2}<u y<10 u^{2}\right\} .
$$

The Q matrix for this sector is given by:

```
a = 0.1;
b = 10;
Q = [1 -(a+b)/2 ; -(a+b)/2 a*b];
```

Use this Q matrix to create the tuning goal.
TG = TuningGoal. ConicSector('u','y', Q)

```
TG =
    ConicSector with properties:
        SectorMatrix: [2x2 double]
    Regularization: 0
            Focus: [0 Inf]
            Input: {'u'}
            Output: {'y'}
            Models: NaN
        Openings: {0x1 cell}
```

Set properties to further configure the tuning goal. For example, suppose the control system model has an analysis point called 'OuterLoop', and you want to enforce the tuning goal with the loop open at that point.

```
TG.Openings = 'OuterLoop';
```

Before or after tuning, use viewGoal to visualize the tuning goal.
viewGoal(TG)

Requirement 1: Sector R-index vs. frequency

The goal is met when the relative sector index $R<1$ at all frequencies. The shaded area represents the region where the goal is not met. When you use this requirement to tune a control system CL, viewGoal (TG,CL) shows R for the specified inputs and outputs on this plot, enabling you to identify frequency ranges in which the goal is not met, and by how much.

Constrain Input and Output Trajectories to Conic Sector

Consider the following control system.

Suppose that the signal u is marked as an analysis point in a Simulink model or genss model of the control system. Suppose also that G is the closed-loop transfer function from u to y. Create a tuning goal that constrains all I/O trajectories $\{\mathrm{u}(\mathrm{t}), \mathrm{y}(\mathrm{t})\}$ of G to satisfy:

$$
\int^{T}\binom{y(t)}{u(t)}^{T} Q\binom{y(t)}{u(t)} d t<0
$$

for all $T \geq 0$. For this example, use sector matrix that imposes input passivity with index 0.5 .
nu $=0.5$;
$\mathrm{Q}=[0$-1;-1 $2 * \mathrm{nu}]$;
Constraining the I/O trajectories of G is equivalent to restricting the output trajectories $z(t)$ of $H=[G ; I]$ to the sector defined by:

$$
\int_{0}^{T} z(t)^{T} Q z(t) d t<0
$$

(See "About Sector Bounds and Sector Indices" for more details about this equivalence.) To specify this constraint, create a tuning goal that constrains the transfer function $H=[G ; I]$, which the transfer function from input u to outputs $\{y ; u\}$.

```
TG = TuningGoal.ConicSector('u',{'y';'u'},Q);
```

When you specify the same signal 'u as both input and output, the conic sector tuning goal sets the corresponding transfer function to the identity. Therefore, the transfer function constrained by TG is $H=[G ; I]$ as intended. This treatment is specific to the conic sector tuning goal. For other tuning goals, when the same signal appears in both inputs and outputs, the resulting transfer function is zero in the absence of feedback loops, or the complementary sensitivity at that location otherwise. This result occurs because when the software processes analysis points, it assumes the input is injected after the output. See "Mark Signals of Interest for Control System Analysis and Design" for more information about how analysis points work.

Tips

- The conic sector tuning goal requires that $W_{2}^{\mathrm{T}} H(s)$ be square and minimum phase, where $H(s)$ is the transfer function between the specified inputs and outputs, and W_{2} spans the negative invariant subspace of the sector matrix, Q :

$$
Q=W_{1} W_{1}^{\mathrm{T}}-W_{2} W_{2}^{\mathrm{T}}, \quad W_{1}^{\mathrm{T}} W_{2}=0
$$

(See "Algorithms" on page 1-9.) This means that the stabilized dynamics for this goal are not the poles of H, but rather the transmission zeros of $W_{2}^{\mathrm{T}} H(s)$. The MinDecay and MaxRadius options of systune0ptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systune0ptions to change these defaults.

Algorithms

Let

$$
Q=W_{1} W_{1}^{\mathrm{T}}-W_{2} W_{2}^{\mathrm{T}}, \quad W_{1}^{\mathrm{T}} W_{2}=0
$$

be an indefinite factorization of Q. When $W_{2}^{\mathrm{T}} H(s)$ is square and minimum phase, then the time-domain sector bound on trajectories $z(t)=H u(t)$,

$$
\int_{0}^{T} z(t)^{\mathrm{T}} Q z(t) d t<0
$$

is equivalent to the frequency-domain sector condition,

$$
H(-j \omega)^{\mathrm{T}} Q H(j \omega)<0
$$

for all frequencies. The TuningGoal. ConicSector goal uses this equivalence to convert the timedomain characterization into a frequency-domain condition that systune can handle in the same way it handles gain constraints. To secure this equivalence, TuningGoal. ConicSector also makes $W_{2}^{\mathrm{T}} H(s)$ minimum phase by making all its zeros stable.

For sector bounds, the R-index plays the same role as the peak gain does for gain constraints (see "About Sector Bounds and Sector Indices"). The condition

$$
H(-j \omega)^{\mathrm{T}} Q H(j \omega)<0
$$

is satisfied at all frequencies if and only if the R-index is less than one. The viewGoal plot for TuningGoal. ConicSector shows the R-index value as a function of frequency (see sectorplot).

When you tune a control system using a TuningGoal object to specify a tuning goal, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For the sector bound

$$
H(-j \omega)^{\mathrm{T}} Q H(j \omega)<0
$$

TuningGoal. ConicSector uses the objective function given by:

$$
f(x)=\frac{R}{1+R / R_{\max }}, \quad R_{\max }=10^{6}
$$

R is the sector-bound R-index (see getSectorIndex for details).
The dynamics of H affected by the minimum-phase condition are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on
these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Version History

Introduced in R2016b

See Also

systune|systune (for slTuner)|getSectorIndex|viewGoal|evalGoal|slTuner
Topics
"About Sector Bounds and Sector Indices"
"Tune Control Systems Using systune"
"Tune Control Systems in Simulink"

TuningGoal.ControllerPoles class

Package: TuningGoal

Constraint on controller dynamics for control system tuning

Description

Use TuningGoal. ControllerPoles to constrain the dynamics of a tunable component in a control system model. Use this tuning goal for constraining the dynamics of tuned blocks identified in a slTuner interface to a Simulink model. If you are tuning a genss model of a control system, use it to constrain tunable elements such as tunableTF or tunableSS. The
TuningGoal. ControllerPoles requirement lets you control the minimum decay rate, minimum damping, and maximum natural frequency of the poles of the tunable element, ensuring that the controller is free of fast or resonant dynamics. The tuning goal can also ensure stability of the tuned value of the tunable element.

After you create a requirement object, you can further configure the tuning goal by setting "Properties" on page 1-12 of the object.

Construction

Req $=$ TuningGoal.ControllerPoles(blockID,mindecay,mindamping,maxfreq) creates a tuning goal that constrains the dynamics of a tunable component of a control system. The minimum decay rate, minimum damping constant, and maximum natural frequency define a region of the complex plane in which poles of the component must lie. A nonnegative minimum decay ensures stability of the tuned poles. The tuning goal applies to all poles in the block except fixed integrators, such as the I term of a PID controller.

Input Arguments

blockID

Tunable component to constrain, specified as a character vector. blockID designates one of the tuned blocks in the control system you are tuning.

- For tuning a Simulink model of a control system, blockID is a tuned block in the slTuner interface to the model. For example, suppose the slTuner interface has a tuned block called Controller. To constrain this block, use 'Controller' for the blockID input argument.
- For tuning a genss model of a control system, blockid is one of the control design blocks of that model. For example, suppose the genss interface has a tunable block with name C1. To constrain this block, use ' C 1 ' for the blockID input argument.

mindecay

Minimum decay rate of poles of tunable component, specified as a scalar value in the frequency units of the control system model you are tuning.

Specify mindecay ≥ 0 to ensure that the block is stable. If you specify a negative value, the tuned block can include unstable poles.

When you tune the control system using this tuning goal, all poles of the tunable component are constrained to satisfy:

- $\operatorname{Re}(s)$ < -mindecay, for continuous-time systems.
- $\log (|z|)<-m i n d e c a y * T s$, for discrete-time systems with sample time Ts.

Default: 0

mindamping

Desired minimum damping ratio of poles of the tunable block, specified as a value between 0 and 1 .
Poles of the block that depend on the tunable parameters are constrained to satisfy $\operatorname{Re}(s)<-$ mindamping* $|s|$. In discrete time, the damping ratio is computed using $s=\log (z) / T s$.

Default: 0
maxfreq
Desired maximum natural frequency of poles of the tunable block, specified as a scalar value in the units of the control system model you are tuning.

Poles of the block are constrained to satisfy |s| < maxfreq for continuous-time blocks, or | $\log (z) \mid$ < maxfreq*Ts for discrete-time blocks with sample time Ts. This constraint prevents fast dynamics in the tunable block.

Default: Inf

Properties

Block

Name of tunable component to constrain, specified as a character vector. The blockID input argument sets the value of Block.

MinDecay

Minimum decay rate of poles of tunable component, specified as a scalar value in the frequency units of the control system you are tuning. The initial value of this property is set by the mindecay input argument.

MinDecay ≥ 0 to ensure that the block is stable. If you specify a negative value, the tuned block can include unstable poles.

When you tune the control system using this tuning goal, all poles of the tunable component are constrained to satisfy $\operatorname{Re}(s)<-M i n D e c a y$ for continuous-time systems, or $\log (|z|)<-$ MinDecay*Ts for discrete-time systems with sample time Ts.

You can use dot notation to change the value of this property after you create the tuning goal. For example, suppose Req is a TuningGoal. ControllerPoles tuning goal. Change the minimum decay rate to 0.001 :

Req.MinDecay = 0.001;
Default: 0

MinDamping

Desired minimum damping ratio of poles of the tunable block, specified as a value between 0 and 1. The initial value of this property is set by the mindamping input argument.

Poles of the block that depend on the tunable parameters are constrained to satisfy Re(s) < MinDamping* $|s|$. In discrete time, the damping ratio is computed using $s=\log (z) / T s$.

Default: 0

MaxFrequency

Desired maximum natural frequency of poles of the tunable block, specified as a scalar value in the frequency units of the control system model you are tuning. The initial value of this property is set by the maxfreq input argument.

Poles of the block are constrained to satisfy $|s|<$ maxfreq for continuous-time blocks, or | $\log (z) \mid<m a x f r e q * T s$ for discrete-time blocks with sample time Ts. This constraint prevents fast dynamics in the tunable block.

You can use dot notation to change the value of this property after you create the tuning goal. For example, suppose Req is a TuningGoal. ControllerPoles tuning goal. Change the maximum frequency to 1000:

Req.MaxFrequency = 1000;
Default: Inf

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Constrain Dynamics of Tunable Transfer Function

Create a tuning goal that constrains the dynamics of a tunable transfer function block in a tuned control system.

For this example, suppose that you are tuning a control system that includes a compensator block parametrized as a second-order transfer function. Create a tuning goal that restricts the poles of that transfer function to the region $\operatorname{Re}(s)<-0.1,|s|<30$.

Create a tunable component that represents the compensator.
C = tunableTF('Compensator',2,2);
This command creates a Control Design Block named 'Compensator' with two poles and two zeroes. You can construct a tunable control system model, T, by interconnecting this Control Design

Block with other tunable and numeric LTI models. If you tune T using systune, the values of these poles and zeroes are unconstrained by default.

Create a tuning requirement to constrain the dynamics of the compensator block. Set the minimum decay rate to $0.1 \mathrm{rad} / \mathrm{s}$, and set the maximum frequency to $30 \mathrm{rad} / \mathrm{s}$.

Req = TuningGoal.ControllerPoles('Compensator',0.1,0,30);
The mindamping input argument is 0 , which imposes no constraint on the damping constant of the poles of the block.

If you tune T using systune and the tuning requirement Req, the poles of the compensator block are constrained satisfy these values. After you tune T , you can use viewGoal to validate the tuned control system against the tuning goal.

Tips

- TuningGoal. ControllerPoles restricts the dynamics of a single tunable component of the control system. To ensure the stability or restrict the overall dynamics of the tuned control system, use TuningGoal. Poles.

Algorithms

When you use a TuningGoal object to specify a tuning goal, the software converts the tuning goal into a normalized scalar value $f(x) . x$ is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$, or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. ControllerPoles, $f(x)$ reflects the relative satisfaction or violation of the goal. For example, if you attempt to constrain the pole of a tuned block to a minimum damping of $\zeta=0.5$, then:

- $f(x)=1$ means the damping of the pole is $\zeta=0.5$ exactly.
- $f(x)=1.1$ means the damping is $\zeta=0.5 / 1.1=0.45$, roughly 10% less than the target.
- $f(x)=0.9$ means the damping is $\zeta=0.5 / 0.9=0.55$, roughly 10% better than the target.

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox ${ }^{\mathrm{TM}}$ license.

See Also
 looptune|systune|systune (for slTuner)|looptune (for slTuner)|viewGoal| evalGoal|tunableTF|tunableSS|TuningGoal.Poles
 Topics
 "System Dynamics Specifications"

"Models with Tunable Coefficients"

TuningGoal.Gain class

Package: TuningGoal
Gain constraint for control system tuning

Description

Use the TuningGoal. Gain object to specify a constraint that limits the gain from a specified input to a specified output. Use this tuning goal for control system tuning with tuning commands such as systune or looptune.

When you use TuningGoal. Gain, the software attempts to tune the system so that the gain from the specified input to the specified output does not exceed the specified value. By default, the constraint is applied with the loop closed. To apply the constraint to an open-loop response, use the Openings property of the TuningGoal. Gain object.

You can use a gain constraint to:

- Enforce a design requirement of disturbance rejection across a particular input/output pair, by constraining the gain to be less than 1
- Enforce a custom roll-off rate in a particular frequency band, by specifying a gain profile in that band

Construction

Req = TuningGoal.Gain(inputname,outputname, gainvalue) creates a tuning goal that constrains the gain from inputname to outputname to remain below the value gainvalue.

You can specify the inputname or outputname as cell arrays (vector-valued signals). If you do so, then the tuning goal constrains the largest singular value of the transfer matrix from inputname to outputname. See sigma for more information about singular values.

Req = TuningGoal.Gain(inputname,outputname,gainprofile) specifies the maximum gain as a function of frequency. You can specify the target gain profile (maximum gain across the I/O pair) as a smooth transfer function. Alternatively, you can sketch a piecewise error profile using an frd model.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points $u 1$ and $u 2$. Use ' $u 1$ ' to designate that point as an input signal when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use ' y 1 ' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then outputname can include ' $A P$ _u'. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

gainvalue

Maximum gain (linear). The gain constraint Req specifies that the gain from inputname to outputname is less than gainvalue.
gainvalue is a scalar value. If the signals inputname or outputname are vector-valued signals, then gainvalue constrains the largest singular value of the transfer matrix from inputname to outputname. See sigma for more information about singular values.

gainprofile

Gain profile as a function of frequency. The gain constraint Req specifies that the gain from inputname to outputname at a particular frequency is less than gainprofile. You can specify gainprofile as a smooth transfer function (tf , zpk, or ss model). Alternatively, you can sketch a piecewise gain profile using a frd model or the makeweight function. When you do so, the software automatically maps the gain profile onto a zpk model. The magnitude of this zpk model approximates the desired gain profile. Use viewGoal (Req) to plot the magnitude of the zpk model.
gainprofile is a SISO transfer function. If inputname or outputname are cell arrays, gainprofile applies to all I/O pairs from inputname to outputname

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify gainfprofile as a discrete-time model with the same Ts. If you specify gainfprofile in continuous time, the tuning software discretizes it. Specifying the gain profile in discrete time gives you more control over the gain profile near the Nyquist frequency.

Properties

MaxGain

Maximum gain as a function of frequency, expressed as a SISO zpk model.
The software automatically maps the gainvalue or gainprofile input arguments to a zpk model. The magnitude of this zpk model approximates the desired gain profile. The tuning goal derives and is stored in the MaxGain property. Use viewGoal (Req) to plot the magnitude of MaxGain.

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).
By default, TuningGoal . Gain imposes a stability requirement on the closed-loop transfer function from the specified inputs to outputs, in addition to the gain requirement. If stability is not required or cannot be achieved, set Stabilize to false to remove the stability requirement. For example, if the gain constraint applies to an unstable open-loop transfer function, set Stabilize to false.

Default: 1(true)

InputScaling

Input signal scaling, specified as a vector of positive real values.
Use this property to specify the relative amplitude of each entry in vector-valued input signals when the choice of units results in a mix of small and large signals. This information is used to scale the closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose $T(s)$ is the closed-loop transfer function from Input to Output. The tuning goal is evaluated for the scaled transfer function $D_{o}{ }^{-1} T(s) D_{i}$. The diagonal matrices D_{o} and D_{i} have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.
Use this property to specify the relative amplitude of each entry in vector-valued output signals when the choice of units results in a mix of small and large signals. This information is used to scale the closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose $T(s)$ is the closed-loop transfer function from Input to Output. The tuning goal is evaluated for the scaled transfer function $D_{o}{ }^{-1} T(s) D_{i}$. The diagonal matrices D_{o} and D_{i} have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: []

Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the transfer function that the tuning goal constrains. The initial value of the Input property is set by the inputname input argument when you construct the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the transfer function that the tuning goal constrains. The initial value of the Output property is set by the outputname input argument when you construct the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req.Models = 2:4;
When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{\}
Name
Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';

Default: []

Examples

Disturbance Rejection Goal

Create a gain constraint that enforces a disturbance rejection requirement from a signal ' du ' to a signal 'u'.

Req = TuningGoal.Gain('du', 'u',1);
This requirement specifies that the maximum gain of the response from 'du' to 'u' not exceed 1 (0 $d B$).

Custom roll-off specification

Create a tuning goal that constrains the response from a signal 'du' to a signal ' u ' to roll off at 20 $\mathrm{dB} /$ decade at frequencies greater than 1 . The tuning goal also specifies disturbance rejection (maximum gain of 1) in the frequency range $[0,1]$.

```
gmax = frd([[1 1 0.01],[00 1 100]);
```

Req $=$ TuningGoal.Gain('du','u',gmax);
These commands use a frd model to specify the gain profile as a function of frequency. The maximum gain of 1 dB at the frequency $1 \mathrm{rad} / \mathrm{s}$, together with the maximum gain of 0.01 dB at the frequency $100 \mathrm{rad} / \mathrm{s}$, specifies the desired rolloff of $20 \mathrm{~dB} /$ decade.

The software converts gmax into a smooth function of frequency that approximates the piecewise specified requirement. Display the gain profile using viewGoal.

```
viewGoal(Req)
```

Requirement 1: Maximum gain as a function of frequency

The dashed line shows the gain profile, and the region indicates where the requirement is violated.

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal object, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. Gain, $f(x)$ is given by:

$$
f(x)=\left\|W_{F}(s) D_{o}^{-1} T(s, x) D_{i}\right\|_{\infty}
$$

or its discrete-time equivalent, for discrete-time tuning. Here, $T(s, x)$ is the closed-loop transfer function from Input to Output. D_{o} and D_{i} are diagonal matrices with the OutputScaling and

InputScaling property values on the diagonal, respectively. $\|\cdot\|_{\infty}$ denotes the H_{∞} norm (see getPeakGain).

The frequency weighting function W_{F} is the regularized gain profile, derived from the maximum gain profile you specify. The gains of W_{F} and 1 /MaxGain roughly match inside the frequency band Focus. W_{F} is always stable and proper. Because poles of W_{F} close to $s=0$ or $s=\operatorname{Inf}$ might lead to poor numeric conditioning of the systune optimization problem, it is not recommended to specify maximum gain profiles with very low-frequency or very high-frequency dynamics.

To obtain W_{F}, use:

```
WF = getWeight(Req,Ts)
```

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for continuous time). For more information about regularization and its effects, see "Visualize Tuning Goals".

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune|viewGoal|systune|systune (for slTuner)|looptune (for slTuner)| TuningGoal.Tracking|TuningGoal.LoopShape | slTuner|makeweight

Topics

"Frequency-Domain Specifications"
"Visualize Tuning Goals"
"Control of a Linear Electric Actuator"
"MIMO Control of Diesel Engine"

TuningGoal.LoopShape class

Package: TuningGoal

Target loop shape for control system tuning

Description

Use TuningGoal . LoopShape to specify a target gain profile (gain as a function of frequency) of an open-loop response. TuningGoal. LoopShape constrains the open-loop, point-to-point response (L) at a specified location in your control system. Use this tuning goal for control system tuning with tuning commands, such as systune or looptune.

When you tune a control system, the target open-loop gain profile is converted into constraints on the inverse sensitivity function $\operatorname{inv}(S)=(I+L)$ and the complementary sensitivity function $T=1-S$. These constraints are illustrated for a representative tuned system in the following figure.

Where L is much greater than 1, a minimum gain constraint on $\operatorname{inv}(S)$ (green shaded region) is equivalent to a minimum gain constraint on L. Similarly, where L is much smaller than 1, a maximum gain constraint on T (red shaded region) is equivalent to a maximum gain constraint on L. The gap between these two constraints is twice the CrossTol parameter, which specifies the frequency band where the loop gain can cross 0 dB .

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater than 1 are interpreted as minimum performance requirements. Such values are lower bounds on the smallest singular value of the open-loop response. Gain profile values less than one are interpreted as
minimum roll-off requirements, which are upper bounds on the largest singular value of the open-loop response. For more information about singular values, see sigma.

Use TuningGoal. LoopShape when the loop shape near crossover is simple or well understood (such as integral action). To specify only high gain or low gain constraints in certain frequency bands, use TuningGoal.MinLoopGain and TuningGoal.MaxLoopGain. When you do so, the software determines the best loop shape near crossover.

Construction

Req $=$ TuningGoal.LoopShape(location,loopgain) creates a tuning goal for shaping the open-loop response measured at the specified location. The magnitude of the single-input, singleoutput (SISO) transfer function loopgain specifies the target open-loop gain profile. You can specify the target gain profile (maximum gain across the I/O pair) as a smooth transfer function or sketch a piecewise error profile using an frd model.

Req $=$ TuningGoal.LoopShape(location,loopgain,crosstol) specifies a tolerance on the location of the crossover frequency. crosstol expresses the tolerance in decades. For example, crosstol $=0.5$ allows gain crossovers within half a decade on either side of the target crossover frequency specified by loopgain. When you omit crosstol, the tuning goal uses a default value of 0.1 decades. You can increase crosstol when tuning MIMO control systems. Doing so allows more widely varying crossover frequencies for different loops in the system.

Req = TuningGoal.LoopShape(location,wc) specifies just the target gain crossover frequency. This syntax is equivalent to specifying a pure integrator loop shape, loopgain $=\mathrm{wc} / \mathrm{s}$.

Req = TuningGoal.LoopShape(location,wcrange) specifies a range for the target gain crossover frequency. The range is a vector of the form wcrange $=[w c 1, w c 2]$. This syntax is equivalent to using the geometric mean sqrt (wc1*wc2) as wc and setting crosstol to the halfwidth of wcrange in decades. Using a range instead of a single wc value increases the ability of the tuning algorithm to enforce the target loop shape for all loops in a MIMO control system.

Input Arguments

location

Location where the open-loop response shape to be constrained is measured, specified as a character vector or cell array of character vectors that identify one or more locations in the control system to tune. What locations are available depends on what kind of system you are tuning:

- If you are tuning a Simulink model of a control system, you can use any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if the slTuner interface contains an analysis point u, you can use ' u ' to refer to that point when creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner interface to your model.
- If you are tuning a generalized state-space (genss) model of a control system, you can use any AnalysisPoint location in the control system model. For example, the following code creates a PI loop with an analysis point at the plant input ' u '.

```
AP = AnalysisPoint('u');
G = tf(1,[1 2]);
C = tunablePID('C','pi');
T = feedback(G*AP*C,1);
```

When creating tuning goals, you can use 'u' to refer to the analysis point at the plant input. Use getPoints to get the list of analysis points available in a genss model.

The loop shape requirement applies to the point-to-point open-loop transfer function at the specified location. That transfer function is the open-loop response obtained by injecting signals at the location and measuring the return signals at the same point.

If location specifies multiple locations, then the loop-shape requirement applies to the MIMO openloop transfer function.

loopgain

Target open-loop gain profile as a function of frequency.
You can specify loopgain as a smooth SISO transfer function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise gain profile using a frd model or the makeweight function. When you do so, the software automatically maps your specified gain profile to a zpk model whose magnitude approximates the desired gain profile. Use viewGoal (Req) to plot the magnitude of that zpk model.

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater than 1 are interpreted as minimum performance requirements. These values are lower bounds on the smallest singular value of L . Gain profile values less than one are interpreted as minimum roll-off requirements, which are upper bounds on the largest singular value of L . For more information about singular values, see sigma.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify loopgain as a discrete-time model with the same Ts. If you specify loopgain in continuous time, the tuning software discretizes it. Specifying the loop shape in discrete time gives you more control over the loop shape near the Nyquist frequency.

crosstol

Tolerance in the location of crossover frequency, in decades. specified as a scalar value. For example, crosstol $=0.5$ allows gain crossovers within half a decade on either side of the target crossover frequency specified by loopgain. Increasing crosstol increases the ability of the tuning algorithm to enforce the target loop shape for all loops in a MIMO control system.

Default: 0.1

wc
Target crossover frequency, specified as a positive scalar value. Express wc in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the control system model you are tuning.

wcrange

Range for target crossover frequency, specified as a vector of the form [wc1,wc2]. Express wc in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the control system model you are tuning.

Properties

LoopGain

Target loop shape as a function of frequency, specified as a SISO zpk model.

The software automatically maps the input argument loopgain onto a zpk model. The magnitude of this zpk model approximates the desired gain profile. Use viewGoal (Req) to plot the magnitude of the zpk model LoopGain.

Crosstol

Tolerance on gain crossover frequency, in decades.
The initial value of CrossTol is set by the crosstol input when you create the tuning goal.

Default: 0.1

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req. Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).
When Stabilize is true, this requirement stabilizes the specified feedback loop, as well as imposing gain or loop-shape requirements. Set Stabilize to false if stability for the specified loop is not required or cannot be achieved.

Default: 1 (true)

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.
In multi-loop or MIMO control systems, the feedback channels are automatically rescaled to equalize the off-diagonal terms in the open-loop transfer function (loop interaction terms). Set LoopScaling to 'off' to disable such scaling and shape the unscaled open-loop response.

Default: 'on'

Location

Location at which the open-loop response shape to be constrained is measured, specified as a cell array of character vectors that identify one or more analysis points in the control system to tune. For example, if Location $=\{$ ' u ' $\}$, the tuning goal evaluates the open-loop response measured at an analysis point 'u'. If Location = \{'u1','u2'\}, the tuning goal evaluates the MIMO open-loop response measured at analysis points 'u1' and 'u2'.

The initial value of the Location property is set by the location input argument when you create the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Loop Shape and Crossover Tolerance

Create a target gain profile requirement for the following control system. Specify integral action, gain crossover at 1 , and a roll-off requirement of $40 \mathrm{~dB} /$ decade.

The requirement should apply to the open-loop response measured at the AnalysisPoint block X. Specify a crossover tolerance of 0.5 decades.

LS $=$ frd([100 1 0.0001],[0.01 1 100]);
Req $=$ TuningGoal.LoopShape('X',LS,0.5);
The software converts LS into a smooth function of frequency that approximates the piecewisespecified requirement. Display the requirement using viewGoal.

```
viewGoal(Req)
```


The green and red regions indicate the bounds for the inverse sensitivity, inv(S) $=1-\mathrm{G} * \mathrm{C}$, and the complementary sensitivity, $\mathrm{T}=1-\mathrm{S}$, respectively. The gap between these regions at 0 dB gain reflects the specified crossover tolerance, which is half a decade to either side of the target loop crossover.

When you use viewGoal (Req, CL) to validate a tuned closed-loop model of this control system, CL, the tuned values of S and T are also plotted.

Specify Different Loop Shapes for Multiple Loops

Create separate loop shape requirements for the inner and outer loops of the following control system.

For the inner loop, specify a loop shape with integral action, gain crossover at 1, and a roll-off requirement of $40 \mathrm{~dB} / \mathrm{decade}$. Additionally, specify that this loop shape requirement should be enforced with the outer loop open.

```
LS2 = frd([100 1 0.0001],[0.01 1 100]);
Req2 = TuningGoal.LoopShape('X2',LS2);
Req2.Openings = 'X1';
```

Specifying 'X2' for the location indicates that Req2 applies to the point-to point, open-loop transfer function at the location X2. Setting Req2. Openings indicates that the loop is opened at the analysis point X1 when Req2 is enforced.

By default, Req2 imposes a stability requirement on the inner loop as well as the loop shape requirement. In some control systems, however, inner-loop stability might not be required, or might be impossible to achieve. In that case, remove the stability requirement from Req2 as follows.

```
Req2.Stabilize = false;
```

For the outer loop, specify a loop shape with integral action, gain crossover at 0.1 , and a roll-off requirement of $20 \mathrm{~dB} /$ decade.

```
LS1 = frd([10 1 0.01],[0.01 0.1 10]);
Req1 = TuningGoal.LoopShape('X1',LS1);
```

Specifying ' X 1 ' for the location indicates that Req1 applies to the point-to point, open-loop transfer function at the location X1. You do not have to set Req1. Openings because this loop shape is enforced with the inner loop closed.

You might want to tune the control system with both loop shaping requirements Req1 and Req2. To do so, use both requirements as inputs to the tuning command. For example, suppose CL0 is a tunable genss model of the closed-loop control system. In that case, use [CL,fSoft] = systune (CL0, [Req1, Req2]) to tune the control system to both requirements.

Loop Shape for Tuning Simulink Model

Create a loop-shape requirement for the feedback loop on ' q ' in the Simulink model rct_airframe2. Specify that the loop-shape requirement is enforced with the 'az' loop open.

Open the model.
open_system('rct_airframe2')

Two-loop autopilot for controlling the vertical acceleration of an airframe

Copyright 2014 The MathWorks, Inc.

Create a loop shape requirement that enforces integral action with a crossover a $2 \mathrm{rad} / \mathrm{s}$ for the ' q ' loop. This loop shape corresponds to a loop shape of 2/_s_.
$s=t f(' s ') ;$
shape = 2/s;
Req = TuningGoal.LoopShape('q',shape);
Specify the location at which to open an additional loop when enforcing the requirement.
Req.Openings = 'az';
To use this requirement to tune the Simulink model, create an slTuner interface to the model. Identify the block to tune in the interface.

ST0 = slTuner('rct_airframe2','MIMO Controller');
Designate both az and q as analysis points in the slTuner interface.
addPoint(ST0,\{'az', 'q'\});
This command makes q available as an analysis location. It also allows the tuning requirement to be enforced with the loop open at az.

You can now tune the model using Req and any other tuning requirements. For example:
[ST,fSoft] = systune(ST0,Req);
Final: Soft = 0.845, Hard = -Inf, Iterations = 51

Loop Shape Requirement with Crossover Range

Create a tuning requirement specifying that the open-loop response of loop identified by ' X ' cross unity gain between 50 and $100 \mathrm{rad} / \mathrm{s}$.

Req = TuningGoal.LoopShape('X',[50,100]);
Examine the resulting requirement to see the target loop shape.
viewGoal(Req)

The plot shows that the requirement specifies an integral loop shape, with crossover around $70 \mathrm{rad} / \mathrm{s}$, the geometrical mean of the range [50,100]. The gap at 0 dB between the minimum low-frequency gain (green region) and the maximum high-frequency gain (red region) reflects the allowed crossover range [50,100].

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function measured at Location, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systune0ptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systune0ptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. LoopShape, $f(x)$ is given by:

$$
f(x)=\left\|\begin{array}{c}
W_{S} S \\
W_{T} T
\end{array}\right\|_{\infty} .
$$

Here, $S=D^{-1}[I-L(s, x)]^{-1} D$ is the scaled sensitivity function at the specified location, where $L(s, x)$ is the open-loop response being shaped. D is an automatically-computed loop scaling factor. (If the LoopScaling property is set to 'off ' , then $D=I$.) $T=S-I$ is the complementary sensitivity function.
W_{S} and W_{T} are frequency weighting functions derived from the specified loop shape. The gains of these functions roughly match LoopGain and 1/LoopGain, for values ranging from -20 dB to 60 dB . For numerical reasons, the weighting functions level off outside this range, unless the specified loop gain profile changes slope for gains above 60 dB or below -60 dB . Because poles of W_{S} or W_{T} close to $s=0$ or $s=$ Inf might lead to poor numeric conditioning of the systune optimization problem, it is not recommended to specify loop shapes with very low-frequency or very high-frequency dynamics.

To obtain W_{S} and W_{T}, use:

```
[WS,WT] = getWeights(Req,Ts)
```

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for continuous time). For more information about the effects of the weighting functions on numeric stability, see "Visualize Tuning Goals".

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune|systune|looptune (for slTuner)|systune (for slTuner)|
TuningGoal.MinLoopGain|TuningGoal.MaxLoopGain |viewGoal|TuningGoal.Tracking |
TuningGoal.Gain|slTuner|frd

Topics

"Loop Shape and Stability Margin Specifications"
"Visualize Tuning Goals"
"Tuning Multiloop Control Systems"
"Tuning of a Digital Motion Control System"

TuningGoal.LQG class

Package: TuningGoal
Linear-Quadratic-Gaussian (LQG) goal for control system tuning

Description

Use TuningGoal. LQG to specify a tuning goal that quantifies control performance as an LQG cost. It is applicable to any control structure, not just the classical observer structure of optimal LQG control. You can use this tuning goal for control system tuning with tuning commands, such as systune or looptune.

The LQG cost is given by:
$J=E\left(z(t)^{\prime} Q Z z(t)\right)$.
$z(t)$ is the system response to a white noise input vector $w(t)$. The covariance of $w(t)$ is given by:
$E\left(w(t) w(t)^{\prime}\right)=Q W$.
The vector $w(t)$ typically consists of external inputs to the system such as noise, disturbances, or command. The vector $z(t)$ includes all the system variables that characterize performance, such as control signals, system states, and outputs. $E(x)$ denotes the expected value of the stochastic variable x.

The cost function J can also be written as an average over time:

$$
J=\lim _{T \rightarrow \infty} E\left(\frac{1}{T} \int_{0}^{T} z(t)^{\prime} Q Z z(t) d t\right) .
$$

After you create a tuning goal, you can further configure it by setting "Properties" on page 1-37 of the object.

Construction

Req = TuningGoal.LQG(wname,zname, QW, QZ) creates an LQG requirement. wname and zname specify the signals making up $w(t)$ and $z(t)$. The matrices QW and QZ specify the noise covariance and performance weight. These matrices must be symmetric nonnegative definite. Use scalar values for QW and QZ to specify multiples of the identity matrix.

Input Arguments

wname
Noise inputs, $w(t)$, specified as a character vector or a cell array of character vectors, that designate the signals making up $w(t)$ by name, such as ' w ' or $\{$ ' w ' , ' v ' \}. The signals available to designate as noise inputs for the tuning goal are as follows.

- If you are using the tuning goal to tune a Simulink model of a control system, then wname can include:
- Any model input
- Any linearization input point in the model
- Any signal identified as a Controls, Measurements, Switches, or IOs signal in an slTuner interface associated with the Simulink model
- If you are using the tuning goal to tune a generalized state-space model (genss) of a control system using systune, then wname can include:
- Any input of the control system model
- Any channel of an AnalysisPoint block in the control system model

For example, if you are tuning a control system model, T, then wname can be an input name contained in T. InputName. Also, if T contains an AnalysisPoint block with a location named X, then wname can include X.

- If you are using the tuning goal to tune a controller model, C0 for a plant G0, using looptune, then wname can include:
- Any input of C0 or G0
- Any channel of an AnalysisPoint block in C0 or G0

If wname is a channel of an AnalysisPoint block of a generalized model, the noise input for the tuning goal is the implied input associated with the switch:

zname
Performance outputs, $z(t)$, specified as a character vector or a cell array of character vectors, that designate the signals making up $z(t)$ by name, such as ' y ' or $\left\{\right.$ ' y^{\prime}, ' u ' $\}$. The signals available to designate as performance outputs for the tuning goal are as follows.

- If you are using the tuning goal to tune a Simulink model of a control system, then zname can include:
- Any model output
- Any linearization output point in the model
- Any signal identified as a Controls, Measurements, Switches, or IOs signal in an slTuner interface associated with the Simulink model
- If you are using the tuning goal to tune a generalized state-space model (genss) of a control system using systune, then zname can include:
- Any output of the control system model
- Any channel of an AnalysisPoint block in the control system model

For example, if you are tuning a control system model, T, then zname can be an output name contained in T. OutputName. Also, if T contains an AnalysisPoint block with a channel named X, then zname can include X.

- If you are using the tuning goal to tune a controller model, C0 for a plant G0, using looptune, then zname can include:
- Any input of C0 or G0
- Any channel of an AnalysisPoint block in C0 or G0

If zname is a channel of an AnalysisPoint block of a generalized model, the performance output for the tuning goal is the implied output associated with the switch:

QW

Covariance of the white noise input vector $w(t)$, specified as a scalar or a matrix. Use a scalar value to specify a multiple of the identity matrix. Otherwise specify a symmetric nonnegative definite matrix with as many rows as there are entries in the vector $w(t)$. A diagonal matrix means the entries of $w(t)$ are uncorrelated.

The covariance of $w(t$ is given by:
$E\left(w(t) w(t)^{\prime}\right)=Q W$.
When you are tuning a control system in discrete time, the LQG tuning goal assumes:
$E\left(w[k] w[k]^{\prime}\right)=Q W / T_{s}$.
T_{s} is the model sample time. This assumption ensures consistent results with tuning in the continuous-time domain. In this assumption, $w[k]$ is discrete-time noise obtained by sampling continuous white noise $w(t)$ with covariance $Q W$. If in your system $w[k]$ is a truly discrete process with known covariance $Q W d$, use the value $T_{s}^{*} Q W d$ for the QW value when creating the LQG goal.

Default: I

QZ

Performance weights, specified as a scalar or a matrix. Use a scalar value to specify a multiple of the identity matrix. Otherwise specify a symmetric nonnegative definite matrix. Use a diagonal matrix to independently scale or penalize the contribution of each variable in z.

The performance weights contribute to the cost function according to:
$J=E\left(z(t)^{\prime} Q Z z(t)\right)$.
When you use the LQG tuning goal as a hard goal, the software tries to drive the cost function $J<1$. When you use it as a soft goal, the cost function J is minimized subject to any hard goals and its value is contributed to the overall objective function. Therefore, select QZ values to properly scale the cost function so that driving it below 1 or minimizing it yields the performance you require.

Default: I

Properties

NoiseCovariance

Covariance matrix of the noise inputs $w(t)$, specified as a matrix. The value of the NoiseCovariance property is set by the $W Z$ input argument when you create the LQG tuning goal.

PerformanceWeight

Weights for the performance signals $z(t)$, specified as a matrix. The value of the PerformanceWeight property is set by the QZ input argument when you create the LQG tuning goal.

Input

Noise input signal names, specified as a cell array of character vectors. The input signal names specify the inputs of the transfer function that the tuning goal constrains. The initial value of the Input property is set by the wname input argument when you construct the tuning goal.

Output

Performance output signal names, specified as a cell array of character vectors. The output signal names specify the outputs of the transfer function that the tuning goal constrains. The initial value of the Output property is set by the zname input argument when you construct the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings
Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

```
Req.Name = 'LoopReq';
```

Default: []

Tips

- When you use this tuning goal to tune a continuous-time control system, systune attempts to enforce zero feedthrough $(D=0)$ on the transfer that the tuning goal constrains. Zero feedthrough is imposed because the H_{2} norm, and therefore the value of the tuning goal, is infinite for continuous-time systems with nonzero feedthrough.
systune enforces zero feedthrough by fixing to zero all tunable parameters that contribute to the feedthrough term. systune returns an error when fixing these tunable parameters is insufficient to enforce zero feedthrough. In such cases, you must modify the tuning goal or the control structure, or manually fix some tunable parameters of your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software's approach of zeroing all parameters that contribute to the overall feedthrough might be conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free properties of the block parametrization. For example, consider a tuned state-space block:

C = tunableSS('C', 1, 2,3);
To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the parameter.
C.D.Value = 0;
C.D.Free = false;

For more information on fixing parameter values, see the Control Design Block reference pages, such as tunableSS.

- This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from wname to zname, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x) . x$ is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$, or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal.LQG, $f(x)$ is given by the cost function J :
$J=E\left(z(t)^{\prime} Q Z z(t)\right)$.
When you use the LQG requirement as a hard goal, the software tries to drive the cost function $J<1$. When you use it as a soft goal, the cost function J is minimized subject to any hard goals and its value is contributed to the overall objective function. Therefore, select QZ values to properly scale the cost function so that driving it below 1 or minimizing it yields the performance you require.

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

systune|slTuner|systune (for slTuner)|viewGoal|evalGoal|
TuningGoal. WeightedVariance |TuningGoal.Variance

Topics

"Vibration Control in Flexible Beam"
"Time-Domain Specifications"

TuningGoal.Margins class

Package: TuningGoal

Stability margin requirement for control system tuning

Description

Use TuningGoal .Margins to specify a tuning goal for the gain and phase margins of a SISO or MIMO feedback loop. You can use this tuning goal for validating a tuned control system with viewGoal. You can also use the tuning goal for control system tuning with tuning commands such as systune or looptune.

After you create a tuning goal, you can configure it further by setting "Properties" on page 1-41 of the object.

After using the tuning goal to tune a control system, you can visualize the tuning goal and the tuned value using the viewGoal command. For information about interpreting the margins goal, see "Stability Margins in Control System Tuning".

Construction

Req = TuningGoal.Margins(location,gainmargin, phasemargin) creates a tuning goal that specifies the minimum gain and phase margins at the specified location in the control system.

Input Arguments

location

Location in the control system at which the minimum gain and phase margins apply, specified as a character vector or cell array of character vectors that identify one or more locations in the control system to tune. What locations are available depends on what kind of system you are tuning:

- If you are tuning a Simulink model of a control system, you can use any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if the slTuner interface contains an analysis point u, you can use ' u ' to refer to that point when creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner interface to your model.
- If you are tuning a generalized state-space (genss) model of a control system, you can use any AnalysisPoint location in the control system model. For example, the following code creates a PI loop with an analysis point at the plant input ' u '.

AP = AnalysisPoint('u');
$G=t f(1,[12])$;
C = tunablePID('C','pi');
T = feedback(G*AP*C,1);
When creating tuning goals, you can use ' u ' to refer to the analysis point at the plant input. Use getPoints to get the list of analysis points available in a genss model.

The margin requirements apply to the point-to-point, open-loop transfer function at the specified loopopening location. That transfer function is the open-loop response obtained by injecting signals at the specified location, and measuring the return signals at the same point.

If location is a cell array, then the margin requirement applies to the MIMO open-loop transfer function.

gainmargin

Required minimum gain margin for the feedback loop, specified as a scalar value in dB.
TuningGoal.Margins uses disk-based gain and phase margins, which provide a stronger guarantee of stability than the classical gain and phase margins. (For details about disk margins, see "Stability Analysis Using Disk Margins" (Robust Control Toolbox).)

The gain margin indicates how much the gain of the open-loop response can increase or decrease without loss of stability. For instance,

- For a SISO system, setting gainmargin = 3 specifies a requirement that the closed-loop system remain stable for changes in the open-loop gain of up to $\pm 3 \mathrm{~dB}$.
- For a MIMO system, setting gainmargin $=3$ specifies a requirement that the closed-system remain stable for gain changes up to $\pm 3 \mathrm{~dB}$ in each feedback channel. The gain can change in all channels simultaneously, and by a different amount in each channel.

phasemargin

Required minimum phase margin for the feedback loop, specified as a scalar value in degrees. TuningGoal.Margins uses disk-based gain and phase margins, which provide a stronger guarantee of stability than the classical gain and phase margins. (For details about disk margins, see "Stability Analysis Using Disk Margins" (Robust Control Toolbox).)

The phase margin indicates how much the phase of the open-loop response can increase or decrease without loss of stability. For instance,

- For a SISO system, setting phasemargin $=45$ specifies a requirement that the closed-loop system remain stable for changes of up to $\pm 45^{\circ}$ in the phase of the open-loop response.
- For a MIMO system, setting phasemargin $=45$ specifies a requirement that the closed-system remain stable for phase changes up to $\pm 45^{\circ}$ in each feedback channel. The phase can change in all channels simultaneously, and by a different amount in each channel.

Properties

GainMargin

Required minimum gain margin for the feedback loop, specified as a scalar value in decibels (dB).
The value of the GainMargin property is set by the gainmargin input argument when you create the tuning goal.

PhaseMargin

Required minimum phase margin for the feedback loop, specified as a scalar value in degrees.
The value of the PhaseMargin property is set by the phasemargin input argument when you create the tuning goal.

ScalingOrder

Controls the order (number of states) of the scalings involved in computing MIMO stability margins. Static scalings (ScalingOrder $=0$) are used by default. Increasing the order may improve results at the expense of increased computations. Use viewGoal to assess the gap between optimized and actual margins. If this gap is too large, consider increasing the scaling order. See "Stability Margins in Control System Tuning".

Default: 0 (static scaling)

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. For best results with stability margin requirements, pick a frequency band extending about one decade on each side of the gain crossover frequencies. For example, suppose Req is a
TuningGoal. Margins object that you are using to tune a system with approximately $10 \mathrm{rad} / \mathrm{s}$ bandwidth. To limit the enforcement of the tuning goal, use the following command:

Req.Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

Location

Location at which the minimum gain and phase margins apply, specified as a cell array of character vectors that identify one or more analysis points in the control system to tune. For example, if Location = \{'u'\}, the tuning goal enforces the minimum gain and phase margins at an analysis point 'u'.

The value of the Location property is set by the location input argument when you create the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings $=\left\{' u 1^{\prime}, ' u 2^{\prime}\right\}$, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{ \}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

SISO Margin Requirement Evaluated with Additional Loop Opening

Create a margin requirement for the inner loop of the following control system. The requirement imposes a minimum gain margin of 5 dB and a minimum phase margin of 40 degrees.

Create a model of the system. To do so, specify and connect the numeric plant models G1 and G2, and the tunable controllers C1 and C2. Also specify and connect the AnalysisPoint blocks AP1 and AP2 that mark points of interest for analysis and tuning.

```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
AP1 = AnalysisPoint('AP1');
AP2 = AnalysisPoint('AP2');
T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);
```

Create a tuning requirement object.

```
Req = TuningGoal.Margins('AP2',5,40);
```

This requirement imposes the specified stability margins on the feedback loop identified by the AnalysisPoint channel 'AP2', which is the inner loop.

Specify that these margins are evaluated with the outer loop of the control system open.
Req.Openings = \{'AP1'\};
Adding 'AP1' to the Openings property of the tuning requirements object ensure that systune evaluates the requirement with the loop open at that location.

Use systune to tune the free parameters of T to meet the tuning requirement specified by Req. You can then use viewGoal to validate the tuned control system against the requirement.

MIMO Margin Requirement in Frequency Band

Create a requirement that sets minimum gain and phase margins for the loop defined by three loopopening locations in a control system to tune. Because this loop is defined by three loop-opening locations, it is a MIMO loop.

The requirement sets a minimum gain margin of 10 dB and a minimum phase margin of 40 degrees, within the band between 0.1 and $10 \mathrm{rad} / \mathrm{s}$.

```
Req = TuningGoal.Margins({'r','theta','phi'},10,40);
```

The names 'r', 'theta', and 'phi' must specify valid loop-opening locations in the control system that you are tuning.

Limit the requirement to the frequency band between 0.1 and $10 \mathrm{rad} / \mathrm{s}$.

```
Req.Focus = [0.1 10];
```


Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function measured at Location, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systune0ptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. Margins, $f(x)$ is given by:

$$
f(x)=\|2 \alpha S-\alpha I\|_{\infty} .
$$

$S=D^{-1}[I-L(s, x)]^{-1} D$ is the scaled sensitivity function.
$L(s, x)$ is the open-loop response being shaped.
D is an automatically-computed loop scaling factor. For more information about D, see "Stability Margins in Control System Tuning".
α is a scalar parameter computed from the specified gain and phase margin. For more information about α, see "Stability Analysis Using Disk Margins" (Robust Control Toolbox).

Version History

Introduced in R2016a
R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune| systune|systune (for slTuner)| looptune (for slTuner)|viewGoal| evalGoal

Topics

"Loop Shape and Stability Margin Specifications"
"Tune Control Systems Using systune"
"Digital Control of Power Stage Voltage"
"Tuning of a Two-Loop Autopilot"
"Fixed-Structure Autopilot for a Passenger Jet"
"Stability Margins in Control System Tuning"

TuningGoal.MinLoopGain class

Package: TuningGoal

Minimum loop gain constraint for control system tuning

Description

Use the TuningGoal. MinLoopGain object to enforce a minimum loop gain in a particular frequency band. Use this tuning goal with control system tuning commands such as systune or looptune.

This tuning goal imposes a minimum gain on the open-loop frequency response (L) at a specified location in your control system. You specify the minimum open-loop gain as a function of frequency (a minimum gain profile). For MIMO feedback loops, the specified gain profile is interpreted as a lower bound on the smallest singular value of L.

When you tune a control system, the minimum gain profile is converted to a minimum gain constraint on the inverse of the sensitivity function, $\operatorname{inv}(S)=(I+L)$.

The following figure shows a typical specified minimum gain profile (dashed line) and a resulting tuned loop gain, L (blue line). The shaded region represents gain profile values that are forbidden by this tuning goal. The figure shows that when L is much larger than 1, imposing a minimum gain on $\operatorname{inv}(S)$ is a good proxy for a minimum open-loop gain.

TuningGoal.MinLoopGain and TuningGoal .MaxLoopGain specify only low-gain or high-gain constraints in certain frequency bands. When you use these tuning goals, systune and looptune determine the best loop shape near crossover. When the loop shape near crossover is simple or well understood (such as integral action), you can use TuningGoal.LoopShape to specify that target loop shape.

Construction

Req = TuningGoal.MinLoopGain(location,loopgain) creates a tuning goal for boosting the gain of a SISO or MIMO feedback loop. The tuning goal specifies that the open-loop frequency response (L) measured at the specified locations exceeds the minimum gain profile specified by loopgain.

You can specify the minimum gain profile as a smooth transfer function or sketch a piecewise error profile using an frd model or the makeweight command. Only gain values greater than 1 are enforced.

For MIMO feedback loops, the specified gain profile is interpreted as a lower bound on the smallest singular value of L.

Req = TuningGoal.MinLoopGain(location,fmin,gmin) specifies a minimum gain profile of the form loopgain $=\mathrm{K} / \mathrm{s}$ (integral action). The software chooses K such that the gain value is gmin at the specified frequency, fmin.

Input Arguments

location

Location at which the maximum open-loop gain is constrained, specified as a character vector or cell array of character vectors that identify one or more locations in the control system to tune. What loop-opening locations are available depends on what kind of system you are tuning:

- If you are tuning a Simulink model of a control system, you can use any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if the slTuner interface contains an analysis point u, you can use ' u ' to refer to that point when creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner interface to your model.
- If you are tuning a generalized state-space (genss) model of a control system, you can use any AnalysisPoint location in the control system model. For example, the following code creates a PI loop with an analysis point at the plant input ' u '.

```
AP = AnalysisPoint('u');
G = tf(1,[1 2]);
C = tunablePID('C','pi');
T = feedback(G*AP*C,1);
```

When creating tuning goals, you can use 'u' to refer to the analysis point at the plant input. Use getPoints to get the list of analysis points available in a genss model.

If location is a cell array of loop-opening locations, then the minimum gain goal applies to the resulting MIMO loop.

loopgain

Minimum open-loop gain as a function of frequency.
You can specify loopgain as a smooth SISO transfer function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise gain profile using a frd model or the makeweight command. For example, the following frd model specifies a minimum gain of $100(40 \mathrm{~dB})$ below $0.1 \mathrm{rad} / \mathrm{s}$, rolling off at a rate of $-20 \mathrm{~dB} / \mathrm{dec}$ at higher frequencies.
loopgain $=$ frd([100 100 10],[0 1e-1 1]);
When you use an frd model to specify loopgain, the software automatically maps your specified gain profile to a zpk model. The magnitude of this model approximates the desired gain profile. Use viewGoal (Req) to plot the magnitude of that zpk model.

Only gain values larger than 1 are enforced. For multi-input, multi-output (MIMO) feedback loops, the gain profile is interpreted as a lower bound on the smallest singular value of L. For more information about singular values, see sigma.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify loopgain as a discrete-time model with the same Ts. If you specify loopgain in continuous time, the tuning software discretizes it. Specifying the loop gain in discrete time gives you more control over the loop gain near the Nyquist frequency.

fmin

Frequency of minimum gain gmin, specified as a scalar value in rad/s.
Use this argument to specify a minimum gain profile of the form loopgain $=\mathrm{K} / \mathrm{s}$ (integral action). The software chooses K such that the gain value is gmin at the specified frequency, fmin.

gmin

Value of minimum gain occurring at fmin, specified as a scalar absolute value.
Use this argument to specify a minimum gain profile of the form loopgain $=\mathrm{K} / \mathrm{s}$ (integral action). The software chooses K such that the gain value is gmin at the specified frequency, fmin.

Properties

MinGain

Minimum open-loop gain as a function of frequency, specified as a SISO zpk model.
The software automatically maps the input argument loopgain onto a zpk model. The magnitude of this zpk model approximates the desired gain profile. Alternatively, if you use the fmin and gmin arguments to specify the gain profile, this property is set to K/s. The software chooses K such that the gain value is gmin at the specified frequency, fmin.

Use viewGoal (Req) to plot the magnitude of the open-loop minimum gain profile.

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];
Default: [$0, \mathrm{Inf}$] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).
When Stabilize is true, this requirement stabilizes the specified feedback loop, as well as imposing gain or loop-shape requirements. Set Stabilize to false if stability for the specified loop is not required or cannot be achieved.

Default: 1 (true)

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.
In multi-loop or MIMO control systems, the feedback channels are automatically rescaled to equalize the off-diagonal terms in the open-loop transfer function (loop interaction terms). Set LoopScaling to 'off' to disable such scaling and shape the unscaled open-loop response.

Default: 'on'

Location

Location at which minimum loop gain is constrained, specified as a cell array of character vectors that identify one or more analysis points in the control system to tune. For example, if Location = \{ ' u' \}, the tuning goal evaluates the open-loop response measured at an analysis point 'u'. If Location $=\left\{' u 1^{\prime}, ' u 2^{\prime}\right\}$, the tuning goal evaluates the MIMO open-loop response measured at analysis points 'u1' and 'u2'.

The value of the Location property is set by the location input argument when you create the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points u1 and u2.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Minimum Loop Gain Tuning Goal

Create a tuning goal that boosts the open-loop gain of a feedback loop to at least a specified profile.
Suppose that you are tuning a control system that has a loop-opening location identified by PILoop. Specify that the open-loop gain measured at that location exceeds a minimum gain of 10 (20 dB) below $0.1 \mathrm{rad} / \mathrm{s}$, rolling off at a rate of $-20 \mathrm{~dB} / \mathrm{dec}$ at higher frequencies. Use an frd model to sketch this gain profile.

```
loopgain = frd([10 10 0.1],[0 1e-1 10]);
Req = TuningGoal.MinLoopGain('PILoop',loopgain);
```

The software converts loopgain into a smooth function of frequency that approximates the piecewise-specified gain profile. Display the tuning goal using viewGoal.
viewGoal(Req)

The dashed line shows the specified the gain profile. The shaded region indicates where the tuning goal is violated, except that gain values less than 1 are not enforced. Therefore, this tuning goal only specifies a minimum gain at frequencies below $1 \mathrm{rad} / \mathrm{s}$.

You can use Req as an input to looptune or systune when tuning the control system. Then use viewGoal (Req, T) to compare the tuned loop gain to the minimum gain specified in the tuning goal, where T represents the tuned control system.

Integral Minimum Gain Specified as Gain Value at Single Frequency

Create a tuning goal that specifies a minimum loop gain profile of the form $L=K / s$. The gain profile attains the value of $-20 \mathrm{~dB}(0.01)$ at $100 \mathrm{rad} / \mathrm{s}$.

Req = TuningGoal.MinLoopGain('X',100,0.01);
viewGoal(Req)

viewGoal confirms that the tuning goal is correctly specified. You can use this tuning goal to tune a control system that has a loop-opening location identified as ' X '. Since loop gain values less than 1 are ignored, this tuning goal specifies minimum gain only below $1 \mathrm{rad} / \mathrm{s}$, with no restriction on loop gain at higher frequency.

Although the specified gain profile (dashed line) is a pure integrator, for numeric reasons, the gain profile enforced during tuning levels off at very low frequencies, as described in "Algorithms" on page $1-56$. To see the regularized gain profile, expand the axes of the tuning-goal plot.

```
xlim([10^-4,10^2])
```

ylim([-20,80])

The shaded region reflects the modified gain profile.

Minimum Loop Gain as Constraint on Sensitivity Function

Examine a minimum loop gain tuning goal against the tuned loop gain. A minimum loop gain tuning goal is converted to a constraint on the gain of the sensitivity function at the location specified in the tuning goal.

To see this relationship between the minimum loop gain and the sensitivity function, tune the following closed-loop system with analysis points at X1 and X2. The control system has tunable PID controllers C1 and C2.

Create a model of the control system.

```
G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);
C20 = tunablePID('C2','pi');
```

```
C10 = tunablePID('C1','pid');
X1 = AnalysisPoint('X1');
X2 = AnalysisPoint('X2');
InnerLoop = feedback(X2*G2*C20,1);
CL0 = feedback(G1*InnerLoop*C10,X1);
CL0.InputName = 'r';
CL0.OutputName = 'y';
```

Specify some tuning goals, including a minimum loop gain. Tune the control system to these requirements.

Rtrack $=$ TuningGoal.Tracking('r','y',10,0.01);
Rreject = TuningGoal. Gain('X2', 'y', 0.1);
Rgain = TuningGoal.MinLoopGain('X2',100,10000);
Rgain.Openings = 'X1';
opts = systuneOptions('RandomStart',2);
rng('default'); \% for reproducibility
[CL,fSoft] = systune(CL0,[Rtrack,Rreject,Rgain]);
Final: Soft = 1.07, Hard = -Inf, Iterations = 101
Some closed-loop poles are marginally stable (decay rate near 1e-07)
Examine the TuningGoal. MinLoopGain goal against the corresponding tuned response.

```
viewGoal(Rgain,CL)
```

Requirement 1: Minimum loop gain as a function of frequency

The plot shows the achieved loop gain for the loop at X2 (blue line). The plot also shows the inverse of the achieved sensitivity function, S, at the location X2 (green line). The inverse sensitivity function at this location is given by $\operatorname{inv}(\mathrm{S})=\mathrm{I}+\mathrm{L}$. Here, L is the open-loop point-to-point loop transfer measured at X2.

The minimum loop gain goal Rgain is constraint on inv(S), represented in the plot by the green shaded region. The constraint on inv (S) can be thought of as a minimum gain constraint on L that applies where the gain of L (or the smallest singular value of L, for MIMO loops) is greater than 1 .

Loop-Gain Requirement without Stability Constraint on Inner Loop

Create requirements that specify a minimum loop gain of $20 \mathrm{~dB}(100)$ at $50 \mathrm{rad} / \mathrm{s}$ and a maximum loop gain of $-20 \mathrm{~dB}(0.01)$ at $1000 \mathrm{rad} / \mathrm{s}$ on the inner loop of the following control system.

Create the maximum and minimum loop gain requirements.
RMinGain = TuningGoal.MinLoopGain('X2', 50,100);
RMaxGain = TuningGoal.MaxLoopGain('X2',1000,0.01);
Configure the requirements to apply to the loop gain of the inner loop measured with the outer loop open.

RMinGain.Openings = 'X1';
RMaxGain.Openings = 'X1';
Setting Req.Openings tells the tuning algorithm to enforce the requirements with a loop open at the specified location. With the outer loop open, the requirements apply only to the inner loop.

By default, tuning using TuningGoal. MinLoopGain or TuningGoal .MaxLoopGain imposes a stability requirement as well as the minimum or maximum loop gain. Practically, in some control systems it is not possible to achieve a stable inner loop. In that case, remove the stability requirement for the inner loop by setting the Stabilize property to false.

```
RMinGain.Stabilize = false;
RMaxGain.Stabilize = false;
```

When you tune using either of these requirements, the tuning algorithm still imposes a stability requirement on the overall tuned control system, but not on the inner loop alone.

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function measured at Location, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$. Here, x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. MinLoopGain, $f(x)$ is given by:

$$
f(x)=\left\|W_{S}\left(D^{-1} S D\right)\right\|_{\infty} .
$$

Here, D is a diagonal scaling (for MIMO loops). S is the sensitivity function at Location. W_{S} is a frequency-weighting function derived from the minimum loop gain profile, MinGain. The gain of this function roughly matches MaxGain for values ranging from - 20 dB to 60 dB . For numerical reasons, the weighting function levels off outside this range, unless the specified gain profile changes slope outside this range. This adjustment is called regularization. Because poles of W_{S} close to $s=0$ or $s=$ Inf might lead to poor numeric conditioning of the systune optimization problem, it is not recommended to specify gain profiles with very low-frequency or very high-frequency dynamics.

To obtain W_{S}, use:
WS = getWeight(Req,Ts)
where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for continuous time). For more information about regularization and its effects, see "Visualize Tuning Goals".

Although S is a closed-loop transfer function, driving $f(x)<1$ is equivalent to enforcing a lower bound on the open-loop transfer function, L, in a frequency band where the gain of L is greater than 1 . To see why, note that $S=1 /(1+L)$. For SISO loops, when $|L| \gg 1,|S| \approx 1 /|L|$. Therefore, enforcing the open-loop minimum gain requirement, $|L|>\left|W_{S}\right|$, is roughly equivalent to enforcing $\left|W_{s} S\right|<1$. For MIMO loops, similar reasoning applies, with $\|S\| \approx 1 / \sigma_{\min }(L)$, where $\sigma_{\min }$ is the smallest singular value.

For an example illustrating the constraint on S, see "Minimum Loop Gain as Constraint on Sensitivity Function" on page 1-53.

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a

Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune|systune|systune (for slTuner)|looptune (for slTuner)|viewGoal| evalGoal|TuningGoal.Gain|TuningGoal.LoopShape|TuningGoal.MaxLoopGain | TuningGoal.Margins|slTuner|sigma

Topics

"Loop Shape and Stability Margin Specifications"
"Visualize Tuning Goals"
"PID Tuning for Setpoint Tracking vs. Disturbance Rejection"

TuningGoal.MaxLoopGain class

Package: TuningGoal
Maximum loop gain constraint for control system tuning

Description

Use TuningGoal .MaxLoopGain to enforce a maximum loop gain and desired roll-off in a particular frequency band. Use this tuning goal with control system tuning commands such as systune or looptune.

This tuning goal imposes a maximum gain on the open-loop frequency response (L) at a specified location in your control system. You specify the maximum open-loop gain as a function of frequency (a maximum gain profile). For MIMO feedback loops, the specified gain profile is interpreted as an upper bound on the largest singular value of L.

When you tune a control system, the maximum gain profile is converted to a maximum gain constraint on the complementary sensitivity function, $T)=L /(I+L)$.

The following figure shows a typical specified maximum gain profile (dashed line) and a resulting tuned loop gain, L (blue line). The shaded region represents gain profile values that are forbidden by this tuning goal. The figure shows that when L is much smaller than 1, imposing a maximum gain on T is a good proxy for a maximum open-loop gain.

TuningGoal.MaxLoopGain and TuningGoal .MinLoopGain specify only high-gain or low-gain constraints in certain frequency bands. When you use these tuning goals, systune and looptune determine the best loop shape near crossover. When the loop shape near crossover is simple or well understood (such as integral action), you can use TuningGoal. LoopShape to specify that target loop shape.

Construction

Req $=$ TuningGoal.MaxLoopGain(location, loopgain) creates a tuning goal for limiting the gain of a SISO or MIMO feedback loop. The tuning goal limits the open-loop frequency response measured at the specified locations to the maximum gain profile specified by loopgain. You can specify the maximum gain profile as a smooth transfer function or sketch a piecewise error profile using an frd model or the makeweight command. Only gain values smaller than 1 are enforced.

Req = TuningGoal.MaxLoopGain(location,fmax,gmax) specifies a maximum gain profile of the form loopgain = K/s (integral action). The software chooses K such that the gain value is gmax at the specified frequency, fmax.

Input Arguments

location

Location at which the maximum open-loop gain is constrained, specified as a character vector or cell array of character vectors that identify one or more locations in the control system to tune. What loop-opening locations are available depends on what kind of system you are tuning:

- If you are tuning a Simulink model of a control system, you can use any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if the slTuner interface contains an analysis point u, you can use ' u ' to refer to that point when creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner interface to your model.
- If you are tuning a generalized state-space (genss) model of a control system, you can use any AnalysisPoint location in the control system model. For example, the following code creates a PI loop with an analysis point at the plant input ' u '.

```
AP = AnalysisPoint('u');
G = tf(1,[1 2]);
C = tunablePID('C','pi');
T = feedback(G*AP*C,1);
```

When creating tuning goals, you can use ' u ' to refer to the analysis point at the plant input. Use getPoints to get the list of analysis points available in a genss model.

If location is a cell array of loop-opening locations, then the maximum gain requirement applies to the resulting MIMO loop.

loopgain

Maximum open-loop gain as a function of frequency.
You can specify loopgain as a smooth SISO transfer function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise gain profile using a frd model or the makeweight command. For example, the following frd model specifies a maximum gain of $1(0 \mathrm{~dB})$ at $1 \mathrm{rad} / \mathrm{s}$, rolling off at a rate of $-20 \mathrm{~dB} / \mathrm{dec}$ up to $10 \mathrm{rad} / \mathrm{s}$, and a rate of $-40 \mathrm{~dB} / \mathrm{dec}$ at higher frequencies.

```
loopgain = frd([1 le-1 le-3],[1 10 100]);
bodemag(loopgain)
```


When you use an frd model to specify loopgain, the software automatically maps your specified gain profile to a zpk model. The magnitude of this model approximates the desired gain profile. Use viewGoal (Req) to plot the magnitude of that zpk model.

Only gain values smaller than 1 are enforced. For multi-input, multi-output (MIMO) feedback loops, the gain profile is interpreted as a minimum roll-off requirement, which is an upper bound on the largest singular value of L . For more information about singular values, see sigma.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify loopgain as a discrete-time model with the same Ts. If you specify loopgain in continuous time, the tuning software discretizes it. Specifying the loop gain in discrete time gives you more control over the loop gain near the Nyquist frequency.

fmax

Frequency of maximum gain gmax, specified as a scalar value in rad/s.
Use this argument to specify a maximum gain profile of the form loopgain $=\mathrm{K} / \mathrm{s}$ (integral action). The software chooses K such that the gain value is gmax at the specified frequency, fmax.

gmax

Value of maximum gain occurring at fmax, specified as a scalar absolute value.
Use this argument to specify a maximum gain profile of the form loopgain $=\mathrm{K} / \mathrm{s}$ (integral action). The software chooses K such that the gain value is gmax at the specified frequency, fmax.

Properties

MaxGain

Maximum open-loop gain as a function of frequency, specified as a SISO zpk model.
The software automatically maps the input argument loopgain onto a zpk model. The magnitude of this zpk model approximates the desired gain profile. Alternatively, if you use the fmax and gmax arguments to specify the gain profile, this property is set to K/s. The software chooses K such that the gain value is gmax at the specified frequency, fmax.

Use viewGoal (Req) to plot the magnitude of the open-loop maximum gain profile.

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).
When Stabilize is true, this requirement stabilizes the specified feedback loop, as well as imposing gain or loop-shape requirements. Set Stabilize to false if stability for the specified loop is not required or cannot be achieved.

Default: 1 (true)

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.
In multi-loop or MIMO control systems, the feedback channels are automatically rescaled to equalize the off-diagonal terms in the open-loop transfer function (loop interaction terms). Set LoopScaling to 'off' to disable such scaling and shape the unscaled open-loop response.

Default: 'on'

Location

Location at which minimum loop gain is constrained, specified as a cell array of character vectors that identify one or more analysis points in the control system to tune. For example, if Location $=$ \{'u'\}, the tuning goal evaluates the open-loop response measured at an analysis point 'u'. If Location = \{'u1', 'u2'\}, the tuning goal evaluates the MIMO open-loop response measured at analysis points 'u1' and 'u2'.

The value of the Location property is set by the location input argument when you create the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings $=\left\{{ }^{\prime} u 1^{\prime}, ' u 2^{\prime}\right\}$, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{ \}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Maximum Loop Gain Tuning Goal

Create a tuning goal that limits the maximum open-loop gain of a feedback loop to a specified profile.

Suppose that you are tuning a control system that has a loop-opening location identified by PILoop. Limit the open-loop gain measured at that location to $1(0 \mathrm{~dB})$ at $1 \mathrm{rad} / \mathrm{s}$, rolling off at a rate of -20 $\mathrm{dB} / \mathrm{dec}$ up to $10 \mathrm{rad} / \mathrm{s}$, and a rate of $-40 \mathrm{~dB} / \mathrm{dec}$ at higher frequencies. Use an frd model to sketch this gain profile.

```
loopgain = frd([1 1e-1 1e-3],[1 10 100]);
Req = TuningGoal.MaxLoopGain('PILoop',loopgain);
```

The software converts loopgain into a smooth function of frequency that approximates the piecewise-specified gain profile. Display the tuning goal using viewGoal.

```
viewGoal(Req)
```


Requirement 1: Maximum loop gain as a function of frequency

The dashed line shows the specified gain profile. The shaded region indicates where the tuning goal is violated, except that gain values greater than 1 are not enforced. Therefore, this tuning goal only specifies minimum roll-off rates at frequencies above $1 \mathrm{rad} / \mathrm{s}$.

You can use Req as an input to looptune or systune when tuning the control system. Then use viewGoal (Req, T) to compare the tuned loop gain to the minimum gain specified in the tuning goal, where T represents the tuned control system.

Integral Maximum Gain Specified as Gain Value at Single Frequency

Create a tuning goal that specifies a maximum loop gain of the form $L=K / s$. The maximum gain attains the value of $-20 \mathrm{~dB}(0.01)$ at $100 \mathrm{rad} / \mathrm{s}$.

Req $=$ TuningGoal.MaxLoopGain('X',100,0.01); viewGoal(Req)

viewGoal confirms that the tuning goal is correctly specified. You can use this tuning goal to tune a control system that has a loop-opening location identified as ' X '. Since loop gain values greater than 1 are ignored, this requirement specifies a rolloff of $20 \mathrm{~dB} /$ decade above $1 \mathrm{rad} / \mathrm{s}$, with no restriction on loop gain below that frequency.

Although the specified gain profile (dashed line) is a pure integrator, for numeric reasons, the gain profile enforced during tuning levels off at very high frequencies, as described in "Algorithms" on page 1-56. To see the regularized gain profile, expand the axes of the tuning-goal plot.
$x \lim \left(\left[10^{\wedge}-2,10^{\wedge} 4\right]\right)$
$y \lim ([-80,20])$

The shaded region reflects the modified gain profile.

Loop-Gain Requirement without Stability Constraint on Inner Loop

Create requirements that specify a minimum loop gain of $20 \mathrm{~dB}(100)$ at $50 \mathrm{rad} / \mathrm{s}$ and a maximum loop gain of $-20 \mathrm{~dB}(0.01)$ at $1000 \mathrm{rad} / \mathrm{s}$ on the inner loop of the following control system.

Create the maximum and minimum loop gain requirements.

```
RMinGain = TuningGoal.MinLoopGain('X2',50,100);
RMaxGain = TuningGoal.MaxLoopGain('X2',1000,0.01);
```

Configure the requirements to apply to the loop gain of the inner loop measured with the outer loop open.

```
RMinGain.Openings = 'X1';
RMaxGain.Openings = 'X1';
```

Setting Req.Openings tells the tuning algorithm to enforce the requirements with a loop open at the specified location. With the outer loop open, the requirements apply only to the inner loop.

By default, tuning using TuningGoal. MinLoopGain or TuningGoal. MaxLoopGain imposes a stability requirement as well as the minimum or maximum loop gain. Practically, in some control systems it is not possible to achieve a stable inner loop. In that case, remove the stability requirement for the inner loop by setting the Stabilize property to false.

```
RMinGain.Stabilize = false;
RMaxGain.Stabilize = false;
```

When you tune using either of these requirements, the tuning algorithm still imposes a stability requirement on the overall tuned control system, but not on the inner loop alone.

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function measured at Location, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$. Here, x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal .MaxLoopGain, $f(x)$ is given by:

$$
f(x)=\left\|W_{T}\left(D^{-1} T D\right)\right\|_{\infty} .
$$

Here, D is a diagonal scaling (for MIMO loops). T is the complementary sensitivity function at Location. W_{T} is a frequency-weighting function derived from the maximum loop gain profile, MaxGain. The gain of this function roughly matches 1/MaxGain for values ranging from -60 dB to 20 dB . For numerical reasons, the weighting function levels off outside this range, unless the specified gain profile changes slope outside this range. This adjustment is called regularization. Because poles of W_{T} close to $s=0$ or $s=$ Inf might lead to poor numeric conditioning of the systune optimization problem, it is not recommended to specify gain profiles with very low-frequency or very highfrequency dynamics.

To obtain W_{T}, use:

```
WT = getWeight(Req,Ts)
```

where Req is the tuning goal, and T s is the sample time at which you are tuning ($\mathrm{Ts}=0$ for continuous time). For more information about regularization and its effects, see "Visualize Tuning Goals".

Although T is a closed-loop transfer function, driving $f(x)<1$ is equivalent to enforcing an upper bound on the open-loop transfer, L, in a frequency band where the gain of L is less than one. To see why, note that $T=L /(I+L)$. For SISO loops, when $|L| \ll 1,|T| \approx|L|$. Therefore, enforcing the openloop maximum gain requirement, $|L|<1 /\left|W_{T}\right|$, is roughly equivalent to enforcing $\left|W_{T} T\right|<1$. For MIMO loops, similar reasoning applies, with $\|T\| \approx \sigma_{\max }(L)$, where $\sigma_{\max }$ is the largest singular value.

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune|systune|looptune (for slTuner)| systune (for slTuner)|viewGoal| evalGoal|TuningGoal.Gain|TuningGoal.LoopShape|TuningGoal.MinLoopGain |
TuningGoal.Margins|slTuner|sigma

Topics

"Loop Shape and Stability Margin Specifications"
"Visualize Tuning Goals"
"PID Tuning for Setpoint Tracking vs. Disturbance Rejection"
"MIMO Control of Diesel Engine"
"Tuning of a Two-Loop Autopilot"

TuningGoal.Overshoot class

Package: TuningGoal
Overshoot constraint for control system tuning

Description

Use TuningGoal.Overshoot to limit the overshoot in the step response from specified inputs to specified outputs of a control system. Use this tuning goal for control system tuning with tuning commands such as systune or looptune.

Construction

Req = TuningGoal.Overshoot(inputname,outputname,maxpercent) creates a tuning goal for limiting the overshoot in the step response between the specified signal locations. The scalar maxpercent specifies the maximum overshoot as a percentage.

When you use TuningGoal. Overshoot for tuning, the software maps overshoot constraints to peak gain constraints assuming second-order system characteristics. Therefore, the mapping is only approximate for higher-order systems. In addition, this tuning goal cannot reliably reduce the overshoot below 5%.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points u1 and u2. Use 'u1' to designate that point as an input signal when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then
inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then outputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

maxpercent

Maximum percent overshoot, specified as a scalar value. For example, the following code specifies a maximum 5% overshoot in the step response from ' r ' to ' y '.

Req = TuningGoal.Overshoot('r','y',5);
TuningGoal. OverShoot cannot reliably reduce the overshoot below 5%.

Properties

MaxOvershoot

Maximum percent overshoot, specified as a scalar value. For example, the scalar value 5 means the overshoot should not exceed 5\%. The initial value of the MaxOvershoot property is set by the maxpercent input argument when you construct the tuning goal.

InputScaling

Reference signal scaling, specified as a vector of positive real values.
For a MIMO tracking requirement, when the choice of units results in a mix of small and large signals in different channels of the response, use this property to specify the relative amplitude of each entry in the vector-valued step input. This information is used to scale the off-diagonal terms in the transfer function from reference to tracking error. This scaling ensures that cross-couplings are measured relative to the amplitude of each reference signal.

For example, suppose that Req is a tuning goal that signals \{'y1', 'y2'\} track reference signals \{'r1', 'r2'\}. Suppose further that you require the outputs to track the references with less than 10% cross-coupling. If $r 1$ and $r 2$ have comparable amplitudes, then it is sufficient to keep the gains from $r 1$ to $y 2$ and $r 2$ and $y 1$ below 0.1 . However, if $r 1$ is 100 times larger than $r 2$, the gain from $r 1$ to y 2 must be less than 0.001 to ensure that r 1 changes y 2 by less than 10% of the $r 2$ target. To ensure this result, set the InputScaling property as follows.

Req.InputScaling = [100,1];
This tells the software to take into account that the first reference signal is 100 times greater than the second reference signal.

The default value, [] , means no scaling.
Default: []

Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the transfer function that the tuning goal constrains. The initial value of the Input property is set by the inputname input argument when you construct the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the transfer function that the tuning goal constrains. The initial value of the Output property is set by the outputname input argument when you construct the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Overshoot Constraint

Create a tuning goal that limits the overshoot of the step response from signals named ' r ' to ' y ' in a control system to 10 percent.

```
Req = TuningGoal.Overshoot('r','y',10);
```

The overshoot tuning goal is evaluated as a constraint on the peak system gain, assuming secondorder model characteristics (see "Algorithms" on page 1-73). Visualizing the tuning goal shows a shaded area where the target peak gain is exceeded.
viewGoal(Req)

Requirement 1: Overshoot as a peak gain constraint

If you visualize the tuning goal with a tuned system, the plot includes the corresponding system response.

Configure other characteristics of the tuning goal by setting properties. For instance, configure the tuning goal to apply only to the second model in a model array to tune. Also, configure it to be evaluated with a loop open at an analysis point in the control system called OuterLoop.

Req. Models = 2;
Req.Openings = 'OuterLoop';

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systune0ptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systune0ptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$. x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$, or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. Overshoot, $f(x)$ reflects the relative satisfaction or violation of the goal. The percent deviation from $f(x)=1$ roughly corresponds to the percent deviation from the specified overshoot target. For example, $f(x)=1.2$ means the actual overshoot exceeds the target by roughly 20%, and $f(x)=0.8$ means the actual overshoot is about 20% less than the target.

TuningGoal. Overshoot uses $\|T\|_{\infty}$ as a proxy for the overshoot, based on second-order model characteristics. Here, T is the closed-loop transfer function that the tuning goal constrains. The overshoot is tuned in the range from $5 \%\left(\|T\|_{\infty}=1\right)$ to $100 \%\left(\|T\|_{\infty}\right)$. TuningGoal. Overshoot is ineffective at forcing the overshoot below 5\%.

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune| systune|systune (for slTuner)| looptune (for slTuner)|viewGoal| evalGoal|TuningGoal.Gain|TuningGoal.Sensitivity|slTuner

Topics

"Time-Domain Specifications"
"Multi-Loop PI Control of a Robotic Arm"

TuningGoal.Passivity class

Package: TuningGoal

Passivity constraint for control system tuning

Description

A system is passive if all its I/O trajectories $(u(t), y(t))$ satisfy:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>0
$$

for all $T>0$. Equivalently, a system is passive if its frequency response is positive real, which means that for all $\omega>0$,

$$
G(j \omega)+G(j \omega)^{H}>0
$$

Use TuningGoal. Passivity to enforce passivity of the response between specified inputs and outputs, when using a control system tuning command such as systune. You can also use TuningGoal. Passivity to ensure a particular excess or shortage of passivity (see getPassiveIndex).

Construction

Req = TuningGoal.Passivity(inputname,outputname) creates a tuning goal for enforcing passivity of the response from the specified inputs to the specified outputs.

Req = TuningGoal.Passivity(inputname,outputname, nu, rho) creates a tuning goal for enforcing:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>\nu \int_{0}^{T} u(t)^{T} u(t) d t+\rho \int_{0}^{T} y(t)^{T} y(t) d t
$$

for all $T>0$. This tuning goal enforces an excess of passivity at the inputs or outputs when nu >0 or rho >0, respectively. The tuning goal allows for a shortage of input passivity when nu <0. See getPassiveIndex for more information about these indices.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points $u 1$ and $u 2$. Use ' $u 1$ ' to designate that point as an input signal when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use ' y 1 ' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named $A P _u$, then outputname can include ' $A P$ _u'. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

nu

Target passivity at the inputs listed in inputname, specified as a scalar value. The input passivity index is defined as the largest value of ν for which:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>\nu \int_{0}^{T} u(t)^{T} u(t) d t
$$

for all $T>0$. Equivalently, nu is the largest ν for which:

$$
G(j \omega)+G(j \omega)^{H}>2 \nu I
$$

When you set a target nu in a TuningGoal. Passivity goal, the tuning software:

- Ensures that the specified response is input strictly passive when nu >0. The magnitude of nu sets the required excess of passivity.
- Allows the response to be not input strictly passive when nu <0. The magnitude of nu sets the permitted shortage of passivity.

Default: 0

rho

Target passivity at the outputs listed in outputname, specified as a scalar value. The output passivity index is defined as the largest value of ρ for which:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>\rho \int_{0}^{T} y(t)^{T} y(t) d t
$$

for all $T>0$.
When you set a target rho in a TuningGoal. Passivity goal, the tuning software:

- Ensures that the specified response is output strictly passive when rho >0. The magnitude of rho sets the required excess of passivity.
- Allows the response to be not output strictly passive when rho <0. The magnitude of rho sets the permitted shortage of passivity.

Default: 0

Properties

IPX

Target passivity at the inputs, stored as a scalar value. This value specifies the required amount of passivity at the inputs listed in inputname. The initial value of this property is set by the input argument nu when you create the TuningGoal. Passivity goal.

Default: 0 OPX

Target passivity at the outputs, stored as a scalar value. This value specifies the required amount of passivity at the outputs listed in outputname The initial value of this property is set by the input argument rho when you create the TuningGoal. Passivity goal.

Default: 0

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

Input

Input signal names, specified as a cell array of character vectors. The input signal names specify the input locations for determining passivity, initially populated by the inputname argument.

Output

Output signal names, specified as a cell array of character vectors. The output signal names specify the output locations for determining passivity, initially populated by the outputname argument.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Passivity Requirement

Create a requirement that ensures passivity in the response from an input or analysis point ' u ' to an output or analysis point ' y ' in a control system.

```
TG = TuningGoal.Passivity('u','y');
```

Use viewGoal to visualize the tuning goal.
viewGoal(TG)

The requirement is satisfied when the relative passivity index $R<1$ at all frequencies. The shaded area represents the region where the requirement is violated. When you use this requirement to tune a control system CL, viewGoal (TG, CL) shows R for the specified inputs and outputs on this plot, enabling you to identify frequency ranges in which the passivity requirement is violated.

Input Passivity in Specified Frequency Range

Create a requirement that ensures that the response from an input ' u ' to an output ' y ' is input strictly passive, with an excess of passivity of 2.

TGi = TuningGoal.Passivity('u','y',2,0);
Restrict the requirement to apply only within the frequency range between 0 and $10 \mathrm{rad} / \mathrm{s}$.
TGi.Focus = [0 10];

Tips

- Use viewGoal to visualize this tuning goal. For enforcing passivity with nu $=0$ and rho $=0$, viewGoal plots the relative passivity indices as a function of frequency (see passiveplot). These are the singular values of $(I-G(j \omega))(I-G(j \omega))^{-1}$. The transfer function G from inputname to outputname (evaluated with loops open as specified in Openings) is passive when the largest singular value is less than 1 at all frequencies.

For nonzero nu or rho, viewGoal plots the relative index as described in "Algorithms" on page 180.

- This tuning goal imposes an implicit minimum-phase constraint on the transfer function $G+I$. The transmission zeros of $G+I$ are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For the TuningGoal.Passivity goal, for a closed-loop transfer function $G(s, x)$ from inputname to outputname, $f(x)$ is given by:

$$
f(x)=\frac{R}{1+R / R_{\max }}, \quad R_{\max }=10^{6} .
$$

R is the relative sector index (see getSectorIndex) of $[\mathrm{G}(\mathrm{s}, \mathrm{x}) ; \mathrm{I}]$, for the sector represented by:

$$
Q=\left(\begin{array}{cc}
2 \rho & -I \\
-I & 2 \nu
\end{array}\right),
$$

using the values of the OPX and IPX properties for ρ and ν, respectively.

Version History

Introduced in R2016a

See Also

looptune|systune|systune (for slTuner)| looptune (for slTuner)|viewGoal| evalGoal|TuningGoal.WeightedPassivity|slTuner|getPassiveIndex|passiveplot

Topics

"About Passivity and Passivity Indices"
"Tune Control Systems Using systune"

TuningGoal.Poles class

Package: TuningGoal

Constraint on control system dynamics

Description

Use TuningGoal. Poles to constrain the closed-loop dynamics of a control system or of specific feedback loops within the control system. You can use this tuning goal for control system tuning with tuning commands, such as systune or looptune. A TuningGoal. Poles goal can ensure a minimum decay rate or minimum damping of the poles of the control system or loop. It can also eliminate fast dynamics in the tuned system.

Construction

Req $=$ TuningGoal.Poles(mindecay,mindamping,maxfreq) creates a default template for constraining the closed-loop pole locations. The minimum decay rate, minimum damping constant, and maximum natural frequency define a region of the complex plane in which poles of the component must lie. Set mindecay $=0$, mindamping $=0$, or maxfreq $=$ Inf to skip any of the three constraints.

Req = TuningGoal.Poles(location,mindecay,mindamping,maxfreq) constrains the poles of the sensitivity function measured at a specified location in the control system. (See getSensitivity for information about sensitivity functions.) Use this syntax to narrow the scope of the tuning goal to a particular feedback loop.

If you want to constrain the poles of the system with one or more feedback loops opened, set the Openings property. To limit the enforcement of this tuning goal to poles having natural frequency within a specified frequency range, set the Focus property. (See "Properties" on page 1-82.)

Input Arguments

mindecay

Minimum decay rate of poles of tunable component, specified as a nonnegative scalar value in the frequency units of the control system model you are tuning.

When you tune the control system using this tuning goal, the closed-loop poles of the control system are constrained to satisfy:

- $\operatorname{Re}(s)$ < -mindecay, for continuous-time systems.
- $\log (|z|)<-m i n d e c a y * T s$, for discrete-time systems with sample time Ts.

Set mindecay $=0$ to impose no constraint on the decay rate.

mindamping

Desired minimum damping ratio of the closed-loop poles, specified as a value between 0 and 1 .

Poles that depend on the tunable parameters are constrained to satisfy $\operatorname{Re}(s)<-$ mindamping*| $s \mid$. In discrete time, the damping ratio is computed using $s=\log (z) / T s$.

Set mindamping $=0$ to impose no constraint on the damping ratio.

maxfreq

Desired maximum natural frequency of closed-loop poles, specified as a scalar value in the frequency units of the control system model you are tuning.
 for discrete-time systems with sample time Ts. This constraint prevents fast dynamics in the closedloop system.

Set maxfreq = Inf to impose no constraint on the natural frequency.

location

Location at which poles are assessed, specified as a character vector or cell array of character vectors that identify one or more locations in the control system to tune. When you use this input, the tuning goal constrains the poles of the sensitivity function measured at this location. (See getSensitivity for information about sensitivity functions.) What locations are available depends on what kind of system you are tuning:

- If you are tuning a Simulink model of a control system, you can use any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if the slTuner interface contains an analysis point u, you can use ' u ' to refer to that point when creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner interface to your model.
- If you are tuning a generalized state-space (genss) model of a control system, you can use any AnalysisPoint location in the control system model. For example, the following code creates a PI loop with an analysis point at the plant input ' u '.

```
AP = AnalysisPoint('u');
G = tf(1,[1 2]);
C = tunablePID('C','pi');
T = feedback(G*AP*C,1);
```

When creating tuning goals, you can use ' u ' to refer to the analysis point at the plant input. Use getPoints to get the list of analysis points available in a genss model.

If location specifies multiple locations, then the poles constraint applies to the sensitivity of the MIMO loop.

Properties

MinDecay

Minimum decay rate of closed-loop poles of tunable component, specified as a positive scalar value in the frequency units of the control system you are tuning. The initial value of this property is set by the mindecay input argument.

When you tune the control system using this tuning goal, closed-loop poles are constrained to satisfy $\operatorname{Re}(s)<-M i n D e c a y$ for continuous-time systems, or $\log (|z|)<-M i n D e c a y * T s$ for discretetime systems with sample time Ts.

You can use dot notation to change the value of this property after you create the tuning goal. For example, suppose Req is a TuningGoal. Poles tuning goal. Change the minimum decay rate to 0.001:

Req.MinDecay $=0.001$;
Default: 0

MinDamping

Desired minimum damping ratio of closed-loop poles, specified as a value between 0 and 1 . The initial value of this property is set by the mindamping input argument.

Poles that depend on the tunable parameters are constrained to satisfy $\operatorname{Re}(\mathrm{s})<-\operatorname{MinDamping*} \mid$ $\mathrm{s} \mid$. In discrete time, the damping ratio is computed using $\mathrm{s}=\log (\mathrm{z}) / \mathrm{Ts}$.

Default: 0

MaxFrequency

Desired maximum natural frequency of closed-poles, specified as a scalar value in the frequency units of the control system model you are tuning. The initial value of this property is set by the maxfreq input argument.

Poles of the block are constrained to satisfy $|\mathrm{s}|$ < maxfreq for continuous-time systems, or | $\log (z) \mid<m a x f r e q * T s$ for discrete-time systems with sample time Ts. This constraint prevents fast dynamics in the tuned control system.

You can use dot notation to change the value of this property after you create the tuning goal. For example, suppose Req is a TuningGoal. ControllerPoles tuning goal. Change the maximum frequency to 1000:

Req. MaxFrequency $=1000$;
Default: Inf

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req. Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

Location

Location at which poles are assessed, specified as a cell array of character vectors that identify one or more analysis points in the control system to tune. For example, if Location = \{'u'\}, the tuning goal evaluates the open-loop response measured at an analysis point ' u '. If Location $=$ \{'u1','u2'\}, the tuning goal evaluates the MIMO open-loop response measured at analysis points 'u1' and 'u2'.

The initial value of the Location property is set by the location input argument when you create the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings
Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points u1 and u2.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Constrain Closed-Loop Dynamics of Specified Loop of System to Tune

Create a requirement that constrains the inner loop of the following control system to be stable and free of fast dynamics. Specify that the constraint is evaluated with the outer loop open.

Create a model of the system. To do so, specify and connect the numeric plant models, G1 and G2, and the tunable controllers C1 and C2. Also, create and connect the AnalysisPoint blocks, AP1 and AP2, which mark points of interest for analysis and tuning.

```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
AP1 = AnalysisPoint('AP1');
AP2 = AnalysisPoint('AP2');
T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);
```

Create a tuning requirement that constrains the dynamics of the closed-loop poles. Restrict the poles of the inner loop to the region $\operatorname{Re}(s)<-0.1,|s|<30$.

Req $=$ TuningGoal.Poles(0.1,0,30);
Setting the minimum damping to zero imposes no constraint on the damping constants for the poles.
Specify that the constraint on the tuned system poles is applied with the outer loop open.
Req.Openings = 'AP1';
When you tune T using this requirement, the constraint applies to the poles of the entire control system evaluated with the loop open at 'AP1'. In other words, the poles of the inner loop plus the poles of C1 and G1 are all considered.

After you tune T, you can use viewGoal to validate the tuned control system against the requirement.

Constrain Dynamics of Specified Feedback Loop

Create a requirement that constrains the inner loop of the system of the previous example to be stable and free of fast dynamics. Specify that the constraint is evaluated with the outer loop open.

Create a tuning requirement that constrains the dynamics of the inner feedback loop, the loop identified by AP2. Restrict the poles of the inner loop to the region $\operatorname{Re}(s)<-0.1,|s|<30$.

Req $=$ TuningGoal.Poles('AP2', 0.1,0, 30);
Specify that the constraint on the tuned system poles is applied with the outer loop open.
Req.Openings = 'AP1';
When you tune T using this requirement, the constraint applies only to the poles of the inner loop, evaluated with the outer loop open. In this case, since G1 and C1 do not contribute to the sensitivity function at AP2 when the outer loop is open, the requirement constrains only the poles of G2 and C2.

After you tune T, you can use viewGoal to validate the tuned control system against the requirement.

Tips

- TuningGoal. Poles restricts the closed-loop dynamics of the tuned control system. To constrain the dynamics or ensure the stability of a single tunable component, use TuningGoal. ControllerPoles.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x) . x$ is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$, or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. Poles, $f(x)$ reflects the relative satisfaction or violation of the goal. For example, if you attempt to constrain the closed-loop poles of a feedback loop to a minimum damping of $\zeta=0.5$, then:

- $f(x)=1$ means the smallest damping among the constrained poles is $\zeta=0.5$ exactly.
- $f(x)=1.1$ means the smallest damping $\zeta=0.5 / 1.1=0.45$, roughly 10% less than the target.
- $f(x)=0.9$ means the smallest damping $\zeta=0.5 / 0.9=0.55$, roughly 10% better than the target.

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune| systune|looptune (for slTuner)| systune (for slTuner)|viewGoal| evalGoal|tunableTF|tunableSS|TuningGoal. ControllerPoles

Topics

"System Dynamics Specifications"
"Digital Control of Power Stage Voltage"
"Multiloop Control of a Helicopter"

TuningGoal.Rejection class

Package: TuningGoal

Disturbance rejection requirement for control system tuning

Description

Use TuningGoal . Rejection to specify the minimum attenuation of a disturbance injected at a specified location in a control system. This tuning goal helps you tune control systems with tuning commands such as systune or looptune.

When you use TuningGoal. Rejection, the software attempts to tune the system so that the attenuation of a disturbance at the specified location exceeds the minimum attenuation factor you specify. This attenuation factor is the ratio between the open- and closed-loop sensitivities to the disturbance and is a function of frequency. You can achieve disturbance attenuation only inside the control bandwidth. The loop gain must be larger than one for the disturbance to be attenuated (attenuation factor > 1).

Construction

Req = TuningGoal.Rejection(distloc,attfact) creates a tuning goal for rejecting a disturbance entering at distloc. This tuning goal constrains the minimum disturbance attenuation factor to the frequency-dependent value, attfact.

Input Arguments

distloc

Disturbance location, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then distloc can include any signal identified as an analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points u1 and u2. Use 'u1' to designate that point as the disturbance input when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel disturbance input.

- If you are using the tuning goal to tune a generalized state-space model (genss) of a control system, then inputname can include any AnalysisPoint channel in the model. For example, if you are tuning a control system model, T, which contains an AnalysisPoint block with a location named AP_u, then distloc can include 'AP_u'. (Use getPoints to get a list of analysis points available in a genss model.) The constrained disturbance location is injected at the implied input associated with the analysis point, and measured at the implied output:

attfact

Attenuation factor as a function of frequency, specified as a numeric LTI model.
TuningGoal.Rejection constrains the minimum disturbance attenuation to the frequencydependent value attfact. You can specify attfact as a smooth transfer function (tf, zpk, or ss model). Alternatively, you can specify a piecewise gain profile using a frd model. For example, the following code specifies an attenuation factor of $100(40 \mathrm{~dB})$ below $1 \mathrm{rad} / \mathrm{s}$, gradually dropping to 1 (0 $\mathrm{dB})$ past $10 \mathrm{rad} / \mathrm{s}$, for a disturbance injected at u .

```
attfact = frd([100 100 1 1],[0 1 10 100]);
Req = TuningGoal.Rejection('u',attfact);
bodemag(attfact)
ylim([-5,40])
```


Bode Diagram

When you use an frd model to specify attfact, the gain profile is automatically mapped onto a zpk model. The magnitude of this zpk model approximates the desired gain profile. Use viewGoal (Req) to visualize the resulting attenuation profile.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify attfact as a discrete-time model with the same Ts. If you specify attfact in continuous time, the tuning software discretizes it. Specifying the attenuation profile in discrete time gives you more control over the profile near the Nyquist frequency.

Properties

MinAttenuation

Minimum disturbance attenuation as a function of frequency, expressed as a SISO zpk model.
The software automatically maps the attfact input argument to a zpk model. The magnitude of this zpk model approximates the desired attenuation factor and is stored in the MinAttenuation property. Use viewGoal (Req) to plot the magnitude of MinAttenuation.

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.
For multiloop or MIMO disturbance rejection tuning goals, the feedback channels are automatically rescaled to equalize the off-diagonal (loop interaction) terms in the open-loop transfer function. Set LoopScaling to 'off' to disable such scaling and shape the unscaled open-loop response.

Default: 'on'

Location

Location of disturbance, specified as a cell array of character vectors that identify one or more analysis points in the control system to tune. For example, if Location = \{'u'\}, the tuning goal evaluates disturbance rejection at an analysis point ' u '. If Location $=\{$ ' $u 1$ ' , ' $u 2$ ' $\}$, the tuning goal evaluates the rejection at based on the MIMO open-loop response measured at analysis points 'u1' and 'u2'.

The initial value of the Location property is set by the distloc input argument when you create the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;

When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points u1 and u2.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Constant Minimum Attenuation in Frequency Band

Create a tuning goal that enforces a attenuation of at least a factor of 10 between 0 and $5 \mathrm{rad} / \mathrm{s}$. The tuning goal applies to a disturbance entering a control system at a point identified as ' u'.

```
Req = TuningGoal.Rejection('u',10);
Req.Name = 'Rejection spec';
Req.Focus = [0 5]
```


Frequency-Dependent Attenuation Profile

Create a tuning goal that enforces an attenuation factor of at least $100(40 \mathrm{~dB})$ below $1 \mathrm{rad} / \mathrm{s}$, gradually dropping to $1(0 \mathrm{~dB})$ past $10 \mathrm{rad} / \mathrm{s}$. The tuning goal applies to a disturbance entering a control system at a point identified as ' u '.
attfact $=$ frd([100 10011$],[0110$ 100]);
Req $=$ TuningGoal.Rejection('u',attfact);

These commands use a frd model to specify the minimum attenuation profile as a function of frequency. The minimum attenuation of 100 below $1 \mathrm{rad} / \mathrm{s}$, together with the minimum attenuation of 1 at the frequencies of 10 and $100 \mathrm{rad} / \mathrm{s}$, specifies the desired rolloff.
attfact is converted into a smooth function of frequency that approximates the piecewise specified profile. Display the gain profile using viewGoal.

```
viewGoal(Req)
```

Requirement 1: Disturbance attenuation as a function of frequency

The shaded region indicates where the tuning goal is violated.

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function measured at Location, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$. In this case, x is the vector of free (tunable) parameters in the control
system. The parameter values are adjusted automatically to minimize $f(x)$ or drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. Rejection, $f(x)$ is given by:

$$
f(x)=\max _{\omega \in \Omega}\left\|W_{S}(j \omega) S(j \omega, x)\right\|_{\infty},
$$

or its discrete-time equivalent. Here, $S(j \omega, x)$ is the closed-loop sensitivity function measured at the disturbance location. Ω is the frequency interval over which the tuning goal is enforced, specified in the Focus property. W_{S} is a frequency weighting function derived from the specified attenuation profile. The gains of W_{S} and MinAttenuation roughly match for gain values ranging from -20 dB to 60 dB . For numerical reasons, the weighting function levels off outside this range, unless the specified attenuation profile changes slope outside this range. This adjustment is called regularization. Because poles of W_{S} close to $s=0$ or $s=$ Inf might lead to poor numeric conditioning of the systune optimization problem, it is not recommended to specify attenuation profiles with very low-frequency or very high-frequency dynamics.

To obtain W_{S}, use:

```
WS = getWeight(Req,Ts)
```

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for continuous time). For more information about regularization and its effects, see "Visualize Tuning Goals".

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune|viewGoal|systune|systune (for slTuner)|looptune (for slTuner)| TuningGoal.Tracking|TuningGoal.LoopShape|slTuner

Topics

"Time-Domain Specifications"
"Visualize Tuning Goals"
"Decoupling Controller for a Distillation Column"
"Tuning of a Two-Loop Autopilot"

TuningGoal.Sensitivity class

Package: TuningGoal
Sensitivity requirement for control system tuning

Description

Use TuningGoal. Sensitivity to limit the sensitivity of a feedback loop to disturbances. Constrain the sensitivity to be smaller than one at frequencies where you need good disturbance rejection. Use this tuning goal for control system tuning with tuning commands such as systune or looptune.

Construction

Req $=$ TuningGoal.Sensitivity(location,maxsens) creates a tuning goal for limiting the sensitivity to disturbances entering a feedback loop at the specified location. maxsens specifies the maximum sensitivity as a function of frequency. You can specify the maximum sensitivity profile as a smooth transfer function or sketch a piecewise error profile using an frd model or the makeweight command.

See getSensitivity for more information about sensitivity functions.)

Input Arguments

location

Location at which the sensitivity to disturbances is constrained, specified as a character vector or cell array of character vectors that identify one or more locations in the control system to tune. What locations are available depends on what kind of system you are tuning:

- If you are tuning a Simulink model of a control system, you can use any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if the slTuner interface contains an analysis point u, you can use ' u ' to refer to that point when creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner interface to your model.
- If you are tuning a generalized state-space (genss) model of a control system, you can use any AnalysisPoint location in the control system model. For example, the following code creates a PI loop with an analysis point at the plant input ' u '.

```
AP = AnalysisPoint('u');
```

$G=t f(1,[12])$;
C = tunablePID('C','pi');
$\mathrm{T}=\mathrm{feedback}\left(\mathrm{G}^{*} \mathrm{AP} * \mathrm{C}, 1\right)$;
When creating tuning goals, you can use ' u ' to refer to the analysis point at the plant input. Use getPoints to get the list of analysis points available in a genss model.

If location is a cell array, then the sensitivity requirement applies to the MIMO loop.

maxsens

Maximum sensitivity to disturbances as a function of frequency.
You can specify maxsens as a smooth SISO transfer function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise gain profile using a frd model or the makeweight command. For example, the following frd model specifies a maximum sensitivity of $0.01(-40 \mathrm{~dB})$ at $1 \mathrm{rad} / \mathrm{s}$, increasing to $1(0 \mathrm{~dB})$ past $50 \mathrm{rad} / \mathrm{s}$.

```
maxsens = frd([0.01 1 1],[1 50 100]);
bodemag(maxsens)
ylim([-45,5])
```


Bode Diagram

When you use an frd model to specify maxsens, the software automatically maps your specified gain profile to a zpk model whose magnitude approximates the desired gain profile. Use viewGoal (Req) to plot the magnitude of that zpk model.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify maxsens as a discrete-time model with the same Ts. If you specify maxsens in continuous time, the tuning software discretizes it. Specifying the maximum sensitivity profile in discrete time gives you more control over the profile near the Nyquist frequency.

Properties

MaxSensitivity

Maximum sensitivity as a function of frequency, specified as a SISO zpk model.
The software automatically maps the input argument maxsens onto a zpk model. The magnitude of this zpk model approximates the desired gain profile. Use viewGoal(Req) to plot the magnitude of the zpk model MaxSensitivity.

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req. Focus $=[1,100]$;
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.
In multi-loop or MIMO control systems, the feedback channels are automatically rescaled to equalize the off-diagonal terms in the open-loop transfer function (loop interaction terms). Set LoopScaling to 'off' to disable such scaling and shape the unscaled sensitivity function.

Default: 'on'

Location

Location of disturbance, specified as a cell array of character vectors that identify one or more analysis points in the control system to tune. For example, if Location = \{'u'\}, the tuning goal evaluates the open-loop response measured at an analysis point 'u'. If Location = \{'u1', 'u2'\}, the tuning goal evaluates the MIMO open-loop response measured at analysis points 'u1' and 'u2'.

The initial value of the Location property is set by the location input argument when you create the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

```
Req.Models = 2:4;
```

When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings
Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points u1 and u2.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Disturbance Sensitivity at Plant Input

Create a tuning goal that limits the sensitivity to disturbance at the plant input of the following control system. The control system contains an analysis point named ' X ' at the plant input.

Specify a maximum sensitivity of $0.01(-40 \mathrm{~dB})$ at $1 \mathrm{rad} / \mathrm{s}$, increasing to $1(0 \mathrm{~dB})$ past $10 \mathrm{rad} / \mathrm{s}$. Use an frd model to sketch this target sensitivity.

```
maxsens = frd([0.01 1 1],[1 10 100]);
Req = TuningGoal.Sensitivity('X',maxsens);
```

The software converts maxsens into a smooth function of frequency that approximates the piecewisespecified gain profile. Visualize this function using viewGoal.

```
viewGoal(Req)
```

Requirement 1: Sensitivity as a function of frequency

The shaded region indicates regions where the tuning goal is violated. The shaded region differs from the specified gain profile (dashed line) at very low frequencies because of modifications that the software introduces for numeric stability, as described in "Algorithms" on page 1-99.

Sensitivity Goal with Limited Frequency Range and Model Application

Create a tuning goal that specifies a maximum sensitivity of 0.1 (10\%) at frequencies below $5 \mathrm{rad} / \mathrm{s}$. Configure the tuning goal to apply only to the second and third plant models.

Req = TuningGoal.Sensitivity('u', 0.1);
Req. Focus = [0 5];
Req. Models = [2 3];
You can use Req as an input to looptune or systune when tuning a control system that has an analysis point called 'u'. Setting the Focus property limits the application of the tuning goal to frequencies between 0 and $5 \mathrm{rad} / \mathrm{s}$. Setting the Models property restricts application of the tuning goal to the second and third models in an array, when you use the tuning goal to tune an array of control system models.

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function measured at Location, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. Sensitivity, $f(x)$ is given by:

$$
f(x)=\left\|W_{S}(s) S(s, x)\right\|_{\infty}
$$

or its discrete-time equivalent. Here, $S(s, x)$ is the closed-loop sensitivity function measured at the location specified in the tuning goal. W_{S} is a frequency weighting function derived from the specified sensitivity profile. The gains of W_{S} and $1 /$ MaxSensitivity roughly match for gain values ranging from -20 dB to 60 dB . For numerical reasons, the weighting function levels off outside this range, unless the specified sensitivity profile changes slope outside this range. This adjustment is called regularization. Because poles of W_{S} close to $s=0$ or $s=$ Inf might lead to poor numeric conditioning of the systune optimization problem, it is not recommended to specify sensitivity profiles with very low-frequency or very high-frequency dynamics.

To obtain W_{S}, use:
WS = getWeight(Req,Ts)
where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for continuous time). For more information about regularization and its effects, see "Visualize Tuning Goals".

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune|systune|looptune (for slTuner)| systune (for slTuner)|viewGoal| evalGoal|TuningGoal.Gain|TuningGoal.LoopShape|TuningGoal.Rejection| TuningGoal.MinLoopGain|TuningGoal.MaxLoopGain|slTuner

Topics

"Frequency-Domain Specifications"
"Visualize Tuning Goals"

TuningGoal.StepRejection class

Package: TuningGoal
Step disturbance rejection requirement for control system tuning

Description

Use TuningGoal.StepRejection to specify how a step disturbance injected at a specified location in your control system affects the signal at a specified output location. Use this tuning goal with control system tuning commands such as systune or looptune.

You can specify the desired response in time-domain terms of peak value, settling time, and damping ratio. Alternatively, you can specify the response as a stable reference model having DC-gain. In that case, the tuning goal is to reject the disturbance as well as or better than the reference model.

To specify disturbance rejection in terms of a frequency-domain attenuation profile, use TuningGoal.Rejection.

Construction

Req = TuningGoal.StepRejection(inputname,outputname, refsys) creates a tuning goal that constrains how a step disturbance injected at a location inputname affects the response at outputname. The tuning goal is that the disturbance be rejected as well as or better than the reference system. inputname and outputname can describe a SISO or MIMO response of your control system. For MIMO responses, the number of inputs must equal the number of outputs.

Req = TuningGoal.StepRejection(inputname,outputname, peak, tSettle) specifies an oscillation-free response in terms of a peak value and a settling time.

Req = TuningGoal.StepRejection(inputname,outputname,peak,tSettle,zeta) allows for damped oscillations with a damping ratio of at least zeta.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points u1 and u2. Use ' $u 1$ ' to designate that point as an input signal when creating tuning goals. Use \{' $u 1$ ' , ' $u 2$ ' $\}$ to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then outputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".
refsys
Reference system for target step rejection, specified as a SISO dynamic system model, such as a tf, zpk, or ss model. refsys must be stable and proper, and must have zero DC gain. This restriction ensures perfect rejection of the steady-state disturbance.
refsys can be continuous or discrete. If refsys is discrete, it can include time delays which are treated as poles at $\mathrm{z}=0$.

For best results, refsys and the open-loop response from the disturbance to the output should have similar gains at the frequency where the reference model gain peaks. You can check the peak gain and peak frequency using getPeakGain. For example:

```
[gmax,fmax] = getPeakGain(refsys);
```

Use getIOTransfer to extract the corresponding open-loop response from the system you are tuning.

peak

Peak absolute value of target response to disturbance, specified as a scalar value.

tSettle

Target settling time of the response to disturbance, specified as a positive scalar value, in the time units of the control system you are tuning.

zeta

Minimum damping ratio of oscillations in the response to disturbance, specified as a value between 0 and 1.

Default: 1

Properties

ReferenceModel

Reference system for target response to step disturbance, specified as a SISO (zpk) model. The step response of this model specifies how the output signals specified by outputname should respond to the step disturbance at inputname.

If you use the refsys input argument to create the tuning goal, then the value of ReferenceModel is zpk (refsys).

If you use the peak, tSample, and zeta input arguments, then ReferenceModel is a zpk representation of the first-order or second-order transfer function whose step response has the specified characteristics.

InputScaling

Input signal scaling, specified as a vector of positive real values.
Use this property to specify the relative amplitude of each entry in vector-valued input signals when the choice of units results in a mix of small and large signals. This information is used to scale the closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose $T(s)$ is the closed-loop transfer function from Input to Output. The tuning goal is evaluated for the scaled transfer function $D_{o}{ }^{-1} T(s) D_{i}$. The diagonal matrices D_{o} and D_{i} have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.
Use this property to specify the relative amplitude of each entry in vector-valued output signals when the choice of units results in a mix of small and large signals. This information is used to scale the closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose $T(s)$ is the closed-loop transfer function from Input to Output. The tuning goal is evaluated for the scaled transfer function $D_{o}{ }^{-1} T(s) D_{i}$. The diagonal matrices D_{o} and D_{i} have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: []

Input

Names of disturbance input locations, specified as a cell array of character vectors. This property is initially populated by the inputname argument when you create the tuning goal.

Output

Names of locations at which response to step disturbance is measured, specified as a cell array of character vectors. This property is initially populated by the outputname argument when you create the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.
Default: NaN
Openings
Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings $=\left\{' u 1^{\prime}, ' u 2 '\right\}$, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req. Name = 'LoopReq';
Default: []

Examples

Specify First-Order or Second-Order Step Disturbance Response Characteristics

Create a requirement that specifies the step disturbance response in terms of peak time-domain response, settling time, and damping of oscillations.

Suppose you want the response at ' y ' to a disturbance injected at ' d ' to never exceed an absolute value of 0.25 , and to settle within 5 seconds. Create a TuningGoal. StepRejection requirement that captures these specifications and also specifies non-oscillatory response.

Req1 $=$ TuningGoal.StepRejection('d','y', 0.25,5);
Omitting an explicit value for the damping ratio, zeta, is equivalent to setting zeta $=1$. Therefore, Req specifies a non-oscillatory response. The software converts the peak value and settling time into a reference transfer function whose step response has the desired time-domain profile. This transfer function is stored in the ReferenceModel property of Req.

```
Req1.ReferenceModel
ans =
    0.92883 s
    ----------
    (s+1.367)^2
```

Continuous-time zero/pole/gain model.
Confirm the target response by displaying Req.
figure()
viewGoal(Req1)

Requirement 1: Step disturbance rejection

Suppose your application can tolerate oscillations provided the damping ratio is less than 0.4. Create a requirement that specifies this disturbance response.

```
Req2 = TuningGoal.StepRejection('d','y',0.25,5,0.4);
figure()
viewGoal(Req2)
```

Requirement 1: Step disturbance rejection

Step Disturbance Rejection with Custom Reference Model

Create a requirement that specifies the step disturbance response as a transfer function.
Suppose you want the response to a disturbance injected at an analysis point din your control system and measured at a point ' y ' to be rejected at least as well as the transfer function

$$
H(s)=\frac{s}{s^{2}+2 s+1} .
$$

Create a TuningGoal.StepRejection requirement.

Req $=$ TuningGoal.StepRejection('d','y',H);
Display the requirement.
viewGoal(Req)

Requirement 1: Step disturbance rejection

The plot displayed by viewGoal shows the step response of the specified transfer function. This response is the target time-domain response to disturbance.

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

TuningGoal. StepRejection aims to keep the gain from disturbance to output below the gain of the reference model. The scalar value of the tuning goal $f(x)$ is given by:

$$
f(x)=\left\|W_{F}(s) T_{d y}(s, x)\right\|_{\infty^{\prime}}
$$

or its discrete-time equivalent. Here, $T_{d y}(s, x)$ is the closed-loop transfer function from Input to Output, and $\|\cdot\|_{\infty}$ denotes the H_{∞} norm (see norm). W_{F} is a frequency weighting function derived from the step-rejection profile you specify in the tuning goal. The gains of W_{F} and 1/ ReferenceModel roughly match for gain values within 60 dB of the peak gain. For numerical reasons, the weighting function levels off outside this range, unless you specify a reference model that changes slope outside this range. This adjustment is called regularization. Because poles of W_{F} close to $s=0$ or $s=$ Inf might lead to poor numeric conditioning of the systune optimization problem, it is not recommended to specify reference models with very low-frequency or very highfrequency dynamics.

To obtain W_{F}, use:

```
WF = getWeight(Req,Ts)
```

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for continuous time). For more information about regularization and its effects, see "Visualize Tuning Goals".

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune|systune|systune (for slTuner)|looptune (for slTuner)|viewGoal| evalGoal|TuningGoal.Gain|TuningGoal.LoopShape|slTuner

Topics

"Time-Domain Specifications"
"Visualize Tuning Goals"
"Tune Control Systems Using systune"
"Tune Control Systems in Simulink"

TuningGoal.StepTracking class

Package: TuningGoal
Step response requirement for control system tuning

Description

Use TuningGoal.StepTracking to specify a target step response from specified inputs to specified outputs of a control system. Use this tuning goal with control system tuning commands such as systune or looptune.

Construction

Req = TuningGoal.StepTracking(inputname, outputname, refsys) creates a tuning goal that constrains the step response between the specified signal locations to match the step response of a stable reference system, refsys. The constraint is satisfied when the relative difference between the tuned and target responses falls within a tolerance specified by the RelGap property of the tuning goal (see "Properties" on page 1-112). inputname and outputname can describe a SISO or MIMO response of your control system. For MIMO responses, the number of inputs must equal the number of outputs.

Req $=$ TuningGoal.StepTracking(inputname,outputname, tau) specifies the desired step response as a first-order response with time constant tau:

$$
\text { Req.ReferenceModel }=\frac{1 / \text { tau }}{s+1 / \text { tau }}
$$

Req $=$ TuningGoal.StepTracking(inputname,outputname, tau,overshoot) specifies the desired step response as a second-order response with natural period tau, natural frequency $1 /$ tau, and percent overshoot overshoot:

$$
\text { Req.ReferenceModel }=\frac{(1 / \text { tau })^{2}}{s^{2}+2(\text { zeta/tau }) s+(1 / \text { tau })^{2}}
$$

The damping is given by zeta $=\cos (\operatorname{atan} 2(\mathrm{pi},-\log ($ overshoot/100) $))$.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points $u 1$ and $u 2$. Use ' $u 1$ ' to designate that point as an input signal when creating tuning goals. Use \{' u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include ' $A P$ _u'. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named $A P$ _u, then outputname can include ' $A P_{-} u$ '. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

refsys

Reference system for target step response, specified as a dynamic system model, such as a tf, zpk, or ss model. refsys must be stable and must have DC gain of 1 (zero steady-state error).
refsys can be continuous or discrete. If refsys is discrete, it can include time delays which are treated as poles at $z=0$.
refsys can be MIMO, provided that it is square and that its DC singular value (sigma) is 1 . If refsys is a MIMO model, then its number of inputs and outputs must match the dimensions of inputname and outputname.

For best results, refsys should also include intrinsic system characteristics such as non-minimumphase zeros (undershoot).

tau

Time constant or natural period of target step response, specified as a positive scalar.
If you use the syntax Req = TuningGoal.StepTracking(inputname,outputname,tau) to specify a first-order target response, then tau is the time constant of the response decay. In that case, the target is the step response of the system given by:

$$
\text { Req.ReferenceModel }=\frac{1 / \text { tau }}{s+1 / \text { tau }}
$$

If you use the syntax Req = TuningGoal.StepTracking(inputname, outputname, tau, overshoot) to specify a secondorder target response, then tau is the inverse of the natural frequency of the response. In that case, the target is the step response of the system given by:

$$
\text { Req.ReferenceModel }=\frac{(1 / \text { tau })^{2}}{s^{2}+2(\text { zeta/tau }) s+(1 / \text { tau })^{2}}
$$

The damping of the system is given by zeta $=\cos (\operatorname{atan} 2(\mathrm{pi},-\log ($ overshoot/100) $))$.

overshoot

Percent overshoot of target step response, specified as a scalar value in the range $(0,100)$.

Properties

ReferenceModel

Reference system for target step response, specified as a SISO or MIMO state-space (ss) model. When you use the tuning goal to tune a control system, the step response from inputname to outputname is tuned to match this target response to within the tolerance specified by the RelGap property.

If you use the refsys input argument to create the tuning goal, then the value of ReferenceModel is ss(refsys).

If you use the tau or tau and overshoot input arguments, thenReferenceModel is a state-space representation of the corresponding first-order or second-order transfer function.

ReferenceModel must be stable and have unit DC gain (zero steady-state error). For best results, ReferenceModel should also include intrinsic system characteristics such as non-minimum-phase zeros (undershoot).

RelGap

Maximum relative matching error, specified as a positive scalar value. This property specifies the matching tolerance as the maximum relative gap between the target and actual step responses. The relative gap is defined as:

$$
\text { gap }=\frac{\left\|y(t)-y_{r e f}(t)\right\|_{2}}{\left\|1-y_{r e f}(t)\right\|_{2}} .
$$

$y(t)-y_{r e f}(t)$ is the response mismatch, and $1-y_{r e f}(t)$ is the step-tracking error of the target model. $\|\cdot\|_{2}$ denotes the signal energy (2-norm).

Increase the value of RelGap to loosen the matching tolerance.

Default: 0.1

InputScaling

Reference signal scaling, specified as a vector of positive real values.
For a MIMO tracking requirement, when the choice of units results in a mix of small and large signals in different channels of the response, use this property to specify the relative amplitude of each entry in the vector-valued step input. This information is used to scale the off-diagonal terms in the transfer function from reference to tracking error. This scaling ensures that cross-couplings are measured relative to the amplitude of each reference signal.

For example, suppose that Req is a tuning goal that signals \{'y1', 'y2'\} track reference signals \{'r1', 'r2'\}. Suppose further that you require the outputs to track the references with less than 10% cross-coupling. If $r 1$ and $r 2$ have comparable amplitudes, then it is sufficient to keep the gains from $r 1$ to $y 2$ and $r 2$ and $y 1$ below 0.1 . However, if $r 1$ is 100 times larger than $r 2$, the gain from $r 1$
to $y 2$ must be less than 0.001 to ensure that r1 changes y2 by less than 10% of the $r 2$ target. To ensure this result, set the InputScaling property as follows.

Req.InputScaling = [100,1];
This tells the software to take into account that the first reference signal is 100 times greater than the second reference signal.

The default value, [] , means no scaling.
Default: []

Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the transfer function that the tuning goal constrains. The initial value of the Input property is set by the inputname input argument when you construct the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the transfer function that the tuning goal constrains. The initial value of the Output property is set by the outputname input argument when you construct the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points u1 and u2.

Default: \{\}
Name
Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Step Response Requirement with Specified Tolerance

Create a requirement for the step response from a signal named ' r ' to a signal named ' y '.
Constrain the step response to match the transfer function $H=10 /(s+10)$, but allow 20% relative variation between the target the tuned responses.

H = tf(10,[1 10]);
Req $=$ TuningGoal.StepResp('r', 'y', H);
By default, this requirement allows a relative gap of 0.1 between the target and tuned responses. To change the relative gap to 20%, set the RelGap property of the requirement.

Req.RelGap $=0.2$;
Examine the requirement.
viewGoal(Req);

The dashed line shows the target step response specified by this requirement. You can use this requirement to tune a control system model, T , that contains valid input and output locations named ' r ' and ' y '. If you do so, the command viewGoal (Req, T) plots the achieved step response from ' r ' to ' y ' for comparison to the target response.

First-Order Step Response With Known Time Constant

Create a requirement that specifies a first-order step response with time constant of 5 seconds. Create the requirement for the step response from a signal named ' r ' to a signal named ' y '.

```
Req = TuningGoal.StepResp('r','y',5);
```

When you use this requirement to tune a control system model, T, the time constant 5 is taken to be expressed in the prevailing units of the control system. For example, if T is a genss model and the property T.TimeUnit is 'seconds ', then this requirement specifies a target time constant of 5 seconds for the response from the input ' r ' to the output ' y ' of ' T '.

The specified time constant is converted into a reference state-space model stored in the ReferenceModel property of the requirement.

```
refsys = tf(Req.ReferenceModel)
refsys =
    0.2
```

```
s + 0.2
```

Continuous-time transfer function.
As expected, refsys is a first-order model.
Examine the requirement. The viewGoal command displays the target response, which is the step response of the reference model.
viewGoal(Req);

Requirement 1: Target response to step command

The dashed line shows the target step response specified by this requirement, a first-order response with a time constant of five seconds.

Second-Order Step Response With Known Natural Period and Overshoot

Create a requirement that specifies a second-order step response with a natural period of 5 seconds, and a 10% overshoot. Create the requirement for the step response from a signal named ' r ' to a signal named ' y '.

Req = TuningGoal.StepResp('r','y',5,10);
When you use this requirement to tune a control system model, T, the natural period 5 is taken to be expressed in the prevailing units of the control system. For example, if T is a genss model and the
property T.TimeUnit is 'seconds', then this requirement specifies a target natural period of 5 seconds for the response from the input ' r ' to the output ' y ' of ' T '.

The specified parameters of the response is converted into a reference state-space model stored in the ReferenceModel property of the requirement.

```
refsys = tf(Req.ReferenceModel)
refsys =
    0.04
    s^2 + 0.2365 s + 0.04
Continuous-time transfer function.
```

As expected, refsys is a second-order model.
Examine the requirement. The viewGoal command displays the target response, which is the step response of the reference model.

```
viewGoal(Req);
```


The dashed line shows the target step response specified by this requirement, a second-order response with 10% overshoot and a natural period of five seconds.

Tracking Goal with Limited Model Application and Additional Loop Openings

Create a tuning goal that specifies a first-order step response with time constant of 5 seconds. Set the Models and Openings properties to further configure the tuning goal's applicability.

Req $=$ TuningGoal.StepTracking('r', 'y',5);
Req.Models = [2 3];
Req.Openings = 'OuterLoop'
When tuning a control system that has an input ' r ', an output ' y ', and an analysis-point location 'OuterLoop', you can use Req as an input to looptune or systune. Setting the Openings property specifies that the step response from ' r ' to ' y ' is measured with the loop opened at 'OuterLoop'. When tuning an array of control system models, setting the Models property restricts how the tuning goal is applied. In this example, the tuning goal applies only to the second and third models in an array.

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$. Here, x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal.StepTracking, $f(x)$ is given by:

$$
f(x)=\frac{\left\|\frac{1}{s}\left(T(s, x)-T_{r e f}(s)\right)\right\|_{2}}{\operatorname{RelGap}\left\|\frac{1}{s}\left(T_{r e f}(s)-I\right)\right\|_{2}} .
$$

$T(s, \chi)$ is the closed-loop transfer function from Input to Output with parameter values χ, and $T_{\text {ref }}(s)$ is the reference model specified in the ReferenceModel property. $\|\cdot\|_{2}$ denotes the H_{2} norm (see norm).

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune| systune|looptune (for slTuner)| systune (for slTuner)|viewGoal| evalGoal| TuningGoal. Tracking|TuningGoal. Overshoot

Topics
"Time-Domain Specifications"
"PID Tuning for Setpoint Tracking vs. Disturbance Rejection"

TuningGoal.Tracking class

Package: TuningGoal

Tracking requirement for control system tuning

Description

Use TuningGoal.Tracking to specify a frequency-domain tracking requirement between specified inputs and outputs. This tuning goal specifies the maximum relative error (gain from reference input to tracking error) as a function of frequency. Use this tuning goal for control system tuning with tuning commands such as systune or looptune.

You can specify the maximum error profile directly by providing a transfer function. Alternatively, you can specify a target DC error, peak error, and response time. These parameters are converted to the following transfer function that describes the maximum frequency-domain tracking error:

$$
\text { MaxError }=\frac{(\text { PeakError }) s+\omega_{c}(\text { DCError })}{s+\omega_{c}}
$$

Here, ω_{c} is $2 /($ response time). The following plot illustrates these relationships for an example set of values.

Construction

Req = TuningGoal.Tracking(inputname,outputname, responsetime,dcerror, peakerror) creates a tuning goal Req that constrains the tracking performance from inputname to outputname in the frequency domain. This tuning goal specifies a maximum error profile as a function of frequency given by:

$$
\text { MaxError }=\frac{(\text { PeakError }) s+\omega_{c}(\text { DCError })}{s+\omega_{c}} .
$$

The tracking bandwidth $\omega_{c}=2 /$ responsetime. The maximum relative steady-state error is given by dcerror, and peakerror gives the peak relative error across all frequencies.

You can specify a MIMO tracking requirement by specifying signal names or a cell array of multiple signal names for inputname or outputname. For MIMO tracking requirements, use the InputScaling property to help limit cross-coupling. See "Properties" on page 1-123.

Req $=$ TuningGoal.Tracking(inputname,outputname, maxerror) specifies the maximum relative error as a function of frequency. You can specify the target error profile (maximum gain from reference signal to tracking error signal) as a smooth transfer function. Alternatively, you can sketch a piecewise error profile using an frd model.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points $u 1$ and $u 2$. Use ' $u 1$ ' to designate that point as an input signal when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include ' $A P$ _u'. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then outputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

responsetime

Target response time, specified as a positive scalar value. The tracking bandwidth is given by $\omega_{c}=2$ / responsetime.Express the target response time in the time units of the models to be tuned. For example, when tuning a model T , if T.TimeUnit is 'minutes', then express the target response time in minutes.

dcerror

Maximum steady-state fractional tracking error, specified as a positive scalar value. For example, dcerror $=0.01$ sets a maximum steady-state error of 1%.

If inputname or outputname are vector-valued, dcerror applies to all I/O pairs from inputname to outputname.

Default: 0.001
peakerror
Maximum fractional tracking error across all frequencies, specified as a positive scalar value greater than 1.

Default: 1

maxerror

Target tracking error profile as a function of frequency, specified as a SISO numeric LTI model.
maxerror is the maximum gain from reference signal to tracking error signal. You can specify maxerror as a smooth transfer function (tf, zpk, or ss model). Alternatively, you can sketch a piecewise error profile using an frd model. When you do so, the software automatically maps the error profile to a zpk model. The magnitude of the zpk model approximates the desired error profile. Use show (Req) to plot the magnitude of the zpk model.
maxerror must be a SISO LTI model. If inputname or outputname are cell arrays, maxerror applies to all I/O pairs from inputname to outputname.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify maxerror as a discrete-time model with the same Ts. If you specify maxerror in continuous time, the tuning software discretizes it. Specifying the error profile in discrete time gives you more control over the error profile near the Nyquist frequency.

Properties

MaxError

Maximum error as a function of frequency, expressed as a SISO zpk model. This property stores the maximum tracking error as a function of frequency (maximum gain from reference signal to tracking error signal).

If you use the syntax Req = TuningGoal.Tracking(inputname, outputname, maxerror), then the MaxError property is the zpk equivalent or approximation of the LTI model you supplied as the maxerror input argument.

If you use the syntax Req = TuningGoal.Tracking(inputname,outputname, resptime, dcerror, peakerror), then the MaxError is a zpk transfer function given by:

$$
\text { MaxError }=\frac{(\text { PeakError }) s+\omega_{c}(\text { DCError })}{s+\omega_{c}} .
$$

MaxError is a SISO LTI model. If inputname or outputname are cell arrays, MaxError applies to all I/O pairs from inputname to outputname.

Use show (Req) to plot the magnitude of MaxError.

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

InputScaling

Reference signal scaling, specified as a vector of positive real values.
For a MIMO tracking requirement, when the choice of units results in a mix of small and large signals in different channels of the response, use this property to specify the relative amplitude of each entry in the vector-valued step input. This information is used to scale the off-diagonal terms in the transfer function from reference to tracking error. This scaling ensures that cross-couplings are measured relative to the amplitude of each reference signal.

For example, suppose that Req is a tuning goal that signals \{ 'y1' , 'y2'\} track reference signals \{'r1', 'r2'\}. Suppose further that you require the outputs to track the references with less than 10% cross-coupling. If $r 1$ and $r 2$ have comparable amplitudes, then it is sufficient to keep the gains from $r 1$ to $y 2$ and $r 2$ and $y 1$ below 0.1 . However, if $r 1$ is 100 times larger than $r 2$, the gain from $r 1$ to y 2 must be less than 0.001 to ensure that r 1 changes y 2 by less than 10% of the r 2 target. To ensure this result, set the InputScaling property as follows.

Req.InputScaling = [100,1];
This tells the software to take into account that the first reference signal is 100 times greater than the second reference signal.

The default value, [] , means no scaling.
Default: []

Input

Reference signal names, specified as a character vector or cell array of character vectors specifying the names of the signals to be tracked, populated by the inputname argument.

Output

Output signal names, specified as a character vector or cell array of character vectors specifying the names of the signals that must track the reference signals, populated by the outputname argument.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points u1 and u2.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Tracking Goal With Response Time and Maximum Steady-State Tracking Error

Create a tracking goal specifying that a signal 'theta' track a signal 'theta_ref '. The required response time is 2 , in the time units of the control system you are tuning. The maximum steady-state error is 0.1%.

```
Req = TuningGoal.Tracking('theta_ref','theta',2,0.001);
```

Since peakerror is unspecified, this tuning goal uses the default value, 1.

Tracking Goal With Maximum Tracking Error as a Function of Frequency

Create a tracking goal specifying that a signal 'theta' track a signal 'theta_ref'. The maximum relative error is $0.01(1 \%)$ in the frequency range [0,1]. The relative error increases to $1(100 \%)$ at the frequency 100.

Use an frd model to specify the error profile as a function of frequency.
err $=$ frd([0.01 0.01 1],[0 1100$])$;
Req $=$ TuningGoal.Tracking('theta_ref','theta',err);
The software converts err into a smooth function of frequency that approximates the piecewise specified profile. Display this function using viewGoal.
viewGoal(Req)

The dashed line is the target error profile stored in MaxError, and the shaded region indicates where the tuning goal is violated.

Tips

- This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. Tracking, $f(x)$ is given by:

$$
f(x)=\left\|W_{F}(s)(T(s, x)-I)\right\|_{\infty}
$$

or its discrete-time equivalent. Here, $T(s, x)$ is the closed-loop transfer function from Input to Output, and $\|\cdot\|_{\infty}$ denotes the H_{∞} norm (see getPeakGain). W_{F} is a frequency weighting function derived from the error profile you specify in the tuning goal. The gains of W_{F} and $1 /$ MaxError roughly match for gain values between -20 dB and 60 dB . For numerical reasons, the weighting function levels off outside this range, unless you specify a reference model that changes slope outside this range. This adjustment is called regularization. Because poles of W_{F} close to $s=0$ or $s=\operatorname{Inf}$ might lead to poor numeric conditioning of the systune optimization problem, it is not recommended to specify error profiles with very low-frequency or very high-frequency dynamics.

To obtain W_{F}, use:

```
WF = getWeight(Req,Ts)
```

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for continuous time). For more information about regularization and its effects, see "Visualize Tuning Goals".

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune|systune|systune (for slTuner)|looptune (for slTuner)|viewGoal|
evalGoal|TuningGoal.Gain|TuningGoal.LoopShape | slTuner

Topics

"Time-Domain Specifications"
"Visualize Tuning Goals"
"Tune Control Systems Using systune"
"Tune Control Systems in Simulink"
"PID Tuning for Setpoint Tracking vs. Disturbance Rejection"
"Decoupling Controller for a Distillation Column" "Digital Control of Power Stage Voltage"
"Tuning of a Two-Loop Autopilot"

TuningGoal.Transient class

Package: TuningGoal

Transient matching requirement for control system tuning

Description

Use the TuningGoal. Transient object to constrain the transient response from specified inputs to specified outputs. This tuning goal specifies that the transient response closely match the response of a reference model. Specify the closeness of the required match using the RelGap property of the tuning goal (see "Properties" on page 1-131). You can constrain the response to an impulse, step, or ramp input signal. You can also constrain the response to an input signal given by the impulse response of an input filter you specify.

Construction

Req $=$ TuningGoal.Transient(inputname,outputname, refsys) requires that the impulse response from inputname to outputname closely matches the impulse response of the reference model refsys. Specify the closeness of the required match using the RelGap property of the tuning goal (see "Properties" on page 1-131). inputname and outputname can describe a SISO or MIMO response of your control system. For MIMO responses, the number of inputs must equal the number of outputs.

Req = TuningGoal.Transient(inputname,outputname,refsys,inputtype) specifies whether the input signal that generates the constrained transient response is and impulse, step, or ramp signal.

Req $=$ TuningGoal.Transient(inputname,outputname, refsys,inputfilter) specifies the input signal for generating the transient response that the tuning goal constrains. Specify the input signal as a SISO transfer function, inputfilter, that is the Laplace transform of the desired timedomain input signal. The impulse response of inputfilter is the desired input signal.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points u1 and u2. Use 'u1' to designate that point as an input signal when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include ' $A P_{-} \mathbf{u}^{\prime}$ '. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use ' y 1 ' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named

AP_u, then outputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

refsys

Reference system for target transient response, specified as a dynamic system model, such as a tf, zpk, or ss model. The desired transient response is the response of this model to the input signal specified by inputtype or inputfilter. The reference model must be stable, and the series connection of the reference model with the input shaping filter must have no feedthrough term.

inputtype

Type of input signal that generates the constrained transient response, specified as one of the following values:

- 'impulse' - Constrain the response at outputname to a unit impulse applied at inputname.
- 'step ' - Constrain the response to a unit step. Using 'step ' is equivalent to using the TuningGoal.StepTracking design goal.
- 'ramp' - Constrain the response to a unit ramp, u = t.

Default: 'impulse'

inputfilter

Custom input signal for generating the transient response, specified as a SISO transfer function (tf or zpk) model that represents the Laplace transform of the desired input signal. inputfilter must be continuous, and can have no poles in the open right-half plane.

The frequency response of inputfilter gives the signal spectrum of the desired input signal, and the impulse response of inputfilter is the time-domain input signal.

For example, to constrain the transient response to a unit-amplitude sine wave of frequency w , set inputfilter to $\mathrm{tf}\left(\mathrm{w},\left[1,0, \mathrm{w}^{\wedge} 2\right]\right)$. This transfer function is the Laplace transform of $\sin (w t)$.

The series connection of refsys with inputfilter must have no feedthrough term.

Properties

ReferenceModel

Reference system for target transient response, specified as a SISO or MIMO state-space (ss) model. When you use the tuning goal to tune a control system, the transient response from inputname to
outputname is tuned to match this target response to within the tolerance specified by the RelGap property.

The refsys argument to TuningGoal. Transient sets the value of ReferenceModel to ss(refsys).

InputShaping

Input signal for generating the transient response, specified as a SISO zpk model that represents the Laplace transform of the time-domain input signal. InputShaping must be continuous, and can have no poles in the open right-half plane. The value of this property is populated using the inputtype or inputfilter arguments used when creating the tuning goal.

For tuning goals created using the inputtype argument, InputShaping takes the following values:

inputtype	InputShaping
'impulse'	1
'step'	$1 / s$
'ramp'	$1 / s^{2}$

For tuning goals created using an inputfilter transfer function, InputShaping takes the value zpk(inputfilter).

The series connection of ReferenceModel with InputShaping must have no feedthrough term.

Default: 1

RelGap

Maximum relative matching error, specified as a positive scalar value. This property specifies the matching tolerance as the maximum relative gap between the target and actual transient responses. The relative gap is defined as:

$$
\text { gap }=\frac{\left\|y(t)-y_{r e f}(t)\right\|_{2}}{\left\|y_{r e f(t r)}(t)\right\|_{2}} .
$$

$y(t)-y_{\text {ref }}(t)$ is the response mismatch, and $1-y_{\text {reftrr }}(t)$ is the transient portion of $y_{r e f}$ (deviation from steady-state value or trajectory). $\|\cdot\|_{2}$ denotes the signal energy (2-norm). The gap can be understood as the ratio of the root-mean-square (RMS) of the mismatch to the RMS of the reference transient

Increase the value of RelGap to loosen the matching tolerance.
Default: 0.1

InputScaling

Input signal scaling, specified as a vector of positive real values.
Use this property to specify the relative amplitude of each entry in vector-valued input signals when the choice of units results in a mix of small and large signals. This information is used to scale the closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose $T(s)$ is the closed-loop transfer function from Input to Output. The tuning goal is evaluated for the scaled transfer function $D_{o}{ }^{-1} T(s) D_{i}$. The diagonal matrices D_{o} and D_{i} have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.
Use this property to specify the relative amplitude of each entry in vector-valued output signals when the choice of units results in a mix of small and large signals. This information is used to scale the closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose $T(s)$ is the closed-loop transfer function from Input to Output. The tuning goal is evaluated for the scaled transfer function $D_{o}{ }^{-1} T(s) D_{i}$. The diagonal matrices D_{o} and D_{i} have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: []

Input

Input signal names, specified as a as a cell array of character vectors that indicate the inputs for the transient responses that the tuning goal constrains. The initial value of the Input property is populated by the inputname argument when you create the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that indicate the outputs where transient responses that the tuning goal constrains are measured. The initial value of the Output property is populated by the outputname argument when you create the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req.Models = 2:4;
When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings $=\left\{' u 1^{\prime}, ~ ' u 2 '\right\}$, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{ \}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Transient Response Requirement with Specified Input Type and Tolerance

Create a requirement for the transient response from a signal named ' r ' to a signal named ' u '. Constrain the impulse response to match the response of transfer function refsys $=1 /(s+1)$, but allow 20% relative variation between the target and tuned responses.

```
refsys = tf(1,[1 1]);
Req1 = TuningGoal.Transient('r','u',refsys);
```

When you do not specify a response type, the requirement constrains the transient response. By default, the requirement allows a relative gap of 0.1 between the target and tuned responses. To change the relative gap to 20%, set the RelGap property of the requirement.

```
Req1.RelGap = 0.2;
```

Examine the requirement.
viewGoal(Req1)

The dashed line shows the target impulse response specified by this requirement. You can use this requirement to tune a control system model, T , that contains valid input and output locations named ' r ' and ' u '. If you do so, the command viewGoal (Req1,T) plots the achieved impulse response from ' r ' to ' u ' for comparison to the target response.

Create a requirement that constrains the response to a step input, instead of the impulse response.
Req2 = TuningGoal.Transient('r','u',refsys,'step');
Examine this requirement.

```
viewGoal(Req2)
```

Requirement 1: Target transient response

Req2 is equivalent to the following step tracking requirement:
Req3 = TuningGoal.StepTracking('r','u',refsys);

Constrain Transient Response to Custom Input Signal

Create a requirement for the transient response from ' r ' to ' u '. Constrain the response to a sinusoidal input signal, rather than to an input, step, or ramp.

To specify a custom input signal, set the input filter to the Laplace transform of the desired signal. For example, suppose you want to constrain the response to a signal of $\sin \omega t$. The Laplace transform of this signal is given by:

$$
\text { inputfilter }=\frac{\omega}{s^{2}+\omega^{2}}
$$

Create a requirement that constrains the response at ' u ' to a sinusoidal input of natural frequency 2 $\mathrm{rad} / \mathrm{s}$ at ' r '. The response should match that of the reference system refsys $=1 /(s+1)$.

```
refsys = tf(1,[1 1]);
w = 2;
inputfilter = tf(w,[1 0 w^2]);
Req = TuningGoal.Transient('u','r',refsys,inputfilter);
```

Examine the requirement to see the shape of the target response.
viewGoal(Req)

Transient Response Goal with Limited Model Application and Additional Loop Openings

Create a tuning goal that constrains the impulse response. Set the Models and Openings properties to further configure the tuning goal's applicability.

```
refsys = tf(1,[1 1]);
Req = TuningGoal.Transient('r','u',refsys);
Req.Models = [2 3];
Req.Openings = 'OuterLoop'
```

When tuning a control system that has an input (or analysis point) ' r ', an output (or analysis point) ' u ', and another analysis point at location 'OuterLoop', you can use Req as an input to looptune or systune. Setting the Openings property specifies that the impulse response from ' r ' to ' y ' is computed with the loop opened at 'OuterLoop'. When tuning an array of control system models, setting the Models property restricts how the tuning goal is applied. In this example, the tuning goal applies only to the second and third models in an array.

Tips

- When you use this tuning goal to tune a continuous-time control system, systune attempts to enforce zero feedthrough $(D=0)$ on the transfer that the tuning goal constrains. Zero feedthrough is imposed because the H_{2} norm, and therefore the value of the tuning goal (see "Algorithms" on page 1-138), is infinite for continuous-time systems with nonzero feedthrough.
systune enforces zero feedthrough by fixing to zero all tunable parameters that contribute to the feedthrough term. systune returns an error when fixing these tunable parameters is insufficient to enforce zero feedthrough. In such cases, you must modify the tuning goal or the control structure, or manually fix some tunable parameters of your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software's approach of zeroing all parameters that contribute to the overall feedthrough might be conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free properties of the block parametrization. For example, consider a tuned state-space block:
$C=$ tunableSS('C', $1,2,3)$;
To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the parameter.
C.D.Value $=0$;
C.D.Free = false;

For more information on fixing parameter values, see the Control Design Block reference pages, such as tunableSS.

- This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal.Transient, $f(x)$ is based upon the relative gap between the tuned response and the target response:

$$
\text { gap }=\frac{\left\|y(t)-y_{r e f}(t)\right\|_{2}}{\left\|y_{r e f}(t r)(t)\right\|_{2}} .
$$

$y(t)-y_{r e f}(t)$ is the response mismatch, and $1-y_{\text {reftre }}(t)$ is the transient portion of $y_{\text {ref }}$ (deviation from steady-state value or trajectory). $\|\cdot\|_{2}$ denotes the signal energy (2-norm). The gap can be understood as the ratio of the root-mean-square (RMS) of the mismatch to the RMS of the reference transient

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune|systune|systune (for slTuner)|looptune (for slTuner)|viewGoal| evalGoal|TuningGoal.StepTracking|TuningGoal.StepRejection|slTuner

Topics

"Time-Domain Specifications"
"Tune Control Systems Using systune"
"Tune Control Systems in Simulink"

TuningGoal.Variance class

Package: TuningGoal
Noise amplification constraint for control system tuning

Description

Use TuningGoal .Variance to specify a tuning goal that limits the noise amplification from specified inputs to outputs. The noise amplification is defined as either:

- The square root of the output variance, for a unit-variance white-noise input
- The root-mean-square of the output, for a unit-variance white-noise input
- The H_{2} norm of the transfer function from the specified inputs to outputs, which equals the total energy of the impulse response

These definitions are different interpretations of the same quantity. TuningGoal.Variance imposes the same limit on these quantities.

You can use TuningGoal. Variance for control system tuning with tuning commands, such as systune or looptune. Specifying this tuning goal allows you to tune the system response to whitenoise inputs. For stochastic inputs with a nonuniform spectrum (colored noise), use TuningGoal. WeightedVariance instead.

After you create a tuning goal, you can further configure the tuning goal by setting "Properties" on page 1-142 of the object.

Construction

Req = TuningGoal.Variance(inputname,outputname, maxamp) creates a tuning goal that limits the noise amplification of the transfer function from inputname to outputname to the scalar value maxamp.

When you tune a control system in discrete time, this tuning goal assumes that the physical plant and noise process are continuous. To ensure that continuous-time and discrete-time tuning give consistent results, maxamp is interpreted as a constraint on the continuous-time H_{2} norm. If the plant and noise processes are truly discrete and you want to constrain the discrete-time H_{2} norm to the value maxamp, set the third input argument to maxamp/sqrt(Ts), where Ts is the sample time of the model you are tuning.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points $u 1$ and $u 2$. Use ' $u 1$ ' to designate that point as an input signal when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then outputname can include ' $A P_{-} u$ '. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

maxamp

Maximum noise amplification from inputname to outputname, specified as a positive scalar value. This value specifies the maximum value of the output variance at the signals specified in outputname, for unit-variance white noise signal at inputname. This value corresponds to the maximum H_{2} norm from inputname to outputname.

When you tune a control system in discrete time, this tuning goal assumes that the physical plant and noise process are continuous, and interprets maxamp as a bound on the continuous-time H_{2} norm. This ensures that continuous-time and discrete-time tuning give consistent results. If the plant and noise processes are truly discrete, and you want to bound the discrete-time H_{2} norm instead, specify the value maxamp $/ \sqrt{T_{s}} . T_{s}$ is the sample time of the model you are tuning.

Properties

MaxAmplification

Maximum noise amplification, specified as a positive scalar value. This property specifies the maximum value of the output variance at the signals specified in Output, for unit-variance white noise signal at Input. This value corresponds to the maximum H_{2} norm from Input to Output. The initial value of MaxAmplification is set by the maxamp input argument when you construct the tuning goal.

InputScaling

Input signal scaling, specified as a vector of positive real values.
Use this property to specify the relative amplitude of each entry in vector-valued input signals when the choice of units results in a mix of small and large signals. This information is used to scale the closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose $T(s)$ is the closed-loop transfer function from Input to Output. The tuning goal is evaluated for the scaled transfer function $D_{o}{ }^{-1} T(s) D_{i}$. The diagonal matrices D_{o} and D_{i} have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.
Use this property to specify the relative amplitude of each entry in vector-valued output signals when the choice of units results in a mix of small and large signals. This information is used to scale the closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose $T(s)$ is the closed-loop transfer function from Input to Output. The tuning goal is evaluated for the scaled transfer function $D_{o}{ }^{-1} T(s) D_{i}$. The diagonal matrices D_{o} and D_{i} have the OutputScaling and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: []

Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the transfer function that the tuning goal constrains. The initial value of the Input property is set by the inputname input argument when you construct the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the transfer function that the tuning goal constrains. The initial value of the Output property is set by the outputname input argument when you construct the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models $=2: 4 ;$
When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings $=\left\{' u 1^{\prime}, ' u 2^{\prime}\right\}$, then the tuning goal is evaluated with loops open at analysis points $u 1$ and $u 2$.

Default: \{ \}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Constrain Noise Amplification Evaluated with a Loop Opening

Create a requirement that constrains the amplification of the variance from the analysis point AP2 to the output y of the following control system, measured with the outer loop open.

Create a model of the system. To do so, specify and connect the numeric plant models G1 and G2, and the tunable controllers C1 and C2. Also specify and connect the AnalysisPoint blocks AP1 and AP2 that mark points of interest for analysis and tuning.

```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
AP1 = AnalysisPoint('AP1');
AP2 = AnalysisPoint('AP2');
T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);
```

Create a tuning requirement that constrains the noise amplification from the implicit input associated with the analysis point, AP2, to the output y.

Req = TuningGoal.Variance('AP2','y',0.1);
This constraint limits the amplification to a factor of 0.1.
Specify that the transfer function from AP2 to y is evaluated with the outer loop open when tuning to this constraint.

Req.Openings = \{'AP1'\};
Use systune to tune the free parameters of T to meet the tuning requirement specified by Req. You can then validate the tuned control system against the requirement using viewGoal (Req, T).

Tips

- When you use this tuning goal to tune a continuous-time control system, systune attempts to enforce zero feedthrough $(D=0)$ on the transfer that the tuning goal constrains. Zero feedthrough is imposed because the H_{2} norm, and therefore the value of the tuning goal (see "Algorithms" on page 1-145), is infinite for continuous-time systems with nonzero feedthrough.
systune enforces zero feedthrough by fixing to zero all tunable parameters that contribute to the feedthrough term. systune returns an error when fixing these tunable parameters is insufficient to enforce zero feedthrough. In such cases, you must modify the tuning goal or the control structure, or manually fix some tunable parameters of your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software's approach of zeroing all parameters that contribute to the overall feedthrough might be conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free properties of the block parametrization. For example, consider a tuned state-space block:
$C=$ tunableSS('C',1,2,3);
To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the parameter.

```
C.D.Value = 0;
C.D.Free = false;
```

For more information on fixing parameter values, see the Control Design Block reference pages, such as tunableSS.

- This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systune0ptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$. The vector x is the vector of free (tunable) parameters in the control
system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. Variance, $f(x)$ is given by:

$$
f(x)=\left\|\frac{1}{\text { MaxAmplification }} T(s, x)\right\|_{2} .
$$

$T(s, x)$ is the closed-loop transfer function from Input to Output. $\|\cdot\|_{2}$ denotes the H_{2} norm (see norm).

For tuning discrete-time control systems, $f(x)$ is given by:

$$
f(x)=\left\|\frac{1}{\operatorname{MaxAmplification} \sqrt{T_{S}}} T(z, x)\right\|_{2} .
$$

T_{s} is the sample time of the discrete-time transfer function $T(z, x)$.

Version History

Introduced in R2016a
R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune | systune|looptune (for slTuner) | systune (for slTuner)|slTuner| viewGoal|evalGoal|norm|TuningGoal. WeightedVariance

Topics

"Frequency-Domain Specifications"
"Active Vibration Control in Three-Story Building"
"Fault-Tolerant Control of a Passenger Jet"

TuningGoal.WeightedPassivity class

Package: TuningGoal
Frequency-weighted passivity constraint

Description

A system is passive if all its I/O trajectories $(u(t), y(t))$ satisfy:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>0,
$$

for all $T>0$. TuningGoal. WeightedPassivity enforces the passivity of the transfer function:

$$
H(s)=W_{L}(s) T(s) W_{R}(s),
$$

where T_{s} is a closed-loop response in the control system being tuned. W_{L} and W_{R} are weighting functions used to emphasize particular frequency bands. Use TuningGoal. WeightedPassivity with control system tuning commands such as systune.

Construction

Req = TuningGoal.WeightedPassivity(inputname,outputname,WL,WR) creates a tuning goal for enforcing passivity of the transfer function:

$$
H(s)=W_{L}(s) T(s) W_{R}(s),
$$

where T_{s} is the closed-loop transfer function from the specified inputs to the specified outputs. The weights WL and WR can be matrices or LTI models.

By default, the tuning goal enforces passivity of the weighted transfer function H. You can also enforce input and output passivity indices, with a specified excess or shortage of passivity. (See getPassiveIndex for more information about passivity indices.) To do so, set the IPX and OPX properties of the tuning goal. See "Weighted Passivity and Input Passivity" on page 1-152.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points u1 and u2. Use 'u1' to designate that point as an input signal when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include ' $A P_{-} \mathbf{u}^{\prime}$ '. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use ' y 1 ' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named

AP_u, then outputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

WL , WR

Input and output weighting functions, specified as scalars, matrices, or SISO or MIMO numeric LTI models.

The functions WL and WR provide the weights for the tuning goal. The tuning goal ensures passivity of the weighted transfer function:

$$
H(s)=W_{L}(s) T(s) W_{R}(s)
$$

where $T(s)$ is the transfer function from inputname to outputname. The function WL provides the weighting for the output channels of $T(s)$, and W R provides the weighting for the input channels. You can specify:

- Scalar weighting - use a scalar or numeric matrix.
- Frequency-dependent weighting - use a SISO or MIMO numeric LTI model. For example:

```
WL = tf(1,[1 0.01]);
WR = 10;
```

If WL or WR is a matrix or a MIMO model, then inputname and outputname must be vector signals. The dimensions of the vector signals must be such that the dimensions of $T(s)$ are commensurate with the dimensions of WL and WR. For example, if you specify $W R=$ diag ([110]), then inputname must include two signals. Scalar values and SISO LTI models, however, automatically expand to any input or output dimension.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify the weighting functions as discrete-time models with the same Ts. If you specify the weighting functions in continuous time, the tuning software discretizes them. Specifying the weighting functions in discrete time gives you more control over the weighting functions near the Nyquist frequency.

A value of WL = [] or WR = [] is interpreted as the identity.
Default: []

Properties

WL

Frequency-weighting function for the output channels of the transfer function to constrain, specified as a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set by the WL input argument when you construct the tuning goal.

WR

Frequency-weighting function for the input channels of the transfer function to constrain, specified as a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set by the WR input argument when you construct the tuning goal.

IPX

Target passivity at the inputs listed in inputname, specified as a scalar value. The input passivity index is defined as the largest value of ν for which the trajectories $\{u(t), y(t)\}$ of the weighted transfer function H satisfy:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>\nu \int_{0}^{T} u(t)^{T} u(t) d t
$$

for all $T>0$.
By default, the tuning goal enforces strict passivity of the weighted transfer function. To enforce an input passivity index with a specified excess or shortage of passivity, set the IPX property of the tuning goal. When you do so, the tuning software:

- Ensures that the weighted response is input strictly passive when IPX >0. The magnitude of IPX sets the required excess of passivity.
- Allows the weighted response to be not input strictly passive when IPX <0. The magnitude of IPX sets the permitted shortage of passivity.

See "Weighted Passivity and Input Passivity" on page 1-152 for an example. See getPassiveIndex for more information about passivity indices.

Default: 0

OPX

Target passivity at the outputs listed in outputname, specified as a scalar value. The output passivity index is defined as the largest value of ρ for which the trajectories $\{u(t), y(t)\}$ of the weighted transfer function H satisfy:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>\rho \int_{0}^{T} y(t)^{T} y(t) d t,
$$

for all $T>0$.
By default, the tuning goal enforces strict passivity of the weighted transfer function. To enforce an output passivity index with a specified excess or shortage of passivity, set the OPX property of the tuning goal. When you do so, the tuning software:

- Ensures that the weighted response is output strictly passive when OPX >0. The magnitude of IPX sets the required excess of passivity.
- Allows the weighted response to be not output strictly passive when OPX <0. The magnitude of IPX sets the permitted shortage of passivity.

See "Weighted Passivity and Input Passivity" on page 1-152 for an example. See getPassiveIndex for more information about passivity indices.

Default: 0

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req. Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

Input

Input signal names, specified as a cell array of character vectors. The input signal names specify the input locations for determining passivity, initially populated by the inputname argument.

Output

Output signal names, specified as a cell array of character vectors. The output signal names specify the output locations for determining passivity, initially populated by the outputname argument.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req.Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings = \{'u1', 'u2'\}, then the tuning goal is evaluated with loops open at analysis points u1 and u2.

Default: \{\}
Name
Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Weighted Passivity and Input Passivity

Create a tuning goal that enforces the passivity of the transfer function:

$$
H(s)=\left[\begin{array}{cc}
1 & 0 \\
0 & 10
\end{array}\right] T(s)\left(\frac{1}{s}\right),
$$

where $T(s)$ is the transfer function from an input 'd' to outputs ['y' ; 'z'] in a control system model.

```
WL = tf(1,[1 0]);
WR = diag([1 10]);
TG = TuningGoal.WeightedPassivity('d',{'y','z'},WL,WR);
```

Use TG with systune to enforce that weighted passivity requirement.
Suppose that instead of enforcing overall passivity of the weighted transfer function H, you want to ensure that H is input strictly passive with an input feedforward passivity index of at least 0.1 . To do so, set the IPX property of TG.

TG. $I P X=0.1$;

Tips

- Use viewGoal to visualize this tuning goal. For enforcing passivity with IPX $=0$ and $0 P X=0$, viewGoal plots the relative passivity indices as a function of frequency (see passiveplot). These are the singular values of $(I-H(j \omega))(I-H(j \omega))^{-1}$. The weighted transfer function H is passive when the largest singular value is less than 1 at all frequencies.

For nonzero IPX or OPX, viewGoal plots the relative index as described in "Algorithms" on page 1-153.

- This tuning goal imposes an implicit minimum-phase constraint on the transfer function $H+I$, where H is the weighted closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The transmission zeros of $H+I$ are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x)$, where x is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. WeightedPassivity, for a closed-loop transfer function $T(s, x)$ from inputname to outputname, and the weighted transfer function $\mathrm{H}(\mathrm{s}, \mathrm{x})=\mathrm{WL} * \mathrm{~T}(\mathrm{~s}, \mathrm{x}) * \mathrm{WR}, f(x)$ is given by:

$$
f(x)=\frac{R}{1+R / R_{\max }}, \quad R_{\max }=10^{6} .
$$

R is the relative sector index (see getSectorIndex) of $[\mathrm{H}(\mathrm{s}, \mathrm{x}) ; \mathrm{I}]$, for the sector represented by:

$$
Q=\left(\begin{array}{cc}
2 \rho & -I \\
-I & 2 \nu
\end{array}\right),
$$

using the values of the OPX and IPX properties for ρ and ν, respectively. $R_{\text {max }}$ is fixed at 10^{6}, included to avoid numerical errors for very large R.

Version History

Introduced in R2016a

See Also

looptune| systune|systune (for slTuner)| looptune (for slTuner)|viewGoal| evalGoal|TuningGoal. Passivity|slTuner|getPassiveIndex| passiveplot

Topics

"About Passivity and Passivity Indices"
"Vibration Control in Flexible Beam"
"Tune Control Systems Using systune"
"Tune Control Systems in Simulink"

TuningGoal.WeightedGain class

Package: TuningGoal
Frequency-weighted gain constraint for control system tuning

Description

Use TuningGoal. WeightedGain to limit the weighted gain from specified inputs to outputs. The weighted gain is the maximum across frequency of the gain from input to output, multiplied by weighting functions that you specify. You can use the TuningGoal. WeightedGain tuning goal for control system tuning with tuning commands such as systune or looptune.

After you create a tuning goal, you can configure it further by setting "Properties" on page 1-156 of the object.

Construction

Req = TuningGoal.WeightedGain(inputname,outputname, WL,WR) creates a tuning goal that specifies that the closed-loop transfer function, $H(s)$, from the specified input to output meets the requirement:
$\left\|W_{L}(s) H(s) W_{R}(s)\right\|_{\infty}<1$.
The notation $\|\bullet\|_{\infty}$ denotes the maximum gain across frequency (the H_{∞} norm).

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points u1 and u2. Use 'u1' to designate that point as an input signal when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include ' $A P$ _ u '. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y 1 and y 2 . Use ' y 1 ' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then outputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

WL, WR

Frequency-weighting functions, specified as scalars, matrices, or SISO or MIMO numeric LTI models.
The functions WL and WR provide the weights for the tuning goal. The tuning goal ensures that the gain $H(s)$ from the specified input to output satisfies the inequality:
$\|W L(s) H(s) W R(s)\|_{\infty}<1$.
WL provides the weighting for the output channels of $H(s)$, and WR provides the weighting for the input channels. You can specify scalar weights or frequency-dependent weighting. To specify a frequency-dependent weighting, use a numeric LTI model. For example:

```
WL = tf(1,[1 0.01]);
WR = 10;
```

If you specify MIMO weighting functions, then inputname and outputname must be vector signals. The dimensions of the vector signals must be such that the dimensions of $H(s)$ are commensurate with the dimensions of WL and WR. For example, if you specify WR = diag ([10]), then inputname must include two signals. Scalar values, however, automatically expand to any input or output dimension.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify the weighting functions as discrete-time models with the same Ts. If you specify the weighting functions in continuous time, the tuning software discretizes them. Specifying the weighting functions in discrete time gives you more control over the weighting functions near the Nyquist frequency.

A value of $\mathrm{WL}=$ [] or $\mathrm{WR}=[]$ is interpreted as the identity.

Properties

WL

Frequency-weighting function for the output channels of the transfer function to constrain, specified as a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set by the WL input argument when you construct the tuning goal.

WR

Frequency-weighting function for the input channels of the transfer function to constrain, specified as a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set by the WR input argument when you construct the tuning goal.

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min, max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit). For example, suppose Req is a tuning goal that you want to apply only between 1 and $100 \mathrm{rad} / \mathrm{s}$. To restrict the tuning goal to this band, use the following command:

Req. Focus = [1,100];
Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).
By default, TuningGoal. Gain imposes a stability requirement on the closed-loop transfer function from the specified inputs to outputs, in addition to the gain requirement. If stability is not required or cannot be achieved, set Stabilize to false to remove the stability requirement. For example, if the gain constraint applies to an unstable open-loop transfer function, set Stabilize to false.

Default: 1(true)

Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the transfer function that the tuning goal constrains. The initial value of the Input property is set by the inputname input argument when you construct the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the transfer function that the tuning goal constrains. The initial value of the Output property is set by the outputname input argument when you construct the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req.Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings $=\left\{' u 1^{\prime}, ~ ' u 2 '\right\}$, then the tuning goal is evaluated with loops open at analysis points u1 and u2.

Default: \{\}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req. Name = 'LoopReq';
Default: []

Examples

Constrain Weighted Gain of Closed-Loop System

Create a tuning goal requirement that constrains the gain of a closed-loop SISO system from its input, r, to its output, y. Weight the gain at its input by a factor of 10 and at its output by the frequency-dependent weight $1 /(s+0.01)$.

```
WL = tf(1,[1 0.01]);
WR = 10;
Req = TuningGoal.WeightedGain('r','y',WL,WR);
```

You can use the requirement Req with systune to tune the free parameters of any control system model that has an input signal named ' r ' and an output signal named ' y '.

You can then use viewGoal to validate the tuned control system against the requirement.

Constrain Weighted Gain Evaluated with a Loop Opening

Create a requirement that constrains the gain of the outer loop of the following control system, evaluated with the inner loop open.

Create a model of the system. To do so, specify and connect the numeric plant models, G1 and G2, the tunable controllers C1 and C2. Also, create and connect the AnalysisPoint blocks that mark points of interest for analysis or tuning, AP1 and AP2.

```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
AP1 = AnalysisPoint('AP1');
AP2 = AnalysisPoint('AP2');
T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);
T.InputName = 'r';
T.OutputName = 'y';
```

Create a tuning requirement that constrains the gain of this system from r to y. Weight the gain at the output by $s /(s+0.5)$.

```
WL = tf([1 0],[1 0.5]);
Req = TuningGoal.WeightedGain('r','y',WL,[]);
```

This requirement is equivalent to Req = TuningGoal.Gain('r', 'y',1/WL). However, for MIMO systems, you can use TuningGoal. WeightedGain to create channel-specific weightings that cannot be expressed as TuningGoal. Gain requirements.

Specify that the transfer function from r to y be evaluated with the outer loop open for the purpose of tuning to this constraint.

Req.Openings = 'AP1';
By default, tuning using TuningGoal. WeightedGain imposes a stability requirement as well as the gain requirement. Practically, in some control systems it is not possible to achieve a stable inner loop. When this occurs, remove the stability requirement for the inner loop by setting the Stabilize property to false.

Req.Stabilize = false;
The tuning algorithm still imposes a stability requirement on the overall tuned control system, but not on the inner loop alone.

Use systune to tune the free parameters of T to meet the tuning requirement specified by Req. You can then validate the tuned control system against the requirement using the command viewGoal (Req, T).

Tips

- This tuning goal imposes an implicit stability constraint on the weighted closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x) . x$ is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal. WeightedGain, $f(x)$ is given by:

$$
f(x)=\left\|W_{L} T(s, x) W_{R}\right\|_{\infty} .
$$

$T(s, x)$ is the closed-loop transfer function from Input to Output. $\|\cdot\|_{\infty}$ denotes the H_{∞} norm (see getPeakGain).

Version History
 Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

```
looptune| systune|looptune (for slTuner)| systune (for slTuner)|slTuner|
viewGoal| evalGoal
Topics
"Frequency-Domain Specifications"
```


TuningGoal.WeightedVariance class

Package: TuningGoal
Frequency-weighted H_{2} norm constraint for control system tuning

Description

Use TuningGoal . WeightedVariance to limit the weighted H_{2} norm of the transfer function from specified inputs to outputs. The H_{2} norm measures:

- The total energy of the impulse response, for deterministic inputs to the transfer function.
- The square root of the output variance for a unit-variance white-noise input, for stochastic inputs to the transfer function. Equivalently, the H_{2} norm measures the root-mean-square of the output for such input.

You can use TuningGoal.WeightedVariance for control system tuning with tuning commands, such as systune or looptune. By specifying this tuning goal, you can tune the system response to stochastic inputs with a nonuniform spectrum such as colored noise or wind gusts. You can also use TuningGoal. WeightedVariance to specify LQG-like performance objectives.

After you create a tuning goal object, you can configure it further by setting "Properties" on page 1164 of the object.

Construction

Req $=$ TuningGoal.Variance(inputname, outputname, WL, WR) creates a tuning goal Req. This tuning goal specifies that the closed-loop transfer function $H(s)$ from the specified input to output meets the requirement:
$\left\|W_{L}(s) H(s) W_{R}(s)\right\|_{2}<1$.
The notation $\|\cdot\|_{2}$ denotes the H_{2} norm.
When you are tuning a discrete-time system, Req imposes the following constraint:

$$
\frac{1}{\sqrt{T_{S}}}\left\|W_{L}(z) T(z, x) W_{R}(z)\right\|_{2}<1 .
$$

The H_{2} norm is scaled by the square root of the sample time T_{s} to ensure consistent results with tuning in continuous time. To constrain the true discrete-time H_{2} norm, multiply either W_{L} or W_{R} by $\sqrt{T_{s}}$.

Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then inputname can include:
- Any model input.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points u1 and u2. Use 'u1' to designate that point as an input signal when creating tuning goals. Use \{'u1', 'u2'\} to designate a two-channel input.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then inputname can include:
- Any input of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then inputname can be any input name in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then inputname can include ' $A P$ _u'. Use getPoints to get a list of analysis points available in a genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the tuning goal is the implied input associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals, a cell array of character vectors.

- If you are using the tuning goal to tune a Simulink model of a control system, then outputname can include:
- Any model output.
- Any linear analysis point marked in the model.
- Any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use ' y 1 ' to designate that point as an output signal when creating tuning goals. Use \{'y1', 'y2'\} to designate a two-channel output.

- If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then outputname can include:
- Any output of the genss model
- Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T , then outputname can be any output name in T. OutputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then outputname can include ' $A P_{-} u$ '. Use getPoints to get a list of analysis points available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the tuning goal is the implied output associated with the AnalysisPoint block:

For more information about analysis points in control system models, see "Mark Signals of Interest for Control System Analysis and Design".

WL, WR

Frequency-weighting functions, specified as scalars, matrices, or SISO or MIMO numeric LTI models.
The functions WL and WR provide the weights for the tuning goal. The tuning goal ensures that the gain $H(s)$ from the specified input to output satisfies the inequality:
$\left\|W_{L}(s) H(s) W_{R}(s)\right\|_{2}<1$.

WL provides the weighting for the output channels of $H(s)$, and WR provides the weighting for the input channels. You can specify scalar weights or frequency-dependent weighting. To specify a frequency-dependent weighting, use a numeric LTI model. For example:

```
WL = tf(1,[1 0.01]);
WR = 10;
```

If you specify MIMO weighting functions, then inputname and outputname must be vector signals. The dimensions of the vector signals must be such that the dimensions of $H(s)$ are commensurate with the dimensions of WL and WR. For example, if you specify WR = diag ([10]), then inputname must include two signals. Scalar values, however, automatically expand to any input or output dimension.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero Ts), you can specify the weighting functions as discrete-time models with the same Ts. If you specify the weighting functions in continuous time, the tuning software discretizes them. Specifying the weighting functions in discrete time gives you more control over the weighting functions near the Nyquist frequency.

A value of WL = [] or WR = [] is interpreted as the identity.

Properties

WL

Frequency-weighting function for the output channels of the transfer function to constrain, specified as a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set by the WL input argument when you construct the tuning goal.

WR

Frequency-weighting function for the input channels of the transfer function to constrain, specified as a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set by the WR input argument when you construct the tuning goal.

Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the transfer function that the tuning goal constrains. The initial value of the Input property is set by the inputname input argument when you construct the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the transfer function that the tuning goal constrains. The initial value of the Output property is set by the outputname input argument when you construct the tuning goal.

Models

Models to which the tuning goal applies, specified as a vector of indices.
Use the Models property when tuning an array of control system models with systune, to enforce a tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict enforcement of the tuning goal, use the following command:

Req. Models = 2:4;
When Models $=$ NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can include any linear analysis point marked in the model, or any linear analysis point in an slTuner interface associated with the Simulink model. Use addPoint to add analysis points and loop openings to the slTuner interface. Use getPoints to get the list of analysis points available in an slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system, then Openings can include any AnalysisPoint location in the control system model. Use getPoints to get the list of analysis points available in the genss model.

For example, if Openings $=\left\{' u 1^{\prime}, ' u 2\right.$ ' $\}$, then the tuning goal is evaluated with loops open at analysis points u1 and u2.

Default: \{ \}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:
Req. Name = 'LoopReq';
Default: []

Examples

Weighted Constraint on H2 Norm

Create a constraint for a transfer function with one input, r, and two outputs, e and y, that limits the H_{2} norm as follows:

$$
\left\|\frac{1}{\frac{s+0.001}{s} T_{r e}}\right\|_{0.001 s+1} T_{r y} \|_{2}<1
$$

$T_{r e}$ is the closed-loop transfer function from r to e , and $T_{r y}$ is the closed-loop transfer function from r to y .

```
s = tf('s');
WL = blkdiag(1/(s+0.001),s/(0.001*s+1));
Req = TuningGoal.WeightedVariance('r',{'e','y'},WL,[]);
```


Tips

- When you use this tuning goal to tune a continuous-time control system, systune attempts to enforce zero feedthrough $(D=0)$ on the transfer that the tuning goal constrains. Zero feedthrough is imposed because the H_{2} norm, and therefore the value of the tuning goal (see "Algorithms" on page 1-166), is infinite for continuous-time systems with nonzero feedthrough.
systune enforces zero feedthrough by fixing to zero all tunable parameters that contribute to the feedthrough term. systune returns an error when fixing these tunable parameters is insufficient to enforce zero feedthrough. In such cases, you must modify the tuning goal or the control structure, or manually fix some tunable parameters of your system to values that eliminate the feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software's approach of zeroing all parameters that contribute to the overall feedthrough might be conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free properties of the block parametrization. For example, consider a tuned state-space block:

$$
C=\text { tunableSS('C',1,2,3); }
$$

To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the parameter.
C.D.Value $=0 ;$
C.D.Free $=$ false;

For more information on fixing parameter values, see the Control Design Block reference pages, such as tunableSS.

- This tuning goal imposes an implicit stability constraint on the weighted closed-loop transfer function from Input to Output, evaluated with loops opened at the points identified in Openings. The dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a normalized scalar value $f(x) . x$ is the vector of free (tunable) parameters in the control system. The software then adjusts the parameter values to minimize $f(x)$ or to drive $f(x)$ below 1 if the tuning goal is a hard constraint.

For TuningGoal .WeightedVariance, $f(x)$ is given by:

$$
f(x)=\left\|W_{L} T(s, x) W_{R}\right\|_{2} .
$$

$T(s, x)$ is the closed-loop transfer function from Input to Output. $\|\cdot\|_{2}$ denotes the H_{2} norm (see norm).

For tuning discrete-time control systems, $f(x)$ is given by:

$$
f(x)=\frac{1}{\sqrt{T_{S}}}\left\|W_{L}(z) T(z, x) W_{R}(z)\right\|_{2} .
$$

T_{s} is the sample time of the discrete-time transfer function $T(z, x)$.

Version History

Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

systune|looptune|systune (for slTuner)|looptune (for slTuner)|
TuningGoal. Gain|TuningGoal.LoopShape |slTuner|norm|TuningGoal.Variance

Topics

"Frequency-Domain Specifications"
"Fault-Tolerant Control of a Passenger Jet"

Functions

abs

Entrywise magnitude of frequency response

Syntax

absfrd = abs(sys)

Description

absfrd = abs(sys) computes the magnitude of the frequency response contained in the FRD model sys. For MIMO models, the magnitude is computed for each entry. The output absfrd is an FRD object containing the magnitude data across frequencies.

Version History

Introduced in R2006a

See Also

bodemag|sigma|fnorm

absorbDelay

Replace time delays by poles at $z=0$ or phase shift

Syntax

sysnd = absorbDelay(sysd)
[sysnd,G] = absorbDelay(sysd)

Description

sysnd = absorbDelay(sysd) absorbs all time delays of the dynamic system model sysd into the system dynamics or the frequency response data.

For discrete-time models (other than frequency response data models), a delay of k sampling periods is replaced by k poles at $z=0$. For continuous-time models (other than frequency response data models), time delays have no exact representation with a finite number of poles and zeros. Therefore, use pade to compute a rational approximation of the time delay.

For frequency response data models in both continuous and discrete time, absorbDelay absorbs all time delays into the frequency response data as a phase shift.
[sysnd, G] = absorbDelay(sysd) returns the matrix G that maps the initial states of the ss model sysd to the initial states of the sysnd.

Examples

Absorb Time Delay into System Dynamics

Create a discrete-time transfer function that has a time delay.

```
z = tf('z',-1);
sysd = (-0.4*z -0.1)/(z^2 + 1.05*z + 0.08);
sysd.InputDelay = 3
sysd =
            -0.4 z - 0.1
    z^(-3)* ------------------
    z^2 + 1.05 z + 0.08
Sample time: unspecified
Discrete-time transfer function.
```

The display of sysd represents the InputDelay as a factor of $z^{\wedge}(-3)$, separate from the system poles that appear in the transfer function denominator.

Absorb the time delay into the system dynamics as poles at $\mathbf{z}=0$.

```
sysnd = absorbDelay(sysd)
```

```
sysnd =
    -0.4 z - 0.1
    z^5 + 1.05 z^4 + 0.08 z^3
Sample time: unspecified
Discrete-time transfer function.
```

The display of sysnd shows that the factor of $z^{\wedge}(-3)$ has been absorbed as additional poles in the denominator.

Verify that sysnd has no input delay.
sysnd.InputDelay
ans $=0$

Convert Leading Structural Zeros of Polynomial Model to Regular Coefficients

Create a discrete-time polynomial model.
m = idpoly(1,[0 0 0 2 3]);
Convert m to a transfer function model.

```
sys = tf(m)
sys =
    z^(-2) * (2 z^-1 + 3 z^-2)
Sample time: unspecified
Discrete-time transfer function.
```

The numerator of the transfer function, sys, is [$\left.\begin{array}{lll}0 & 2 & 3\end{array}\right]$ and the transport delay, sys.IODelay, is 2 . This is because the value of the B polynomial, m.B, has 3 leading zeros. The first fixed zero shows lack of feedthrough in the model. The two zeros after that are treated as input-output delays.

Use absorbDelay to treat the leading zeros as regular B coefficients.

```
m2 = absorbDelay(m);
sys2 = tf(m2)
sys2 =
    2 z^-3 + 3 z^-4
Sample time: unspecified
Discrete-time transfer function.
```

The numerator of sys2 is [$\left.0 \begin{array}{lll}0 & 0 & 2\end{array}\right]$ and transport delay is 0 . The model m 2 treats the leading zeros as regular coefficients by freeing their values. m2.Structure.B.Free ($2: 3$) is TRUE while m.Structure.B.Free (2:3) is FALSE.

Version History

Introduced in R2011b

See Also
 hasdelay | pade | totaldelay

allmargin

Gain margin, phase margin, delay margin, and crossover frequencies

Syntax

```
S = allmargin(L)
S = allmargin(mag,phase,w,ts)
```


Description

$\mathrm{S}=$ allmargin(L) computes the gain margin, phase margin, delay margin, and the corresponding crossover frequencies for the SISO or MIMO negative feedback loop with open-loop response L. The negative feedback loop is computed as feedback (L,eye(M)), where M is the number of inputs and outputs in L .

For a MIMO system, allmargin returns loop-at-a-time stability margins for the negative-feedback closed loop system. Use allmargin to find classical margins of any SISO or MIMO model, including models with delays.
$\mathrm{S}=\mathrm{allmargin}(\mathrm{mag}, \mathrm{phase}, \mathrm{w}, \mathrm{ts})$ computes the stability margins from the frequency response data mag, phase, w, and the sample time, ts.

Examples

Stability Margins of a Transfer Function

For this example, consider a SISO open-loop transfer function L given by,

$$
L=\frac{25}{s^{3}+10 s^{2}+10 s+10}
$$

$\mathrm{L}=\mathrm{tf}(25,[1101010])$;
Find the stability margins of L .

```
S = allmargin(L)
S = struct with fields:
    GainMargin: 3.6000
    GMFrequency: 3.1623
    PhaseMargin: 29.1104
```

```
PMFrequency: 1.7844
DelayMargin: 0.2847
DMFrequency: 1.7844
    Stable: 1
```

The output S is a structure with the classical margins and their respective crossover frequencies of the negative feedback loop of L .

Stability Margins of a MIMO System

For this example, consider a MIMO state-space model L with 2 inputs and 2 outputs.
Load the data.
load('mimoStateSpaceModel.mat','L')
Find the classical margins for the MIMO system.
S = allmargin(L)
S=2×1 struct array with fields:
GainMargin
GMFrequency
PhaseMargin
PMFrequency
DelayMargin
DMFrequency
Stable

The output S is a 2-by-1 structure array of classical margins and their respective crossover frequencies. For instance, $S(1)$ refers to the stability margins of the first I/O feedback channel with all other loops closed.

Stability Margins of Models in an Array

For this example, load invertedPendulumArray.mat, which contains a 3-by-3 array of inverted pendulum SISO models. The mass of the pendulum varies as you move from model to model along a single column of sys, and the length of the pendulum varies as you move along a single row. The mass values used are $100 \mathrm{~g}, 200 \mathrm{~g}$ and 300 g , and the pendulum lengths used are $3 \mathrm{~m}, 2 \mathrm{~m}$ and 1 m respectively.

Column 1 Column 2 Column 3
Row $1 \quad 100 \mathrm{~g}, 3 \mathrm{~m} \quad 100 \mathrm{~g}, 2 \mathrm{~m} \quad 100 \mathrm{~g}, 1 \mathrm{~m}$
Row $2200 \mathrm{~g}, 3 \mathrm{~m} 200 \mathrm{~g}, 2 \mathrm{~m} 200 \mathrm{~g}, 1 \mathrm{~m}$
Row 3 300g, $3 \mathrm{~m} 300 \mathrm{~g}, 2 \mathrm{~m} 300 \mathrm{~g}, 1 \mathrm{~m}$
load('invertedPendulumArray.mat','sys');
size(sys)

```
3x3 array of transfer functions.
Each model has 1 outputs and 1 inputs.
```

Find stability margins for all models in the array.

```
S = allmargin(sys)
```

S=3×3 struct array with fields:
GainMargin
GMFrequency
PhaseMargin
PMFrequency
DelayMargin
DMFrequency
Stable
allmargin returns a 3-by-3 structure array S, in which each entry is a structure containing the stability margins of the corresponding entry in sys. For instance, the stability margins of the model with 100 g pendulum weight and 2 m length is contained in $\mathrm{S}(1,2)$.

Stability Margins from Frequency Response Data

For this example, load the frequency response data of an open loop system, consisting of magnitudes m and phase values p measured at the frequencies in w.

```
load('openLoopFRData.mat','m','p','w','ts');
```

Compute stability margins using the frequency response data.

```
S = allmargin(m,p,w,ts)
S = struct with fields:
    GainMargin: 0.6249
    GMFrequency: 1.2732
    PhaseMargin: [-90.0000 48.9853]
    PMFrequency: [1.0000 1.5197]
    DelayMargin: [4.7124 0.5626]
    DMFrequency: [1.0000 1.5197]
            Stable: NaN
```

The output S is a structure with the classical margins and their respective crossover frequencies.
Since allmargin cannot assess the stability for frequency response data models, S.Stable $=\mathrm{NaN}$.

Input Arguments

L - Open-loop response

dynamic system model | model array
Open-loop response, specified as a dynamic system model. L can be SISO or MIMO, as long as it has the same number of inputs and outputs. allmargin computes the classical stability margins for the negative-feedback closed-loop system feedback(L, eye(M)):

To compute the stability margins of the positive feedback system feedback (L,eye(M) ,+1), use allmargin(-L).

When you have a controller P and a plant C, you can compute the stability margins for gain and phase variations at the plant inputs or outputs. From the following diagram:

- To compute margins at the plant outputs, set $\mathrm{L}=\mathrm{P}^{*} \mathrm{C}$.
- To compute margins at the plant inputs, set $L=C * P$.
L can be continuous time or discrete time. If L is a generalized state-space model (genss or uss), then allmargin uses the current or nominal value of all control design blocks in L.

If L is a frequency-response data model (such as frd), then allmargin computes the margins at each frequency represented in the model. The function returns the margins at the frequency with the smallest stability margin.

If L is a model array, then allmargin computes margins for each model in the array.

mag - Magnitude of system response

3-D array
Magnitude of the system response in absolute units, specified as a 3-D array. mag is an M-by-M-by-N array, where M is the number of inputs or outputs, and N is the number of frequency points. For more information on obtaining mag, see "Obtain Magnitude and Phase Data" on page 2-65 and "Magnitude and Phase of MIMO System" on page 2-66.

phase - Phase of system response

3-D array
Phase of the system response in degrees, specified as a 3-D array. phase is an M-by-M-by-N array, where M is the number of inputs or outputs, and N is the number of frequency points. For more information on obtaining phase, see "Obtain Magnitude and Phase Data" on page 2-65 and "Magnitude and Phase of MIMO System" on page 2-66.

w - Frequencies at which the magnitude and phase values of system response are obtained

column vector
Frequencies at which the magnitude and phase values of system response are obtained, specified as a column vector. You can provide the frequency vector w in any units; allmargin returns frequencies in the same units. allmargin interpolates between frequency points to approximate the true stability margins.

ts - Sample time

integer
Sample time, specified as an integer. allmargin uses ts to find the stability margins from frequency response data.

- For continuous-time models, set $\mathrm{ts}=0$.
- For discrete-time models, ts is a positive integer representing the sampling period. To denote a discrete-time model with unspecified sample time, set ts $=-1$.

Output Arguments

S - Gain, phase, and delay margins

structure | structure array
Gain, phase, and delay margins, returned as a structure array.
The output S is a structure with the following fields:

- GMF requency: All - 180° (modulo 360°) crossover frequencies in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property of L .
- GainMargin: Corresponding gain margins, defined as $1 / \mathrm{G}$, where G is the gain at the -180° crossover frequency. Gain margins are in absolute units.
- PMFrequency: All 0-dB crossover frequencies in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property of L.
- PhaseMargin: Corresponding phase margins in degrees.
- DMFrequency and DelayMargin: DelayMargin is the maximum amount of delay that the system can tolerate before it loses stability. DMF requency contains critical frequencies corresponding to the delay margins. Delay margins are specified in the time units of the system for continuous-time systems and multiples of the sample time for discrete-time systems.
- Stable: 1 if the nominal closed-loop system is stable, 0 if unstable, and NaN if stability cannot be assessed. In general, allmargin cannot assess the stability of an frd system.

When L is an M -by-M MIMO system, S is an M-by-1 structure array. For instance, $\mathrm{S}(\mathrm{j})$ gives the stability margins for the j-th feedback channel with all other loops closed (one-loop-at-a-time margins).

Tips

- allmargin assumes that the system with open-loop response L is a negative-feedback system. To compute the classical stability margins of the positive feedback system feedback (L, eye(M), +1), use allmargin(-L).
- To compute classical margins for a system modeled in Simulink, first linearize the model to obtain the open-loop response at a particular operating point. Then, use allmargin to compute classical stability margins for the linearized system. For more information, see "Stability Margins of a Simulink Model" (Robust Control Toolbox).

Version History
 Introduced before R2006a

See Also

Linear System Analyzer | margin | diskmargin

Topics

"Stability Margins of a Simulink Model" (Robust Control Toolbox)

AnalysisPoint

Points of interest for linear analysis

Syntax

```
AP = AnalysisPoint(name)
AP = AnalysisPoint(name,N)
```


Description

AnalysisPoint is a Control Design Block for marking a location in a control system model as a point of interest for linear analysis and controller tuning. You can combine an AnalysisPoint block with numeric LTI models, tunable LTI models, and other Control Design Blocks to build tunable models of control systems. AnalysisPoint locations are available for analysis with commands such as getIOTransfer or getLoopTransfer. Such locations are also available for specifying design goals for control system tuning.

For example, consider the following control system.

Suppose that you are interested in the effects of disturbance injected at u in this control system. Inserting an AnalysisPoint block at the location u associates an implied input, implied output, and the option to open the loop at that location, as in the following diagram.

Suppose that T is a model of the control system including the AnalysisPoint block, AP_u. In this case, the command getIOTransfer(T, 'AP_u', 'y') returns a model of the closed-loop transfer
function from u to y. Likewise, the command getLoopTransfer(T, 'AP_u',-1) returns a model of the negative-feedback open-loop response, $C G$, measured at the location u.

AnalysisPoint blocks are also useful when tuning a control system using tuning commands such as systune. You can use an AnalysisPoint block to mark a loop-opening location for open-loop tuning requirements such as TuningGoal. LoopShape or TuningGoal.Margins. You can also use an AnalysisPoint block to mark the specified input or output for tuning requirements such as TuningGoal.Gain. For example, Req = TuningGoal.Margins('AP_u',5,40) constrains the gain and phase margins at the location u.

You can create AnalysisPoint blocks explicitly using the AnalysisPoint command and connect them with other block diagram components using model interconnection commands. For example, the following code creates a model of the system illustrated above. (See "Construction" on page 2-13 and "Examples" on page 2-0 below for more information.)

```
G = tf(1,[1 2]);
```

C = tunablePID('C','pi');
AP_u = AnalysisPoint('u');
$T=$ feedback(G*AP_u*C,1); \quad \% closed loop r->y

You can also create analysis points implicitly, using the connect command. The following syntax creates a dynamic system model with analysis points, by interconnecting multiple models sys1,sys2,...,sysN:
sys = connect(sys1,sys2,...,sysN,inputs,outputs,APs);
APs lists the signal locations at which to insert analysis points. The software automatically creates and inserts an AnalysisPoint block with channels corresponding to these locations. See connect for more information.

Construction

AP = AnalysisPoint (name) creates a single-channel analysis point. Insert AP anywhere in the generalized model of your control system to mark a point of interest for linear analysis or controller tuning. name specifies the block name.

AP = AnalysisPoint(name, N) creates a multi-channel analysis point with N channels. Use this block to mark a vector-valued signal as a point of interest or to bundle together several points of interest.

Input Arguments

name
Analysis point name, specified as a character vector such as ' $A P$ '. This input argument sets the value of the Name property of the AnalysisPoint block. (See "Properties" on page 2-14.) When you build a control system model using the block, the Name property is what appears in the Blocks list of the resulting genss model.

N
Number of channels for a multichannel analysis point, specified as a scalar integer.

Properties

Location

Names of channels in the AnalysisPoint blocks, specified as a character vector or a cell array of character vectors.

By default, the analysis-point channels are named after the name argument. For example, if you have a single-channel analysis point, AP, that has name 'AP', then AP. Location = 'AP' by default. If you have a multi-channel analysis point, then AP. Location $=\left\{{ }^{\prime} A P(1)^{\prime}, ' \operatorname{AP}(2)^{\prime}, \ldots\right\}$ by default. Set AP. Location to a different value if you want to customize the channel names.

Open

Loop-opening state, specified as a logical value or vector of logical values. This property tracks whether the loop is open or closed at the analysis point.

For example, consider the feedback loop of the following illustration.

You can model this feedback loop as follows.
G = tf(1,[12]);
C = tunablePID('C','pi');
X = AnalysisPoint('X');
$\mathrm{T}=\mathrm{feedback}\left(\mathrm{G}^{*} \mathrm{C}, \mathrm{X}\right)$;
T.InputName = 'r';
T.OutputName = 'y';

By default, the analysis point at X is closed. You can get the transfer function from r to y with the feedback loop open at X as follows.

```
Try = getIOTransfer(T,'r','y','X');
```

In the resulting generalized state-space (genss) model, the AnalysisPoint block ' X ' is marked open. In other words, Try.Blocks.X.Open $=1$.

For a multi-channel analysis point, then Open is a logical vector with as many entries as the analysis point has channels.

Default: 0 for all channels

Ts

Sample time. For AnalysisPoint blocks, the value of this property is automatically set to the sample time of other blocks and models you connect it with.

Default: 0 (continuous time)

TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names, specified as one of the following:

- Character vector - For single-input models, for example, ' controls '.
- Cell array of character vectors - For multi-input models.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:

```
sys.InputName = 'controls';
```

The input names automatically expand to \{'controls(1)' ;'controls(2)'\}.
You can use the shorthand notation u to refer to the InputName property. For example, sys. u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all input channels

InputUnit

Input channel units, specified as one of the following:

- Character vector - For single-input models, for example, 'seconds'.
- Cell array of character vectors - For multi-input models.

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.
Default: ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
creates input groups named controls and noise that include input channels 1, 2 and 3,5, respectively. You can then extract the subsystem from the controls inputs to all outputs using:

```
sys(:,'controls')
```

Default: Struct with no fields

OutputName

Output channel names, specified as one of the following:

- Character vector - For single-output models. For example, ' measurements ' .
- Cell array of character vectors - For multi-output models.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
sys.OutputName = 'measurements';
The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all output channels

OutputUnit

Output channel units, specified as one of the following:

- Character vector - For single-output models. For example, ' seconds '.
- Cell array of character vectors - For multi-output models.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.

Default: ' ' for all output channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
```

sys.OutputGroup.measurement = [35];
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

Name

System name, specified as a character vector. For example, 'system_1'.

Default: '

Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans =
    "sys1 has a string."
ans =
    'sys2 has a character vector.'
```

Default: [0×1 string]
UserData
Any type of data you want to associate with system, specified as any MATLAB ${ }^{\circledR}$ data type.
Default: []

Examples

Feedback Loop with Analysis Point

Create a model of the following feedback loop with an analysis point in the feedback path.

For this example, the plant model is $G=1 /(s+2) . C$ is a tunable PI controller, and X is the analysis point.

```
G = tf(1,[1 2]);
C = tunablePID('C','pi');
X = AnalysisPoint('X');
T = feedback(G*C,X);
T.InputName = 'r';
T.OutputName = 'y';
```

T is a tunable genss model. T. Blocks contains the Control Design Blocks of the model, which are the controller, C , and the analysis point, X .

```
T.Blocks
ans = struct with fields:
    C: [1x1 tunablePID]
    X: [1x1 AnalysisPoint]
```

Examine the step response of T .
stepplot(T)

The presence of the AnalysisPoint block does not change the dynamics of the model.
You can use the analysis point for linear analysis of the system. For instance, extract the system response at ' y ' to a disturbance injected at the analysis point.

Txy = getIOTransfer(T,'X','y');
The AnalysisPoint block also allows you to temporarily open the feedback loop at that point. For example, compute the open-loop response from ' r ' to ' y '.

Try_open = getIOTransfer(T,'r','y','X');
Specifying the analysis point name as the last argument to getIOTransfer extracts the response with the loop open at that point. Examine the step response of Try_open to verify that it is the open-loop response.
stepplot(Try_open);

Step Response

Feedback Loop With Analysis Point Inserted by connect

Create a model of the following block diagram from r to y. Insert an analysis point at an internal location, u.

Create C and G , and name the inputs and outputs.

```
C = pid(2,1);
C.InputName = 'e';
C.OutputName = 'u';
G = zpk([],[-1,-1],1);
G.InputName = 'u';
G.OutputName = 'y';
```

Create the summing junction.

```
Sum = sumblk('e = r - y');
```

Combine C, G, and the summing junction to create the aggregate model, with an analysis point at u.

```
T = connect(G,C,Sum,'r','y','u')
```

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, and the follow
AnalysisPoints_: Analysis point, 1 channels, 1 occurrences.
Type "ss(T)" to see the current value and "T.Blocks" to interact with the blocks.

The resulting T is a genss model. The connect command creates the AnalysisPoint block, AnalysisPoints_, and inserts it into T . To see the name of the analysis point channel in AnalysisPoints_, use getPoints.

```
getPoints(T)
ans = 1x1 cell array
    {'u'}
```

The analysis point channel is named ' u'. You can use this analysis point to extract system responses. For example, the following commands extract the open-loop transfer at u and the closed-loop response at y to a disturbance injected at u.

L = getLoopTransfer(T,'u',-1);
Tuy = getIOTransfer(T,'u','y');
T is equivalent to the following block diagram, where $A P_{-} u$ designates the AnalysisPoint block AnalysisPoints_ with channel name u.

Multi-Channel Analysis Points

Create a block for marking two analysis points in a MIMO model.
In the control system of the following illustration, consider each signal a vector-valued signal of size 2. In other words, the signal r represents $\{r(1), r(2)\}, y$ represents $\{y(1), y(2)\}$, and so on.

The feedback signal is therefore also a vector-valued signal of size 2. Create a block for marking the two analysis points in the feedback path.

```
AP = AnalysisPoint('X',2)
Multi-channel analysis point at locations:
    X(1)
    X(2)
Type "ss(AP)" to see the current value.
```

The AnalysisPoint block is stored as a variable in the MATLAB® workspace called AP. In addition, the Name property of the block is set to X. When you interconnect the block with numeric LTI models or other Control Design Blocks, this analysis-point block is identified in the Blocks property of the resulting genss model as X. The block name X is automatically expanded to generate the channel names $X(1)$ and $X(2)$.

It is sometimes convenient to change the channel names to match the names of the signals they correspond to in a block diagram of your model. For example, suppose the points of interest you want to mark in your model are signals named L and V. Change the Location property of AP to make the names match those signals.

```
AP.Location = {'L';'V'}
Multi-channel analysis point at locations:
    L
    V
Type "ss(AP)" to see the current value.
```

Although the channel names have changed, the block name remains X.

```
AP.Name
```

ans $=$
' ${ }^{\prime}$ '

Therefore, the Blocks property of a genss model you build with this block still identifies the block as X . Use getPoints to find the channel names of available analysis points in a genss model.

Version History
 Introduced in R2014b

See Also

genss | getPoints | connect

Topics

"Control System with Multichannel Analysis Points"
"Control Design Blocks"
"Models with Tunable Coefficients"
"Mark Signals of Interest for Control System Analysis and Design"

append

Group models by appending their inputs and outputs

Syntax

sys = append(sys1,sys2,...,sysN)

Description

sys $=$ append(sys1,sys2,...,sysN) appends the inputs and outputs of the models sys1,...,sysN to form the augmented model sys depicted below.

For systems with transfer functions $H_{1}(s), \ldots, H_{\mathrm{N}}(s)$, the resulting system sys has the block-diagonal transfer function

$$
\left[\begin{array}{cccc}
H_{1}(s) & 0 & \ldots & 0 \\
0 & H_{2}(s) & \cdots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
0 & \cdots & 0 & H_{N}(s)
\end{array}\right]
$$

For state-space models sys1 and sys2 with data $\left(A_{1}, B_{1}, C_{1}, D_{1}\right)$ and $\left(A_{2}, B_{2}, C_{2}, D_{2}\right)$, append(sys1,sys2) produces the following state-space model:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}
\end{aligned}
$$

Arguments

The input arguments sys $1, \ldots$, sysN can be model objects s of any type. Regular matrices are also accepted as a representation of static gains, but there should be at least one model in the input list. The models should be either all continuous, or all discrete with the same sample time. When appending models of different types, the resulting type is determined by the precedence rules (see "Rules That Determine Model Type" for details).

There is no limitation on the number of inputs.

Examples

Append Inputs and Outputs of Models

Create a SISO transfer function.
sys1 = tf(1,[10]);
size(sys1)
Transfer function with 1 outputs and 1 inputs.
Create a SISO continuous-time state-space model.
sys2 = ss(1,2,3,4);
size(sys2)
State-space model with 1 outputs, 1 inputs, and 1 states.
Append the inputs and outputs of sys1, a SISO static gain system, and sys2. The resulting model should be a 3 -input, 3-output state-space model.

```
sys = append(sys1,10,sys2)
sys =
    A =
        }\begin{array}{rrr}{\times1}&{\times2}\\{\times1}&{0}&{0}\\{\times2 }&{0}&{1}
    B =
            u1 u2 u3
        x1 1 0 0
        x2 0 0 2
    C =
        x1 x2
    y1 1 0
    y2 0 0
    y3 0 3
    D =
            u1 u2 u3
    y1 0 0 0
    y2 0 10 0
    y3 0 0 4
```

```
Continuous-time state-space model.
size(sys)
State-space model with 3 outputs, 3 inputs, and 2 states.
```


Version History

Introduced before R2006a

See Also

connect | feedback | parallel | series

augstate

Append state vector to output vector

Syntax

asys = augstate(sys)

Description

asys = augstate(sys) appends the state vector to the outputs of a state-space model.
Given a state-space model sys with equations

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

(or their discrete-time counterpart), augstate appends the states x to the outputs y to form the model

$$
\begin{gathered}
\dot{x}=A x+B u \\
{\left[\begin{array}{l}
y \\
x
\end{array}\right]=\left[\begin{array}{l}
C \\
I
\end{array}\right] x+\left[\begin{array}{l}
D \\
0
\end{array}\right] u}
\end{gathered}
$$

This command prepares the plant so that you can use the feedback command to close the loop on a full-state feedback $u=-K x$.

Limitation

Because augstate is only meaningful for state-space models, it cannot be used with TF, ZPK or FRD models.

Version History
 Introduced before R2006a

See Also

feedback | parallel|series

balreal

Gramian-based input/output balancing of state-space realizations

Syntax

```
[sysb,g] = balreal(sys)
[sysb,g,T,Ti] = balreal(sys)
[___] = balreal(sys,opts)
```


Description

[sysb,g] = balreal(sys) computes a balanced realization sysb for the stable portion of the LTI model sys. bal real handles both continuous and discrete systems. If sys is not a state-space model, it is first and automatically converted to state space using ss.

For stable systems, sysb is an equivalent realization for which the controllability and observability Gramians are equal and diagonal, their diagonal entries forming the vector g of Hankel singular values. Small entries in g indicate states that can be removed to simplify the model (use modred to reduce the model order).

If sys has unstable poles, its stable part is isolated, balanced, and added back to its unstable part to form sysb. The entries of g corresponding to unstable modes are set to Inf.
[sysb, $g, T, T i$] = balreal(sys) also returns the vector g containing the diagonal of the balanced Gramian, the state similarity transformation $x_{b}=T x$ used to convert sys to sysb, and the inverse transformation $T i=T^{-1}$.

If the system is normalized properly, the diagonal g of the joint Gramian can be used to reduce the model order. Because g reflects the combined controllability and observability of individual states of the balanced model, you can delete those states with a small $g(i)$ while retaining the most important input-output characteristics of the original system. Use modred to perform the state elimination.
\qquad] = balreal(sys,opts) computes the balanced realization using options that you specify using balredOptions. Options include offset and tolerance options for computing the stableunstable decompositions. The options also allow you to limit the Gramian computation to particular time and frequency intervals. See balredOptions for details.

Examples

Balanced Realization of Stable System

Consider the following zero-pole-gain model, with near-canceling pole-zero pairs:

```
sys = zpk([-10 -20.01],[-5 -9.9 -20.1],1)
sys =
    (s+10) (s+20.01)
```

```
(s+5) (s+9.9) (s+20.1)
Continuous-time zero/pole/gain model.
```

A state-space realization with balanced gramians is obtained by

```
[sysb,g] = balreal(sys);
```

The diagonal entries of the joint gramian are

```
g'
ans = 1\times3
    0.1006 0.0001 0.0000
```

This indicates that the last two states of sysb are weakly coupled to the input and output. You can then delete these states by
sysr = modred(sysb,[2 3],'del');
This yields the following first-order approximation of the original system.

```
zpk(sysr)
ans =
    1.0001
    --------
```

Continuous-time zero/pole/gain model.

Compare the Bode responses of the original and reduced-order models.
bodeplot(sys,sysr,'r--')

The plots shows that removing the second and third states does not have much effect on system dynamics.

Balanced Realization of Unstable System

Create an unstable system.

```
sys = tf(1,[1 0 -1])
sys =
    1
    s^2 - -
```

Continuous-time transfer function.

Apply balreal to create a balanced-gramian realization.
[sysbal,g] = balreal(sys)
sysbal =

```
A =
    x1 x2
```

```
    x1 1 0
    x2 0 -1
    B =
        M}r\mathrm{ u1
        x2 -0.7071
    C =
        lrr
    D =
        u1
    y1 0
Continuous-time state-space model.
g = 2×1
    Inf
    0.2500
```

The unstable pole shows up as Inf in the vector g.

Algorithms

Consider the model

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

with controllability and observability Gramians W_{c} and W_{o}. The state coordinate transformation $\bar{x}=T x$ produces the equivalent model

$$
\begin{aligned}
& \dot{\bar{x}}=T A T^{-1} \overline{\bar{x}}+T B u \\
& y=C T^{-1} \overline{\bar{x}}+D u
\end{aligned}
$$

and transforms the Gramians to

$$
\bar{W}_{c}=T W_{C} T^{T}, \bar{W}_{o}=T^{-T} W_{o} T^{-1}
$$

The function bal real computes a particular similarity transformation T such that

$$
\bar{W}_{c}=\bar{W}_{o}=\operatorname{diag}(g)
$$

See [1], [2] for details on the algorithm.
If you use the TimeIntervals or FreqIntervals options of balredOptions, then balreal bases the balanced realization on time-limited or frequency-limited controllability and observability Gramians. For information about calculating time-limited and frequency-limited Gramians, see gram and [4].

Version History

Introduced before R2006a

References

[1] Laub, A.J., M.T. Heath, C.C. Paige, and R.C. Ward, "Computation of System Balancing Transformations and Other Applications of Simultaneous Diagonalization Algorithms," IEEE ${ }^{\circledR}$ Trans. Automatic Control, AC-32 (1987), pp. 115-122.
[2] Moore, B., "Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction," IEEE Transactions on Automatic Control, AC-26 (1981), pp. 17-31.
[3] Laub, A.J., "Computation of Balancing Transformations," Proc. ACC, San Francisco, Vol.1, paper FA8-E, 1980.
[4] Gawronski, W. and J.N. Juang. "Model Reduction in Limited Time and Frequency Intervals." International Journal of Systems Science. Vol. 21, Number 2, 1990, pp. 349-376.

See Also

bal red | balredOptions | gram | modred

balred

Model order reduction

Syntax

[rsys,info] = balred(sys,order)
[~,info] = balred(sys)
[___] = balred(__, opts)
balred(sys)

Description

[rsys,info] = balred(sys,order) computes a reduced-order approximation rsys of the LTI model sys. The desired order (number of states) is specified by order. You can try multiple orders at once by setting order to a vector of integers, in which case rsys is an array of reduced models. bal red also returns a structure info with additional information like the Hankel singular values (HSV), error bound, regularization level and the Cholesky factors of the gramians.
[~,info] = balred(sys) returns the structure info without computing the reduced-order model. You can use this information to select the reduced order order based on your desired fidelity.

Note When performance is a concern, avoid computing the Hankel singular values twice by using the information obtained from the above syntax to select the desired model order and then use rsys $=$ balred(sys,order,info) to compute the reduced-order model.
[___] = balred(__, opts) computes the reduced model using the options set opts that you specify using bal redOptions. You can specify additional options for eliminating states, using absolute vs. relative error control, emphasizing certain time or frequency bands, and separating the stable and unstable modes. See bal redOptions to create and configure the option set opts.
bal red(sys) displays the Hankel singular values and approximation error on a plot. Use hsvplot to customize this plot.

Examples

Reduced-Order Model using Hankel Singular Values

For this example, use the Hankel singular value plot to select suitable order and compute the reduced-order model.

For this instance, generate a random discrete-time state-space model with 40 states.
rng(0)
sys = drss(40);
Plot the Hankel singular values using bal red.
balred(sys)

For this example, select order of 16 since it is the first order with an absolute error less than 1e-4. In general, you select the order based on the desired absolute or relative fidelity. Then, compute the reduced-order model.

```
rsys = balred(sys,16);
```

Verify the absolute error by plotting the singular value response using sigma.

```
sigma(sys,sys-rsys)
```


Observe from the plot that the error, represented by the red curve, is below - $80 \mathrm{~dB}(1 \mathrm{e}-4)$.

Array of Reduced-Order Models

For this example, consider a random continuous-time state-space model with 65 states.

```
rng(0)
```

sys = rss(65);
size(sys)

State-space model with 1 outputs, 1 inputs, and 65 states.
Visualize the Hankel singular values on a plot.
balred(sys)

For this instance, compute reduced-order models with 25,30 and 35 states.
order = [25,30,35];
rsys = balred(sys,order);
size(rsys)
3×1 array of state-space models.
Each model has 1 outputs, 1 inputs, and between 25 and 35 states.

Reduced-Order Approximation with Offset Option

Compute a reduced-order approximation of the system given by:

$$
G(s)=\frac{(s+0.5)(s+1.1)(s+2.9)}{\left(s+10^{-6}\right)(s+1)(s+2)(s+3)} .
$$

Create the model.
sys $=\operatorname{zpk}([-0.5-1.1-2.9],[-1 e-6-2-1-3], 1) ;$
Exclude the pole at $s=10^{-6}$ from the stable term of the stable/unstable decomposition. To do so, set the Offset option of bal redOptions to a value larger than the pole you want to exclude.

```
opts = balredOptions('Offset',0.001,'StateProjection','Truncate');
```

Visualize the Hankel singular values (HSV) and the approximation error. balred(sys,opts)

Observe that the first HSV is red which indicates that it is associated with an unstable mode.
Now, compute a second-order approximation with the specified options.

```
[rsys,info] = balred(sys,2,opts);
rsys
rsys =
    0.99113 (s+0.5235)
    (s+1e-06) (s+1.952)
```

Continuous-time zero/pole/gain model.
Notice that the pole at - le-6 appears unchanged in the reduced model rsys.
Compare the responses of the original and reduced-order models.
bodeplot(sys,rsys,'r--')

Bode Diagram

Observe that the bode response of the original model and the reduced-order model nearly match.

Model Reduction in a Particular Frequency Band

Reduce a high-order model with a focus on the dynamics in a particular frequency range.
Load a model and examine its frequency response.
load('high0rderModel.mat','G') bodeplot(G)

G is a 48th-order model with several large peak regions around $5.2 \mathrm{rad} / \mathrm{s}, 13.5 \mathrm{rad} / \mathrm{s}$, and $24.5 \mathrm{rad} / \mathrm{s}$, and smaller peaks scattered across many frequencies. Suppose that for your application you are only interested in the dynamics near the second large peak, between $10 \mathrm{rad} / \mathrm{s}$ and $22 \mathrm{rad} / \mathrm{s}$. Focus the model reduction on the region of interest to obtain a good match with a low-order approximation. Use bal redOptions to specify the frequency interval for balred.

```
bopt = balredOptions('StateProjection','Truncate','FreqIntervals',[10,22]);
GLim10 = balred(G,10,bopt);
GLim18 = balred(G,18,bopt);
```

Examine the frequency responses of the reduced-order models. Also, examine the difference between those responses and the original response (the absolute error).

```
subplot(2,1,1);
bodemag(G,GLim10,GLim18,logspace(0.5,1.5,100));
title('Bode Magnitude Plot')
legend('Original','Order 10','Order 18');
subplot(2,1,2);
bodemag(G-GLim10,G-GLim18,logspace(0.5,1.5,100));
title('Absolute Error Plot')
legend('Order 10','Order 18');
```


With the frequency-limited energy computation, even the 10th-order approximation is quite good in the region of interest.

Model-Order Reduction with Relative Error Approximation

For this example, consider the SISO state-space model cdrom with 120 states. You can use absolute or relative error control when approximating models with bal red. This example compares the two approaches when applied to a 120 -state model of a portable CD player device crdom [1,2] on page 240.

Load the CD player model cdrom.

```
load cdromData.mat cdrom
size(cdrom)
State-space model with 1 outputs, 1 inputs, and 120 states.
```

To compare results with absolute vs. relative error control, create one option set for each approach.

```
opt_abs = balredOptions('ErrorBound','absolute','StateProjection','truncate');
opt_rel = balredOptions('ErrorBound','relative','StateProjection','truncate');
```

Compute reduced-order models of order 15 with both approaches.

```
rsys_abs = balred(cdrom,15,opt_abs);
rsys_rel = balred(cdrom,15,opt_rel);
size(rsys_abs)
State-space model with 1 outputs, 1 inputs, and 15 states.
size(rsys_rel)
State-space model with 1 outputs, 1 inputs, and 15 states.
```

Plot the Bode response of the original model along with the absolute-error and relative-error reduced models.
bo = bodeoptions;
bo.PhaseMatching = 'on';
bodeplot(cdrom,'b.',rsys_abs,'r',rsys_rel,'g',bo)
legend('Original (120 stātes)','Absolute Error (15 states)','Relative Error (15 states)')

Observe that the Bode response of:

- The relative-error reduced model rsys_rel nearly matches the response of the original model sys across the complete frequency range.
- The absolute-error reduced model rsys_abs matches the response of the original model sys only in areas with the most gain.

References

1 Benchmark Examples for Model Reduction, Subroutine Library in Systems and Control Theory (SLICOT). The CDROM data set is reproduced with permission, see BSD3-license for details.
2 A.Varga, "On stochastic balancing related model reduction", Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), Sydney, NSW, 2000, pp. 2385-2390 vol.3, doi: 10.1109/CDC.2000.914156.

Input Arguments

sys - Dynamic system

dynamic system model
Dynamic system, specified as a SISO or MIMO dynamic system model. Dynamic systems that you can use can be continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ssmodels.

When sys has unstable poles, balred decomposes sys to its stable and unstable parts and only the stable part is approximated. Use bal redOptions to specify additional options for the stable/unstable decomposition.
bal red does not support frequency response data models, uncertain and generalized state-space models, PID models or sparse model objects.

order - Desired number of states

integer | vector of integers
Desired number of states, specified as an integer or a vector of integers. You can try multiple orders at once by setting order to a vector of integers, in which case rys is returned as an array of reduced models.

You can also use the Hankel singular values and error bound information to select the reduced-model order based on the desired model fidelity.

opts - Additional options for model reduction
 options set

Additional options for model reduction, specified as an options set. You can specify additional options for eliminating states, using absolute vs. relative error control, emphasizing certain time or frequency bands, and separating the stable and unstable modes.

See bal redOptions to create and configure the option set opts.

Output Arguments

rsys - Reduced-order model

dynamic system model | array of dynamic system models
Reduced-order model, returned as a dynamic system model or an array of dynamic system models.

info - Additional information about the LTI model

structure
Additional information about the LTI model, returned as a structure with the following fields:

- HSV - Hankel singular values (state contributions to the input/output behavior). In state coordinates that equalize the input-to-state and state-to-output energy transfers, the Hankel
singular values measure the contribution of each state to the input/output behavior. Hankel singular values are to model order what singular values are to matrix rank. In particular, small Hankel singular values signal states that can be discarded to simplify the model.
- ErrorBound - Bound on absolute or relative approximation error. info. ErrorBound (J+1) bounds the error for order J.
- Regularization - Regularization level \square (for relative error only). Here, sys is replaced by [sys,$\rho^{*} I$] or [sys; $\rho^{*} I$] that ensures a well-defined relative error at all frequencies.
- Rr, Ro - Cholesky factors of gramians.

Algorithms

1 balred first decomposes G into its stable and unstable parts:

$$
G=G_{s}+G_{u}
$$

2 When you specify ErrorBound as absolute, balred uses the balanced truncation method of [1] to reduce G_{s}. This computes the Hankel singular values (HSV) σ_{j} based on the controllability and observability gramians. For order r, the absolute error $\left\|G_{S}-G_{r}\right\|_{\infty}$ is bounded by $2 \sum_{j=r+1}^{n} \sigma_{j}$. Here, n is the number of states in G_{s}.
3 When you specify ErrorBound as relative, balred uses the balanced stochastic truncation method of [2] to reduce G_{s}. For square G_{s}, this computes the HSV σ_{j} of the phase matrix $F=\left(W^{\prime}\right)^{-1} G$ where $W(s)$ is a stable, minimum-phase spectral factor of $G G^{\prime}$:

$$
W^{\prime}(s) W(s)=G(s) G^{\prime}(s)
$$

For order r, the relative error $\left\|G_{S}-1\left(G_{S}-G_{r}\right)\right\|_{\infty}$ is bounded by:

$$
\begin{aligned}
& \prod_{j=r+1}^{H}\left(\frac{1+\sigma_{j}}{1-\sigma_{j}}\right)-1 \approx 2 \sum_{j=r+1}^{n} \sigma_{j} \\
& \text { when, } 2 \sum_{j=r+1}^{n} \sigma_{j} \ll 1
\end{aligned}
$$

Alternative Functionality

App

Model Reducer

Live Editor Task

Reduce Model Order

Version History

Introduced before R2006a

R2017b: MatchDC option honored when specified frequency or time intervals exclude DC Behavior changed in R2017b

When you use bal red for model reduction, you can use bal redOptions to restrict the computation to specified frequency or time intervals. If the StateProjection option of balredOptions is set to 'MatchDC' (the default value), then bal red attempts to match the DC gain of the original and reduced models, even if the specified intervals exclude DC (frequency $=0$ or time $=\operatorname{Inf}$).

Prior to R2017b, if you specified time or frequency intervals that excluded DC, bal red did not attempt to match the DC gain of the original and reduced models, even if StateProjection = 'MatchDC'.

References

[1] Varga, A., "Balancing-Free Square-Root Algorithm for Computing Singular Perturbation Approximations," Proc. of 30th IEEE CDC, Brighton, UK (1991), pp. 1062-1065.
[2] Green, M., "A Relative Error Bound for Balanced Stochastic Truncation", IEEE Transactions on Automatic Control, Vol. 33, No. 10, 1988

See Also

Functions

balredOptions

Apps

Model Reducer

Live Editor Tasks
 Reduce Model Order

Topics

"Model Reduction Basics"
"Balanced Truncation Model Reduction"

balredOptions

Create option set for model order reduction

Syntax

opts = balredOptions
opts = balredOptions('OptionName', OptionValue)

Description

opts = balredOptions returns the default option set for the bal red command.
opts = balredOptions('OptionName', OptionValue) accepts one or more comma-separated name/value pairs. Specify OptionName inside single quotes.

Input Arguments

Name-Value Pair Arguments

StateProjection

State elimination method. Specifies how to eliminate the weakly coupled states (states with smallest Hankel singular values). Specified as one of the following values:
'MatchDC' Discards the specified states and alters the remaining states to preserve the DC gain.
'Truncate ' Discards the specified states without altering the remaining states. This method tends to product a better approximation in the frequency domain, but the DC gains are not guaranteed to match.

Default: 'MatchDC'

ErrorBound

Error bound type, specified as either 'absolute' or 'relative'. Set 'Errorbound' to

- 'absolute' to control the absolute error $\left\|G-G_{r}\right\|_{\infty}$.
- 'relative' to control the relative error $\left\|G^{-1}\left(G-G_{r}\right)\right\|_{\infty}$.

Relative error gives a better match across frequency while absolute error emphasizes areas with most gain. For more information, see getPeakGain.

Default: 'absolute'

Regularization

Regularization level value that ensures a well-defined relative error at all frequencies. When you set ErrorBound to 'relative', bal red reduces the model [sys, $\rho * \mathrm{I}$] instead of sys. Set this option to
'auto' to let bal red pick a suitable regularization level ρ value. Specify a value $\rho \geq 0$ to override this default.

Default: 'auto'

FreqIntervals

Frequency intervals for computing frequency-limited Hankel singular values, specified as a matrix with two columns. Each row specifies a frequency interval [fmin fmax], where fmin and fmax are nonnegative frequencies, expressed in the frequency unit of the model. When identifying low-energy states to truncate, the software computes state contributions to system behavior in these frequency ranges only. For example:

- To restrict the computation to the range between $3 \mathrm{rad} / \mathrm{s}$ and $15 \mathrm{rad} / \mathrm{s}$, assuming the frequency unit of the model is rad/s, set FreqIntervals to [3 15].
- To restrict the computation to two frequency intervals, $3-15 \mathrm{rad} / \mathrm{s}$ and $40-60 \mathrm{rad} / \mathrm{s}$, use [3 15 ; 40 60].
- To specify all frequencies below a cutoff frequency fcut, use [0 fcut].
- To specify all frequencies above the cutoff, use [fcut Inf] in continuous time, or [fcut $\mathrm{pi} / \mathrm{Ts}$] in discrete time, where Ts is the sample time of the model.

The default value, [], imposes no frequency limitation and is equivalent to [0 Inf] in continuous time or [0 pi/Ts] in discrete time. However, if you specify a TimeIntervals value other than [], then this limit overrides FreqIntervals = []. If you specify both a TimeIntervals value and a FreqIntervals value, then the computation uses the union of these intervals.

If StateProjection $=$ 'MatchDC' (the default value), then balred attempts to match the DC gain of the original and reduced models, even if the specified frequency intervals exclude 0 . This behavior might reduce the quality of the match in the specified intervals. To improve the match within frequency intervals that exclude 0 , set StateProjection $=$ 'Truncate'.

If both the frequency and time intervals do include DC, you can still set StateElimMethod = 'Truncate' to improve the match at other frequencies and times.

Default: []

TimeIntervals

Time intervals for computing time-limited Hankel singular values, specified as a matrix with two columns. Each row specifies a time interval [tmin tmax], where tmin and tmax are nonnegative times, expressed in the time unit of the model. When identifying low-energy states to truncate, the software computes state contributions to the system's impulse response in these time intervals only. For example:

- To restrict the computation to the range between 3 s and 15 s , assuming the time unit of the model is seconds, set TimeIntervals to [3 15].
- To restrict the computation to two time intervals, $3-15 \mathrm{~s}$ and $40-60 \mathrm{~s}$, use [315; 4060].
- To specify all times from zero up to a cutoff time tcut, use [0 tcut]. To specify all times after the cutoff, use [tcut Inf].

The default value, [], imposes no time limitation and is equivalent to [0 Inf]. However, if you specify a FreqIntervals value other than [], then this limit overrides Timeintervals = []. If
you specify both a TimeIntervals value and a FreqIntervals value, then the computation uses the union of these intervals.

If StateProjection = 'MatchDC' (the default value), then balred attempts to match the DC gain of the original and reduced models, even if the specified time intervals exclude Inf. This behavior might reduce the quality of the match in the specified intervals. To improve the match within time intervals that exclude Inf, set StateProjection = 'Truncate'.

If both the frequency and time intervals do include DC, you can still set StateProjection =
'Truncate' to improve the match at other frequencies and times.
Default: []

SepTol

Maximum loss of accuracy value in stable and unstable decomposition. For models with unstable poles, bal red first extracts the stable dynamics using stabsep. Use 'SepTol' to control the decomposition accuracy. Increasing 'SepTol' helps separate nearby stable and unstable modes at the expense of accuracy. For more information, see stabsep0ptions.

Default: 10

Offset

Offset for the stable/unstable boundary. Positive scalar value. In the stable/unstable decomposition, the stable term includes only poles satisfying

- $\operatorname{Re}(s)<-0 f f s e t * \max (1,|\operatorname{Im}(s)|)$ (Continuous time)
- $|z|<1$ - Offset (Discrete time)

Increase the value of Offset to treat poles close to the stability boundary as unstable.
Default: 1e-8
For additional information on the options and how to use them, see the balred reference page.

Examples

Reduced-Order Approximation with Offset Option

Compute a reduced-order approximation of the system given by:

$$
G(s)=\frac{(s+0.5)(s+1.1)(s+2.9)}{\left(s+10^{-6}\right)(s+1)(s+2)(s+3)}
$$

Create the model.
sys $=\operatorname{zpk}\left(\left[\begin{array}{lll}-0.5 & -1.1 & -2.9],[-1 e-6\end{array}-2-1-3\right], 1\right) ;$
Exclude the pole at $s=10^{-6}$ from the stable term of the stable/unstable decomposition. To do so, set the Offset option of balredOptions to a value larger than the pole you want to exclude.

```
opts = balredOptions('Offset',0.001,'StateProjection','Truncate');
```

Visualize the Hankel singular values (HSV) and the approximation error. balred(sys,opts)

Observe that the first HSV is red which indicates that it is associated with an unstable mode.
Now, compute a second-order approximation with the specified options.

```
[rsys,info] = balred(sys,2,opts);
rsys
rsys =
    0.99113 (s+0.5235)
    (s+1e-06) (s+1.952)
```

Continuous-time zero/pole/gain model.
Notice that the pole at - le-6 appears unchanged in the reduced model rsys.
Compare the responses of the original and reduced-order models.
bodeplot(sys,rsys,'r--')

Bode Diagram

Observe that the bode response of the original model and the reduced-order model nearly match.

Model Reduction in a Particular Frequency Band

Reduce a high-order model with a focus on the dynamics in a particular frequency range.
Load a model and examine its frequency response.
load('highOrderModel.mat', 'G')
bodeplot(G)

G is a 48th-order model with several large peak regions around $5.2 \mathrm{rad} / \mathrm{s}, 13.5 \mathrm{rad} / \mathrm{s}$, and $24.5 \mathrm{rad} / \mathrm{s}$, and smaller peaks scattered across many frequencies. Suppose that for your application you are only interested in the dynamics near the second large peak, between $10 \mathrm{rad} / \mathrm{s}$ and $22 \mathrm{rad} / \mathrm{s}$. Focus the model reduction on the region of interest to obtain a good match with a low-order approximation. Use balredOptions to specify the frequency interval for balred.

```
bopt = balredOptions('StateProjection','Truncate','FreqIntervals',[10,22]);
GLim10 = balred(G,10,bopt);
GLim18 = balred(G,18,bopt);
```

Examine the frequency responses of the reduced-order models. Also, examine the difference between those responses and the original response (the absolute error).

```
subplot(2,1,1);
bodemag(G,GLim10,GLim18,logspace(0.5,1.5,100));
title('Bode Magnitude Plot')
legend('Original','Order 10','Order 18');
subplot(2,1,2);
bodemag(G-GLim10,G-GLim18,logspace(0.5,1.5,100));
title('Absolute Error Plot')
legend('Order 10','Order 18');
```


With the frequency-limited energy computation, even the 10th-order approximation is quite good in the region of interest.

Model-Order Reduction with Relative Error Approximation

For this example, consider the SISO state-space model cdrom with 120 states. You can use absolute or relative error control when approximating models with bal red. This example compares the two approaches when applied to a 120 -state model of a portable CD player device crdom [1,2] on page 2 51.

Load the CD player model cdrom.
load cdromData.mat cdrom
size(cdrom)
State-space model with 1 outputs, 1 inputs, and 120 states.
To compare results with absolute vs. relative error control, create one option set for each approach.

```
opt_abs = balredOptions('ErrorBound','absolute','StateProjection','truncate');
opt_rel = balredOptions('ErrorBound','relative','StateProjection','truncate');
```

Compute reduced-order models of order 15 with both approaches.

```
rsys_abs = balred(cdrom,15,opt_abs);
rsys_rel = balred(cdrom,15,opt_rel);
size(rsys_abs)
State-space model with 1 outputs, 1 inputs, and 15 states.
size(rsys_rel)
State-space model with 1 outputs, 1 inputs, and 15 states.
```

Plot the Bode response of the original model along with the absolute-error and relative-error reduced models.

```
bo = bodeoptions;
bo.PhaseMatching = 'on';
bodeplot(cdrom,'b.',rsys_abs,'r',rsys_rel,'g',bo)
legend('Original (120 stātes)','Absolute Error (15 states)','Relative Error (15 states)')
```


Observe that the Bode response of:

- The relative-error reduced model rsys_rel nearly matches the response of the original model sys across the complete frequency range.
- The absolute-error reduced model rsys_abs matches the response of the original model sys only in areas with the most gain.

References

1 Benchmark Examples for Model Reduction, Subroutine Library in Systems and Control Theory (SLICOT). The CDROM data set is reproduced with permission, see BSD3-license for details.
2 A.Varga, "On stochastic balancing related model reduction", Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), Sydney, NSW, 2000, pp. 2385-2390 vol.3, doi: 10.1109/CDC.2000.914156.

Algorithms

The SepTol and Offset options are only used for models with unstable or marginally stable dynamics. Because Hankel singular values (HSV) are only meaningful for stable dynamics, bal red must first split such models into the sum of their stable and unstable parts:

$$
G=G_{s}+G_{u}
$$

This decomposition can be tricky when the model has modes close to the stability boundary (e.g., a pole at $s=-1 e-10$), or clusters of modes on the stability boundary (e.g., double or triple integrators). While bal red is able to overcome these difficulties in most cases, it sometimes produces unexpected results such as

1 Large HSV for the stable part. This happens when the stable part G_{s} contains some poles very close to the stability boundary. To force such modes into the unstable group, increase the 'Offset ' option to slightly grow the unstable region.
2 Too many modes are labeled "unstable." For example, you see 5 red bars in the HSV plot when your model had only 2 unstable poles. The stable/unstable decomposition algorithm has built-in accuracy checks that reject decompositions causing a significant loss of accuracy in the frequency response. For instance, such loss of accuracy arises when trying to split a cluster of stable and unstable modes near $s=0$. Because such clusters are numerically equivalent to multiple poles at $s=0$, it is actually desirable to treat the whole cluster as unstable. In some cases, however, large relative errors in low-gain frequency bands can trip the accuracy checks and lead to a rejection of valid decompositions. Additional modes are then absorbed into the unstable part G_{u}, unduly increasing its order. Such issues can be easily corrected by adjusting the SepTol tolerance.

If you use the TimeIntervals or FreqIntervals options, then bal red bases the computation of state energy contributions on time-limited or frequency-limited controllability and observability Gramians. For information about calculating time-limited and frequency-limited Gramians, see gram and [1].

Version History
 Introduced in R2010a

R2017b: MatchDC option honored when specified frequency or time intervals exclude DC Behavior changed in R2017b

When you use bal red for model reduction, you can use bal redOptions to restrict the computation to specified frequency or time intervals. If the StateProjection option of balredOptions is set to 'MatchDC' (the default value), then bal red attempts to match the DC gain of the original and reduced models, even if the specified intervals exclude DC (frequency $=0$ or time $=\operatorname{Inf}$).

Prior to R2017b, if you specified time or frequency intervals that excluded DC, bal red did not attempt to match the DC gain of the original and reduced models, even if StateProjection = 'MatchDC'.

References

[1] Gawronski, W. and J.N. Juang. "Model Reduction in Limited Time and Frequency Intervals." International Journal of Systems Science. Vol. 21, Number 2, 1990, pp. 349-376.

See Also

gram0ptions | balred | stabsep
Topics
"Balanced Truncation Model Reduction"

bandwidth

Frequency response bandwidth

Syntax

$\mathrm{fb}=$ bandwidth(sys)
$\mathrm{fb}=$ bandwidth(sys,dbdrop)

Description

$\mathrm{fb}=$ bandwidth(sys) returns the bandwidth of the SISO dynamic system model sys. The bandwidth is the first frequency where the gain drops below $70.79 \%(-3 \mathrm{~dB})$ of its DC value. The bandwidth is expressed in rad/TimeUnit, where TimeUnit is the TimeUnit property of sys.
$\mathrm{fb}=$ bandwidth(sys,dbdrop) returns the bandwidth for a specified gain drop.

Examples

Compute System Bandwidth

Compute the bandwidth of the transfer function sys $=1 /(s+1)$.

```
sys = tf(1,[1 1]);
fb = bandwidth(sys)
fb = 0.9976
```

This result shows that the gain of sys drops to 3 dB below its DC value at around $1 \mathrm{rad} / \mathrm{s}$.

Find Bandwidth of System with Custom Gain Drop

Compute the frequency at which the gain of a system drops to 3.5 dB below its DC value. Create a state-space model.
$\mathrm{A}=[-2,-1 ; 1,0]$;
B $=[1 ; 0]$;
C = $[1,2]$;
D = 1;
sys $=s s(A, B, C, D)$;
Find the 3.5 dB bandwidth of sys.
dbdrop = -3.5;
$\mathrm{fb}=$ bandwidth(sys,dbdrop)
$\mathrm{fb}=0.8348$

Find Bandwidth of Model Array

Find the bandwidth of each entry in a 5-by-1 array of transfer function models. Use a for loop to create the array, and confirm its dimensions.

```
sys = tf(zeros(1,1,5));
s = tf('s');
for m = 1:5
    sys(:,:,m) = m/(s^2+s+m);
end
size(sys)
5x1 array of transfer functions.
Each model has 1 outputs and 1 inputs.
```

Find the bandwidths.

```
fb = bandwidth(sys)
```

$\mathrm{fb}=5 \times 1$
1.2712
1.9991
2.5298
2.9678
3.3493
bandwidth returns an array in which each entry is the bandwidth of the corresponding entry in sys. For instance, the bandwidth of sys $(:,:, 2)$ is $\mathrm{fb}(2)$.

Input Arguments

sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO dynamic system model or an array of SISO dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models such as tf, zpk, or ss models.
- Frequency-response data models such as frd models. For such models, bandwidth uses the first frequency point to approximate the DC gain.

If sys is an array of models, bandwidth returns an array of the same size, where each entry is the bandwidth of the corresponding model in sys. For more information on model arrays, see "Model Arrays".

dbdrop - Gain drop

-3 (default) | negative scalar
Gain drop in dB , specified as a real negative scalar.

Output Arguments

fb - Frequency response bandwidth

scalar | array
Frequency response bandwidth, returned as a scalar or an array. If sys is:

- A single model, then fb is the bandwidth of sys.
- A model array, then fb is an array of the same size as the model array sys. Each entry is the bandwidth of the corresponding entry in sys.
fb is expressed in rad/TimeUnit, where TimeUnit is the TimeUnit property of sys.

Version History
 Introduced before R2006a

See Also

dcgain|issiso|bodeplot

bdschur

Block-diagonal Schur factorization

Syntax

[T,B,BLKS] = bdschur(A,CONDMAX)
[T,B] = bdschur(A,[],BLKS)

Description

$[\mathrm{T}, \mathrm{B}, \mathrm{BLKS}]=$ bdschur ($\mathrm{A}, \mathrm{CONDMAX}$) computes a transformation matrix T such that $B=T \backslash A^{*} T$ is block diagonal and each diagonal block is a quasi upper-triangular Schur matrix.
$[\mathrm{T}, \mathrm{B}]=\mathrm{bdschur}(\mathrm{A},[\mathrm{l}, \mathrm{BLKS})$ pre-specifies the desired block sizes. The input matrix A should already be in Schur form when you use this syntax.

Input Arguments

- A: Matrix for block-diagonal Schur factorization.
- CONDMAX: Specifies an upper bound on the condition number of T. By default, CONDMAX $=1 \mathrm{e} 4$. Use CONDMAX to control the tradeoff between block size and conditioning of T with respect to inversion. When CONDMAX is a larger value, the blocks are smaller and T becomes more illconditioned.

Output Arguments

- T: Transformation matrix.
- B: Matrix $B=T \backslash A^{*} T$.
- BLKS: Vector of block sizes.

Version History

Introduced in R2008a

R2022a: Default value of CONDMAX input argument changed

Behavior changed in R2022a
The default value of CONDMAX input argument is now le4. Previously, the default value was 1/ sqrt (eps). Increasing CONDMAX reduces the size of the eigenvalue clusters in the transformed model but also decreases the accuracy of the transformation. The new default value balances the conditioning and transformation accuracy. If you have code that relies on the default value of CONDMAX being $1 /$ sqrt (eps), update your code to explicitly set this input argument.

See Also

ordschur | schur

blkdiag

Block-diagonal concatenation of models

Syntax

sys = blkdiag(sys1,sys2,...,sysN)

Description

sys = blkdiag(sys1,sys2,...,sysN) produces the aggregate system
$\left[\begin{array}{cccc}\text { sys1 } & 0 & . & 0 \\ 0 & \text { sys2 } & . & : \\ : & . & . & 0 \\ 0 & . . & 0 & \text { sysN }\end{array}\right]$
blkdiag is equivalent to append.

Examples

Perform Block-Diagonal Concatenation

Perform block-diagonal concatenation of a transfer function model and a state-space model.
Create the SISO continuous-time transfer function model, $1 / \mathrm{s}$.
sys1 = tf(1,[10]);
Create a SISO continuous-time state-space model with state-space matrices 1,2,3, and 4.
sys2 = ss(1,2,3,4);
Concatenate sys1, a SISO static gain system, and sys2. The resulting model is a 3-input, 3-output state-space model.

```
sys = blkdiag(sys1,10,sys2)
sys =
    A =
        M}\begin{array}{rlr}{x1}&{\times2}\\{\times1 0}&{0}
        x2 0 1
    B =
            u1 u2 u3
        x1 1 00 0
        x2 0 0 2
    C =
```

```
        lrr
    D =
        u1 u2 u3
    y1 0 0 0
    y2
```

Continuous-time state-space model.

Alternatively, use the append command.
sys = append(sys1,10,sys2);

Version History
 Introduced in R2009a

See Also

append| series | parallel|feedback

bode

Bode plot of frequency response, or magnitude and phase data

Syntax

```
bode(sys)
bode(sys1,sys2,...,sysN)
bode(sys1,LineSpec1,...,sysN,LineSpecN)
bode(
```

\qquad

``` ,w)
[mag,phase,wout] = bode(sys)
[mag, phase,wout] = bode(sys,w)
[mag,phase,wout,sdmag,sdphase] = bode(sys,w)
```


Description

bode(sys) creates a Bode plot of the frequency response of a dynamic system model sys. The plot displays the magnitude (in dB) and phase (in degrees) of the system response as a function of frequency. bode automatically determines frequencies to plot based on system dynamics.

If sys is a multi-input, multi-output (MIMO) model, then bode produces an array of Bode plots, each plot showing the frequency response of one I/O pair.

If sys is a model with complex coefficients, then in:

- Log frequency scale, the plot shows two branches, one for positive frequencies and one for negative frequencies. The plot also shows arrows to indicate the direction of increasing frequency values for each branch. See "Bode Plot of Model with Complex Coefficients" on page 2-69.
- Linear frequency scale, the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero.
bode(sys1, sys2, ...,sysN) plots the frequency response of multiple dynamic systems on the same plot. All systems must have the same number of inputs and outputs.
bode(sys1,LineSpec1, ...,sysN, LineSpecN) specifies a color, line style, and marker for each system in the plot.
bode(\qquad ,w) plots system responses for frequencies specified by w.
- If w is a cell array of the form $\{w m i n, w m a x\}$, then bode plots the response at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then bode plots the response at each specified frequency. The vector w can contain both negative and positive frequencies.

You can use w with any of the input-argument combinations in previous syntaxes.
[mag, phase, wout] = bode(sys) returns the magnitude and phase of the response at each frequency in the vector wout. The function automatically determines frequencies in wout based on system dynamics. This syntax does not draw a plot.
[mag, phase, wout] = bode(sys,w) returns the response data at the frequencies specified by w .

- If w is a cell array of the form \{wmin, wmax\}, then wout contains frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then wout $=\mathrm{w}$.
[mag, phase,wout,sdmag,sdphase] = bode(sys,w) also returns the estimated standard deviation of the magnitude and phase values for the identified model sys. If you omit w, then the function automatically determines frequencies in wout based on system dynamics.

Examples

Bode Plot of Dynamic System

Create a Bode plot of the following continuous-time SISO dynamic system.

$$
H(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

$H=t f\left(\left[\begin{array}{lll}1 & 0.1 & 7.5\end{array}\right],\left[\begin{array}{llll}1 & 0.12 & 9 & 0\end{array}\right]\right)$;
bode (H)

bode automatically selects the plot range based on the system dynamics.

Bode Plot at Specified Frequencies

Create a Bode plot over a specified frequency range. Use this approach when you want to focus on the dynamics in a particular range of frequencies.

H = tf([-0.1,-2.4,-181,-1950],[1,3.3,990, 2600]);
bode(H, \{1,100\})
grid on

The cell array $\{1,100\}$ specifies the minimum and maximum frequency values in the Bode plot. When you provide frequency bounds in this way, the function selects intermediate points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency response.

```
w = [1 5 10 15 20 23 31 40 44 50 85 100];
bode(H,w,'--')
grid on
```


bode plots the frequency response at the specified frequencies only.

Compare Bode Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an equivalent discretized system on the same Bode plot.

Create continuous-time and discrete-time dynamic systems.
$H=t f([10.17 .5],[10.12900]) ;$
Hd = c2d(H, 0.5,'zoh');
Create a Bode plot that displays both systems.
bode (H,Hd)

The Bode plot of a discrete-time system includes a vertical line marking the Nyquist frequency of the system.

Bode Plot with Specified Line Attributes

Specify the line style, color, or marker for each system in a Bode plot using the LineSpec input argument.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

Hd $=$ c2d(H, 0.5,'zoh');
bode(H, 'r', Hd,'b--')

The first LineSpec, ' r ', specifies a solid red line for the response of H. The second LineSpec, 'b--' , specifies a dashed blue line for the response of Hd .

Obtain Magnitude and Phase Data

Compute the magnitude and phase of the frequency response of a SISO system.
If you do not specify frequencies, bode chooses frequencies based on the system dynamics and returns them in the third output argument.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
[mag,phase,wout] = bode(H);
```

Because H is a SISO model, the first two dimensions of mag and phase are both 1 . The third dimension is the number of frequencies in wout.

```
size(mag)
ans = 1\times3
    1
        4 1
length(wout)
```

```
ans = 41
```

Thus, each entry along the third dimension of mag gives the magnitude of the response at the corresponding frequency in wout.

Magnitude and Phase of MIMO System

For this example, create a 2-output, 3-input system.

```
rng(0,'twister'); % For reproducibility
H = rss(4,2,3);
```

For this system, bode plots the frequency responses of each I/O channel in a separate plot in a single figure.
bode (H)

Compute the magnitude and phase of these responses at 20 frequencies between 1 and 10 radians.
$\mathrm{w}=$ logspace $(0,1,20)$;
[mag,phase] = bode(H,w);
mag and phase are three-dimensional arrays, in which the first two dimensions correspond to the output and input dimensions of H , and the third dimension is the number of frequencies. For instance, examine the dimensions of mag.

```
size(mag)
ans = 1\times3
    2 3 20
```

Thus, for example, $\operatorname{mag}(1,3,10)$ is the magnitude of the response from the third input to the first output, computed at the 10 th frequency in w. Similarly, phase $(1,3,10)$ contains the phase of the same response.

Bode Plot of Identified Model

Compare the frequency response of a parametric model, identified from input/output data, to a nonparametric model identified using the same data.

Identify parametric and nonparametric models based on data.

```
load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
```

Using the spa and tfest commands requires System Identification Toolbox ${ }^{\mathrm{TM}}$ software.
sys_np is a nonparametric identified model. sys_p is a parametric identified model.
Create a Bode plot that includes both systems.

```
bode(sys_np,sys_p,w);
```

legend('sys-np','sys-p')

You can display the confidence region on the Bode plot by right-clicking the plot and selecting Characteristics > Confidence Region.

Obtain Magnitude and Phase Standard Deviation Data of Identified Model

Compute the standard deviation of the magnitude and phase of an identified model. Use this data to create a 3σ plot of the response uncertainty.

Identify a transfer function model based on data. Obtain the standard deviation data for the magnitude and phase of the frequency response.

```
load iddata2 z2;
sys_p = tfest(z2,2);
w = linspace(0,10*pi,128);
[mag,ph,w,sdmag,sdphase] = bode(sys_p,w);
```

Using the tfest command requires System Identification Toolbox ${ }^{\mathrm{TM}}$ software.
sys_p is an identified transfer function model. sdmag and sdphase contain the standard deviation data for the magnitude and phase of the frequency response, respectively.

Use the standard deviation data to create a 3σ plot corresponding to the confidence region.
mag = squeeze(mag);
sdmag = squeeze(sdmag);
semilogx (w, mag, 'b',w,mag+3*sdmag, 'k:' 'w,mag-3*sdmag, 'k:');

Bode Plot of Model with Complex Coefficients

Create a Bode plot of a model with complex coefficients and a model with real coefficients on the same plot.
rng(0)
A $=[-3.50,-1.25-0.25 i ; 2,0]$;
$\mathrm{B}=[1 ; 0]$;
$C=[-0.75-0.5 i, 0.625-0.125 i] ;$
D = 0.5;
$\mathrm{Gc}=\mathrm{ss}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$;
$\mathrm{Gr}=\mathrm{rss}(5)$;
bode(Gc,Gr)
legend('Complex-coefficient model','Real-coefficient model','Location','southwest')

In log frequency scale, the plot shows two branches for complex-coefficient models, one for positive frequencies, with a right-pointing arrow, and one for negative frequencies, with a left-pointing arrow. In both branches, the arrows indicate the direction of increasing frequencies. The plots for realcoefficient models always contain a single branch with no arrows.

You can change the frequency scale of the Bode plot by right-clicking the plot and selecting Properties. In the Property Editor dialog, on the Units tab, set the frequency scale to linear scale. Alternatively, you can use the bodeplot function with a bodeoptions object to create a customized plot.

```
opt = bodeoptions;
opt.FreqScale = 'Linear';
```

Create the plot with customized options.

```
bodeplot(Gc,Gr,opt)
legend('Complex-coefficient model','Real-coefficient model','Location','southwest')
```


In linear frequency scale, the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero. The plot also shows the negative-frequency response of a real-coefficient model when you plot the response along with a complex-coefficient model.

Input Arguments

sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning frequency response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns frequency response data for the nominal model only.
- Frequency-response data models such as frd models. For such models, the function plots the response at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can also plot confidence intervals and return standard deviations of the frequency response. See "Bode Plot of Identified Model" on page 2-67. (Using identified models requires System Identification Toolbox ${ }^{\text {TM }}$ software.)

If sys is an array of models, the function plots the frequency responses of all models in the array on the same axes.

LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.
Example: 'r-- ' specifies a red dashed line
Example: ' ${ }^{*}$ b' specifies blue asterisk markers
Example: 'y' specifies a yellow line
w- Frequencies
\{wmin, wmax\} | vector
Frequencies at which to compute and plot frequency response, specified as the cell array \{wmin,wmax $\}$ or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the function computes the response at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function computes the response at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values. The vector w can contain both positive and negative frequencies.

For models with complex coefficients, if you specify a frequency range of $\left[w_{\min }, w_{\max }\right.$] for your plot, then in:

- Log frequency scale, the plot frequency limits are set to $\left[w_{\min }, w_{\max }\right]$ and the plot shows two branches, one for positive frequencies [$w_{\min }, w_{\max }$] and one for negative frequencies [$-w_{\max },-w_{\min }$].
- Linear frequency scale, the plot frequency limits are set to [$-w_{\max }, w_{\max }$] and the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

Output Arguments

mag - Magnitude of system response

3-D array
Magnitude of the system response in absolute units, returned as a 3-D array. The dimensions of this array are (number of system outputs) \times (number of system inputs) \times (number of frequency points).

- For SISO systems, mag $(1,1, k)$ gives the magnitude of the response at the kth frequency in w or wout. For an example, see "Obtain Magnitude and Phase Data" on page 2-65.
- For MIMO systems, mag (i, j, k) gives the magnitude of the response at the kth frequency from the j th input to the ith output. For an example, see "Magnitude and Phase of MIMO System" on page 2-66.

To convert the magnitude from absolute units to decibels, use:

```
magdb = 20*log10(mag)
```


phase - Phase of system response

3-D array
Phase of the system response in degrees, returned as a 3-D array. The dimensions of this array are (number of outputs) \times (number of inputs) \times (number of frequency points).

- For SISO systems, phase ($1,1, k$) gives the phase of the response at the kth frequency in w or wout. For an example, see "Obtain Magnitude and Phase Data" on page 2-65.
- For MIMO systems, phase ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) gives the phase of the response at the kth frequency from the j th input to the ith output. For an example, see "Magnitude and Phase of MIMO System" on page 2-66.

wout - Frequencies

vector
Frequencies at which the function returns the system response, returned as a column vector. The function chooses the frequency values based on the model dynamics, unless you specify frequencies using the input argument w.
wout also contains negative frequency values for models with complex coefficients.
Frequency values are in radians/TimeUnit, where TimeUnit is the value of the TimeUnit property of sys.

sdmag - Standard deviation of magnitude

3-D array | []

Estimated standard deviation of the magnitude of the response at each frequency point, returned as a 3-D array. sdmag has the same dimensions as mag.

If sys is not an identified LTI model, sdmag is [].

sdphase - Standard deviation of phase

3-D array | []
Estimated standard deviation of the phase of the response at each frequency point, returned as a 3-D array. sdphase has the same dimensions as phase.

If sys is not an identified LTI model, sdphase is [].

Tips

- When you need additional plot customization options, use bodeplot instead.

Algorithms

bode computes the frequency response as follows:
1 Compute the zero-pole-gain (zpk) representation of the dynamic system.
2 Evaluate the gain and phase of the frequency response based on the zero, pole, and gain data for each input/output channel of the system.

- For continuous-time systems, bode evaluates the frequency response on the imaginary axis s $=j \omega$ and considers only positive frequencies.
- For discrete-time systems, bode evaluates the frequency response on the unit circle. To facilitate interpretation, the command parameterizes the upper half of the unit circle as:

$$
z=e^{j \omega T_{s}}, \quad 0 \leq \omega \leq \omega_{N}=\frac{\Pi}{T_{s}},
$$

where T_{s} is the sample time and ω_{N} is the Nyquist frequency. The equivalent continuous-time frequency ω is then used as the x-axis variable. Because $H\left(e^{j \omega T_{s}}\right)$ is periodic with period $2 \omega_{N}$, bode plots the response only up to the Nyquist frequency ω_{N}. If sys is a discrete-time model with unspecified sample time, bode uses $T_{s}=1$.

Version History

Introduced before R2006a

See Also

bodeplot|freqresp|nichols|nyquist| step

Topics

"Frequency-Domain Responses"
"Dynamic System Models"

External Websites

Transfer Function Analysis of Dynamic Systems (MathWorks Teaching Resources)

bodemag

Magnitude-only Bode plot of frequency response

Syntax

bodemag(sys)
bodemag(sys1,sys2,...,sysN)
bodemag(sys1,LineSpec1, ...,sysN,LineSpecN)
bodemag (\qquad , w)

Description

bodemag enables you to generate magnitude-only plots to visualize the magnitude frequency response of a dynamic system.

For a more comprehensive function, see bode. bode provides magnitude and phase information. If you have System Identification toolbox, bode also returns the computed values, including statistical estimates.

For more customizable plotting options, see bodeplot.
bodemag (sys) creates a Bode magnitude plot of the frequency response of the dynamic system model sys. The plot displays the magnitude (in dB) of the system response as a function of frequency. bodemag automatically determines frequencies to plot based on system dynamics.

If sys is a multi-input, multi-output (MIMO) model, then bodemag produces an array of Bode magnitude plots in which each plot shows the frequency response of one I/O pair.
bodemag (sys1, sys2, ...,sysN) plots the frequency response of multiple dynamic systems on the same plot. All systems must have the same number of inputs and outputs.
bodemag (sys1,LineSpec1, . . . sysN, LineSpecN) specifies a color, line style, and marker for each system in the plot.
bodemag (\qquad ,w) plots system responses for frequencies specified by w.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then bodemag plots the response at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then bodemag plots the response at each specified frequency.

You can use this syntax with any of the input-argument combinations in previous syntaxes.

Examples

Bode Magnitude Plot of Dynamic System

Create a Bode magnitude plot of the following continuous-time SISO dynamic system.

$$
H(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

$H=t f([10.17 .5],[10.12900]) ;$
bodemag (H)

bodemag automatically selects the plot range based on the system dynamics.

Bode Magnitude Plot at Specified Frequencies

Create a Bode magnitude plot over a specified frequency range. Use this approach when you want to focus on the dynamics in a particular range of frequencies.

The cell array $\{1,100\}$ specifies the minimum and maximum frequency values in the Bode magnitude plot. When you provide frequency bounds in this way, the function selects intermediate points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency response.

```
w = [11 5 10 15 20 23 31 40 44 50 85 100];
bodemag(H,w,'.-')
grid on
```


bodemag plots the frequency response at the specified frequencies only.

Compare Bode Magnitude Plots of Several Dynamic Systems

Compare the magnitude of the frequency response of a continuous-time system to an equivalent discretized system on the same Bode plot.

Create continuous-time and discrete-time dynamic systems.
H = tf([1 0.1 7.5],[1 0.12 9000$])$;
Hd = c2d(H, 0.5,'zoh');
Create a Bode magnitude plot that displays the responses of both systems.
bodemag (H,Hd)

The Bode magnitude plot of a discrete-time system includes a vertical line marking the Nyquist frequency of the system.

Bode Magnitude Plot with Specified Line and Marker Attributes

Specify the color, linestyle, or marker for each system in a Bode magnitude plot using the LineSpec input arguments.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

Hd $=$ c2d(H, $0.5,{ }^{\prime}$ zoh');
bodemag(H,'r',Hd,'b--')

The first LineSpec argument ' r ' specifies a solid red line for the response of H. The second LineSpec argument 'b--' specifies a dashed blue line for the response of Hd .

Magnitude of MIMO System

For this example, create a 2-output, 3-input system.
rng(0,'twister'); \% For reproducibility $H=\operatorname{rss}(4,2,3)$;

For this system, bodemag plots the magnitude-only frequency responses of each I/O channel in a separate plot in a single figure.
bodemag(H)

Input Arguments

sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning frequency response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns frequency response data for the nominal model only.
- Frequency-response data models such as frd models. For such models, the function plots the response at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. (Using identified models requires System Identification Toolbox software.)

If sys is an array of models, the function plots the frequency responses of all models in the array on the same axes.

LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line
w- Frequencies
\{wmin, wmax\} | vector
Frequencies at which to compute and plot frequency response, specified as the cell array \{wmin, wmax $\}$ or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the function computes the index at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function computes the index at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

Algorithms

bodemag computes the frequency response as follows:
1 Compute the zero-pole-gain (zpk) representation of the dynamic system.
2 Evaluate the gain and phase of the frequency response based on the zero, pole, and gain data for each input/output channel of the system.

- For continuous-time systems, bodemag evaluates the frequency response on the imaginary axis $s=j \omega$ and considers only positive frequencies.
- For discrete-time systems, bodemag evaluates the frequency response on the unit circle. To facilitate interpretation, the command parameterizes the upper half of the unit circle as:

$$
z=e^{j \omega T_{S}}, \quad 0 \leq \omega \leq \omega_{N}=\frac{\Pi}{T_{s}},
$$

where T_{s} is the sample time and ω_{N} is the Nyquist frequency. The equivalent continuous-time frequency ω is then used as the x-axis variable. Because $H\left(e^{j \omega T_{S}}\right)$ is periodic with period $2 \omega_{N}$, bodemag plots the response only up to the Nyquist frequency ω_{N}. If sys is a discrete-time model with unspecified sample time, bodemag uses $T_{s}=1$.

Version History

Introduced in R2012a

See Also

bode | bodeplot | freqresp|nichols|nyquist | step

Topics

"Frequency-Domain Responses"
"Dynamic System Models"

bodeoptions

Create list of Bode plot options

Description

Use the bodeoptions command to create a BodeOptions object to customize Bode plot appearance. You can also use the command to override the plot preference settings in the MATLAB session in which you create the Bode plots.

Creation

Syntax

plotoptions = bodeoptions
plotoptions = bodeoptions('cstprefs')

Description

plotoptions = bodeoptions returns a default set of plot options for use with the bodeplot command. You can use these options to customize the Bode plot appearance using the command line. This syntax is useful when you want to write a script to generate plots that look the same regardless of the preference settings of the MATLAB session in which you run the script.
plotoptions = bodeoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox and System Identification Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor". This syntax is useful when you want to change a few plot options but otherwise use your default preferences. A script that uses this syntax may generate results that look different when run in a session with different preferences.

Properties

FreqUnits - Frequency units

'rad/s' (default)
Frequency units, specified as one of the following values:

- 'Hz'
- 'rad/second'
- 'rpm'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rad/nanosecond'
- 'rad/microsecond'
- 'rad/millisecond'
- 'rad/minute'
- 'rad/hour'
- 'rad/day'
- 'rad/week'
- 'rad/month'
- 'rad/year'
- 'cycles/nanosecond'
- 'cycles/microsecond'
- 'cycles/millisecond'
- 'cycles/hour'
- 'cycles/day'
- 'cycles/week'
- 'cycles/month'
- 'cycles/year'

FreqScale - Frequency scale
'log' (default) | 'linear'
Frequency scale, specified as either 'log' or 'linear'.
MagUnits - Magnitude units
'dB' (default) | 'abs'
Magnitude units, specified as either ' dB ' or absolute value 'abs'.

MagScale - Magnitude scale

'linear' (default) | 'log'
Magnitude scale, specified as either 'log' or 'linear'.

MagVisible - Toggle magnitude plot visibility

'on' (default) |'off'
Toggle magnitude plot visibility, specified as either 'on' or 'off'.

MagLowerLimMode - Lower magnitude limit mode

'auto' (default) | 'manual'
Lower magnitude limit mode, specified as either 'auto' or 'manual'.

MagLowerLim - Lower magnitude limit value

'-inf' (default) | scalar
Lower magnitude limit value, specified as a scalar.

PhaseUnits - Phase units

'deg' (default) | 'rad'
Phase units, specified as either 'deg' or 'rad' to change to degrees or radians, respectively.

PhaseVisible - Toggle phase plot visibility
 'on' (default) |'off'

Toggle phase plot visibility, specified as either 'on' or 'off'.

PhaseWrapping - Enable phase wrapping

'off' (default) | 'on'
Enable phase wrapping, specified as either 'on' or 'off'. When you set PhaseWrapping to ' on ', the plot wraps accumulated phase at the value specified by the PhaseWrappingBranch property.

PhaseWrappingBranch - Phase wrapping value

- 180 (default) | integer

Phase wrapping value at which the plot wraps accumulated phase when PhaseWrapping is set to ' on '. By default, phase wraps into the interval [$-180^{\circ}, 180^{\circ}$].

PhaseMatching - Enable phase matching
 'off' (default) |'on'

Enable phase matching, specified as either 'on' or 'off'. Turning PhaseMatching 'on' matches the phase to the value specified in PhaseMatchingValue at the frequency specified in PhaseMatchingFreq

PhaseMatchingFreq - Phase matching frequency
 0 (default) | scalar

Phase matching frequency, specified as a scalar.

PhaseMatchingValue - Phase matching response value
 0 (default) | scalar

Phase matching response value, specified as a scalar.

ConfidenceRegionNumberSD - Number of standard deviations to use to plot the confidence region
 ```1 (default) | scalar```

Number of standard deviations to use to plot the confidence region, specified as a scalar. This is applicable to identified models only.

IOGrouping - Grouping of input-output pairs

'none' (default) | 'inputs' | 'outputs' | 'all'
Grouping of input-output (I/O) pairs, specified as one of the following:

- 'none' - No input-output grouping.
- 'inputs' - Group only the inputs.
- 'outputs' - Group only the outputs.
- 'all' - Group all the I/O pairs.

InputLabels - Input label style

structure (default)
Input label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

OutputLabels - Output label style

structure (default)
Output label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

InputVisible - Toggle display of inputs

\{'on'\} (default) | \{'off'\} | cell array
Toggle display of inputs, specified as either \{'on' $\}$, \{'off'\} or a cell array with multiple elements .

OutputVisible - Toggle display of outputs

\{'on'\} (default)|\{'off'\}|cell array
Toggle display of outputs, specified as either \{'on'\}, \{'off'\} or a cell array with multiple elements.

Title - Title text and style

structure (default)

Title text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the plot is titled 'Bode Diagram'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

XLabel - X-axis label text and style

structure (default)

X -axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the axis is titled based on the frequency units FreqUnits.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

YLabel - Y-axis label text and style

structure (default)
Y-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a cell array of character vectors. By default, the axis label is a 1 x 2 cell array with 'Magnitude' and 'Phase'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

TickLabel - Tick label style

structure (default)
Tick label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].

Grid - Toggle grid display

'off' (default) | 'on'
Toggle grid display on the plot, specified as either 'off' or 'on'.

GridColor - Color of the grid lines

[0.15, 0. 15, 0.15] (default) | RGB triplet
Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB triplet [0.15, 0.15, 0.15].

XLimMode - X-axis limit selection mode

'auto' (default) | 'manual' | cell array
Selection mode for the x -axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the XLim property.

YLimMode - Y-axis limit selection mode
'auto' (default) | 'manual' | cell array

Selection mode for the y-axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the YLim property.

XLim - X-axis limits

' $\{[1,10]\}$ ' (default) |cell array of two-element vector of the form [min, max] |cell array
X-axis limits, specified as a cell array of two-element vector of the form [min, max].

YLim - Y-axis limits

' $\{[1,10]\}$ ' (default) | cell array of two-element vector of the form [min , max] | cell array
Y-axis limits, specified as a cell array of two-element vector of the form [min ,max].

Object Functions

bod bodeplot getoptions setoptions

Bode plot of frequency response, or magnitude and phase data
Plot Bode frequency response with additional plot customization options
Return plot options handle or plot options property
Set plot options handle or plot options property

Examples

Custom Bode Plot Settings Independent of Preferences

For this example, create a Bode plot that uses 15-point red text for the title and sets a custom title. When you specify plot properties explicitly using bodeoptions, the specified properties override the MATLAB session preferences. Thus, the plot looks the same regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set using bodeoptions.

```
opts = bodeoptions;
```

Next, change the required properties of the options set opts. Because opt.Title is a structure, specify the properties of the plot title by specifying the fields and values of that structure.

```
opts.Title.FontSize = 15;
opts.Title.Color = [1 0 0];
opts.Title.String = 'System Frequency Response';
opts.FreqUnits = 'Hz';
```

Now, create a Bode plot using the options set opts.

```
bodeplot(tf(1,[1,1]),opts);
```


System Frequency Response

Because opts begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

Create Bode Plot with Custom Settings

Create a Bode plot that suppresses the phase plot and uses frequency units Hz instead of the default radians/second. Otherwise, the plot uses the settings that are saved in the toolbox preferences.

First, create an options set based on the toolbox preferences.
opts = bodeoptions('cstprefs');
Change properties of the options set.
opts.PhaseVisible = 'off';
opts.FreqUnits = 'Hz';
Create a plot using the options.
h = bodeplot(tf(1,[1,1]),opts);

Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example PhaseVisible and FreqUnits, override the toolbox preferences.

Version History
 Introduced in R2008a

See Also

bode | bodeplot | getoptions | setoptions
Topics
"Toolbox Preferences Editor"

bodeplot

Plot Bode frequency response with additional plot customization options

Syntax

h = bodeplot(sys)
h = bodeplot(sys1,sys2,...,sysN)
h = bodeplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = bodeplot(AX,__)
h = bodeplot(__, plotoptions)
h = bodeplot(\qquad , w)

Description

bodeplot lets you plot the Bode magnitude and phase of a dynamic system model with a broader range of plot customization options than bode. You can use bodeplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use bodeplot to draw a Bode response plot on an existing set of axes represented by an axes handle. To customize an existing Bode plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create Bode plots with default options or to extract the frequency response data, use bode.
$\mathrm{h}=$ bodeplot(sys) plots the Bode magnitude and phase of the dynamic system model sys and returns the plot handle h to the plot. You can use this handle h to customize the plot with the getoptions and setoptions commands. If sys is a multi-input, multi-output (MIMO) model, then bodeplot produces a grid of Bode plots, each plot displaying the frequency response of one I/O pair.
h = bodeplot(sys1,sys2,...,sysN) plots the frequency response of multiple dynamic systems sys 1, sys $2, \ldots$, sysN on the same plot. All systems must have the same number of inputs and outputs to use this syntax.
h = bodeplot(sys1,LineSpec1, ...,sysN,LineSpecN) sets the line style, marker type, and color for the Bode response of each system. All systems must have the same number of inputs and outputs to use this syntax.
h = bodeplot (AX,__) plots the Bode response on the Axes or UIAxes object in the current figure with the handle AX. Use this syntax when creating apps using bodeplot in the App Designer.
h = bodeplot (\qquad , plotoptions) plots the Bode frequency response with the options set specified in plotoptions. You can use these options to customize the Bode plot appearance using the command line. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run bodeplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.
h = bodeplot(\qquad ,w) plots system responses for frequencies specified by the frequencies in w.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then bodeplot plots the response at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then bodeplot plots the response at each specified frequency.

You can use w with any of the input-argument combinations in previous syntaxes.
See logspace to generate logarithmically spaced frequency vectors.

Examples

Customize Bode Plot using Plot Handle

For this example, use the plot handle to change the frequency units to Hz and turn off the phase plot.
Generate a random state-space model with 5 states and create the Bode plot with plot handle h .
rng("default")
sys = rss(5);
h = bodeplot(sys);

Change the units to Hz and suppress the phase plot. To do so, edit properties of the plot handle, h using setoptions.
setoptions(h,'FreqUnits','Hz','PhaseVisible','off');

The Bode plot automatically updates when you call setoptions.
Alternatively, you can also use the bodeoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.

```
p = bodeoptions('cstprefs');
```

Change properties of the options set by setting the frequency units to Hz and hide the phase plot.
p.FreqUnits = 'Hz';
p.PhaseVisible = 'off';
bodeplot(sys,p);

You can use the same option set to create multiple Bode plots with the same customization. Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example PhaseVisible and FreqUnits, override the toolbox preferences.

Custom Bode Plot Settings Independent of Preferences

For this example, create a Bode plot that uses 15-point red text for the title and sets a custom title. When you specify plot properties explicitly using bodeoptions, the specified properties override the MATLAB session preferences. Thus, the plot looks the same regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set using bodeoptions.
opts = bodeoptions;
Next, change the required properties of the options set opts. Because opt.Title is a structure, specify the properties of the plot title by specifying the fields and values of that structure.

```
opts.Title.FontSize = 15;
opts.Title.Color = [1 0 0];
opts.Title.String = 'System Frequency Response';
opts.FreqUnits = 'Hz';
```

Now, create a Bode plot using the options set opts.
bodeplot(tf(1,[1,1]),opts);

System Frequency Response

Because opts begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

Customized Bode Plot of Transfer Function

For this example, create a Bode plot of the following continuous-time SISO dynamic system. Then, turn the grid on, rename the plot and change the frequency scale.

$$
\operatorname{sys}(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

Create the transfer function sys.

```
sys = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

Next, create the options set using bodeoptions and change the required plot properties.

```
plotoptions = bodeoptions;
plotoptions.Grid = 'on';
plotoptions.FreqScale = 'linear';
plotoptions.Title.String = 'Bode Plot of Transfer Function';
```

Now, create the Bode plot with the custom option set plotoptions.

```
bodeplot(sys,plotoptions)
```


bodeplot automatically selects the plot range based on the system dynamics.

Bode Plot with Specified Frequency Scale and Units

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a Bode plot with linear frequency scale, specify frequency units in Hz and turn the grid on.

Create the MIMO state-space model sys_mimo.

```
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
\(\mathrm{A}=-\mathrm{J} \backslash \mathrm{F}\);
\(\mathrm{B}=\operatorname{inv}(\mathrm{J})\);
C = eye(3);
D = 0;
sys_mimo \(=s s(A, B, C, D) ;\)
size(sys_mimo)
State-space model with 3 outputs, 3 inputs, and 3 states.
```

Create a Bode plot with plot handle h and use getoptions for a list of the options available.
h = bodeplot(sys_mimo);
$\mathrm{p}=$ getoptions (h)
$p=$

```
                FreqUnits: 'rad/s'
                FreqScale: 'log'
                        MagUnits: 'dB'
                        MagScale: 'linear'
                    MagVisible: 'on'
                MagLowerLimMode: 'auto'
                    PhaseUnits: 'deg'
            PhaseVisible: 'on'
            PhaseWrapping: 'off'
            PhaseMatching: 'off'
        PhaseMatchingFreq: 0
ConfidenceRegionNumberSD: 1
            MagLowerLim: 0
        PhaseMatchingValue: 0
        PhaseWrappingBranch: -180
            IOGrouping: 'none'
            InputLabels: [1x1 struct]
            OutputLabels: [1x1 struct]
            InputVisible: {3x1 cell}
            OutputVisible: {3x1 cell}
            Title: [1x1 struct]
            XLabel: [1x1 struct]
            YLabel: [1x1 struct]
                TickLabel: [1x1 struct]
            Grid: 'off'
                GridColor: [0.1500 0.1500 0.1500]
            XLim: {3x1 cell}
            YLim: {6x1 cell}
            XLimMode: {3x1 cell}
            YLimMode: {6x1 cell}
```

Use setoptions to update the plot with the requires customization.
setoptions(h,'FreqScale','linear','FreqUnits','Hz','Grid','on');

The Bode plot automatically updates when you call setoptions. For MIMO models, bodeplot produces an array of Bode plots, each plot displaying the frequency response of one I/O pair.

Match Phase at Specified Frequency

For this example, match the phase of your system response such that the phase at $1 \mathrm{rad} / \mathrm{sec}$ is 150 degrees.

First, create a Bode plot of transfer function system with plot handle h.

```
sys = tf(1,[1 1]);
h = bodeplot(sys);
```

Use getoptions to obtain the plot properties. Change the properties PhaseMatchingFreq and PhaseMatchingValue to match a phase to a specified frequency.

```
p = getoptions(h);
p.PhaseMatching = 'on';
p.PhaseMatchingFreq = 1;
p.PhaseMatchingValue = 150;
```

Update the plot using setoptions.

```
setoptions(h,p);
```


The first bode plot has a phase of -45 degrees at a frequency of $1 \mathrm{rad} / \mathrm{s}$. Setting the phase matching options so that at $1 \mathrm{rad} / \mathrm{s}$ the phase is near 150 degrees yields the second Bode plot. Note that, however, the phase can only be $-45+\mathrm{N} * 360$, where N is an integer. So the plot is set to the nearest allowable phase, namely 315 degrees (or $1 * 360-45=315^{\circ}$).

Display Confidence Regions of Identified Models

For this example, compare the frequency responses of two identified state-space models with 2 and 6 states along with their 2σ confidence regions.

Load the identified state-space model data and estimate the two models using n4sid. Using n4sid requires a System Identification Toolbox license.

```
load iddata1
sys1 = n4sid(z1,2);
sys2 = n4sid(z1,6);
```

Create a Bode plot of the two systems.

```
bodeplot(sys1,'r',sys2,'b');
legend('sys1','sys2');
```


From the plot, observe that both models produce about 70\% fit to data. However, sys2 shows higher uncertainty in its frequency response, especially close to the Nyquist frequency. Now, use linspace to create a vector of frequencies and plot the Bode response using the frequency vector w .
w = linspace(8,10*pi,256);
h = bodeplot(sys1,sys2,w);
legend('sys1','sys2');
Use setoptions to turn on phase matching and to specify the standard deviation of the confidence region.

```
setoptions(h,'PhaseMatching','on','ConfidenceRegionNumberSD',2);
```


You can use the showconfidence command to display the confidence regions on the Bode plot. showConfidence(h)

Frequency Response of Identified Parametric and Nonparametric Models

For this example, compare the frequency response of a parametric model, identified from input/ output data, to a non-parametric model identified using the same data. Identify parametric and nonparametric models based on the data.

Load the data and create the parametric and non-parametric models using tfest and spa, respectively.
load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
spa and tfest require System Identification Toolbox ${ }^{\text {TM }}$ software. The model sys_np is a nonparametric identified model while, sys_p is a parametric identified model.

Create an options set to turn phase matching and the grid on. Then, create a Bode plot that includes both systems using this options set.

```
plotoptions = bodeoptions;
plotoptions.PhaseMatching = 'on';
plotoptions.Grid = 'on';
bodeplot(sys_p,sys_np,w,plotoptions);
legend('Parametric Model','Non-Parametric model');
```


Input Arguments

sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Sparse state-space models, such as sparss or mechss models. Frequency grid w must be specified for sparse models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to plot the frequency response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model.
- Frequency-response data models such as frd models. For such models, the function plots the response at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can also plot confidence intervals and return standard deviations of the frequency response. See "Bode Plot of Identified Model" on page 2-67. (Using identified models requires System Identification Toolbox software.)

If sys is an array of models, the function plots the frequency responses of all models in the array on the same axes.

LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - - or' is a red dashed line with circle markers

Line Style	Description
-	Solid line
--	Dashed line
$:$	Dotted line
.-	Dash-dot line

Marker	Description
' 0 '	Circle
' + '	Plus sign
'*'	Asterisk
'.'	Point
' X '	Cross
' \quad '	Horizontal line
' \| '	Vertical line
's'	Square
'd'	Diamond
'^1	Upward-pointing triangle
'v'	Downward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'p'	Pentagram
'h'	Hexagram

Color	Description
y	yellow
m	magenta
C	cyan
r	red
g	green
b	blue
W	white
K	black

AX - Target axes

Axes object | UIAxes object
Target axes, specified as an Axes or UIAxes object. If you do not specify the axes and if the current axes are Cartesian axes, then bodeplot plots on the current axes. Use AX to plot into specific axes when creating apps in the App Designer.

plotoptions - Bode plot options set

BodePlotOptions object
Bode plot options set, specified as a BodePlotOptions object. You can use this option set to customize the Bode plot appearance. Use bodeoptions to create the option set. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run bodeplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see bodeoptions.

w- Frequencies

\{wmin,wmax\} | vector
Frequencies at which to compute and plot frequency response, specified as the cell array \{wmin,wmax\} or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the function computes the response at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function computes the response at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

Output Arguments

h - Plot handle

handle object

Plot handle, returned as a handle object. Use the handle h to get and set the properties of the Bode plot using getoptions and setoptions. For the list of available options, see the Properties and Values Reference section in "Customizing Response Plots from the Command Line".

Version History

Introduced before R2006a

See Also

bode | bodeoptions | getoptions | setoptions
Topics
"Customizing Response Plots from the Command Line"

c2d

Convert model from continuous to discrete time

Syntax

sysd = c2d(sysc,Ts)
sysd $=$ c2d(sysc,Ts,method)
sysd $=$ c2d(sysc,Ts,opts)
[sysd,G] = c2d(\qquad)

Description

sysd = c2d(sysc,Ts) discretizes the continuous-time dynamic system model sysc using zeroorder hold on the inputs and a sample time of Ts.
sysd $=$ c2d(sysc,Ts,method) specifies the discretization method.
sysd $=$ c2d(sysc,Ts,opts) specifies additional options for the discretization.
[sysd,G] = c2d(\qquad), where sysc is a state-space model, returns a matrix, G that maps the continuous initial conditions x_{0} and u_{0} of the state-space model to the discrete-time initial state vector $x[0]$.

Examples

Discretize a Transfer Function

Discretize the following continuous-time transfer function:

$$
H(s)=e^{-0.3 s} \frac{s-1}{s^{2}+4 s+5} .
$$

This system has an input delay of 0.3 s . Discretize the system using the triangle (first-order-hold) approximation with sample time $\mathrm{Ts}=0.1 \mathrm{~s}$.
$H=t f\left(\left[\begin{array}{ll}1 & -1\end{array}\right],\left[\begin{array}{lll}1 & 4 & 5\end{array}\right]\right.$, InputDelay', 0.3$) ;$
Hd = c2d(H,0.1,'foh');
Compare the step responses of the continuous-time and discretized systems.
step(H,'-',Hd,'--')

Discretize Model with Fractional Delay Absorbed into Coefficients

Discretize the following delayed transfer function using zero-order hold on the input, and a $10-\mathrm{Hz}$ sampling rate.

$$
H(s)=e^{-0.25 s} \frac{10}{s^{2}+3 s+10}
$$

h = tf(10,[1 3 10],'IODelay', 0.25);
hd $=c 2 d(h, 0.1)$
hd =

$$
0.01187 z^{\wedge} 2+0.06408 z+0.009721
$$

$z^{\wedge} 2-1.655 z+0.7408$
Sample time: 0.1 seconds
Discrete-time transfer function.
In this example, the discretized model hd has a delay of three sampling periods. The discretization algorithm absorbs the residual half-period delay into the coefficients of hd.

Compare the step responses of the continuous-time and discretized models.

```
step(h,'--',hd,'-')
```


Discretize Model With Approximated Fractional Delay
Create a continuous-time state-space model with two states and an input delay.

```
sys = ss(tf([1,2],[1,4,2]));
sys.InputDelay = 2.7
sys =
    A =
\begin{tabular}{rrr} 
& X1 & x2 \\
\(\times 1\) & -4 & -2 \\
\(\times 2\) & 1 & 0
\end{tabular}
    B =
            u1
    x1 2
    x2 0
    C =
        x1 x2
    y1 0.5 1
```

```
    D =
        u1
    y1 0
    Input delays (seconds): 2.7
Continuous-time state-space model.
```

Discretize the model using the Tustin discretization method and a Thiran filter to model fractional delays. The sample time Ts = 1 second.

```
opt = c2dOptions('Method','tustin','FractDelayApprox0rder',3);
sysd1 = c2d(sys,1,opt)
sysd1 =
    A =
            rrrrrr
    B =
        u1
        0.002058
        x2 0.001029
        x3 8
        x4 0
        x5 0
    C =
        rrrerrer
    D =
        u1
    y1 0.001029
Sample time: 1 seconds
Discrete-time state-space model.
```

The discretized model now contains three additional states $x 3, x 4$, and $x 5$ corresponding to a thirdorder Thiran filter. Since the time delay divided by the sample time is 2.7 , the third-order Thiran filter ('FractDelayApprox0rder' $=3$) can approximate the entire time delay.

Discretize Identified Model

Estimate a continuous-time transfer function, and discretize it.

```
load iddatal
syslc = tfest(z1,2);
sysld = c2d(sys1c,0.1,'zoh');
```

Estimate a second order discrete-time transfer function.
sys2d = tfest(z1,2,'Ts',0.1);
Compare the response of the discretized continuous-time transfer function model, sys1d, and the directly estimated discrete-time model, sys2d.
compare(z1,sys1d,sys2d)

The two systems are almost identical.

Build Predictor Model

Discretize an identified state-space model to build a one-step ahead predictor of its response.
Create a continuous-time identified state-space model using estimation data.
load iddata2
sysc = ssest(z2,4);
Predict the 1 -step ahead predicted response of sysc.
predict(sysc,z2)

Discretize the model.
sysd = c2d(sysc,0.1,'zoh');
Build a predictor model from the discretized model, sysd.
[A,B,C,D,K] = idssdata(sysd);
Predictor $=\mathrm{ss}(A-K * C,[K$ B-K*D],C,[0 D],0.1);
Predictor is a two-input model which uses the measured output and input signals ([z1.y z1.u]) to compute the 1-step predicted response of sysc.

Simulate the predictor model to get the same response as the predict command.
lsim(Predictor,[z2.y,z2.u])

Linear Simulation Results

The simulation of the predictor model gives the same response as predict(sysc,z2).

Input Arguments

sysc - Continuous-time dynamic system
dynamic system model
Continuous-time model, specified as a dynamic system model such as $t f, s s$, or zpk. sysc cannot be a frequency response data model. sysc can be a SISO or MIMO system, except that the 'matched ' discretization method supports SISO systems only.
sysc can have input/output or internal time delays; however, the 'matched', 'impulse', and ' least-squares ' methods do not support state-space models with internal time delays.

The following identified linear systems cannot be discretized directly:

- idgrey models whose FunctionType is 'c '. Convert to idss model first.
- idproc models. Convert to idtf or idpoly model first.

Ts - Sample time

positive scalar
Sample time, specified as a positive scalar that represents the sampling period of the resulting discrete-time system. Ts is in TimeUnit, which is the sysc. TimeUnit property.

method - Discretization method

'zoh' (default)|'foh'|'impulse'|'tustin'|'matched'|'least-squares'

Discretization method, specified as one of the following values:

- 'zoh' - Zero-order hold (default). Assumes the control inputs are piecewise constant over the sample time Ts.
- 'foh ' - Triangle approximation (modified first-order hold). Assumes the control inputs are piecewise linear over the sample time Ts.
- 'impulse ' - Impulse invariant discretization
- 'tustin' - Bilinear (Tustin) method. To specify this method with frequency prewarping (formerly known as the 'prewarp' method), use the PrewarpFrequency option of c2dOptions.
- 'matched ' - Zero-pole matching method
- 'least-squares' - Least-squares method
- 'damped ' - Damped Tustin approximation based on the TRBDF2 formula for sparse models only.

For information about the algorithms for each conversion method, see "Continuous-Discrete Conversion Methods".

opts - Discretization options

c2dOptions object
Discretization options, specified as a c2dOptions object. For example, specify the prewarp frequency, order of the Thiran filter or discretization method as an option.

Output Arguments

sysd - Discrete-time model

dynamic system model
Discrete-time model, returned as a dynamic system model of the same type as the input system sysc.
When sysc is an identified (IDLTI) model, sysd:

- Includes both measured and noise components of sysc. The innovations variance λ of the continuous-time identified model sysc, stored in its NoiseVarianceproperty, is interpreted as the intensity of the spectral density of the noise spectrum. The noise variance in sysd is thus $\lambda / T s$.
- Does not include the estimated parameter covariance of sysc. If you want to translate the covariance while discretizing the model, use translatecov.

G - Mapping of continuous initial conditions of state-space model to discrete-time initial state vector
 matrix

Mapping of continuous-time initial conditions x_{0} and u_{0} of the state-space model sysc to the discretetime initial state vector $x[0]$, returned as a matrix. The mapping of initial conditions to the initial state vector is as follows:

$$
x[0]=G \cdot\left[\begin{array}{l}
x_{0} \\
u_{0}
\end{array}\right]
$$

For state-space models with time delays, c2d pads the matrix G with zeroes to account for additional states introduced by discretizing those delays. See "Continuous-Discrete Conversion Methods" for a discussion of modeling time delays in discretized systems.

Version History

Introduced before R2006a

See Also

c2dOptions |d2c|d2d|thiran|translatecov | Convert Model Rate
Topics
"Dynamic System Models"
"Discretize a Compensator"
"Continuous-Discrete Conversion Methods"

c2dOptions

Specify discretization method for continuous-time to discrete-time conversions

Description

Use c2dOptions to specify the discretization method and associated quantities for discretizing models with c2d.

Creation

Syntax

opts = c2dOptions
opts $=$ c2dOptions(Name,Value)

Description

opts = c2dOptions returns the default options for c2d. Customize options by using dot notation to change the properties of opts.
opts = c2dOptions(Name, Value) sets properties using one or more name-value arguments. For example, to use the bilinear (Tustin) approximation method, set 'Method' to 'tustin'.

Properties

Method - Discretization method

```
'zoh'(default)|'foh'|'impulse'|'tustin'|'matched'|'least-squares'
```

Discretization method, specified as one of the following values:

'zoh '	Zero-order hold, where c2d assumes the control inputs are piecewise constant over the sample time Ts. Triangle approximation (modified first-order hold), where c2d assumes the control inputs are piecewise linear over the sample time Ts. (See [1] on page 2-119, p. 228.)
' foh '	Impulse-invariant discretization.
'tustin '	Bilinear (Tustin) approximation. By default, c2d discretizes with no prewarp and rounds any fractional time delays to the nearest multiple of the sample time. To include prewarp, use the PrewarpFrequency option. To approximate fractional time delays, use the FractDelayApprox0rder option. 'matched ' Zero-pole matching method. (See [1] on page 2-119, p. 224.) By default, c2d rounds any fractional time delays to the nearest multiple of the sample time. To approximate fractional time delays, use the FractDelayApproxOrder option.

$$
\begin{array}{ll}
\text { ' least-squares ' } & \begin{array}{l}
\text { Least-squares method. Minimize the error between the frequency responses } \\
\text { of the continuous-time and discrete-time systems up to the Nyquist frequency. }
\end{array} \\
& \text { Use the FitOrder option to specify the order of the discrete-time system. }
\end{array}
$$

For information about the algorithms for each conversion method, see "Continuous-Discrete Conversion Methods".

PrewarpFrequency - Prewarp frequency for 'tustin' method
0 (default) | positive scalar
Prewarp frequency for 'tustin' method, specified as 0 or a positive scalar value. Specify the frequency in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property, of the discretized system. A value of 0 corresponds to the standard 'tustin' method without prewarp.

FitOrder - Fit order for ' least-squares' method 'auto ' (default) | positive integer

Fit order for ' least-squares ' method, specified as 'auto' or an integer. This option specifies the order of the discrete-time model to be fitted to the continuous-time frequency response with the ' least-squares ' method. The default value 'auto' to uses the order of the continuous-time model. Specify a model order by changing FitOrder to a positive integer. Reducing the order can help with unstable poles or pole/zero cancellations at $z=-1$.

FractDelayApproxOrder - Maximum order of Thiran filter for 'tustin' and 'matched' methods
 0 (default) | positive integer

Maximum order of the Thiran filter used to approximate fractional delays in the 'tustin' and ' matched ' methods. A value of 0 means that c2d rounds fractional delays to the nearest integer multiple of the sample time. If you set this property to a positive integer, c2d uses thiran to approximate fractional delays before discretizing.

Examples

Discretize Two Models Using Tustin Discretization Method

Generate two random continuous-time state-space models.

```
sys1 = rss(3,2,2);
sys2 = rss(4,4,1);
```

Create an option set for c2d to use the Tustin discretization method and $3.4 \mathrm{rad} / \mathrm{s}$ prewarp frequency.

```
opt = c2dOptions('Method','tustin','PrewarpFrequency',3.4);
```

Discretize the models, sys1 and sys2, using the same option set, but different sample times.

```
dsys1 = c2d(sys1,0.1,opt);
dsys2 = c2d(sys2,0.2,opt);
```


Version History

Introduced in R2010a

R2021a: Option to specify fit order

The new FitOrder option specifies the fit order when using the least-squares method for continuous-discrete conversion. FitOrder specifies the order of the discrete-time model to be fitted to the continuous-time frequency response. Reducing the order can help with unstable poles or pole/ zero cancellations at $\mathbf{z}=-1$.

References

[1] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997.

See Also
c2d

canon

Canonical state-space realization

Syntax

csys $=$ canon(sys,type)
csys $=$ canon(sys,'modal', condt)
[csys,T]= canon(\qquad)

Description

csys = canon(sys,type) transforms the linear model sys into the canonical realization csys. type specifies whether csys is in modal or companion form.

For information on controllable and observable canonical forms, see "State-Space Realizations".
csys $=$ canon(sys,'modal', condt) specifies an upper bound condt on the condition number of the block-diagonalizing transformation. Use condt if you have close lying eigenvalues in csys.
[csys,T]= canon(\qquad) also returns the state-coordinate transformation matrix T that relates the states of the state-space model sys to the states of csys.

Examples

Convert State-Space Model to Companion Canonical Form

aircraftPitchSSModel.mat contains the state-space matrices of an aircraft where the input is elevator deflection angle δ and the output is the aircraft pitch angle θ.

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q} \\
\dot{\theta}
\end{array}\right] } & =\left[\begin{array}{ccc}
-0.313 & 56.7 & 0 \\
-0.0139 & -0.426 & 0 \\
0 & 56.7 & 0
\end{array}\right]\left[\begin{array}{c}
\alpha \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
0.232 \\
0.0203 \\
0
\end{array}\right][\delta] \\
y & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]+[0][\delta]
\end{aligned}
$$

Load the model data to the workspace and create the state-space model sys.

```
load('aircraftPitchSSModel.mat');
sys = ss(A,B,C,D)
sys =
    A =
```

```
    x3 0 56.7 0
    B =
        u1
        x2 0.0203
        x3 0
    C =
        x1 x2 x3
        y1 0 0 1
    D =
        u1
    y1 0
```

Continuous-time state-space model.

Convert the resultant state-space model sys to companion canonical form.

```
csys = canon(sys,'companion')
Csys =
    A =
        rrrr
    B =
        ul
        x1 1
        x2 0
        x3 0
    C =
        rrrr
    D =
        u1
    y1 0
Continuous-time state-space model.
```

csys is the companion canonical form of sys.

Convert State-Space Model to Modal Canonical Form

pendulumCartSSModel.mat contains the state-space model of an inverted pendulum on a cart where the outputs are the cart displacement x and the pendulum angle θ. The control input u is the horizontal force on the cart.

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\dot{\theta} \\
\ddot{\theta}
\end{array}\right] } & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -0.1 & 3 & 0 \\
0 & 0 & 0 & 1 \\
0 & -0.5 & 30 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\theta \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{l}
0 \\
2 \\
0 \\
5
\end{array}\right] u \\
y & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\dot{x} \\
\theta \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u
\end{aligned}
$$

First, load the state-space model sys to the workspace.
load('pendulumCartSSModel.mat','sys');
Convert sys to modal canonical form and extract the transformation matrix.

```
[csys,T] = canon(sys,'modal')
csys =
    A =
        rrrrr
    B =
        x1 1.875
        x2 6.298
        x3 12.8
        x4 12.05
    C =
        y1 
    D =
        u1
        y1 0
        y2 0
Continuous-time state-space model.
T = 4×4
\begin{tabular}{rrrr}
0.0625 & 1.2500 & -0.0000 & -0.1250 \\
0 & 4.1986 & 0.0210 & -0.4199 \\
0 & 0.2285 & -13.5873 & 2.4693 \\
0 & -0.2251 & 13.6287 & 2.4995
\end{tabular}
```

csys is the modal canonical form of sys, while T represents the transformation between the state vectors of sys and csys.

Convert Zero-Pole-Gain Model to Modal Canonical Form

For this example, consider the following system with doubled poles and clusters of close poles:

$$
\operatorname{sys}(s)=100 \frac{(s-1)(s+1)}{s(s+10)(s+10.0001)(s-(1+i))^{2}(s-(1-i))^{2}}
$$

Create a zpk model of this system and convert it to modal canonical form using the string 'modal'.

```
sys = zpk([1 -1],[0 -10 -10.0001 1+1i 1-1i 1+1i 1-1i],100);
csysl = canon(sys,'modal');
csys1.A
ans = 7\times7
\begin{tabular}{rrrrrrr}
0 & & 0 & 0 & 0 & 0 & 0 \\
0 & 1.0000 & 2.1220 & 0 & 0 & 0 & 0 \\
0 & -0.4713 & 1.0000 & 1.5296 & 0 & 0 & 0 \\
0 & 0 & 0 & 1.0000 & 1.8439 & 0 & 0 \\
0 & 0 & 0 & -0.5423 & 1.0000 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -10.0000 & 4.0571 \\
0 & 0 & 0 & 0 & 0 & 0 & -10.0001
\end{tabular}
```

Csys1.B
ans $=7 \times 1$
0.1600
-0.0052
0.0201
-0.0975
0.2884
4.0095
sys has a pair of poles at $\mathrm{s}=-10$ and $\mathrm{s}=-10.0001$, and two complex poles of multiplicity 2 at $\mathrm{s}=$ $1+i$ and $s=1-i$. As a result, the modal form csys 1 is a state-space model with a block of size 2 for the two poles near $s=-10$, and a block of size 4 for the complex eigenvalues.

Now, separate the two poles near $s=-10$ by increasing the value of the condition number of the block-diagonalizing transformation. Use a value of 1 e 10 for this example.

```
csys2 = canon(sys,'modal',1e10);
csys2.A
ans = 7×7
```

0		0	0	0	0	0
0	1.0000	2.1220	0	0	0	0
0	-0.4713	1.0000	1.5296	0	0	0
0	0	0	1.0000	1.8439	0	0
0	0	0	-0.5423	1.0000	0	0
0	0	0	0	0	-10.0000	0

0
0
0
0
0
$0-10.0001$

```
format shortE
csys2.B
ans = 7\times1
    1.6000e-01
    -5.1885e-03
    2.0117e-02
    -9.7508e-02
    2.8844e-01
    1.6267e+05
    1.6267e+05
```

The A matrix of csys2 includes separate diagonal elements for the poles near $s=-10$. Increasing the condition number results in some very large values in the B matrix.

Convert System to Companion Canonical Form

The file icEngine. mat contains one data set with 1500 input-output samples collected at the a sampling rate of 0.04 seconds. The input $u(t)$ is the voltage (V) controlling the By-Pass Idle Air Valve (BPAV), and the output $\mathrm{y}(\mathrm{t})$ is the engine speed (RPM/100).

Use the data in icEngine. mat to create a state-space model with identifiable parameters.

```
load icEngine.mat
z = iddata(y,u,0.04);
sys = n4sid(z,4,'InputDelay',2);
```

Convert the identified state-space model sys to companion canonical form.

```
csys = canon(sys,'companion');
```

Obtain the covariance of the resulting form by running a zero-iteration update to model parameters.

```
opt = ssestOptions;
opt.SearchOptions.MaxIterations = 0;
csys = ssest(z,csys,opt);
```

Compare frequency response confidence bounds of sys to csys.

```
h = bodeplot(sys,csys,'r.');
showConfidence(h)
```


The frequency response confidence bounds are identical.

Input Arguments

sys - Dynamic system
dynamic system model
Dynamic system, specified as a SISO, or MIMO dynamic system model. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pid models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)

The resulting canonical state-space model assumes

- current values of the tunable components for tunable control design blocks.
- nominal model values for uncertain control design blocks.
- Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models. (Using identified models requires System Identification Toolbox software.)

You cannot use frequency-response data models such as frd models.

type - Transformation type

'modal' (default)|'companion'
Transformation type, specified as either 'modal' or 'companion'. If type is unspecified, then canon converts the specified dynamic system model to modal canonical form by default.

The companion canonical form is the same as the observable canonical form. For information on controllable and observable canonical forms, see "State-Space Realizations".

- Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1 -by- 1 for real eigenvalues and 2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues ($\lambda_{1}, \sigma \pm j \omega, \lambda_{2}$), the modal A matrix is of the form

$$
A_{m}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \sigma & \omega & 0 \\
0 & -\omega & \sigma & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]
$$

- Companion Form

In the companion realization, the characteristic polynomial of the system appears explicitly in the rightmost column of the A matrix. For a system with characteristic polynomial

$$
P(s)=s^{n}+\alpha_{n-1} s^{n-1}+\alpha_{n-2} s^{n-2}+\ldots+\alpha_{1} s+\alpha_{0},
$$

the corresponding companion A matrix is

$$
A_{\text {ccom }}=\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & -\alpha_{0} \\
1 & 0 & 0 & \ldots & 0 & -\alpha_{1} \\
0 & 1 & 0 & \ldots & 0 & -\alpha_{2} \\
0 & 0 & 1 & \ldots & 0 & -\alpha_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & -\alpha_{n-1}
\end{array}\right], \quad B_{c c o m}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

The companion transformation requires that the system is controllable from the first input. The transformation to companion form is based on the controllability matrix which is almost always numerically singular for mid-range orders. Hence, avoid using it when possible.

The companion realization returned by canon is sometimes known as controllable canonical form. For more information on observable and controllable canonical forms, see "State-Space Realizations".

condt - Upper bound on the condition number of the block-diagonalizing transformation 1e4 (default) | positive scalar

Upper bound on the condition number of the block-diagonalizing transformation, specified as a positive scalar. This argument is available only when type is set to 'modal'.

Increase condt to reduce the size of the eigenvalue clusters in the A matrix of csys. Setting condt $=$ Inf diagonalizes matrix A.

Output Arguments

csys - Canonical state-space form of the dynamic model

ss model object
Canonical state-space form of the dynamic model, returned as an ss model object. csys is a statespace realization of sys in the canonical form specified by type.

T - Transformation matrix

matrix
Transformation matrix, returned as an n-by- n matrix, where n is the number of states. T is the transformation between the state vector x of the state-space model sys and the state vector x_{c} of csys:
$x_{c}=T x$

This argument is available only when sys is an ss model object.

Limitations

- You cannot use frequency-response data models to convert to canonical state-space form.
- The companion form is poorly conditioned for most state-space computations, that is, the transformation to companion form is based on the controllability matrix which is almost always numerically singular for mid-range orders. Hence, avoid using it when possible.

Algorithms

The canon command uses the bdschur command to convert sys into modal form and to compute the transformation T . If sys is not a state-space model, canon first converts it to state space using ss.

The reduction to companion form uses a state similarity transformation based on the controllability matrix [1].

Version History

Introduced before R2006a

R2022a: Default value of condt input argument changed

Behavior changed in R2022a
The default value of condt input argument is now 1e4. Previously, the default value was 1 e 8. Increasing condt reduces the size of the eigenvalue clusters in the transformed model but also decreases the accuracy of the transformation. The new default value balances conditioning and transformation accuracy. If you have code that relies on the default value of condt being 1e8, update your code to explicitly set this input argument.

References

[1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also
 ctrb|ctrbf|ss2ss|tf|zpk|ss|pid|genss|uss|idtf|idss|idproc|idpoly|idgrey
 Topics
 "State-Space Realizations"

care

(Not recommended) Continuous-time algebraic Riccati equation solution
Note care is not recommended. Use icare instead. For more information, see "Compatibility Considerations".

Syntax

$[\mathrm{X}, \mathrm{L}, \mathrm{G}]=\operatorname{care}(\mathrm{A}, \mathrm{B}, \mathrm{Q})$
$[X, L, G]=\operatorname{care}(A, B, Q, R, S, E)$
[X,L,G,report] = care(A,B,Q,...)
[X1,X2,D,L] = care(A,B,Q,...,'factor')

Description

$[X, L, G]=\operatorname{care}(A, B, Q)$ computes the unique solution X of the continuous-time algebraic Riccati equation

$$
A^{T} X+X A-X B B^{T} X+Q=0
$$

The care function also returns the gain matrix, $G=R^{-1} B^{T} X E$.
$[X, L, G]=\operatorname{care}(A, B, Q, R, S, E)$ solves the more general Riccati equation

$$
A^{T} X E+E^{T} X A-\left(E^{T} X B+S\right) R^{-1}\left(B^{T} X E+S^{T}\right)+Q=0
$$

When omitted, R, S, and E are set to the default values $R=I, S=0$, and $E=I$. Along with the solution X, care returns the gain matrix $G=R^{-1}\left(B^{T} X E+S^{T}\right)$ and a vector L of closed-loop eigenvalues, where
$\mathrm{L}=\mathrm{eig}(\mathrm{A}-\mathrm{B} * \mathrm{G}, \mathrm{E})$
$[X, L, G, r e p o r t]=\operatorname{care}(A, B, Q, \ldots)$ returns a diagnosis report with:

- -1 when the associated Hamiltonian pencil has eigenvalues on or very near the imaginary axis (failure)
- -2 when there is no finite stabilizing solution X
- The Frobenius norm of the relative residual if X exists and is finite.

This syntax does not issue any error message when X fails to exist.
$[\mathrm{X} 1, \mathrm{X} 2, \mathrm{D}, \mathrm{L}]=\operatorname{care}\left(\mathrm{A}, \mathrm{B}, \mathrm{Q}, \ldots, \mathrm{f}^{\prime}\right.$ factor') returns two matrices $\mathrm{X} 1, \mathrm{X} 2$ and a diagonal scaling matrix D such that $X=D^{*}(X 2 / X 1) * D$.

The vector L contains the closed-loop eigenvalues. All outputs are empty when the associated Hamiltonian matrix has eigenvalues on the imaginary axis.

Examples

Example 1

Solve Algebraic Riccati Equation

Given

$$
A=\left[\begin{array}{rr}
-3 & 2 \\
1 & 1
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & -1
\end{array}\right] \quad R=3
$$

you can solve the Riccati equation

$$
A^{T} X+X A-X B R^{-1} B^{T} X+C^{T} C=0
$$

by

```
a = [-3 2;1 1]
b = [0 ; 1]
c = [lll
r = 3
[x,l,g] = care(a,b,c'*c,r)
```

This yields the solution

```
x
x =
    0.5895 1.8216
    1.8216 8.8188
```

You can verify that this solution is indeed stabilizing by comparing the eigenvalues of a and a-b*g.
[eig(a) eig(a-b*g)]
ans $=$
-3.4495 -3.5026
$1.4495-1.4370$

Finally, note that the variable l contains the closed-loop eigenvalues eig $(a-b * g)$.
l
l =
-3.5026
-1.4370

Example 2

Solve H-infinity (H_{∞})-like Riccati Equation

To solve the H_{∞}-like Riccati equation

$$
A^{T} X+X A+X\left(\gamma^{-2} B_{1} B_{1}^{T}-B_{2} B_{2}^{T}\right) X+C^{T} C=0
$$

rewrite it in the care format as

$$
A^{T} X+X A-X \not B_{B}^{\left.1, B_{2}\right]}\left[\begin{array}{cc}
-\gamma^{2} I & 0 \\
0 & I
\end{array}\right]^{-1}\left[\begin{array}{c}
B_{1}^{T} \\
B_{2}^{T}
\end{array}\right] X+C^{T} C=0
$$

You can now compute the stabilizing solution X by

```
B = [B1 , B2]
m1 = size(B1,2)
m2 = size(B2,2)
R = [-g^2*eye(m1) zeros(m1,m2) ; zeros(m2,m1) eye(m2)]
X = care(A,B,C'*C,R)
```


Limitations

The (A, B) pair must be stabilizable (that is, all unstable modes are controllable). In addition, the associated Hamiltonian matrix or pencil must have no eigenvalue on the imaginary axis. Sufficient conditions for this to hold are (Q, A) detectable when $S=0$ and $R>0$, or

$$
\left[\begin{array}{cc}
Q & S \\
S^{T} & R
\end{array}\right]>0
$$

Algorithms

care implements the algorithms described in [1]. It works with the Hamiltonian matrix when R is well-conditioned and $E=I$; otherwise it uses the extended Hamiltonian pencil and QZ algorithm.

Version History

Introduced before R2006a

R2019a: care is not recommended

Not recommended starting in R2019a
Starting in R2019a, use the icare command to solve continuous-time Riccati equations. This approach has improved accuracy through better scaling and the computation of K is more accurate when R is ill-conditioned relative to care. Furthermore, icare includes an optional info structure to gather the implicit solution data of the Riccati equation.

The following table shows some typical uses of care and how to update your code to use icare instead.

Not Recommended	Recommended
$[X, L, G]=\operatorname{care}(A, B, Q, R, S, E)$	$[X, K, L]=$ icare (A, B, Q, R, S, E, G) computes the stabilizing solution X, the state-feedback gain K and the closed-loop eigenvalues L of the continuous-time algebraic Riccati equation. For more information, see icare.

Not Recommended	Recommended
$[X, L, G$, report $]=\operatorname{care}(A, B, Q, R, S, E)$	$[X, K, L$, info $=$ icare (A, B, Q, R, S, E, G) computes the stabilizing solution X, the state- feedback gain K, the closed-loop eigenvalues L of the continuous-time algebraic Riccati equation. The info structure contains the implicit solution data. For more information, see icare.

There are no plans to remove care at this time.

References

[1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 1746-1754

See Also

icare

chgFreqUnit

Change frequency units of frequency-response data model

Syntax

sys_new = chgFreqUnit(sys,newfrequnits)

Description

sys_new = chgFreqUnit(sys, newfrequnits) changes units of the frequency points in sys to newfrequits. Both Frequency and FrequencyUnit properties of sys adjust so that the frequency responses of sys and sys_new match.

Input Arguments

sys

Frequency-response data ($f r d$, idfrd, or genfrd) model.

newfrequnits

New units of frequency points, specified as one of the following values:

- 'rad/TimeUnit'
- 'cycles/TimeUnit'
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'
rad/TimeUnit and cycles/TimeUnit express frequency units relative to the system time units specified in the TimeUnit property.

Default: 'rad/TimeUnit'

Output Arguments

sys_new
Frequency-response data model of the same type as sys with new units of frequency points. The frequency response of sys_new is same as sys.

Examples

Change Frequency Units of Frequency-Response Data Model

Create a frequency-response data model.
load('AnalyzerData');
sys $=$ frd(resp,freq);
The data file AnalyzerData has column vectors freq and resp. These vectors contain 256 test frequencies and corresponding complex-valued frequency response points, respectively. The default frequency units of sys is rad/TimeUnit, where TimeUnit is the system time units.

Change the frequency units.
sys1 = chgFreqUnit(sys,'rpm');
The FrequencyUnit property of sys1 is rpm.
Compare the Bode responses of sys and sys1.
bodeplot(sys,'r',sys1,'y--');
legend('sys','sysl')

The magnitude and phase of sys and sys 1 match because chgFreqUnit command changes the units of frequency points in sys without modifying system behavior.

Change the FrequencyUnit property of sys to compare the Bode response with the original system.
sys2 = sys;
sys2.FrequencyUnit = 'rpm';

```
bodeplot(sys,'r',sys2,'gx');
```

legend('sys','sys2');

Changing the FrequencyUnit property changes the system behavior. Therefore, the Bode responses of sys and sys2 do not match. For example, the original corner frequency at about $2 \mathrm{rad} / \mathrm{s}$ changes to approximately 2 rpm (or $0.2 \mathrm{rad} / \mathrm{s}$).

Tips

- Use chgFreqUnit to change the units of frequency points without modifying system behavior.

Version History

Introduced in R2011a

See Also

chgTimeUnit|frd

Topics

"Specify Frequency Units of Frequency-Response Data Model"

chgTimeUnit

Change time units of dynamic system

Syntax

sys_new = chgTimeUnit(sys,newtimeunits)

Description

sys_new = chgTimeUnit(sys,newtimeunits) changes the time units of sys to newtimeunits. The time- and frequency-domain characteristics of sys and sys_new match.

Input Arguments

sys

Dynamic system model
newtimeunits
New time units, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Default: 'seconds'

Output Arguments

sys_new
Dynamic system model of the same type as sys with new time units. The time response of sys_new is same as sys.

If sys is an identified linear model, both the model parameters as and their minimum and maximum bounds are scaled to the new time units.

Examples

Change Time Units of Dynamic System Model

Create a transfer function model.

```
num = [4 2];
den = [ll 3 10];
sys = tf(num,den);
```

By default, the time unit of sys is 'seconds '. Create a new model with the time units changed to minutes.
sys1 = chgTimeUnit(sys,'minutes');
This command sets the TimeUnit property of sys1 to 'minutes', without changing the dynamics. To confirm that the dynamics are unchanged, compare the step responses of sys and sys1.

```
stepplot(sys,'r',sys1,'y--');
legend('sys','sysl');
```


The step responses are the same.
If you change the TimeUnit property of the system instead of using chgTimeUnit, the dynamics of the system do change. To see this, change the TimeUnit property of a copy of sys and compare the step response with the original system.

```
sys2 = sys;
sys2.TimeUnit = 'minutes';
stepplot(sys,'r',sys2,'gx');
legend('sys','sys2');
```


The step responses of sys and sys2 do not match. For example, the original rise time of 0.04 seconds changes to 0.04 minutes.

Tips

- Use chgTimeUnit to change the time units without modifying system behavior.

Version History

Introduced in R2011a

See Also

chgFreqUnit|tf|zpk|ss|frd|pid

Topics

"Specify Model Time Units"

clone

Copy online state estimation object

Syntax

obj_clone = clone(obj)

Description

obj_clone = clone(obj) creates a copy of the online state estimation object obj with the same property values.

If you want to copy an existing object and then modify properties of the copied object, use the clone command. Do not create additional objects using syntax obj2 $=\mathrm{obj}$. Any changes made to the properties of the new object created in this way (obj2) also change the properties of the original object (obj).

Examples

Clone an Online State Estimation Object

Create an extended Kalman filter object for a van der Pol oscillator with two states and one output. To create the object, use the previously written and saved state transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. Specify the initial state values for the two states as [2;0].

```
obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0])
obj =
    extendedKalmanFilter with properties:
            HasAdditiveProcessNoise: 1
                StateTransitionFcn: @vdpStateFcn
        HasAdditiveMeasurementNoise: 1
            MeasurementFcn: @vdpMeasurementFcn
        StateTransitionJacobianFcn: []
            MeasurementJacobianFcn: []
                            State: [2x1 double]
            StateCovariance: [2\times2 double]
                ProcessNoise: [2x2 double]
                    MeasurementNoise: 1
            HasMeasurementWrapping: 0
```

Use clone to generate an object with the same properties as the original object.

```
obj2 = clone(obj)
obj2 =
    extendedKalmanFilter with properties:
```

```
        HasAdditiveProcessNoise: 1
            StateTransitionFcn: @vdpStateFcn
HasAdditiveMeasurementNoise: 1
            MeasurementFcn: @vdpMeasurementFcn
StateTransitionJacobianFcn: []
    MeasurementJacobianFcn: []
                            State: [2x1 double]
            StateCovariance: [2x2 double]
                ProcessNoise: [2x2 double]
            MeasurementNoise: 1
    HasMeasurementWrapping: 0
```

Modify the MeasurementNoise property of obj2.
obj2.MeasurementNoise = 2;
Verify that the MeasurementNoise property of original object obj remains unchanged and equals 1.
obj.MeasurementNoise
ans $=1$

Input Arguments

obj - Object for online state estimation

extendedKalmanFilter object|unscentedKalmanFilter object| particleFilter object
Object for online state estimation of a nonlinear system, created using one of the following commands:

- extendedKalmanFilter
- unscentedKalmanFilter
- particleFilter

Output Arguments

obj_clone - Clone of online state estimation object

extendedKalmanFilter object |unscentedKalmanFilter object | particleFilter object
Clone of online state estimation object obj, returned as an extendedKalmanFilter, unscentedKalmanFilter or particleFilter object with the same properties as obj.

Version History

Introduced in R2016b

See Also

predict | correct |extendedKalmanFilter | unscentedKalmanFilter | particleFilter| initialize

codegen

Generate MATLAB code for tunable gain surfaces

Syntax

```
code = codegen(GS)
```


Description

code $=$ codegen (GS) generates MATLAB code for the tunable surface GS. The generated code is a function that takes the scalar values of the scheduling variables and returns the scalar-valued or matrix-valued gain, depending on GS.

Examples

Generate Code from Tunable Surface

Create a tunable surface that represents a scalar gain with a bilinear dependence on two scheduling variables. Suppose that the scheduling variables are alpha, ranging from 0-15 degrees, and V, ranging from $300-600 \mathrm{~m} / \mathrm{s}$. The tunable surface covers a linearly spaced grid in this operating range.

```
[alpha,V] = ndgrid(0:3:15,300:50:600);
domain = struct('alpha',alpha,'V',V);
shapefcn = @(x,y) [x,y,x*y];
GS0 = tunableSurface('K',1,domain,shapefcn);
```

Usually, you use GS0 to parameterize a scheduled gain and tune the surface coefficients with systune. For this example, instead of tuning, manually set the coefficients to non-zero values.

```
GS = setData(GS0,[100,28,40,10]);
```

Generate MATLAB code that computes the scalar gain as a function of scheduling variables.

```
code = codegen(GS)
code =
    'function Gain_= fcn(alpha_,V_)
    %#codegen
    % Type casting
    ZERO = zeros(1,1,'like',alpha_+V_);
    alpha_ = cast(alpha_,'like',ZERO);
    V_ = cast(V_,'like',ZERO);
    % Tuned gain surface coefficients
    Coeffs = cast([100 28 40 10],'like',ZERO);
    Offsets = cast([7.5 450],'like',ZERO);
    Scalings = cast([7.5 150],'like',ZERO);
    % Normalization
    alpha_ = (alpha_ - Offsets(1))/Scalings(1);
```

```
V_ = (V_ - Offsets(2))/Scalings(2);
% Compute weighted sum of terms
Y = [ alpha_ , V_ , alpha_*V_ ];
Gain_= Coeffs(1);
for \overline{i}=1:numel(Y)
    Gain_ = Gain_ + Coeffs(i+1) * Y(i);
end
'
```

The resulting code is a function, fcn , that takes two scheduling variables and returns a scalar gain. The function includes the \%\#codegen directive, so that it can be used for further code generation, such as implementing a tuned gain schedule in hardware.

The function includes four sections. The first section ensures that the scheduling variables are cast to the same type. The second section encodes the gain coefficients and the offsets and scalings that the software extracts from GS. These values are hard-coded into fcn, which can compute the gain surface without reference to GS. The third section uses these values to compute the normalized scheduling variables. (See tunableSurface for more information about normalization.)

The last section computes the gain by summing up all the terms in the polynomial expression for the gain surface.

Input Arguments

GS - Tunable gain surface

tunableSurface object
Tunable gain surface, specified as a tunableSurface object.

Output Arguments

code - Generated code for gain surface

character array
Generated code for the gain surface, returned as a character array. The code contains a function, Gain_ $=\mathrm{fcn}\left(x 1_{-}, x 2_{-}, \ldots, x N_{-}\right)$, that computes the gain from the scheduling variables $x 1_{-}, x 2_{_}, \ldots, x N _$of GS . The expression relating the gain to the scheduling variables, the coefficients of the expression, and the normalization of the scheduling variables are all taken from GS, and the code can run without further reference to TS. The returned function includes the \%\#codegen directive so that it can be used for further code generation, such as implementing a tuned gain schedule in hardware.

When you use writeBlockValue to write tuned gain-surface coefficients from an slTuner interface to a MATLAB Function block, it uses this generated MATLAB code.

Version History
 Introduced in R2017b

See Also

tunableSurface

Topics

"Model Gain-Scheduled Control Systems in Simulink"
"Parameterize Gain Schedules"

conj

Form model with complex conjugate coefficients

Syntax

sysc = conj(sys)

Description

sysc = conj(sys) constructs a complex conjugate model sysc by applying complex conjugation to all coefficients of the LTI model sys. This function accepts LTI models in transfer function (TF), zero/ pole/gain (ZPK), and state space (SS) formats.

Examples

If sys is the transfer function
(2+i)/(s+i)
then conj(sys) produces the transfer function
(2-i)/(s-i)
This operation is useful for manipulating partial fraction expansions.

Version History

Introduced before R2006a
See Also
append|ss|tf|zpk

connect

Block diagram interconnections of dynamic systems

Syntax

```
sysc = connect(sys1,...,sysN,inputs,outputs)
sysc = connect(sys1,...,sysN,inputs,outputs,APs)
sysc = connect(blksys,connections,inputs,outputs)
sysc = connect(
```

\qquad

``` ,opts)
```


Description

sysc $=$ connect(sys1,...,sysN,inputs,outputs) connects the block diagram elements sys1, . . . sysN based on signal names. The block diagram elements sys1, ... , sysN are dynamic system models. These models can include summing junctions that you create using sumblk. The connect command interconnects the block diagram elements by matching the input and output signals that you specify in the InputName and OutputName properties of sys $1, \ldots$, sysN. The aggregate model sysc is a dynamic system model having inputs and outputs specified by inputs and outputs respectively.
sysc = connect(sys1,...,sysN,inputs,outputs,APs) inserts an AnalysisPoint at every signal location specified in APs. Use analysis points to mark locations of interest which are internal signals in the aggregate model. For instance, a location at which you want to extract a loop transfer function or measure the stability margins is a location of interest.
sysc = connect(blksys,connections,inputs,outputs) uses index-based interconnection to build sysc out of an aggregate, unconnected model blksys. The matrix connections specifies how the outputs and inputs of blksys interconnect. For index-based interconnections, inputs and outputs are index vectors that specify which inputs and outputs of blksys are the external inputs and outputs of sysc. This syntax can be convenient when you do not want to assign names to all inputs and outputs of all models to connect. However, in general, it is easier to keep track of named signals.
sysc = connect(\qquad , opts) builds the interconnected model using additional options. You can use opts with the input arguments of any of the previous syntaxes.

Input Arguments

```
sys1,...,sysN
```

Dynamic system models that correspond to the elements of your block diagram. For example, the elements of your block diagram can include one or more tf or ss models that represent plant dynamics. Block diagram elements can also include a pid or tunablePID model representing a controller. You can also include one or more summing junction that you create using sumblk. Provide multiple arguments sys $1, \ldots$, sysN to represent all of the block diagram elements and summing junctions.

inputs

For name-based interconnection, a character vector or cell array of character vectors that specify the inputs of the aggregate model sysc. The inputs in inputs must correspond to entries in the InputName or OutputName property of one or more of the block diagram elements sys1, ...sysN.

outputs

For name-based interconnection, a character vector or cell array of character vectors that specify the outputs of the aggregate model sysc. The outputs in outputs must correspond to entries in the OutputName property of one or more of the block diagram elements sys1,..., sysN.

APs

Locations (internal signals) of interest in the aggregate model, specified as a character vector or cell array of character vectors, such as 'X' or \{'AP1', 'AP2'\}. The resulting model contains an analysis point at each such location. (See AnalysisPoint). Each location in APs must correspond to an entry in the InputName or OutputName property of one or more of the block diagram elements sys1,..., sysN.

blksys

Unconnected aggregate model. To obtain blksys, use append to join dynamic system models of the elements of your block diagram. For example, if your block diagram contains dynamic system models C, G, and S , create bl ksys with the following command:

```
blksys = append(C,G,S)
connections
```

Matrix that specifies the connections and summing junctions of the block diagram. Each row of connections specifies one connection or summing junction in terms of the input vector u and output vector y of the unconnected aggregate model blksys. For example, the row:

[3 2000$]$

specifies that $y(2)$ connects into $u(3)$. The row

[7 2 -15 6]

indicates that $y(2)-y(15)+y(6)$ feeds into $u(7)$.
If you do not specify any connection for a particular input or output, connect omits that input or output from the aggregate model.

opts

Additional options for interconnection, specified as an options set that you create with connectOptions.

Output Arguments

sysc

Interconnected system, returned as either a state-space model or frequency-response model. The type of model returned depends on the input models. For example:

- Interconnecting numeric LTI models (other than frd models) returns an ss model.
- Interconnecting a numeric LTI model with a Control Design Block returns a generalized LTI model. For instance, interconnecting a tf model with a tunablePID Control Design Block returns a genss.
- Interconnecting any model with frequency-response data model returns a frequency response data model.

By default, connect automatically discards states that do not contribute to the I/O transfer function from the specified inputs to the specified outputs of the interconnected model. To retain the unconnected states, set the Simplify option of connect0ptions to false. For example:

```
opt = connectOptions('Simplify',false);
```

sysc = connect(sys1,sys2,sys3,'r','y',opt);

Examples

SISO Feedback Loop

Create an aggregate model of the following block diagram from r to y.

Create C and G , and name the inputs and outputs.
$C=\operatorname{pid}(2,1)$;
C.u = 'e';
C. $y=$ 'u';

G = zpk([],[-1,-1],1);
G.u = 'u';
G.y = 'y';

The notations C.u and C.y are shorthand expressions equivalent to C.InputName and C.OutputName, respectively. For example, entering $C . u=$ ' e ' is equivalent to entering C. InputName $=$ ' e '. The command sets the InputName property of C to the value ' e '.

Create the summing junction.
Sum $=\operatorname{sumblk}\left(' e=r-y^{\prime}\right)$;
Combine C, G, and the summing junction to create the aggregate model from r to y .
$T=\operatorname{connect}\left(G, C, S u m, r^{\prime}, ' y '\right)$;
connect automatically joins inputs and outputs with matching names.

MIMO Feedback Loop

Create the control system of the previous example where G and C are both 2-input, 2-output models.

```
C = [pid(2,1),0;0,pid(5,6)];
C.InputName = 'e';
```

```
C.OutputName = 'u';
G = ss(-1,[1,2],[1;-1],0);
G.InputName = 'u';
G.OutputName = 'y';
```

When you specify single names for vector-valued signals, the software automatically performs vector expansion of the signal names. For example, examine the names of the inputs to C.

C. InputName

ans $=$

$$
\begin{aligned}
& \text { 'e(1)' } \\
& \text { 'e(2)' }
\end{aligned}
$$

Create a 2-input, 2-output summing junction.
Sum = sumblk('e = r-y',2);
sumblk also performs vector expansion of the signal names.
Interconnect the models to obtain the closed-loop system.
T = connect (G, C, Sum, 'r', 'y');
The block diagram elements G, C, and Sum are all 2-input, 2-output models. Therefore, connect performs the same vector expansion. connect selects all entries of the two-input signals ' r ' and ' y ' as inputs and outputs to T, respectively. For example, examine the input names of T .
T. InputName
ans $=$

$$
\begin{aligned}
& \text { 'r(1)' } ' \text { 'r(2)' }
\end{aligned}
$$

Feedback Loop With Analysis Point Inserted by connect

Create a model of the following block diagram from r to y. Insert an analysis point at an internal location, u.

Create C and G, and name the inputs and outputs.

```
C = pid(2,1);
C.InputName = 'e';
C.OutputName = 'u';
G = zpk([],[-1,-1],1);
G.InputName = 'u';
G.OutputName = 'y';
```

Create the summing junction.
Sum = sumblk('e = r-y');
Combine C, G, and the summing junction to create the aggregate model, with an analysis point at u.
T = connect(G,C,Sum,'r','y','u')
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, and the follow AnalysisPoints_: Analysis point, 1 channels, 1 occurrences.

Type "ss(T)" to see the current value and "T.Blocks" to interact with the blocks.
The resulting T is a genss model. The connect command creates the AnalysisPoint block, AnalysisPoints_, and inserts it into T . To see the name of the analysis point channel in AnalysisPoints_, use getPoints.

```
getPoints(T)
```

```
ans = 1x1 cell array
```

 \{'u'\}
 The analysis point channel is named 'u'. You can use this analysis point to extract system responses. For example, the following commands extract the open-loop transfer at u and the closed-loop response at y to a disturbance injected at u.
$\mathrm{L}=$ getLoopTransfer(T,'u', -1) ;
Tuy = getIOTransfer(T,'u','y');
T is equivalent to the following block diagram, where $A P_{-} u$ designates the AnalysisPoint block AnalysisPoints_ with channel name u.

Index-Based Interconnection

Create an aggregate model of the following block diagram from r to y using index-based interconnection.

Create C, G, and the unconnected aggregate model blksys.
$C=\operatorname{pid}(2,1)$;
G = zpk([],[-1,-1],1);
blksys = append(C,G);
The inputs $u(1), u(2)$ of $b l k s y s$ correspond to the inputs of C and G, respectively. The outputs $w(1), w(2)$ of blksys correspond to the outputs of C and G, respectively.

Create the matrix connections, which specifies which outputs of blksys connect to which inputs of blksys.
connections = [2 1; 1-2];
The first row indicates that $w(1)$ connects to $u(2)$; in other words, that the output of C connects to the input of G. The second row indicates that $-w(2)$ connects to $u(1)$; in other words, that the negative of the output of G connects to the input of C .

Create the connected aggregate model from r to y.
T = connect(blksys,connections,1,2)
The last two arguments specify the external inputs and outputs in terms of the indices of blksys. The argument 1 specifies that the external input connects to $u(1)$. The last argument, 2 , specifies that the external output connects from w(2).

Version History

Introduced before R2006a

See Also

sumblk|AnalysisPoint|append|feedback|parallel| series |lft|connect0ptions

Topics

"Multi-Loop Control System"
"MIMO Control System"
"MIMO Feedback Loop"
"Mark Analysis Points in Closed-Loop Models"

connectOptions

Options for the connect command

Syntax

```
opt = connectOptions
opt = connectOptions(Name,Value)
```


Description

opt $=$ connect0ptions returns the default options for connect.
opt $=$ connectOptions(Name, Value) returns an options set with the options specified by one or more Name, Value pair arguments.

Examples

Retain Unconnected States in Model Interconnection

Use connectOptions to cause the connect command to retain unconnected states in an interconnected model.

Suppose you have dynamic system models sys1, sys2, and sys3. Combine these dynamic system models to build an interconnected model with input ' r ' and output ' y '. Set the option to retain states in the model that do not contribute to the dynamics in the path from ' r ' to ' y '.

```
opt = connectOptions('Simplify',false);
sysc = connect(sys1,sys2,sys3,'r','y',opt);
```


Input Arguments

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'Simplify',false

Simplify - Automatic elimination of unconnected states

true (default) | false
Automatic elimination of unconnected states, specified as either true or false.

- true - connect eliminates all states that do not contribute to the I/O transfer function from the specified inputs to the specified outputs of the interconnected system.
- false - connect retains unconnected states. This option can be useful, for example, when you want to compute the interconnected system response from known initial state values of the components.

Data Types: logical

Output Arguments

opt - Options for connect
connectOptions options set
Options for connect, returned as a connect0ptions options set. Use opt as the last argument to connect when interconnecting models.

Version History

Introduced in R2013b

See Also

connect

Control System Designer

Design single-input, single-output (SISO) controllers

Description

The Control System Designer app lets you design single-input, single-output (SISO) controllers for feedback systems modeled in MATLAB or Simulink (requires Simulink Control Design ${ }^{\mathrm{TM}}$ software).

Using this app, you can:

- Design controllers using:
- Interactive Bode, root locus, and Nichols graphical editors for adding, modifying, and removing controller poles, zeros, and gains.
- Automated PID, LQG, or IMC tuning.
- Optimization-based tuning (requires Simulink Design Optimization ${ }^{\mathrm{TM}}$ software).
- Automated loop shaping (requires Robust Control Toolbox software).
- Tune compensators for single-loop or multiloop control architectures.
- Analyze control system designs using time-domain and frequency-domain responses, such as step responses and pole-zero maps.
- Compare response plots for multiple control system designs.
- Design controllers for multimodel control applications.

Limitations

When using Control System Designer in MATLAB Online ${ }^{\mathrm{TM}}$, the following features are not available:

- Designing of controllers in Simulink
- Variable editor

Open the Control System Designer App

- MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app icon.
- MATLAB command prompt: Enter controlSystemDesigner.
- Simulink Toolstrip: On the Apps tab, under Control Systems, click the app icon.

Examples

- "Control System Designer Tuning Methods"
- "Bode Diagram Design"
- "Root Locus Design"
- "Design Compensator Using Automated Tuning Methods"
- "Design Multiloop Control System"
- "Analyze Designs Using Response Plots"
- "Compare Performance of Multiple Designs"
- "Multimodel Control Design"

Programmatic Use

controlSystemDesigner opens the Control System Designer app using the following default control architecture:

The architecture consists of the LTI objects:

- G - Plant model
- C - Compensator
- H-Sensor model
- F-Prefilter

By default, the app configures each of these models as a unit gain.
controlSystemDesigner(plant) initializes the plant, G, to $p l a n t$. plant can be any SISO LTI model created with ss, tf, zpk or frd, or an array of such models.
controlSystemDesigner(plant, comp) initializes the compensator, C, to the SISO LTI model comp.
controlSystemDesigner($p l a n t$, comp, sensor) initializes the sensor model, H, to sensor. sensor can be any SISO LTI model or an array of such models. If you specify both plant and sensor as LTI model arrays, the lengths of the arrays must match.
controlSystemDesigner(plant, comp, sensor, prefilt) initializes the prefilter model, F, to the SISO LTI model prefilt.
controlSystemDesigner(views) opens the app and specifies the initial graphical editor configuration. views can be any of the following character vectors, or a cell array of multiple character vectors.

- 'rlocus' - Root locus editor
- 'bode' - Open-loop Bode Editor
- 'nichols' - Open-loop Nichols Editor
- 'filter' - Bode Editor for the closed-loop response from prefilter input to the plant output

In addition to opening the specified graphical editors, the app plots the closed-loop, input-output step response.
controlSystemDesigner(views,plant, comp, sensor, prefilt) specifies the initial plot configuration and initializes the plant, compensator, sensor, and prefilter using the specified models. If a model is omitted, the app uses the default value.
controlSystemDesigner(initData) opens the app and initializes the system configuration using the initialization data structure initdata. To create initdata, use sisoinit.
controlSystemDesigner(sessionFile) opens the app and loads a previously saved session. sessionFile is the name of a session data file on the MATLAB path. This data includes the current system architecture and plot configuration, and any designs and responses saved in the Data Browser.

To save a session, in the Control System Designer app, on the Control System tab, click $\stackrel{\square}{\square} \frac{\square}{\square}$ Save Session.

Version History

Introduced in R2015a

R2021b: Support for opening SISO Design Tool sessions saved before release R2016a has been removed

Errors starting in R2021b
Support for opening SISO Design Tool sessions saved before release R2016a will be removed in release R2021b.

If you have sessions saved before release R2016a, open and resave the session files using Control System Designer in any release from R2016a through R2021a.

See Also

Apps

Control System Tuner

Functions

pidTuner|sisoinit

Topics

"Control System Designer Tuning Methods"
"Bode Diagram Design"
"Root Locus Design"
"Design Compensator Using Automated Tuning Methods"
"Design Multiloop Control System"
"Analyze Designs Using Response Plots"
"Compare Performance of Multiple Designs"
"Multimodel Control Design"

Control System Tuner

Tune fixed-structure control systems

Description

The Control System Tuner app tunes control systems modeled in MATLAB or Simulink (requires Simulink Control Design software). This app lets you tune any control system architecture to meet your design goals. You can tune multiple fixed-order, fixed-structure control elements distributed over one or more feedback loops.

Control System Tuner automatically tunes the controller parameters to satisfy the must-have requirements (design constraints) and to best meet the remaining requirements (objectives). The library of tuning goals lets you capture your design requirements in a form suitable for fast automated tuning. Available tuning goals include standard control objectives such as reference tracking, disturbance rejection, loop shapes, closed-loop damping, and stability margins.

Limitations

When using Control System Tuner in MATLAB Online, the following features are not available:

- Tuning of Simulink models
- Tuning reports
- Variable editor

Open the Control System Tuner App

- MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app icon.
- MATLAB command prompt: Enter controlSystemTuner.
- Simulink Toolstrip: On the Apps tab, under Control Systems, click the app icon.

Examples

- "Setup for Tuning Control System Modeled in MATLAB"
- "Specify Control Architecture in Control System Tuner"
- "Tune a Control System Using Control System Tuner"

Programmatic Use

controlSystemTuner opens the Control System Tuner app. When invoked without input arguments, Control System Tuner opens for tuning the default single-loop feedback control system architecture. You can then edit the components of this default architecture as described in "Specify Control Architecture in Control System Tuner".
controlSystemTuner (CL) opens the app for tuning the control architecture specified in the genss model CL. If your control architecture does not match Control System Tuner's predefined control architecture, use this syntax with a genss model that has tunable components representing your controller elements. See "Specify Control Architecture in Control System Tuner".
controlSystemTuner (mdl) opens the app for tuning blocks in a Simulink model. mdl is the name of a Simulink model saved in the current working directory or on the MATLAB path. (Requires Simulink Control Design software.)
controlSystemTuner (ST) opens the app for tuning a Simulink model associated with an slTuner interface, ST. Control System Tuner takes information such as analysis points and operating points from ST. (Requires Simulink Control Design software.)
controlSystemTuner(sessionfile) opens the app and loads a previously saved session.
When you use Control System Tuner, you can click Save Session to save session data to disk such as tuning goals you have created, response I/Os you have defined, operating points, and stored designs. sessionfile is the name of a session data file saved in the current working directory or on the MATLAB path.

Version History

Introduced in R2016a
R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

Functions

systune | slTuner \| genss

Topics

"Setup for Tuning Control System Modeled in MATLAB"
"Specify Control Architecture in Control System Tuner"
"Tune a Control System Using Control System Tuner"

Convert Model Rate

Convert models between continuous time and discrete time and resample models in the Live Editor

Description

Convert Model Rate lets you interactively convert an LTI model between continuous time and discrete time. You can also use it to resample a discrete-time model. The task automatically generates MATLAB code for your live script.

To get started with the Convert Model Rate task, select the model you want to convert. You can also specify the target sample time, conversion method, and other parameters. The task generates the converted model in the MATLAB workspace, and can generate a response plot to let you monitor the match between the original and converted models as you experiment with conversion parameters.

Related Functions

Convert Model Rate generates code using the following functions.

- c2d
- d2c
- d2d
Convert Model Rate

sysConverted $=$ Discretized model of G at sample time 0.2 seconds using First-Order Hold
Select model
Model G Type: Continuous Sample Time (s)
Select conversion method
Method First-Order Hold
Visualize results
Output Plot Bode

Description (collapsed portion)

Related Functions

Convert Model Rate generates code using the following functions.

- c2d
- d2c
- d2d

Open the Task

To add the Convert Model Rate task to a live script in the MATLAB Editor:

- On the Live Editor tab, select Task > Convert Model Rate.
- In a code block in your script, type a relevant keyword, such as convert, rate, or c2d. Select Convert Model Rate from the suggested command completions.

Examples

Discretize Model in the Live Editor

Use the Convert Model Rate task in the Live Editor to interactively convert a model from continuous time to discrete time. Experiment with different methods, options, and response plots. The task automatically generates code reflecting your selections. Open this example to see a preconfigured script containing the Convert Model Rate task.

Create a continuous-time transfer-function model.
$G=t f\left([1-50300],\left[\begin{array}{lll}1 & 200 & 350\end{array}\right]\right) ;$
To discretize this model, open the Convert Model Rate task in the Live Editor. On the Live Editor tab, select Task > Convert Model Rate. In the task, select G as the model to convert.

The task automatically discretizes the model using the default sample time, 0.2 s , and the default conversion method, Zero-order hold. It also creates a Bode plot, allowing you to compare the responses of the original and converted models.

Bode Diagram

The vertical line on the plot shows the Nyquist frequency associated with the default sample time. Suppose you want to use a sample time of 0.15 seconds. Change the sample time by entering the new value in the Sample Time field. The response plot automatically updates to reflect the new sample time.

If the precise dynamics of the resonance are important for your application, you can improve the frequency-domain match using a different conversion method. In the task, try experimenting with different methods and observe their effect on the response plot.

The Tustin method can yield a better match in the frequency domain than the default zero-order hold method. (See "Continuous-Discrete Conversion Methods".) In Select Conversion Method, select Bilinear (Tustin) approximation. Initially, the resulting frequency-domain match is poorer than with the zero-order hold method.

You can improve the match using a prewarp frequency. This option forces the discrete-time response to match at the frequency you specify. The resonance of G peaks at about $14 \mathrm{rad} / \mathrm{s}$. Enter that value for the prewarp frequency. The match does improve around the resonance. However, the resonance is very close to the Nyquist frequency for the sample time of 0.15 s , which limits how close the match can be.

The Convert Model Rate task can generate other types of response plots. For instance, to compare the time-domain responses of the original and converted model, in Output Plot, select step or impulse.

Visualize results

```
Output Plot Step
```


The task generates code in your live script. The generated code reflects the parameters and options you select, and includes code to generate the response plot you specify. To see the generated code, click \vee at the bottom of the task parameter area. The task expands to display the generated code.

```
.,sualı_
Output Plot Step V
% Create option set for continuous to discrete-time conversion
options = c2dOptions('Method','tustin','PrewarpFrequency',14);
% Convert model from continuous to discrete time
sysConverted = c2d(G,0.15,options);
% Remove temporary variables from Workspace
clear options
% Visualize the results
stepplot(G,sysConverted);
legend('Original Model','Converted Model');
grid on;
```

By default, the generated code uses sysConverted as the name of the output variable. The converted model in the MATLAB® workspace using this name. To specify a different output variable name, enter a new name in the summary line at the top of the task. For instance, change the name to sys_d.

The task updates the generated code to reflect the new variable name, and the new converted model sys d appears in the MATLAB workspace. You can use the model for further analysis or control design as you would any other model object. For instance, simulate the converted system's response to a square-wave input. Use the sample time you specified in the task.
[u,t] = gensig('square' $4,10,0.15)$;
lsim(sys_d,u,t)

Parameters

Model - Model to convert
LTI model
Select an LTI model. The list contains all suitable continuous-time or discrete-time dynamic system models in the MATLAB workspace, including:

- Numeric LTI models such as tf, ss, or zpk models.
- Identified LTI models such as idss and idtf. (Using identified models requires a System Identification Toolbox license.)

You can convert SISO models or MIMO models, with or without time delays, although some conversion methods are only available for SISO models (see the Method parameter description). You cannot use Convert Model Rate to convert generalized LTI models such as genss or uss, frequency-response data models such as frd, or process models (idproc).

Sample Time - Target sample time

0.2 (default) | 0 | positive scalar

Specify the sample time of the converted model in units of $1 /$ TimeUnit, where TimeUnit is the TimeUnit property of the input model.

- To discretize a continuous-time model or resample a discrete-time model, enter the target sample time.
- To convert a discrete-time model to continuous time, enter 0.

Method - Rate conversion method
Zero-order hold (default)|First-order hold|Bilinear (Tustin) approximation|...
Choose a rate conversion method. Available methods are:

- Zero-order hold
- First-order hold
- Impulse-invariant discretization (continuous-to-discrete conversion of SISO models only)
- Bilinear (Tustin) approximation
- Zero-pole matching method
- Least-squares method (continuous-to-discrete conversion of SISO models only)

For information about choosing a conversion method, see "Continuous-Discrete Conversion Methods".

Delay Order - Approximate order for estimating time delay
0 (default) | positive integer
When you convert the rate of a model that has a time delay, the Bilinear (Tustin) approximation or Zero-pole matching method methods round the time delay to the nearest integer multiple of the sample time. This rounding can degrade the accuracy of dynamics, especially near the Nyquist frequency.

Set Delay Order to a nonzero integer to make Convert Model Rate approximate the fractional portion of the delay using a Thiran filter, instead of rounding. Use the smallest value that yields sufficiently accurate rate-converted dynamics for your application. For more information about Thiran filters, see thiran.

Prewarp Freq. (rad/s) - Prewarp frequency for bilinear (Tustin) method
0 (default) | positive scalar
When you discretize a continuous-time model, if your system has important dynamics at a particular frequency that you want the rate conversion to preserve, you can use the Bilinear (Tustin) approximation method with frequency prewarping. This method ensures a match between the original and converted responses at the prewarp frequency you specify. See "Continuous-Discrete Conversion Methods".

Output Plot - Type of response plot
Bode (default) | Step | Impulse | ...
Convert Model Rate automatically generates a response plot to help you check that the dynamics important to your application are preserved. Specify one of the following response plot types to compare the responses of the original and converted models while you experiment with conversion parameters.

- Bode
- Step
- Impulse
- Pole-Zero

The code generated by the task includes code to create the selected response plot. To omit the response plot, select None.

Version History
 Introduced in R2019b

See Also

c2d \| d2c|d2d

Topics

"Continuous-Discrete Conversion Methods"

correct

Correct state and state estimation error covariance using extended or unscented Kalman filter, or particle filter and measurements

Syntax

[CorrectedState,CorrectedStateCovariance] = correct(obj,y)
[CorrectedState,CorrectedStateCovariance] = correct(obj,y,Um1,..., Umn)

Description

The correct command updates the state and state estimation error covariance of an extendedKalmanFilter, unscentedKalmanFilter or particleFilter object using measured system outputs. To implement extended or unscented Kalman filter, or particle filter, use the correct and predict commands together. If the current output measurement exists, you can use correct and predict. If the measurement is missing, you can only use predict. For information about the order in which to use the commands, see "Using predict and correct Commands" on page 2-178.
[CorrectedState,CorrectedStateCovariance] $=$ correct(obj,y) corrects the state estimate and state estimation error covariance of an extended or unscented Kalman filter, or particle filter object obj using the measured output y.

You create obj using the extendedKalmanFilter, unscentedKalmanFilter or particleFilter commands. You specify the state transition function and measurement function of your nonlinear system in obj. You also specify whether the process and measurement noise terms are additive or nonadditive in these functions. The State property of the object stores the latest estimated state value. Assume that at time step k, obj. State is $\widehat{x}[k \mid k-1]$. This value is the state estimate for time k, estimated using measured outputs until time $k-1$. When you use the correct command with measured system output $y[k]$, the software returns the corrected state estimate $\widehat{x}[k \mid k]$ in the CorrectedState output. Where $\widehat{x}[k \mid k]$ is the state estimate at time k , estimated using measured outputs until time k. The command returns the state estimation error covariance of $\widehat{x}[k \mid k]$ in the CorrectedStateCovariance output. The software also updates the State and StateCovariance properties of obj with these corrected values.

Use this syntax if the measurement function h that you specified in obj. MeasurementFcn has one of the following forms:

- $y(k)=h(x(k))-$ for additive measurement noise.
- $y(k)=h(x(k), v(k))-$ for nonadditive measurement noise.

Where $y(k), x(k)$, and $v(k)$ are the measured output, states, and measurement noise of the system at time step k. The only inputs to h are the states and measurement noise.
[CorrectedState,CorrectedStateCovariance] = correct(obj,y,Um1,...,Umn) specifies additional input arguments, if the measurement function of the system requires these inputs. You can specify multiple arguments.

Use this syntax if the measurement function h has one of the following forms:

- $y(k)=h(x(k), U m 1, \ldots, U m n)-$ for additive measurement noise.
- $y(k)=h(x(k), v(k), U m 1, \ldots, U m n)-$ for nonadditive measurement noise.
correct command passes these inputs to the measurement function to calculate the estimated outputs.

Examples

Estimate States Online Using Extended Kalman Filter

Estimate the states of a van der Pol oscillator using an extended Kalman filter algorithm and measured output data. The oscillator has two states and one output.

Create an extended Kalman filter object for the oscillator. Use previously written and saved state transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. These functions describe a discrete-approximation to a van der Pol oscillator with the nonlinearity parameter mu equal to 1 . The functions assume additive process and measurement noise in the system. Specify the initial state values for the two states as [1;0]. This is the guess for the state value at initial time k , based on knowledge of system outputs until time $\mathrm{k}-1, \hat{x}[k \mid k-1]$.

```
obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[1;0]);
```

Load the measured output data y from the oscillator. In this example, use simulated static data for illustration. The data is stored in the vdp_data. mat file.
load vdp_data.mat y
Specify the process noise and measurement noise covariances of the oscillator.

```
obj.ProcessNoise = 0.01;
obj.MeasurementNoise = 0.16;
```

Initialize arrays to capture results of the estimation.

```
residBuf = [];
xcorBuf = [];
xpredBuf = [];
```

Implement the extended Kalman filter algorithm to estimate the states of the oscillator by using the correct and predict commands. You first correct $\hat{\chi}[k \mid k-1]$ using measurements at time k to get $\hat{x}[k \mid k]$. Then, you predict the state value at the next time step $\hat{x}[k+1 \mid k]$ using $\hat{x}[k \mid k]$, the state estimate at time step k that is estimated using measurements until time k .

To simulate real-time data measurements, use the measured data one time step at a time. Compute the residual between the predicted and actual measurement to assess how well the filter is performing and converging. Computing the residual is an optional step. When you use residual, place the command immediately before the correct command. If the prediction matches the measurement, the residual is zero.

After you perform the real-time commands for the time step, buffer the results so that you can plot them after the run is complete.

```
for k = 1:size(y)
    [Residual,ResidualCovariance] = residual(obj,y(k));
```

```
[CorrectedState,CorrectedStateCovariance] = correct(obj,y(k));
[PredictedState,PredictedStateCovariance] = predict(obj);
residBuf(k,:) = Residual;
xcorBuf(k,:) = CorrectedState';
xpredBuf(k,:) = PredictedState';
```

end

When you use the correct command, obj. State and obj. StateCovariance are updated with the corrected state and state estimation error covariance values for time step k, CorrectedState and CorrectedStateCovariance. When you use the predict command, obj. State and obj. StateCovariance are updated with the predicted values for time step $\mathrm{k}+1$, PredictedState and PredictedStateCovariance. When you use the residual command, you do not modify any obj properties.

In this example, you used correct before predict because the initial state value was $\hat{\chi}[k \mid k-1]$, a guess for the state value at initial time k based on system outputs until time k - 1 . If your initial state value is $\hat{x}[k-1 \mid k-1]$, the value at previous time $k-1$ based on measurements until $k-1$, then use the predict command first. For more information about the order of using predict and correct, see "Using predict and correct Commands" on page 2-178.

Plot the estimated states, using the postcorrection values.
plot(xcorBuf(:,1), xcorBuf(:,2))
title('Estimated States')

Plot the actual measurement, the corrected estimated measurement, and the residual. For the measurement function in vdpMeasurementFcn, the measurement is the first state.
$M=[y, x \operatorname{corBuf}(:, 1), r e s i d B u f] ;$
plot(M)
grid on
title('Actual and Estimated Measurements, Residual')
legend('Measured','Estimated','Residual')

The estimate tracks the measurement closely. After the initial transient, the residual remains relatively small throughout the run.

Estimate States Online Using Particle Filter

Load the van der Pol ODE data, and specify the sample time.
vdpODEdata.mat contains a simulation of the van der Pol ODE with nonlinearity parameter mu=1, using ode45, with initial conditions [2;0]. The true state was extracted with sample time $\mathrm{dt}=$ 0.05 .
load ('vdpODEdata.mat','xTrue','dt')
tSpan = 0:dt:5;
Get the measurements. For this example, a sensor measures the first state with a Gaussian noise with standard deviation 0.04.
sqrtR = 0.04;
yMeas $=x \operatorname{True}(:, 1)+$ sqrtR* randn(numel(tSpan),1);
Create a particle filter, and set the state transition and measurement likelihood functions.
myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);
Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.
initialize(myPF,1000,[2;0],eye(2));
Pick the mean state estimation and systematic resampling methods.
myPF.StateEstimationMethod = 'mean';
myPF.ResamplingMethod = 'systematic';
Estimate the states using the correct and predict commands, and store the estimated states.

```
xEst = zeros(size(xTrue));
for k=1:size(xTrue,1)
    xEst(k,:) = correct(myPF,yMeas(k));
    predict(myPF);
end
```

Plot the results, and compare the estimated and true states.

```
figure(1)
plot(xTrue(:,1),xTrue(:,2),'x',xEst(:,1),xEst(:,2),'ro')
legend('True','Estimated')
```


Specify State Transition and Measurement Functions with Additional Inputs

Consider a nonlinear system with input u whose state x and measurement y evolve according to the following state transition and measurement equations:

$$
\begin{aligned}
& x[k]=\sqrt{x[k-1]+u[k-1]}+w[k-1] \\
& y[k]=x[k]+2 * u[k]+v[k]^{2}
\end{aligned}
$$

The process noise w of the system is additive while the measurement noise v is nonadditive.
Create the state transition function and measurement function for the system. Specify the functions with an additional input u.
$f=@(x, u)(s q r t(x+u))$;
$h=@(x, v, u)\left(x+2 * u+v^{\wedge} 2\right)$;
f and h are function handles to the anonymous functions that store the state transition and measurement functions, respectively. In the measurement function, because the measurement noise is nonadditive, v is also specified as an input. Note that v is specified as an input before the additional input u.

Create an extended Kalman filter object for estimating the state of the nonlinear system using the specified functions. Specify the initial value of the state as 1 and the measurement noise as nonadditive.
obj = extendedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);
Specify the measurement noise covariance.
obj. MeasurementNoise $=0.01$;
You can now estimate the state of the system using the predict and correct commands. You pass the values of u to predict and correct, which in turn pass them to the state transition and measurement functions, respectively.

Correct the state estimate with measurement $\mathrm{y}[\mathrm{k}]=0.8$ and input $\mathrm{u}[\mathrm{k}]=0.2$ at time step k .

```
correct(obj,0.8,0.2)
```

Predict the state at the next time step, given $u[k]=0.2$.
predict(obj,0.2)
Retrieve the error, or residual, between the prediction and the measurement.

```
[Residual, ResidualCovariance] = residual(obj,0.8,0.2);
```


Input Arguments

obj - Extended or unscented Kalman filter, or particle filter object extendedKalmanFilter object | unscentedKalmanFilter object | particleFilter object

Extended or unscented Kalman filter, or particle filter object for online state estimation, created using one of the following commands:

- extendedKalmanFilter - Uses the extended Kalman filter algorithm.
- unscentedKalmanFilter - Uses the unscented Kalman filter algorithm.
- particleFilter - Uses the particle filter algorithm.

y - Measured system output

vector
Measured system output at the current time step, specified as an N-element vector, where N is the number of measurements.

Um1, . . . Umn - Additional input arguments to measurement function
 input arguments of any type

Additional input arguments to the measurement function of the system, specified as input arguments of any type. The measurement function, h, is specified in the MeasurementFcn or MeasurementLikelihoodFcn property of obj. If the function requires input arguments in addition to the state and measurement noise values, you specify these inputs in the correct command syntax. correct command passes these inputs to the measurement or the measurement likelihood function to calculate estimated outputs. You can specify multiple arguments.

For example, suppose that your measurement or measurement likelihood function calculates the estimated system output y using system inputs u and current time k, in addition to the state x :
$y(k)=h(x(k), u(k), k)$
Then when you perform online state estimation at time step k, specify these additional inputs in the correct command syntax:
[CorrectedState, CorrectedStateCovariance] $=\operatorname{correct}(o b j, y, u(k), k)$;

Output Arguments

CorrectedState - Corrected state estimate

vector
Corrected state estimate, returned as a vector of size M, where M is the number of states of the system. If you specify the initial states of obj as a column vector then M is returned as a column vector, otherwise M is returned as a row vector.

For information about how to specify the initial states of the object, see the extendedKalmanFilter, unscentedKalmanFilter and particleFilter reference pages.

CorrectedStateCovariance - Corrected state estimation error covariance

 matrixCorrected state estimation error covariance, returned as an M-by- M matrix, where M is the number of states of the system.

More About

Using predict and correct Commands

After you have created an extended or unscented Kalman filter, or particle filter object, obj, to implement the estimation algorithms, use the correct and predict commands together.

At time step k, correct command returns the corrected value of states and state estimation error covariance using measured system outputs $\mathrm{y}[\mathrm{k}]$ at the same time step. If your measurement function has additional input arguments U_{m}, you specify these as inputs to the correct command. The command passes these values to the measurement function.
[CorrectedState,CorrectedCovariance] = correct(obj,y,Um)
The correct command updates the State and StateCovariance properties of the object with the estimated values, CorrectedState and CorrectedCovariance.

The predict command returns the prediction of state and state estimation error covariance at the next time step. If your state transition function has additional input arguments U_{s}, you specify these as inputs to the predict command. The command passes these values to the state transition function.
[PredictedState,PredictedCovariance] = predict(obj,Us)
The predict command updates the State and StateCovariance properties of the object with the predicted values, PredictedState and PredictedCovariance.

If the current output measurement exists at a given time step, you can use correct and predict. If the measurement is missing, you can only use predict. For details about how these commands implement the algorithms, see "Extended and Unscented Kalman Filter Algorithms for Online State Estimation".

The order in which you implement the commands depends on the availability of measured data y, U_{s}, and U_{m} for your system:

- correct then predict - Assume that at time step k, the value of obj. State is $\widehat{x}[k \mid k-1]$. This value is the state of the system at time k, estimated using measured outputs until time $k-1$. You also have the measured output $y[k]$ and inputs $U_{s}[k]$ and $U_{m}[k]$ at the same time step.

Then you first execute the correct command with measured system data y [k] and additional inputs $U_{m}[k]$. The command updates the value of obj. State to be $\widehat{x}[k \mid k]$, the state estimate for time k, estimated using measured outputs up to time k. When you then execute the predict command with input $\mathrm{U}_{\mathrm{s}}[\mathrm{k}]$, obj. State now stores $\widehat{x}[k+1 \mid k]$. The algorithm uses this state value as an input to the correct command in the next time step.

- predict then correct - Assume that at time step k, the value of obj. State is $\widehat{x}[k-1 \mid k-1]$. You also have the measured output $y[k]$ and input $U_{m}[k]$ at the same time step but you have $\mathrm{U}_{\mathrm{s}}[\mathrm{k}-1]$ from the previous time step.

Then you first execute the predict command with input $\mathrm{U}_{\mathrm{s}}[\mathrm{k}-1]$. The command updates the value of obj. State to $\widehat{x}[k \mid k-1]$. When you then execute the correct command with input arguments $y[k]$ and $U_{m}[k]$, obj. State is updated with $\widehat{x}[k \mid k]$. The algorithm uses this state value as an input to the predict command in the next time step.

Thus, while in both cases the state estimate for time $k, \widehat{x}[k \mid k]$ is the same, if at time k you do not have access to the current state transition function inputs $U_{s}[k]$, and instead have $U_{s}[k-1]$, then use predict first and then correct.

For an example of estimating states using the predict and correct commands, see "Estimate States Online Using Extended Kalman Filter" on page 2-172 or "Estimate States Online Using Particle Filter" on page 2-1068.

Version History

Introduced in R2016b

See Also

predict|clone|extendedKalmanFilter|unscentedKalmanFilter|particleFilter| initialize|residual

Topics

"Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter"
"Generate Code for Online State Estimation in MATLAB"
"Extended and Unscented Kalman Filter Algorithms for Online State Estimation"

covar

Output and state covariance of system driven by white noise

Syntax

$\mathrm{P}=\operatorname{covar}(\mathrm{sys}, \mathrm{W})$
$[P, Q]=\operatorname{covar}(s y s, W)$

Description

covar calculates the stationary covariance of the output y of an LTI model sys driven by Gaussian white noise inputs w. This function handles both continuous- and discrete-time cases.
$P=\operatorname{covar}($ sys,$W)$ returns the steady-state output response covariance

$$
P=E\left(y y^{T}\right)
$$

given the noise intensity

$$
\begin{gathered}
E\left(w(t) w(\tau)^{T}\right)=W \delta(t-\tau) \text { (continuous time) } \\
E\left(w[k] w[l]^{T}\right)=W \delta_{k l} \quad \text { (discrete time) }
\end{gathered}
$$

$[P, Q]=\operatorname{covar}(s y s, W)$ also returns the steady-state state covariance

$$
Q=E\left(x x^{T}\right)
$$

when sys is a state-space model (otherwise Q is set to []).
When applied to an N-dimensional LTI array sys, covar returns multidimensional arrays P, Q such that
$P(:,:, i 1, \ldots i N)$ and $Q(:,:, i 1, \ldots i N)$ are the covariance matrices for the model sys(:,:,il,...iN).

Examples

Compute the output response covariance of the discrete SISO system

$$
H(z)=\frac{2 z+1}{z^{2}+0.2 z+0.5}, T_{S}=0.1
$$

due to Gaussian white noise of intensity $\mathrm{W}=5$. Type

```
sys = tf([2 1],[1 0.2 0.5],0.1);
p = covar(sys,5)
```

These commands produce the following result.

```
p =
    30.3167
```

You can compare this output of covar to simulation results.

```
randn('seed',0)
w = sqrt(5)*randn(1,1000); % 1000 samples
% Simulate response to w with LSIM:
y = lsim(sys,w);
% Compute covariance of y values
psim = sum(y .* y)/length(w);
```

This yields

```
psim =
```

 32.6269
 The two covariance values p and psim do not agree perfectly due to the finite simulation horizon.

Algorithms

Transfer functions and zero-pole-gain models are first converted to state space with ss.
For continuous-time state-space models

$$
\begin{aligned}
& \dot{x}=A x+B w \\
& y=C x+D w,
\end{aligned}
$$

the steady-state state covariance Q is obtained by solving the Lyapunov equation

$$
A Q+Q A^{T}+B W B^{T}=0
$$

In discrete time, the state covariance Q solves the discrete Lyapunov equation

$$
A Q A^{T}-Q+B W B^{T}=0
$$

In both continuous and discrete time, the output response covariance is given by $P=C Q C^{T}+D W D^{T}$. For unstable systems, P and Q are infinite. For continuous-time systems with nonzero feedthrough, covar returns Inf for the output covariance P.

Version History
 Introduced before R2006a

References

[1] Bryson, A.E. and Y.C. Ho, Applied Optimal Control, Hemisphere Publishing, 1975, pp. 458-459.

See Also
 dlyap|lyap

Create Plot

Interactively create linear analysis response plots in the Live Editor

Description

The Create Plot Live Editor task lets you interactively create time-domain and frequency-domain analysis plots for dynamic system models in your MATLAB workspace. This page describes a subset of the functionality available in the Create Plot live task - the subset available when you select Control Toolbox Plots in the Filter by Category menu. For more information about the task in general, see the Create Plot Live Editor task reference page.

Supported plots

The Create Plot Live Editor task supports the following linear analysis response plots:

- bodeplot
- sigmaplot
- nyquistplot
- nicholsplot
- stepplot
- impulseplot
- rlocusplot
- pzplot
- iopzplot
- hsvplot

Open the Create Plot

To add the Create Plot task to a live script in the MATLAB Live Editor:
-
On the Live Editor tab, click Task and select the Create Plot icon

- In a code block in the live script, type a relevant keyword, such as bode, step, pzplot, or impulse. Select Create Plot from the suggested command completions. When you add the task using this method, then MATLAB automatically selects the corresponding chart type in the Select visualization section of the task.

Examples

Interactively Create Bode Plot in the Live Editor

Use the Create Plot task in the Live Editor to interactively create and visualize different linear analysis plots. You can also use an options object from your MATLAB® workspace to customize your plot. Open this example to see a preconfigured script containing the Create Plot task to create a Bode plot.

For this example, consider the following SISO state-space model:

$$
A=\left[\begin{array}{cc}
-1.5 & -2 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D=0
$$

Create the SISO state-space model defined by the following state-space matrices:
$A=[-1.5,-2 ; 1,0] ;$
$B=[0.5 ; 0] ;$
$C=[0,1]$;
D = 0;
sys = ss(A,B,C,D);
To create a Bode plot of sys, open the Create Plot task in the Live Editor. On the Live Editor tab, select Task > Create Plot. In the task, select Control Toolbox Plots from the Filter by
Category dropdown menu. You can also directly search for the plot type by typing in the plot name in the Select visualization field.

Next, select bodeplot from the available plots. If you do not have a supported model type in your MATLAB workspace, then the respective plot type will not be available.

Use the Dynamic System dropdown menu to pick the appropriate model from your MATLAB workspace. You can use the Frequencies dropdown menu to specify a vector of frequencies. You can also customize your plot by using a predefined options object. For more information, see bodeplot.

For this example, pick sys and leave the other options as default.

You can also select the color, line style and marker symbol for the plot using the Select optional visualization parameters menu. You can click + to add more visualization parameters. For this example, change the line color to green.

To see the code that this task generates, expand the task display by clicking v at the bottom of the task parameter area.

```
bodeplot Add
% Create bodeplot of sys
bodeplot(sys,"g");
```

You can also overlay mutliple visualizations on the same plot axis. For more information and examples, see the Create Plot task reference page.

Parameters

Dynamic System - Model to create the linear analysis response plot dynamic system model | model array

Choose the dynamic system model or model array to create the linear analysis response plot. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Sparse state-space models, such as sparss or mechss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the task evaluates the model at its current value to plot the response data.
- For uncertain control design blocks, the task plots the nominal value and random samples of the model.
- Frequency-response data models such as frd models to plot the Bode, sigma, Nyquist or Nichols response. For such models, the task plots the response at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. (Using identified models requires System Identification Toolbox software.)

Note

- You can only use a single model to plot Hankel singular values. For all other response plots, the task plots the responses of all models in the array on the same axes when you have an array of dynamic system models.

Plot Options - Plot options set for customization
BodeOptions object | SigmaOptions object | NicholsOptions object | NyquistOptions object | TimeOptions object | PZOptions object | HSVOptions object

Create and choose the correct options set based on the plot type as follows:

Plot Type	Options Object	Creation Function
bodeplot	BodeOptions object	bodeoptions
sigmaplot	SigmaOptions object	sigmaoptions
nyquistplot	NyquistOptions object	nyquistoptions
nicholsplot	NicholsOptions object	nicholsoptions
stepplot	TimeOptions object	timeoptions
impulseplot	TimeOptions object	timeoptions
rlocusplot	PZOptions object	pzoptions
pzplot	PZOptions object	pzoptions
iopzplot	PZOptions object	pzoptions
hsvplot	HSVOptions object	hsvoptions

Version History

Introduced in R2022b

See Also

Functions

bodeplot | stepplot|rlocusplot|impulseplot|nicholsplot|nyquistplot|pzplot| hsvplot|iopzplot|sigmaplot| bodeoptions|nicholsoptions|hsvoptions| nyquistoptions|pzoptions| sigmaoptions| timeoptions

Live Editor Tasks

Create Plot

ctranspose, '

Conjugate dynamic system model

Syntax

H = ctranspose(G)

Description

$\mathrm{H}=$ ctranspose (G) computes the conjugate of the dynamic system model or static model G . The ct ranpose command is equivalent to the ' operator.

If G is a dynamic system model poles P and zeros Z, then the conjugate system $\mathrm{H}=$ ctranspose $(G)=G^{\prime}$ has the following properties.

- In continuous time, the poles of H are $-P$ and the zeros of H are $-Z$. The frequency response of H is the Hermitian transpose of the frequency response of G :

$$
H(j \omega)=G(j \omega)^{H} .
$$

- In discrete time with sample time T_{s}, the poles of H are $1 / P$ and the zeros of H are $1 / Z$. The frequency response of H is the Hermitian transpose of the frequency response of G :

$$
H(z)=G(z)^{H},
$$

where $z=e^{\mathrm{i} \omega \mathrm{T}_{\mathrm{s}}}$.
If G is a static model, then H is the complex-conjugate transpose of the matrix.

Examples

Conjugate of Dynamic System Model

Compute the conjugate of a one-input, two-output transfer function model.

```
s = tf('s');
G1 = (s + 1)/(s^2 + 2*s + 1);
G2 = 1/s;
G = [G1;G2]
G =
    From input to output...
                s + 1
        1: ------------
            s^2 + 2 s + 1
            1
        2:
            s
Continuous-time transfer function.
```

The conjugate has two outputs and one input, and takes s to $-s$.

```
H = ctranspose(G)
H =
    From input 1 to output:
        -s + 1
    ------------
    s^2 - 2 s + 1
    From input 2 to output:
    -1
    s
Continuous-time transfer function.
```

Using the ' operator yields the same result as ctranspose.

```
H = G'
```

H =
From input 1 to output:
$-s+1$

$s^{\wedge} 2-2$ s + 1
From input 2 to output:
-1
- -
S
Continuous-time transfer function.

Hermitian Transpose of Frequency Response

Obtain the frequency response and the Hermitian transpose of the frequency response of a transfer function at one frequency.

```
G = [tf(1,[1 0]);tf([1 0],[1 1])];
w = 3;
resp = freqresp(G,w)
resp = 2×1 complex
    0.0000 - 0.3333i
    0.9000 + 0.3000i
```

The Hermitian transpose of the frequency response is the frequency response of the conjugate of G .

```
respH = freqresp(G',w)
respH = 1\times2 complex
    0.0000 + 0.3333i 0.9000 - 0.3000i
```


Input Arguments

G - Input system
dynamic system model | static model
Input system, specified as a dynamic system model or static model such as a tf, zpk, or ss model. G can be a generalized model provided that its control design blocks are scalar and nondynamic, such as a scalar ureal parameter.

Output Arguments

H - Conjugate model

dynamic system model | static model
Conjugate model of G , returned as a dynamic system model or static model of the same type as G .

Version History

Introduced before R2006a

See Also

inv

Topics

"Catalog of Model Interconnections"
"Types of Model Objects"

ctrb

Controllability of state-space model

Syntax

$\mathrm{Co}=\operatorname{ctrb}(\mathrm{A}, \mathrm{B})$
Co = ctrb(sys)

Description

A dynamic system is said to be controllable if it is possible to apply control signals that drive the system to any state within a finite amount of time. This characteristic is also called reachability. ct rb computes a controllability matrix from state matrices or from a state-space model. You can use this matrix to determine controllability.

For instance, consider a continuous-time state-space model with Nx states, Ny outputs, and Nu inputs:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

Here, x, u and y represent the states, inputs and outputs respectively, while $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are the state-space matrices with the following sizes:

- A is an $N x$-by- $N x$ real-valued or complex-valued matrix.
- B is an Nx -by-Nu real-valued or complex-valued matrix.
- C is an Ny -by-Nx real-valued or complex-valued matrix.
- D is an Ny -by-Nu real-valued or complex-valued matrix.

The system is controllable if the controllability matrix generated by ctrb $C o=\left[B A B A^{2} B \ldots A^{n-1} B\right]$ has full rank, that is, the rank is equal to the number of states in the state-space model. The controllability matrix Co has Nx rows and Nxu columns. For an example, see "Controllability of SISO State-Space Model" on page 2-194.
$\mathrm{Co}=\operatorname{ctrb}(\mathrm{A}, \mathrm{B})$ returns the controllability matrix Co using the state matrix A and input-to-state matrix B. The system is controllable if Co has full rank, that is, the rank of Co is equal to the number of states.

Co = ctrb(sys) returns the controllability matrix of the state space model sys. This syntax is equivalent to:

Co = ctrb(sys.A,sys.B);

Examples

Check System Controllability

Define A and B matrices.

```
A = [l 1 1;
    4 -2];
B = [1 -1;
    1 -1];
```

Compute controllability matrix.
Co = ctrb (A,B);
Determine the number of uncontrollable states.

```
unco = length(A) - rank(Co)
unco = 1
```

The uncontrollable state indicates that Co does not have full rank 2 . Therefore the system is not controllable.

Controllability of SISO State-Space Model

For this example, consider the following SISO state-space model with 2 states:

$$
A=\left[\begin{array}{cc}
-1.5 & -2 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D=1
$$

Create the SISO state-space model defined by the following state-space matrices:
$\mathrm{A}=[-1.5,-2 ; 1,0]$;
B $=[0.5 ; 0]$;
C $=[0,1]$;
D = 1;
sys = ss(A,B,C,D);
Compute the controllability matrix and find the rank.

```
Co = ctrb(sys)
Co = 2×2
    0.5000 -0.7500
```

The size of the controllability matrix depends on the size of the A and B matrices. For instance, if matrix A is an Nx -by-Nx matrix and matrix B is an Nx -by-Nu matrix, then the resultant matrix Co has $N x$ rows and $N x u$ columns. Here, $N x$ is the number of states and $N u$ is the number of inputs.

```
rank(Co)
```

ans $=2$

Since the rank of the controllability matrix Co is equal to the number of states, the system sys is controllable.

Alternatively, you can also use just the A and B matrices to find the controllability matrix.

```
Co = ctrb(sys.A,sys.B);
rank(Co)
ans = 2
```


Input Arguments

A - State matrix

Nx-by-Nx matrix
State matrix, specified as an $N x$-by- $N x$ matrix where, $N x$ is the number of states.

B - Input-to-state matrix
 Nx -by-Nu matrix

Input-to-state matrix, specified as an Nx -by-Nu matrix where Nx is the number of states and Nu is the number of inputs.

sys - State-space model or model array

ss model object | genss model object | uss model object
State-space model or model array, specified as:

- A state-space (ss) model object, when the inputs A, B, C and D are numeric matrices or when converting from another model object type.
- A generalized state-space model (genss) object, when one or more of the matrices A, B, C and D includes tunable parameters, such as realp parameters or generalized matrices (genmat). The function uses the current values for tunable parameters.
- An uncertain state-space model (uss) object, when one or more of the inputs A, B, C and D includes uncertain matrices. The function uses the nominal values for uncertain parameters. Using uncertain models requires Robust Control Toolbox software.

Output Arguments

Co - Controllability matrix
 array

Controllability matrix, returned as an array. When sys is:

- A single state-space model with Nx states and Nu inputs, then the resultant array Co has Nx rows and Nxu columns.
- An array of state-space models sys (: : : , $\mathrm{j} 1, \ldots, \mathrm{jN}$), then Co is an array with $\mathrm{N}+2$ dimensions, that is, $\mathrm{Co}(:,:, \mathrm{j} 1, \ldots, \mathrm{jN})$.

Version History

Introduced before R2006a

References

[1] Paige, C. C. "Properties of Numerical Algorithms Related to Computing Controllability." IEEE Transactions on Automatic Control. Vol. 26, Number 1, 1981, pp. 130-138.

See Also

ctrbf|obsv

External Websites

Video - A Conceptual Approach to Controllability and Observability

ctrbf

Compute controllability staircase form

Syntax

[Abar, Bbar, Cbar, T, k] = ctrbf(A, B, C)
ctrbf(A,B,C,tol)

Description

If the controllability matrix of (A, B) has rank $r \leq n$, where n is the size of A, then there exists a similarity transformation such that

$$
\bar{A}=T A T^{T}, \bar{B}=T B, \bar{C}=C T^{T}
$$

where T is unitary, and the transformed system has a staircase form, in which the uncontrollable modes, if there are any, are in the upper left corner.

$$
\bar{A}=\left[\begin{array}{cc}
A_{u c} & 0 \\
A_{21} & A_{C}
\end{array}\right], \bar{B}=\left[\begin{array}{l}
0 \\
B_{C}
\end{array}\right], \bar{C}=\left[C_{n c} C_{C}\right]
$$

where (A_{c}, B_{c}) is controllable, all eigenvalues of $A_{u c}$ are uncontrollable, and $C_{C}\left(s I-A_{C}\right)^{-1} B_{C}=C(s I-A)^{-1} B$.
[Abar, Bbar, Cbar, T, k] = ctrbf(A, B, C) decomposes the state-space system represented by A , B , and C into the controllability staircase form, Abar, Bbar, and Cbar, described above. T is the similarity transformation matrix and k is a vector of length n, where n is the order of the system represented by A. Each entry of k represents the number of controllable states factored out during each step of the transformation matrix calculation. The number of nonzero elements in k indicates how many iterations were necessary to calculate T , and sum(k) is the number of states in A_{c}, the controllable portion of Abar.
$\operatorname{ctrbf}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{tol})$ uses the tolerance tol when calculating the controllable/uncontrollable subspaces. When the tolerance is not specified, it defaults to $10 * \mathrm{n}$ * $\mathrm{norm}(A, 1) *$ eps.

Examples

Compute the controllability staircase form for
A =

1	1
4	-2

$B=$
1 -1
1 -1
C =
10
$0 \quad 1$
and locate the uncontrollable mode.

```
[Abar,Bbar,Cbar,T,k]=ctrbf(A,B,C)
Abar =
    -3.0000 0
    -3.0000 2.0000
Bbar =
        0.0000 0.0000
        1.4142 -1.4142
Cbar =
    -0.7071 0.7071
        0.7071 0.7071
T =
    -0.7071 0.7071
    0.7071 0.7071
k =
    1 0
```

The decomposed system Abar shows an uncontrollable mode located at -3 and a controllable mode located at 2.

Algorithms

ctrbf implements the Staircase Algorithm of [1].

Version History

Introduced before R2006a

References

[1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley, 1970.

See Also
ctrb|minreal

ctrlpref

Set Control System Toolbox preferences

Syntax

ctrlpref

Description

ctrlpref opens a Graphical User Interface (GUI) which allows you to change the Control System Toolbox preferences. Preferences set in this GUI affect future plots only (existing plots are not altered).

Your preferences are stored to disk (in a system-dependent location) and will be automatically reloaded in future MATLAB sessions using the Control System Toolbox software.

Version History

Introduced in R2006a

See Also
Control System Designer | Linear System Analyzer

d2c

Convert model from discrete to continuous time

Syntax

sysc $=\mathrm{d} 2 \mathrm{c}($ sysd)
sysc = d2c(sysd,method)
sysc = d2c(sysd,opts)
[sysc,G] = d2c(\qquad)

Description

sysc $=\mathrm{d} 2 \mathrm{c}($ sysd $)$ converts a the discrete-time dynamic system model sysd to a continuous-time model using zero-order hold on the inputs.
sysc $=d 2 c(s y s d, m e t h o d)$ specifies the conversion method.
sysc $=\mathrm{d} 2 \mathrm{c}($ sysd,opts) specifies conversion options for the discretization.
[sysc, G] = d2c (__), where sysd is a state-space model, returns a matrix G that maps the states $\mathrm{xd}[\mathrm{k}]$ of the discrete-time state-space model to the states $\mathrm{xc}(\mathrm{t})$ of sysc.

Examples

Convert Discrete-Time Transfer Function to Continuous Time

Create the following discrete-time transfer function:
$H(z)=\frac{z-1}{z^{2}+z+0.3}$
$H=t f\left(\left[\begin{array}{ll}1 & \left.-1],\left[\begin{array}{ll}1 & 1 \\ 0.3\end{array}\right], 0.1\right) ; ~\end{array}\right.\right.$
The sample time of the model is $T_{s}=0.1 \mathrm{~s}$.
Derive a continuous-time, zero-order-hold equivalent model.
$\mathrm{Hc}=\mathrm{d} 2 \mathrm{c}(\mathrm{H})$
Hc =
$121.7 \mathrm{~s}+1.758 \mathrm{e}-12$
$\mathrm{s}^{\wedge} 2+12.04 \mathrm{~s}+776.7$
Continuous-time transfer function.
Discretize the resulting model, Hc , with the default zero-order hold method and sample time 0.1 s to return the original discrete model, H .
c2d(Hc,0.1)

```
ans =
    z - 1
    ------------
    z^2 + z + 0.3
Sample time: 0.1 seconds
Discrete-time transfer function.
```

Use the Tustin approximation method to convert H to a continuous time model.

```
Hc2 = d2c(H,'tustin');
```

Discretize the resulting model, Hc 2 , to get back the original discrete-time model, H .
c2d(Hc2,0.1,'tustin');

Convert Identified Discrete-Time Transfer Function to Continuous Time

Estimate a discrete-time transfer function model, and convert it to a continuous-time model.
load iddatal
sys1d = tfest(z1,2,'Ts',0.1);
sys1c = d2c(sysld,'zoh');
Estimate a continuous-time transfer function model.
sys2c = tfest(z1,2);
Compare the response of sys1c and the directly estimated continuous-time model, sys2c. compare(z1,sys1c,sys2c)

The two systems are almost identical.

Regenerate Covariance Information After Converting to Continuous-Time Model

Convert an identified discrete-time transfer function model to continuous-time.

```
load iddatal
sysd = tfest(z1,2,'Ts',0.1);
sysc = d2c(sysd,'zoh');
```

sys1c has no covariance information. The d2c operation leads to loss of covariance data of identified models.

Regenerate the covariance information using a zero iteration update with the same estimation command and estimation data.

```
opt = tfestOptions;
opt.SearchOptions.MaxIterations = 0;
syslc = tfest(zl,sysc,opt);
```

Analyze the effect on frequency-response uncertainty.

```
h = bodeplot(sysd,sys1c);
```

showConfidence(h,3)

The uncertainties of sys1c and sysd are comparable up to the Nyquist frequency. However, sys1c exhibits large uncertainty in the frequency range for which the estimation data does not provide any information.

If you do not have access to the estimation data, use the translatecov command which is a Gaussapproximation formula based translation of covariance across model type conversion operations.

Input Arguments

sysd - Discrete-time dynamic system

dynamic system model
Discrete-time model, specified as a dynamic system model such as tf , ss , or zpk.
You cannot directly use an idgrey model whose FunctionType is ' d ' with d 2 c . Convert the model into idss form first.

method - Discrete-to-continuous time conversion method

'zoh' (default)|'foh'|'tustin'|'matched'
Discrete-to-continuous time conversion method, specified as one of the following values:

- 'zoh ' - Zero-order hold on the inputs. Assumes that the control inputs are piecewise constant over the sampling period.
- ' foh ' - Linear interpolation of the inputs (modified first-order hold). Assumes that the control inputs are piecewise linear over the sampling period.
- 'tustin' - Bilinear (Tustin) approximation to the derivative. To specify this method with frequency prewarping (formerly known as the 'prewarp' method), use the PrewarpFrequency option of d2cOptions.
- 'matched ' - Zero-pole matching method (for SISO systems only). See [1].

For information about the algorithms for each d2c conversion method, see "Continuous-Discrete Conversion Methods".

opts - Discrete-to-continuous time conversion options

d2cOptions object
Discrete-to-continuous time conversion options, created using d2cOptions. For example, specify the prewarp frequency or the conversion method as an option.

Output Arguments

sysc - Continuous-time model

dynamic system model
Continuous-time model, returned as a dynamic system model of the same type as the input system sysd.

When sysd is an identified (IDLTI) model, sysc:

- Includes both the measured and noise components of sysd. If the noise variance is λ in sysd, then the continuous-time model sysc has an indicated level of noise spectral density equal to $T s * \lambda$.
- Does not include the estimated parameter covariance of sysd. If you want to translate the covariance while converting the model, use translatecov.

G - Mapping of discrete-time states of state-space model to continuous-time states matrix

Mapping of the states $x d[k]$ of the state-space model sysd to the states $x c(t)$ of sysc, returned as a matrix. The mapping of the states is as follows:

$$
x_{C}\left(k T_{s}\right)=G\left[\begin{array}{l}
x_{d}[k] \\
u[k]
\end{array}\right]
$$

Given an initial condition $x 0$ for sysd and an initial input $u 0=u[0]$, the corresponding initial condition for sysc (assuming $u[k]=0$ for $k<0$ is:

$$
x_{C}(0)=G\left[\begin{array}{l}
x_{0} \\
u_{0}
\end{array}\right] .
$$

Version History

Introduced before R2006a

References

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997.
[2] Kollár, I., G.F. Franklin, and R. Pintelon, "On the Equivalence of z-domain and s-domain Models in System Identification," Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Brussels, Belgium, June, 1996, Vol. 1, pp. 14-19.

See Also

d2cOptions | c2d | translatecov | logm | Convert Model Rate
Topics
"Dynamic System Models"
"Convert Discrete-Time System to Continuous Time"
"Continuous-Discrete Conversion Methods"

d2cOptions

Create option set for discrete- to continuous-time conversions

Syntax

opts = d2cOptions
opts = d2cOptions(Name,Value)

Description

opts $=d 2 c 0 p t i o n s$ returns the default options for $d 2 c$.
opts = d2cOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments
method
Discretization method, specified as one of the following values:

$$
\begin{array}{ll}
\text { 'zoh' } & \begin{array}{l}
\text { Zero-order hold, where d2c assumes that the control inputs are piecewise } \\
\text { constant over the sample time Ts. }
\end{array} \\
\text { ' foh ' } & \begin{array}{l}
\text { Linear interpolation of the inputs (modified first-order hold). Assumes that the } \\
\text { control inputs are piecewise linear over the sampling period. }
\end{array} \\
\text { 'tustin' } & \begin{array}{l}
\text { Bilinear (Tustin) approximation. By default, d2c converts with no prewarp. To } \\
\text { include prewarp, use the PrewarpFrequency option. }
\end{array} \\
\text { 'matched ' } & \begin{array}{l}
\text { Zero-pole matching method. (See [1] on page 2-207, p. 224.) }
\end{array}
\end{array}
$$

For information about the algorithms for each d2c conversion method, see "Continuous-Discrete Conversion Methods".

Default: 'zoh'

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property, of the discrete-time system. Specify the prewarp frequency as a positive scalar value. A value of 0 corresponds to the 'tustin' method without prewarp.

Default: 0

Output Arguments

opts - Option set for d2c

d2cOptions option set

Option set for d2c, returned as an d2c0ptions option set.

Examples

Specify Model Discretization Method

Consider the following discrete-time transfer function.

$$
H(z)=\frac{z+1}{z^{2}+z+1}
$$

Create the discrete-time transfer function with a sample time of 0.1 seconds.
Hd = tf([11],[111],0.1);
Specify the discretization method as bilinear (Tustin) approximation and the prewarp frequency as 20 rad/seconds.

```
opts = d2cOptions('Method','tustin','PrewarpFrequency',20);
```

Convert the discrete-time model to continuous-time using the specified discretization method.
Hc = d2c(Hd,opts);
You can use the discretization option set opts to discretize additional models using the same options.

Version History
 Introduced in R2010a
 References

[1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition), Prentice Hall, 1997.

See Also

d2c

Resample discrete-time model

Syntax

```
sys1 = d2d(sys, Ts)
sys1 = d2d(sys, Ts, 'method')
sys1 = d2d(sys, Ts, opts)
```


Description

sys1 = d2d(sys, Ts) resamples the discrete-time dynamic system model sys to produce an equivalent discrete-time model sys1 with the new sample time Ts (in seconds), using zero-order hold on the inputs.
sys1 = d2d(sys, Ts, 'method') uses the specified resampling method 'method':

- 'zoh' - Zero-order hold on the inputs
- 'tustin' - Bilinear (Tustin) approximation

For information about the algorithms for each d2d conversion method, see "Continuous-Discrete Conversion Methods".
sys1 = d2d(sys, Ts, opts) resamples sys using the option set with d2dOptions.

Examples

Resample a Discrete-Time Model

Create the following zero-pole-gain-model with sample time 0.1 seconds.
$H(z)=\frac{z-0.7}{z-0.5}$
H = zpk(0.7, 0.5, 1, 0.1);
Resample the model at 0.05 s .
H2 $=$ d2d($\mathrm{H}, 0.05$)
H2 =
(z-0.8243)
(z-0.7071)
Sample time: 0.05 seconds
Discrete-time zero/pole/gain model.
Resample H 2 at 0.1 seconds to obtain the original model H .

```
H3 = d2d(H2,0.1)
H3 =
    (z-0.7)
    (z-0.5)
Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.
```


Resample an Identified Discrete-Time Model

Suppose that you estimate a discrete-time output-error polynomial model with sample time commensurate with the estimation data (0.1 seconds). However, your application requires a faster sampling frequency (0.01 seconds). You can use d2d to resample your estimated model.

Load the estimation data.
load iddatal z1
z1.Ts
ans $=0.1000$
z1 is an iddata object containing the estimation input-output data with sample time 0.1 seconds.
Estimate an output-error polynomial model of order [llll $22_{2} 1$ 1].

```
sys = oe(z1,[2 2 1]);
sys.Ts
ans = 0.1000
```

Resample the model at sample time 0.01 seconds.
sys2 = d2d(sys,0.01);
sys2.Ts
ans $=0.0100$
d2d resamples the model using the zero-order hold method.

Tips

- Use the syntax sys1 = d2d(sys,Ts,'method') to resample sys using the default options for 'method'. To specify tustin resampling with a frequency prewarp, use the syntax sys1 = d2d(sys,Ts,opts). For more information, see d2dOptions.
- When sys is an identified (IDLTI) model, sys1 does not include the estimated parameter covariance of sys. If you want to translate the covariance while converting the model, use translatecov.

Version History
 Introduced before R2006a

See Also
 d2dOptions |c2d|d2c|upsample | translatecov

d2dOptions

Create option set for discrete-time resampling

Syntax

```
opts = d2dOptions
opts = d2dOptions('OptionName', OptionValue)
```


Description

opts $=$ d2dOptions returns the default options for d2d.
opts = d2dOptions('OptionName', OptionValue) accepts one or more comma-separated name-value pairs that specify options for the d2d command. Specify OptionName inside single quotes.

This table summarizes the options that the d2d command supports.

Input Arguments

Name-Value Pair Arguments

Method

Discretization method, specified as one of the following values:
'zoh ' Zero-order hold, where d2d assumes that the control inputs are piecewise constant over the sample time Ts.
'tustin' Bilinear (Tustin) approximation. By default, d2d resamples with no prewarp. To include prewarp, use the PrewarpFrequency option.

For information about the algorithms for each d2d conversion method, see "Continuous-Discrete Conversion Methods".

Default: 'zoh'

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time units, specified in the TimeUnit property, of the resampled system. Takes positive scalar values. The prewarp frequency must be smaller than the Nyquist frequency before and after resampling. A value of 0 corresponds to the standard 'tustin' method without prewarp.

Default: 0

Examples

Specify Method for Resampling a Discrete-Time Model

Create the following discrete-time transfer function with sample time 0.1 seconds.

$$
H(z)=\frac{z+1}{z^{2}+z+1}
$$

h1 = tf([1 1],[1 1 1],0.1);
Specify the discretization method as bilinear Tustin method with a prewarping frequency of $20 \mathrm{rad} /$ seconds.
opts = d2dOptions('Method','tustin','PrewarpFrequency',20);
Resample the discrete-time model using the specified options.
h2 = d2d(h1,0.05,opts);
You can use the option set opts to resample additional models using the same options.

Version History
 Introduced in R2010a

See Also
 d2d

damp

Natural frequency and damping ratio

Syntax

```
damp(sys)
[wn,zeta] = damp(sys)
[wn,zeta,p] = damp(sys)
```


Description

damp(sys) displays the damping ratio, natural frequency, and time constant of the poles of the linear model sys. For a discrete-time model, the table also includes the magnitude of each pole. The poles are sorted in increasing order of frequency values.
[wn,zeta] = damp(sys) returns the natural frequencies wn, and damping ratios zeta of the poles of sys.
[wn,zeta, p] = damp(sys) also returns the poles p of sys.

Examples

Display Natural Frequency, Damping Ratio, and Poles of Continuous-Time System

For this example, consider the following continuous-time transfer function:

$$
\operatorname{sys}(s)=\frac{2 s^{2}+5 s+1}{s^{3}+2 s-3} .
$$

Create the continuous-time transfer function.

```
sys = tf([2,5,1],[1,0,2,-3]);
```

Display the natural frequencies, damping ratios, time constants, and poles of sys.

```
damp(sys)
```

Pole	Damping	Frequency (rad/seconds)	Time Constant $($ seconds $)$
$1.00 \mathrm{e}+00$			
$-5.00 \mathrm{e}-01+1.66 \mathrm{e}+00 \mathrm{i}$	$-1.00 \mathrm{e}+00$	$1.00 \mathrm{e}+00$	$-1.00 \mathrm{e}+00$
$-5.00 \mathrm{e}-01-1.66 \mathrm{e}+00 \mathrm{i}$	$2.89 \mathrm{e}-01$	$1.73 \mathrm{e}+00$	$2.00 \mathrm{e}+00$
$2.00 \mathrm{e}+00$			

The poles of sys contain an unstable pole and a pair of complex conjugates that lie in the left-half of the s-plane. The corresponding damping ratio for the unstable pole is -1 , which is called a driving force instead of a damping force since it increases the oscillations of the system, driving the system to instability.

Display Natural Frequency, Damping Ratio, and Poles of Discrete-Time System

For this example, consider the following discrete-time transfer function with a sample time of 0.01 seconds:
$\operatorname{sys}(z)=\frac{5 z^{2}+3 z+1}{z^{3}+6 z^{2}+4 z+4}$.
Create the discrete-time transfer function.

```
sys = tf([5 3 1],[1 [ 6 4 4],0.01)
sys =
    5 z^2 + 3 z + 1
    z^3 + 6 (^^2 + 4 z+4
Sample time: 0.01 seconds
Discrete-time transfer function.
```

Display information about the poles of sys using the damp command.

```
damp(sys)
```

Pole	Magnitude	Damping	Frequency (rad/seconds)	Time Constant $($ seconds $)$
$-3.02 \mathrm{e}-01+8.06 \mathrm{e}-01 \mathrm{i}$	$8.61 \mathrm{e}-01$	$7.74 \mathrm{e}-02$	$1.93 \mathrm{e}+02$	$6.68 \mathrm{e}-02$
$-3.02 \mathrm{e}-01-8.06 \mathrm{e}-01 \mathrm{i}$	$8.61 \mathrm{e}-01$	$7.74 \mathrm{e}-02$	$1.93 \mathrm{e}+02$	$6.68 \mathrm{e}-02$
$-5.40 \mathrm{e}+00$	$5.40 \mathrm{e}+00$	$-4.73 \mathrm{e}-01$	$3.57 \mathrm{e}+02$	$-5.93 \mathrm{e}-03$

The Magnitude column displays the discrete-time pole magnitudes. The Damping, Frequency, and Time Constant columns display values calculated using the equivalent continuous-time poles.

Natural Frequency and Damping Ratio of Zero-Pole-Gain Model

For this example, create a discrete-time zero-pole-gain model with two outputs and one input. Use sample time of 0.1 seconds.

```
sys = zpk({0;-0.5},{0.3;[0.1+1i,0.1-1i]},[1;2],0.1)
sys =
    From input to output...
            z
    1: -------
        (z-0.3)
            2 (z+0.5)
    2: --------------------
```

```
    (z^2 - 0.2z + 1.01)
Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.
```

Compute the natural frequency and damping ratio of the zero-pole-gain model sys.

```
[wn,zeta] = damp(sys)
```

$w n=3 \times 1$
12.0397
14.7114
14.7114
zeta $=3 \times 1$
1.0000
-0.0034
-0.0034

Each entry in wn and zeta corresponds to combined number of I/Os in sys. zeta is ordered in increasing order of natural frequency values in wn.

Compute Natural Frequency, Damping Ratio and Poles of a State-Space Model

For this example, compute the natural frequencies, damping ratio and poles of the following statespace model:

$$
A=\left[\begin{array}{cc}
-2 & -1 \\
1 & -2
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

Create the state-space model using the state-space matrices.
$\mathrm{A}=\left[\begin{array}{lll}-2 & -1 ; 1 & -2\end{array}\right] ;$
$B=[11 ; 2-1]$;
$C=\left[\begin{array}{ll}1 & 0\end{array}\right] ;$
D = [0 1];
sys $=s s(A, B, C, D) ;$
Use damp to compute the natural frequencies, damping ratio and poles of sys.

```
[wn,zeta,p] = damp(sys)
```

$w n=2 \times 1$
2.2361
2.2361
zeta $=2 \times 1$
0.8944
0.8944

```
p = 2x1 complex
    -2.0000 + 1.0000i
    -2.0000 - 1.0000i
```

The poles of sys are complex conjugates lying in the left half of the s-plane. The corresponding damping ratio is less than 1 . Hence, sys is an underdamped system.

Input Arguments

sys - Linear dynamic system

dynamic system model
Linear dynamic system, specified as a SISO, or MIMO dynamic system model. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
damp assumes
- current values of the tunable components for tunable control design blocks.
- nominal model values for uncertain control design blocks.

Output Arguments

wn - Natural frequency of each pole

vector
Natural frequency of each pole of sys, returned as a vector sorted in ascending order of frequency values. Frequencies are expressed in units of the reciprocal of the TimeUnit property of sys.

If sys is a discrete-time model with specified sample time, wn contains the natural frequencies of the equivalent continuous-time poles. If the sample time is not specified, then damp assumes a sample time value of 1 and calculates wn accordingly. For more information, see "Algorithms" on page 2-217.

zeta - Damping ratio of each pole

vector
Damping ratios of each pole, returned as a vector sorted in the same order as wn.
If sys is a discrete-time model with specified sample time, zeta contains the damping ratios of the equivalent continuous-time poles. If the sample time is not specified, then damp assumes a sample time value of 1 and calculates zeta accordingly. For more information, see "Algorithms" on page 2217.

p - Poles of the dynamic system model

vector

Poles of the dynamic system model, returned as a vector sorted in the same order as wn. p is the same as the output of pole(sys), except for the order. For more information on poles, see pole.

Algorithms

damp computes the natural frequency, time constant, and damping ratio of the system poles as defined in the following table:

	Continuous Time	Discrete Time with Sample Time Ts
Pole Location	s	z
Equivalent Continuous-Time Pole	Not applicable	$s=\frac{\ln (z)}{T_{s}}$
Natural Frequency	$\omega_{n}=\|s\|$	$\omega_{n}=\|s\|=\left\|\frac{\ln (z)}{T_{s}}\right\|$
Damping Ratio	$\zeta=-\cos (\angle s)$	$\zeta=-\cos (\angle s)=-\cos (\angle \ln (z))$
Time Constant	$\tau=\frac{1}{\omega_{n} \zeta}$	$\tau=\frac{1}{\omega_{n} \zeta}$

If the sample time is not specified, then damp assumes a sample time value of 1 and calculates zeta accordingly.

Version History

Introduced before R2006a

See Also

eig|esort|dsort|pole|pzmap|zero

dare

(Not recommended) Solve discrete-time algebraic Riccati equations (DAREs)

Note dare is not recommended. Use idare instead. For more information, see "Compatibility Considerations".

Syntax

$[X, L, G]=\operatorname{dare}(A, B, Q, R)$
$[X, L, G]=\operatorname{dare}(A, B, Q, R, S, E)$
$[X, L, G$, report $]=\operatorname{dare}(A, B, Q, \ldots)$
$[X 1, X 2, L$, report $]=\operatorname{dare}\left(A, B, Q, \ldots\right.$, 'factor' $\left.^{\prime}\right)$

Description

$[X, L, G]=\operatorname{dare}(A, B, Q, R)$ computes the unique stabilizing solution X of the discrete-time algebraic Riccati equation

$$
A^{T} X A-X-A^{T} X B\left(B^{T} X B+R\right)^{-1} B^{T} X A+Q=0
$$

The dare function also returns the gain matrix, $G=\left(B^{T} X B+R\right)^{-1} B^{T} X A$, and the vector L of closed loop eigenvalues, where

L=eig (A-B*G, E)
$[X, L, G]=\operatorname{dare}(A, B, Q, R, S, E)$ solves the more general discrete-time algebraic Riccati equation,

$$
A^{T} X A-E^{T} X E-\left(A^{T} X B+S\right)\left(B^{T} X B+R\right)^{-1}\left(B^{T} X A+S^{T}\right)+Q=0
$$

or, equivalently, if R is nonsingular,

$$
E^{T} X E=F^{T} X F-F^{T} X B\left(B^{T} X B+R\right)^{-1} B^{T} X F+Q-S R^{-1} S^{T}
$$

where $F=A-B R^{-1} S^{T}$. When omitted, R, S, and E are set to the default values $\mathrm{R}=\mathrm{I}, \mathrm{S}=0$, and $\mathrm{E}=\mathrm{I}$.
The dare function returns the corresponding gain matrix $G=\left(B^{T} X B+R\right)^{-1}\left(B^{T} X A+S^{T}\right)$
and a vector L of closed-loop eigenvalues, where
$L=\operatorname{eig}\left(A-B^{*} G, E\right)$
$[X, L, G$, report] $=\operatorname{dare}(A, B, Q, \ldots)$ returns a diagnosis report with value:

- -1 when the associated symplectic pencil has eigenvalues on or very near the unit circle
- -2 when there is no finite stabilizing solution X
- The Frobenius norm if X exists and is finite
$\left[\mathrm{X} 1, \mathrm{X} 2, \mathrm{~L}\right.$, report] $=\operatorname{dare}\left(\mathrm{A}, \mathrm{B}, \mathrm{Q}, \ldots, \mathrm{I}^{\prime}\right.$ factor') returns two matrices, X 1 and X 2 , and a diagonal scaling matrix D such that $X=D^{*}(X 2 / X 1) * D$. The vector L contains the closed-loop eigenvalues. All outputs are empty when the associated Symplectic matrix has eigenvalues on the unit circle.

Limitations

The (A, B) pair must be stabilizable (that is, all eigenvalues of A outside the unit disk must be controllable). In addition, the associated symplectic pencil must have no eigenvalue on the unit circle. Sufficient conditions for this to hold are (Q, A) detectable when $S=0$ and $R>0$, or

$$
\left[\begin{array}{cc}
Q & S \\
S^{T} & R
\end{array}\right]>0
$$

Algorithms

dare implements the algorithms described in [1]. It uses the QZ algorithm to deflate the extended symplectic pencil and compute its stable invariant subspace.

Version History

Introduced before R2006a

R2019a: dare not recommended

Not recommended starting in R2019a
Starting in R2019a, use the idare command to solve discrete-time Riccati equations. This approach has improved accuracy through better scaling and the computation of K is more accurate when R is ill-conditioned relative to dare. Furthermore, idare includes an optional info structure to gather the implicit solution data of the Riccati equation.

The following table shows some typical uses of dare and how to update your code to use idare instead.

Not Recommended	Recommended
$[X, L, G]=\operatorname{dare}(A, B, Q, R, S, E)$	$[X, K, L]=$ idare (A, B, Q, R, S, E) computes the stabilizing solution X, the state-feedback gain K and the closed-loop eigenvalues L of the discrete-time algebraic Riccati equation. For more information, see idare.
$[X, L, G$, report $]=$ dare (A, B, Q, R, S, E)	$[X, K, L$, info $=$ idare (A, B, Q, R, S, E) computes the stabilizing solution X, the state- feedback gain K, the closed-loop eigenvalues L the discrete-time algebraic Riccati equation. The info structure contains the implicit solution data. For more information, see idare.

There are no plans to remove dare at this time.

References

[1] Arnold, W.F., III and A.J. Laub, "Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations," Proc. IEEE, 72 (1984), pp. 1746-1754.

See Also

idare

db2mag

Convert decibels (dB) to magnitude

Syntax

y = db2mag (ydb)

Description

$y=d b 2 m a g(y d b)$ returns the magnitude measurements, y, that correspond to the decibel (dB) values specified in ydb. The relationship between magnitude and decibels is $y d b=20 * \log _{10}(y)$

Examples

Magnitude of Elements in an Array

For this example, generate a 2-by-3-by-4 array of Gaussian random numbers. Assume the numbers are expressed in decibels and compute the corresponding magnitudes.

```
rng('default');
ydb = randn(2,3,4);
y = db2mag(ydb)
y =
y(:,:,1) =
    1.0639 0.7710 1.0374
    1.2351 1.1044 0.8602
y(:,:,2) =
    0.9513 1.5098 0.8561
    1.0402 1.3755 1.4182
y(:,:,3) =
    1.0871 1.0858 0.9858
    0.9928 0.9767 1.1871
y(:,:,4) =
\(1.1761 \quad 1.0804 \quad 1.0861\)
\(1.1772 \quad 0.8702 \quad 1.2065\)
```

Use the definition to check the calculation.
chck $=10 . \wedge(y d b / 20)$

```
chck =
chck(:,:,1) =
    1.0639 0.7710 1.0374
    1.2351 1.1044 0.8602
chck(:,:,2) =
    0.9513 1.5098 0.8561
    1.0402 1.3755 1.4182
chck(:,:,3) =
    1.0871 1.0858 0.9858
    0.9928 0.9767 1.1871
chck(:,:,4) =
\(1.1761 \quad 1.0804 \quad 1.0861\)
    1.1772
    0.8702
    1.2065
```


Input Arguments

ydb - Input array in decibels
scalar | vector | matrix | array
Input array in decibels, specified as a scalar, vector, matrix, or an array. When ydb is nonscalar, db2mag is an element-wise operation.

Data Types: single|double

Output Arguments

y - Magnitude measurements
scalar | vector | matrix | array
Magnitude measurements, returned as a scalar, vector, matrix, or an array of the same size as ydb.

Version History
 Introduced in R2008a

See Also

mag2db

dcgain

Low-frequency (DC) gain of LTI system

Syntax

k = dcgain(sys)

Description

$\mathrm{k}=$ dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time

The continuous-time DC gain is the transfer function value at the frequency $s=0$. For state-space models with matrices (A, B, C, D), this value is
$K=D-C A^{-1} B$

Discrete Time

The discrete-time DC gain is the transfer function value at $z=1$. For state-space models with matrices (A, B, C, D), this value is
$K=D+C(I-A)^{-1} B$

Examples

Compute the DC Gain of a MIMO Transfer Function

Create the following 2-input 2-output continuous-time transfer function.

$$
\begin{gathered}
H(s)=\left[\begin{array}{cc}
1 & \frac{s-1}{s^{2}+s+3} \\
\frac{1}{s+1} & \frac{s+2}{s-3}
\end{array}\right] \\
H=\left[\begin{array}{ll}
1 & \left.\operatorname{tf}\left(\left[\begin{array}{ll}
1 & -1
\end{array}\right],\left[\begin{array}{ll}
1 & 1
\end{array}\right]\right) ; \operatorname{tf}\left(1,\left[\begin{array}{ll}
1 & 1
\end{array}\right]\right) \operatorname{tf}\left(\left[\begin{array}{ll}
1 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & -3
\end{array}\right]\right)\right] ;
\end{array}, \quad \begin{array}{c}
\end{array}\right]
\end{gathered}
$$

Compute the DC gain of the transfer function. For continuous-time models, the DC gain is the transfer function value at the frequency $s=0$.
$K=$ dcgain(H)
$\mathrm{K}=2 \times 2$

1.0000	-0.3333
1.0000	-0.6667

The DC gain for each input-output pair is returned. $\mathrm{K}(\mathrm{i}, \mathrm{j})$ is the DC gain from inputj to output i .

Compute DC Gain of Identified Model

Load the estimation data.
load iddatal $z 1$
z1 is an iddata object containing the input-output estimation data.
Estimate a process model from the data. Specify that the model has one pole and a time delay term.

```
sys = procest(z1,'P1D')
sys =
Process model with transfer function:
            Kp
    G(s) = ------.- * exp(-Td*s)
            1+Tp1*s
            Kp = 9.0754
            Tp1 = 0.25655
            Td = 0.068
Parameterization:
        {'P1D'}
    Number of free coefficients: 3
    Use "getpvec", "getcov" for parameters and their uncertainties.
Status:
Estimated using PROCEST on time domain data "z1".
Fit to estimation data: 44.85%
FPE: 6.02, MSE: 5.901
```

Compute the DC gain of the model.

```
K = dcgain(sys)
K = 9.0754
```

This DC gain value is stored in the Kp property of sys.

```
sys.Kp
```

ans $=9.0754$

Tips

The DC gain is infinite for systems with integrators.

Version History

Introduced before R2006a

See Also

evalfr|norm

delay2z

Replace delays of discrete-time TF, SS, or ZPK models by poles at $z=0$, or replace delays of FRD models by phase shift

Note delay2z has been removed. Use absorbDelay instead.

Version History
 Introduced before R2006a

delayss

Create state-space models with delayed inputs, outputs, and states

Syntax

sys=delayss(A, B, C, D, delayterms)
sys=delayss(A,B,C,D,ts,delayterms)

Description

sys=delayss(A, B, C, D, delayterms) constructs a continuous-time state-space model of the form:

$$
\begin{aligned}
& \frac{d x}{d t}=A x(t)+B u(t)+\sum_{j=1}^{N}(A j x(t-t j)+B j u(t-t j)) \\
& y(t)=C x(t)+D u(t)+\sum_{j=1}^{N}(C j x(t-t j)+D j u(t-t j))
\end{aligned}
$$

where $\mathrm{t}_{\mathrm{j}}, \mathrm{j}=1, . ., \mathrm{N}$ are time delays expressed in seconds. delayterms is a struct array with fields delay, a, b, c, d where the fields of delayterms (j) contain the values of $\mathrm{tj}, \mathrm{Aj}, \mathrm{Bj}, \mathrm{Cj}, \mathrm{and} \mathrm{Dj}$, respectively. The resulting model sys is a state-space (SS) model with internal delays.
sys=delayss(A, B, C, D, ts, delayterms) constructs the discrete-time counterpart:

$$
\begin{aligned}
& x[k+1]=A x[k]+B u[k]+\sum_{j=1}^{N}\{A j x[k-n j]+B j u[k-n j]\} \\
& x[k]=C x[k]+D u[k]+\sum_{j=1}^{N}\{C j x[k-n j]+D j u[k-n j]\}
\end{aligned}
$$

where $\mathrm{Nj}, \mathrm{j}=1, . ., \mathrm{N}$ are time delays expressed as integer multiples of the sample time ts.

Examples

To create the model:

$$
\begin{aligned}
& \frac{d x}{d t}=x(t)-x(t-1.2)+2 u(t-0.5) \\
& y(t)=x(t-0.5)+u(t)
\end{aligned}
$$

type

```
DelayT(1) = struct('delay',0.5,'a',0,'b',2,'c',1,'d',0);
DelayT(2) = struct('delay',1.2,'a',-1,'b',0,'c',0,'d',0);
sys = delayss(1,0,0,1,DelayT)
a =
    M }\begin{array}{r}{\times1}\\{x1}
```

```
b =
        ul
    x1 2
C =
        y1 1
d =
    y1 1
(values computed with all internal delays set to zero)
Internal delays: 0.5 0.5 1.2
Continuous-time model.
```


Version History

Introduced in R2007a

See Also
 getDelayModel|ss

dlqr

Linear-quadratic (LQ) state-feedback regulator for discrete-time state-space system

Syntax

$[K, S, e]=\operatorname{dlq}(A, B, Q, R, N)$

Description

$[K, S, e]=\operatorname{dlqr}(A, B, Q, R, N)$ calculates the optimal gain matrix K such that the state-feedback law

$$
u[n]=-K x[n]
$$

minimizes the quadratic cost function

$$
J(u)=\sum_{n=1}^{\infty}\left(x[n]^{T} Q x[n]+u[n]^{T} R u[n]+2 x[n]^{T} N u[n]\right)
$$

for the discrete-time state-space model

$$
x[n+1]=A x[n]+B u[n]
$$

The default value $\mathrm{N}=0$ is assumed when N is omitted.
In addition to the state-feedback gain K , dlqr returns the infinite horizon solution S of the associated discrete-time Riccati equation

$$
A^{T} S A-S-\left(A^{T} S B+N\right)\left(B^{T} S B+R\right)^{-1}\left(B^{T} S A+N^{T}\right)+Q=0
$$

and the closed-loop eigenvalues $\mathrm{e}=\mathrm{eig}\left(\mathrm{A}-\mathrm{B}^{*} \mathrm{~K}\right)$. Note that K is derived from S by

$$
K=\left(B^{T} S B+R\right)^{-1}\left(B^{T} S A+N^{T}\right)
$$

Limitations

The problem data must satisfy:

- The pair (A, B) is stabilizable.
- $R>0$ and $Q-N R^{-1} N^{T} \geq 0$
- $\left(Q-N R^{-1} N^{T}, A-B R^{-1} N^{T}\right)$ has no unobservable mode on the unit circle.

Version History

Introduced before R2006a

See Also
dare | lqgreg | lqr| lqrd| lqry

dlyap

Solve discrete-time Lyapunov equations

Syntax

$X=\operatorname{dlyap}(A, Q)$
$X=d l y a p(A, B, C)$
$X=\operatorname{dlyap}(A, Q,[], E)$

Description

$\mathrm{X}=\mathrm{d} \operatorname{lyap}(\mathrm{A}, \mathrm{Q})$ solves the discrete-time Lyapunov equation $A X A^{T}-X+Q=0$,
where A and Q are n-by-n matrices.
The solution X is symmetric when Q is symmetric, and positive definite when Q is positive definite and A has all its eigenvalues inside the unit disk.
$\mathrm{X}=\mathrm{dlyap}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ solves the Sylvester equation $A X B-X+C=0$,
where A, B, and C must have compatible dimensions but need not be square.
$\mathrm{X}=\mathrm{dlyap}\left(\mathrm{A}, \mathrm{Q},[\mathrm{]}, \mathrm{E})\right.$ solves the generalized discrete-time Lyapunov equation $A X A^{T}-E X E^{T}+Q=$ 0 ,
where Q is a symmetric matrix. The empty square brackets, [], are mandatory. If you place any values inside them, the function will error out.

Diagnostics

The discrete-time Lyapunov equation has a (unique) solution if the eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$ of A satisfy $\alpha_{i} \alpha_{j} \neq 1$ for all (i, j).

If this condition is violated, d lyap produces the error message
Solution does not exist or is not unique.

Algorithms

dlyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations and SB04QD (SLICOT) for Sylvester equations.

Version History
 Introduced before R2006a

References

[1] Barraud, A.Y., "A numerical algorithm to solve A XA - X = Q," IEEE Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
[2] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation $\mathrm{AX}+\mathrm{XB}=\mathrm{C}$, " Comm. of the ACM, Vol. 15, No. 9, 1972.
[3] Hammarling, S.J., "Numerical solution of the stable, non-negative definite Lyapunov equation," IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.
[4] Higham, N.J., "FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation," A.C.M. Trans. Math. Soft., Vol. 14, No. 4, pp. 381-396, 1988.
[5] Penzl, T., "Numerical solution of generalized Lyapunov equations," Advances in Comp. Math., Vol. 8, pp. 33-48, 1998.
[6] Golub, G.H., Nash, S. and Van Loan, C.F. "A Hessenberg-Schur method for the problem AX + XB = C," IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
[7] Sima, V. C, "Algorithms for Linear-quadratic Optimization," Marcel Dekker, Inc., New York, 1996.

See Also

covar|lyap

dlyapchol

Square-root solver for discrete-time Lyapunov equations

Syntax

$R=$ dlyapchol (A, B)
$R=d l y a p c h o l(A, B, E)$

Description

$R=d l y a p c h o l(A, B)$ computes a Cholesky factorization $X=R^{\prime} * R$ of the solution X to the Lyapunov matrix equation:
$A^{*} X^{*} A^{\prime}-X+B * B^{\prime}=0$
All eigenvalues of A matrix must lie in the open unit disk for R to exist.
$R=d l y a p c h o l(A, B, E)$ computes a Cholesky factorization $X=R^{\prime} * R$ of X solving the Sylvester equation
$A^{*} X^{*} A^{\prime}-E^{*} X^{*} E^{\prime}+B^{*} B^{\prime}=0$
All generalized eigenvalues of (A, E) must lie in the open unit disk for R to exist.

Algorithms

dlyapchol uses SLICOT routines SB03OD and SG03BD.

Version History

Introduced before R2006a

References

[1] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB = C," Comm. of the ACM, Vol. 15, No. 9, 1972.
[2] Hammarling, S.J., "Numerical solution of the stable, non-negative definite Lyapunov equation," IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.
[3] Penzl, T., "Numerical solution of generalized Lyapunov equations," Advances in Comp. Math., Vol. 8, pp. 33-48, 1998.

See Also

dlyap|lyapchol

drss

Generate random discrete test model

Syntax

```
sys \(=\operatorname{drss}(n)\)
\(\operatorname{drss}(n, p)\)
\(\operatorname{drss}(n, p, m)\)
\(\operatorname{drss}(n, p, m, s 1, \ldots s n)\)
```


Description

sys $=\operatorname{drss}(\mathrm{n})$ generates an n-th order model with one input and one output, and returns the model in the state-space object sys. The poles of sys are random and stable with the possible exception of poles at $z=1$ (integrators).
$\operatorname{drss}(\mathrm{n}, \mathrm{p})$ generates an n-th order model with one input and p outputs.
$\operatorname{drss}(\mathrm{n}, \mathrm{p}, \mathrm{m})$ generates an n-th order model with p outputs and m inputs.
$\operatorname{drss}(n, p, m, s 1, \ldots s n)$ generates a $s 1$-by-sn array of n-th order models with m inputs and p outputs.

In all cases, the discrete-time state-space model or array returned by drss has an unspecified sample time. To generate transfer function or zero-pole-gain systems, convert sys using tf or zpk.

Examples

Generate a discrete LTI system with three states, four outputs, and two inputs.

$\mathrm{a}=$			
	x1	x2	x3
x1	0.4766	0.1102	-0.7222
$\times 2$	0.1102	0.9115	0.1628
x3	-0.7222	0.1628	-0.202
$\mathrm{b}=$			
	u1	u2	
x1	-0.4326	0.2877	
$\times 2$	-0	-0	
x3	0	1.191	
$\mathrm{C}=$			
	x1	x2	x3
y1	1.189	-0.1867	-0
y2	-0.03763	0.7258	0.1139
y3	0.3273	-0.5883	1.067
y4	0.1746	2.183	0

$d=$		
	$u 1$	$u 2$
$y 1$	-0.09565	0
y2	-0.8323	1.624
y3	0.2944	-0.6918
y4	-0	0.858

Sample time: unspecified Discrete-time model.

Version History

Introduced before R2006a

See Also

rss|tf|zpk

dsort

Sort discrete-time poles by magnitude

Syntax

dsort
[s,ndx] = dsort(p)

Description

dsort sorts the discrete-time poles contained in the vector p in descending order by magnitude. Unstable poles appear first.

When called with one lefthand argument, dsort returns the sorted poles in s .
$[s, n d x]=d s o r t(p)$ also returns the vector ndx containing the indices used in the sort.

Examples

Sort the following discrete poles.

```
p =
    -0.2410 + 0.5573i
    -0.2410 - 0.5573i
        0.1503
        -0.0972
        -0.2590
s = dsort(p)
s =
    -0.2410 + 0.5573i
    -0.2410 - 0.5573i
    -0.2590
        0.1503
        -0.0972
```


Limitations

The poles in the vector p must appear in complex conjugate pairs.

Version History
 Introduced before R2006a

See Also

eig|esort|sort|pole | pzmap|zero

dss

Create descriptor state-space models

Syntax

sys $=d s s(A, B, C, D, E)$
sys $=$ dss(A,B,C,D,E,Ts)
sys $=$ dss(A,B,C,D,E,ltisys)

Description

sys $=\mathrm{dss}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})$ creates the continuous-time descriptor state-space model

$$
E \frac{d x}{d t}=A x+B u
$$

$$
y=C x+D u
$$

The output sys is an SS model storing the model data (see "State-Space Models"). Note that ss produces the same type of object. If the matrix $\boldsymbol{D}=\mathbf{0}$, you can simply set d to the scalar 0 (zero).
sys $=\mathrm{dss}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{Ts})$ creates the discrete-time descriptor model

$$
\begin{gathered}
E x[n+1]=A x[n]+B u[n] \\
y[n]=C x[n]+D u[n]
\end{gathered}
$$

with sample time Ts (in seconds).
sys $=$ dss(A,B,C,D,E,ltisys) creates a descriptor model with properties inherited from the LTI model ltisys (including the sample time).

Any of the previous syntaxes can be followed by property name/property value pairs
'Property', Value
Each pair specifies a particular LTI property of the model, for example, the input names or some notes on the model history. See set and the example below for details.

Examples

The command
sys $=\operatorname{dss}(1,2,3,4,5, ' i n p u t d e l a y ', 0.1, ' i n p u t n a m e ', ' v o l t a g e ', \ldots$
'notes','Just an example');
creates the model

$$
\begin{aligned}
& 5 \dot{x}=x+2 u \\
& y=3 x+4 u
\end{aligned}
$$

with a 0.1 second input delay. The input is labeled 'voltage', and a note is attached to tell you that this is just an example.

Version History
 Introduced before R2006a

See Also
 dssdata|get|set|ss

dssdata

Extract descriptor state-space data

Syntax

$$
\begin{aligned}
& {[\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}]=\text { dssdata(sys) }} \\
& {[\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{Ts}]=\operatorname{dssdata}(\mathrm{sys})}
\end{aligned}
$$

Description

$[A, B, C, D, E]=$ dssdata(sys) returns the values of the A, B, C, D, and E matrices for the descriptor state-space model sys (see dss). dssdata equals ssdata for regular state-space models (i.e., when $\mathrm{E}=\mathrm{I}$).

If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to zero (creating a zero-order Padé approximation). For some systems, setting delays to zero creates singular algebraic loops, which result in either improper or ill-defined, zero-delay approximations. For these systems, dssdata cannot display the matrices and returns an error. This error does not imply a problem with the model sys itself.
$[A, B, C, D, E, T s]=$ dssdata (sys) also returns the sample time Ts.
You can access other properties of sys using get or direct structure-like referencing (e.g., sys.Ts).
For arrays of SS models with variable order, use the syntax
$[A, B, C, D, E]=$ dssdata(sys,'cell')
to extract the state-space matrices of each model as separate cells in the cell arrays A, B, C, D, and E.

Version History

Introduced before R2006a

See Also

dss | get | getDelayModel|ssdata

esort

Sort continuous-time poles by real part

Syntax

```
s = esort(p)
[s,ndx] = esort(p)
```


Description

esort sorts the continuous-time poles contained in the vector p by real part. Unstable eigenvalues appear first and the remaining poles are ordered by decreasing real parts.

When called with one left-hand argument, $s=\operatorname{esort}(p)$ returns the sorted eigenvalues in s.
[$s, n d x]=$ esort (p) returns the additional argument ndx, a vector containing the indices used in the sort.

Examples

Sort the following continuous eigenvalues.

```
p
p =
    -0.2410+ 0.5573i
    -0.2410- 0.5573i
        0.1503
        -0.0972
    -0.2590
esort(p)
ans =
    0.1503
    -0.0972
    -0.2410+ 0.5573i
    -0.2410-0.5573i
    -0.2590
```


Limitations

The eigenvalues in the vector p must appear in complex conjugate pairs.

Version History
 Introduced before R2006a

See Also

dsort|sort|eig|pole|pzmap|zero

estim

Form state estimator given estimator gain

Syntax

```
est = estim(sys,L)
est = estim(sys,L,sensors,known)
```


Description

est = estim(sys,L) produces a state/output estimator est given the plant state-space model sys and the estimator gain L. All inputs w of sys are assumed stochastic (process and/or measurement noise), and all outputs y are measured. The estimator est is returned in state-space form (SS object).

For a continuous-time plant sys with equations

$$
\begin{aligned}
& \dot{x}=A x+B w \\
& y=C x+D w
\end{aligned}
$$

estim uses the following equations to generate a plant output estimate \widehat{y} and a state estimate \widehat{x}, which are estimates of $y(t)=C$ and $x(t)$, respectively:

$$
\begin{aligned}
& \dot{\hat{x}}=A \widehat{x}+L(y-C \widehat{x}) \\
& {\left[\begin{array}{l}
\widehat{y} \\
\widehat{x}
\end{array}\right]=\left[\begin{array}{l}
C \\
I
\end{array}\right]_{\widehat{x}}}
\end{aligned}
$$

For a discrete-time plant sys with the following equations:

$$
\begin{aligned}
& x[n+1]=A x[n]+B w[n] \\
& y[n]=C x[n]+D w[n]
\end{aligned}
$$

estim uses estimator equations similar to those for continuous-time to generate a plant output estimate $y[n \mid n-1]$ and a state estimate $\chi[n \mid n-1]$, which are estimates of $y[n]$ and $\chi[n]$, respectively. These estimates are based on past measurements up to $y[n-1]$.
est = estim(sys,L,sensors,known) handles more general plants sys with both known (deterministic) inputs u and stochastic inputs w, and both measured outputs y and nonmeasured outputs z.

$$
\begin{aligned}
& \dot{x}=A x+B_{1} w+B_{2} u \\
& {\left[\begin{array}{l}
z \\
y
\end{array}\right]=\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] x+\left[\begin{array}{l}
D_{11} \\
D_{21}
\end{array}\right] w+\left[\begin{array}{l}
D_{12} \\
D_{22}
\end{array}\right] u}
\end{aligned}
$$

The index vectors sensors and known specify which outputs of sys are measured (y), and which inputs of sys are known (u). The resulting estimator est, found using the following equations, uses both u and y to produce the output and state estimates.

Examples

Consider a state-space model sys with seven outputs and four inputs. Suppose you designed a Kalman gain matrix L using outputs 4, 7, and 1 of the plant as sensor measurements and inputs 1, 4, and 3 of the plant as known (deterministic) inputs. You can then form the Kalman estimator by

```
sensors = [4,7,1];
known = [1,4,3];
est = estim(sys,L,sensors,known)
```

See the function kalman for direct Kalman estimator design.

Tips

You can use the functions place (pole placement) or kalman (Kalman filtering) to design an adequate estimator gain L. Note that the estimator poles (eigenvalues of $A-L C$) should be faster than the plant dynamics (eigenvalues of A) to ensure accurate estimation.

Version History

Introduced before R2006a

See Also

kalman | place \| reg | kalmd| lqgreg | ss | ssest | predict

evalfr

Evaluate system response at specific frequency

Syntax

frsp = evalfr(sys,x)

Description

evalfr is a simplified version of freqresp meant for quick evaluation of the system response at any point in the complex plane. To evaluate system response over a set of frequencies, use freqresp. To obtain the magnitude and phase data as well as plots of the frequency response, use bode.
$\mathrm{frsp}=$ evalfr(sys,x) evaluates the dynamic system model sys at the point x in the complex s plane (for continuous-time sys) or z plane (for discrete-time sys).

Examples

Evaluate Discrete-Time Transfer Function

Create the following discrete-time transfer function.

$$
H(z)=\frac{z-1}{z^{2}+z+1}
$$

H $=\mathrm{tf}\left(\left[\begin{array}{ll}1 & \left.-1],\left[\begin{array}{lll}1 & 1 & 1\end{array}\right],-1\right) \text {; }, ~\end{array}\right.\right.$
Evaluate the transfer function at $z=1+j$.

```
z = 1+j;
```

evalfr(H, z)
ans $=0.2308+0.1538 i$

Evaluate Frequency Response of Identified Model at Given Frequency

Create the following continuous-time transfer function model:

$$
H(s)=\frac{1}{s^{2}+2 s+1}
$$

```
sys = idtf(1,[1 2 1]);
```

Evaluate the transfer function at frequency $0.1 \mathrm{rad} /$ second.

```
w = 0.1;
s = j*w;
evalfr(sys,s)
```

```
ans = 0.9705 - 0.1961i
```

Alternatively, use the freqresp command.

```
freqresp(sys,w)
ans = 0.9705 - 0.1961i
```


Frequency Response of MIMO State-Space Model

For this example, consider a cube rotating about its corner with inertia tensor J and a damping force F of 0.2 magnitude. The input to the system is the driving torque while the angular velocities are the outputs. The state-space matrices for the cube are:

$$
\begin{aligned}
& A=-J^{-1} F, \quad B=J^{-1}, \quad C=I, \quad D=0 \\
& \text { where, } J=\left[\begin{array}{ccc}
8 & -3 & -3 \\
-3 & 8 & -3 \\
-3 & -3 & 8
\end{array}\right] \text { and } F=\left[\begin{array}{ccc}
0.2 & 0 & 0 \\
0 & 0.2 & 0 \\
0 & 0 & 0.2
\end{array}\right]
\end{aligned}
$$

Specify the A, B, C and D matrices, and create the continuous-time state-space model.

```
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys = ss(A,B,C,D);
size(sys)
State-space model with 3 outputs, 3 inputs, and 3 states.
```

Compute the frequency response of the system at $0.2 \mathrm{rad} / \mathrm{second}$. Since sys is a continuous-time model, express the frequency in terms of the Laplace variable s.

```
w = 0.2;
s = j*w;
frsp = evalfr(sys,s)
frsp = 3\times3 complex
    0.3607 - 0.9672i 0.3197 - 0.5164i 0.3197 - 0.5164i
    0.3197 - 0.5164i 0.3607 - 0.9672i 0.3197 - 0.5164i
    0.3197-0.5164i 0.3197-0.5164i 0.3607-0.9672i
```

Alternatively, you can use the freqresp command to evaluate the frequency response using the scalar value of the frequency directly.

```
H = freqresp(sys,w)
H = 3\times3 complex
    0.3607-0.9672i 0.3197-0.5164i 0.3197 - 0.5164i
```

| $0.3197-0.5164 i$ | $0.3607-0.9672 i$ | $0.3197-0.5164 i$ |
| :--- | :--- | :--- | :--- | :--- |
| $0.3197-0.5164 i$ | $0.3197-0.5164 i$ | $0.3607-0.9672 i$ |

Input Arguments

sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- LTI models such as ss, tf, and zpk models.
- Sparse state-space models, such as sparss or mechss models.
- Generalized or uncertain state-space models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to evaluate the frequency response.
- For uncertain control design blocks, the function evaluates the frequency response at the nominal value and random samples of the model.
- Identified state-space models, such as idss models. (Using identified models requires System Identification Toolbox software.)

For a complete list of models, see "Dynamic System Models".

x - Point in complex plane

complex scalar
Point in complex plane at which to evaluate system response, specified as a complex scalar. For continuous-time sys, the point x is in the plane of the continuous-time Laplace variable s. For discrete-time sys, x is in the plane of the discrete-time Laplace variable z.

To evaluate the response of the system at a particular frequency, specify the frequency in terms of the appropriate Laplace variable. For instance, if you want to evaluate the frequency response of a system sys at a frequency value of w rad/s, then use:

- $\mathrm{x}=\mathrm{j}^{*} \mathrm{w}$, for continuous-time sys.
- $z=\exp \left(j^{*} w^{*} T s\right)$, for discrete-time sys, where Ts is the sample time.

Output Arguments

frsp - Frequency response

complex scalar | complex array
Frequency response of the system at the point x, returned as a complex scalar (for SISO sys) or a complex array (for MIMO sys). For MIMO systems, the array dimensions correspond to the I/O dimensions of sys.

Version History

Introduced before R2006a

See Also

bode \| freqresp | sigma

evalGoal

Evaluate tuning goals for tuned control system

Syntax

[Hspec,fval] = evalGoal(Req,T)

Description

[Hspec,fval] = evalGoal (Req,T) returns the normalized value fval of a tuning goal evaluated for a tuned control system T. The evalGoal command also returns the transfer function Hspec used to compute this value.

Examples

Evaluate Requirements for Tuned System

Tune a control system with systune, and evaluate the tuning goals with evalGoal.
Open the Simulink ${ }^{\circledR}$ model rct_airframe2.
open_system('rct_airframe2')

Two-loop autopilot for controlling the vertical acceleration of an airframe

Copyright 2014 The MathWorks, Inc.

Create tracking, roll-off, stability margin, and disturbance rejection requirements for tuning the control system.

```
Req1 = TuningGoal.Tracking('az ref','az',1);
Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));
Req3 = TuningGoal.Margins('delta fin',7,45);
MaxGain = frd([2 200 200],[0.02 2 200]);
Req4 = TuningGoal.Gain('delta fin','az',MaxGain);
```

Create an slTuner interface, and tune the model using these tuning goals.

```
ST0 = slTuner('rct_airframe2','MIMO Controller');
rng default
[ST1,fSoft] = systune(ST0,[Req1,Req2,Req3,Req4]);
Final: Soft = 1.13, Hard = -Inf, Iterations = 94
```

ST1 is a tuned version of the slTuner interface to the control system. ST1 contains the tuned values of the tunable parameters of the MIMO controller in the model.

Evaluate the margin goal for the tuned system.

```
[hspec,fval] = evalGoal(Req3,ST1);
fval
fval =
    0.5140
```

The normalized value of the tuning goal is less than 1 , indicating that the tuned system satisfies the margin requirement. For more information about how the normalized value of this tuning goal is calculated, see the TuningGoal .Margins reference page.

Evaluate the tracking goal for the tuned system.

```
[hspec,fval] = evalGoal(Req1,ST1);
fval
fval =
    1.1327
```

The tracking requirement is nearly met, but the value exceeds 1 , indicating a small violation. To further assess the violation, you can use viewGoal to visualize the requirement against the corresponding response of the tuned system.

Input Arguments

Req - Tuning goal to evaluate

TuningGoal object | vector of TuningGoal objects
Tuning goal to evaluate, specified as a TuningGoal object or vector of TuningGoal objects. For a list of all TuningGoal objects, see "Tuning Goals".

T - Tuned control system

generalized state-space model | slTuner interface object

Tuned control system, specified as a generalized state-space (genss) model or an slTuner interface to a Simulink model. T is typically the result of using the tuning goal to tune control system parameters with systune.
Example: [T,fSoft,gHard] = systune(T0,SoftReq,HardReq), where T0 is a tunable genss model

Example: [T,fSoft,gHard] = systune(ST0,SoftReq,HardReq), where ST0 is a slTuner interface object

Output Arguments

Hspec - transfer function associated with tuning goal

state-space model
Transfer function associated with the tuning goal, returned as a state-space (ss) model. evalGoal uses Hspec to compute the evaluated tuning goal, fval.

For example, suppose Req is a TuningGoal. Gain goal that limits the gain $H(s)$ between some specified input and output to the gain profile $w(s)$. In that case, Hspec is given by:

$$
H \operatorname{spec}(s)=\frac{1}{w(s)} H(s) .
$$

fval is the peak gain of Hspec . If $H(s)$ satisfies the tuning goal, fval <= 1 .
For more information about the transfer function associated with the tuning goal, see the reference page for each tuning goal.

fval - Normalized value of tuning requirement

positive scalar
Normalized value of tuning requirement, returned as a positive scalar. The normalized value is a measure of how closely the requirement is met in the tuned system. The tuning requirement is satisfied if fval < 1. For information about how each type of TuningGoal requirement is converted into a normalized value, see the reference page for each tuning goal.

Tips

- For MIMO feedback loops, the LoopShape, MinLoopGain, MaxLoopGain, Margins, Sensitivity, and Rejection goals are sensitive to the relative scaling of each SISO loop. systune tries to balance the overall loop-transfer matrix while enforcing such goals. The optimal loop scaling is stored in the tuned closed-loop model or slTuner interface T returned by systune. For consistency, evalGoal (R, T) applies this same scaling when evaluating the tuning goals. To omit this scaling, use evalGoal(R,clearTuningInfo(T)).

Modifying T might compromise the validity of the stored scaling. Therefore, if you make significant modifications to T , retuning is recommended to update the scaling data.

Version History

Introduced in R2012b

See Also

systune|genss|viewGoal|systune (for slTuner)

Topics

"Visualize Tuning Goals"
"Tuning Goals"

evalSpec

(Not recommended) Evaluate tuning goals for tuned control system

Note evalSpec is not recommended. Use evalGoal instead.

Syntax

[Hspec,fval] = evalSpec(Req,T)
[Hspec,fval] = evalSpec(Req,T,[])

Description

[Hspec,fval] = evalSpec (Req,T) returns the normalized value fval of a tuning goal evaluated for a tuned control system T. The evalSpec command also returns the transfer function Hspec used to compute this value.
[Hspec,fval] = evalSpec(Req, T, []) disregards scaling information stored with the tuned control system T when evaluating the tuning goal. For more information, see "Tips" on page 2-254.

Examples

Evaluate Requirements for Tuned System

Tune a control system with systune, and evaluate the tuning goals with evalSpec.
Open the Simulink® model rct_airframe2.
open_system('rct_airframe2')
Create tracking, roll-off, stability margin, and disturbance rejection requirements for tuning the control system.

```
Req1 = TuningGoal.Tracking('az ref','az',1);
Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));
Req3 = TuningGoal.Margins('delta fin',7,45);
MaxGain = frd([2 200 200],[0.02 2 200]);
Req4 = TuningGoal.Gain('delta fin','az',MaxGain);
```

Create an slTuner interface, and tune the model using these tuning goals.

```
ST0 = slTuner('rct_airframe2','MIMO Controller');
rng default
[ST1,fSoft] = systune(ST0,[Req1,Req2,Req3,Req4]);
Final: Soft = 1.13, Hard = -Inf, Iterations = 68
```

ST1 is a tuned version of the slTuner interface to the control system. ST1 contains the tuned values of the tunable parameters of the MIMO controller in the model.

Evaluate the margin goal for the tuned system.

```
[hspec,fval] = evalSpec(Req3,ST1);
fval
fval =
    0.5140
```

The normalized value of the tuning goal is less than 1, indicating that the tuned system satisfies the margin requirement. For more information about how the normalized value of this tuning goal is calculated, see the TuningGoal. Margins reference page.

Evaluate the tracking goal for the tuned system.

```
[hspec,fval] = evalSpec(Req1,ST1);
fval
fval =
    1.1327
```

The tracking requirement is nearly met, but the value exceeds 1 , indicating a small violation. To further assess the violation, you can use viewSpec to visualize the requirement against the corresponding response of the tuned system.

Input Arguments

Req - Tuning goal to evaluate

TuningGoal object | vector of TuningGoal objects
Tuning goal to evaluate, specified as a TuningGoal object or vector of TuningGoal objects. For a list of all TuningGoal objects, see "Tuning Goals".

T - Tuned control system

generalized state-space model | slTuner interface object
Tuned control system, specified as a generalized state-space (genss) model or an slTuner interface to a Simulink model. T is typically the result of using the tuning goal to tune control system parameters with systune.
Example: [T,fSoft,gHard] = systune(T0,SoftReq,HardReq), where T0 is a tunable genss model

Example: [T,fSoft,gHard] = systune(ST0,SoftReq,HardReq), where ST0 is a slTuner interface object

Output Arguments

Hspec - transfer function associated with tuning goal

state-space model
Transfer function associated with the tuning goal, returned as a state-space (ss) model. evalSpec uses Hspec to compute the evaluated tuning goal, fval.

For example, suppose Req is a TuningGoal. Gain goal that limits the gain $H(s)$ between some specified input and output to the gain profile $w(s)$. In that case, Hspec is given by:

$$
H s p e c(s)=\frac{1}{w(s)} H(s) .
$$

fval is the peak gain of Hspec. If $H(s)$ satisfies the tuning goal, fval <= 1 .
For more information about the transfer function associated with the tuning goal, see the reference page for each tuning goal.

fval - Normalized value of tuning requirement

positive scalar
Normalized value of tuning requirement, returned as a positive scalar. The normalized value is a measure of how closely the requirement is met in the tuned system. The tuning requirement is satisfied if fval < 1 . For information about how each type of TuningGoal requirement is converted into a normalized value, see the reference page for each tuning goal.

Tips

- For MIMO feedback loops, the LoopShape, MinLoopGain, MaxLoopGain, Margins, Sensitivity, and Rejection goals are sensitive to the relative scaling of each SISO loop. systune tries to balance the overall loop-transfer matrix while enforcing such goals. The optimal loop scaling is stored in the tuned closed-loop model CL returned by systune. For consistency, evalSpec (R, CL) applies this same scaling when evaluating the tuning goals. To omit this scaling, use evalSpec ($\mathrm{R}, \mathrm{CL},[\mathrm{l}$).

Modifying CL might compromise the validity of the stored scaling. Therefore, if you make significant modifications to CL , retuning is recommended to update the scaling data.

Version History

Introduced in R2012b

R2017b: evalSpec is not recommended

Not recommended starting in R2017b
Beginning in R2017b, evalSpec is not recommended. Use evalGoal instead.

See Also

systune|genss|evalGoal|viewGoal|systune (for slTuner)

Topics

"Visualize Tuning Goals"
"Tuning Goals"

evalSurf

Evaluate gain surfaces at specific design points

Syntax

```
GV = evalSurf(GS,X)
GV = evalSurf(GS,X1,...,XM)
GV = evalSurf(___,gridflag)
```


Description

GV = evalSurf (GS,X) evaluates a gain surface at the list of points specified in the array X. A point is a combination of scheduling-variable values. Thus X is an N-by- M array, where N is the number of points at which to evaluate the gain, and M is the number of scheduling variables in GS.

GV $=$ evalSurf(GS, X1, $\ldots, \mathrm{XM})$ evaluates the gain surface over the rectangular grid generated by the vectors $\mathrm{X} 1, \ldots, \mathrm{XM}$. Each vector contains values for one scheduling variable of GS.

GV = evalSurf(\qquad , gridflag) specifies the layout of GV.

Examples

Evaluate 1-D Gain Surface at Specified Values

Create a gain surface with one scheduling variable and evaluate the gain at a list of schedulingvariable values.

When you create a gain surface using tunableSurface, you specify design points at which the gain coefficients are tuned. These points are the typically the scheduling-variable values at which you have sampled or linearized the plant. However, you might want to implement the gain surface as a lookup table with breakpoints that are different from the specified design points. In this example, you create a gain surface with a set of design points and then evaluate the surface using a different set of scheduling variable values.

Create a scalar gain that varies as a quadratic function of one scheduling variable, t. Suppose that you have linearized your plant every five seconds from $t=0$ to $t=40$.

```
t = 0:5:40;
domain = struct('t',t);
shapefcn = @(x) [x,x^2];
GS = tunableSurface('GS',1,domain,shapefcn);
```

Typically, you would tune the coefficients as part of a control system. For this example, instead of tuning, manually set the coefficients to non-zero values.

GS = setData(GS,[12.1,4.2,2]);
Evaluate the gain surface at a different set of time values.

```
tvals = [0,4,11,18,25,32,39,42]; % eight values
GV = evalSurf(GS,tvals)
GV = 8×1
    9.9000
    10.0200
    10.6150
    11.7000
    13.2750
    15.3400
    17.8950
    19.1400
```

GV is an 8 -by-1 array. You can use tvals and GV to implement the variable gain as a lookup table.

Evaluate Gain Surface on Grid of Values

Evaluate a gain surface with two scheduling variables over a grid of values of those variables.
When you create a gain surface using tunableSurface, you specify design points at which the gain coefficients are tuned. These points are the typically the scheduling-variable values at which you have sampled or linearized the plant. However, you might want to implement the gain surface as a lookup table with breakpoints that are different from the specified design points. In this example, you create a gain surface with a set of design points and then evaluate the surface using a different set of scheduling-variable values.

Create a scalar-valued gain surface that is a bilinear function of two independent variables, α and V.

```
[alpha,V] = ndgrid(0:1.5:15,300:30:600);
domain = struct('alpha',alpha,'V',V);
shapefcn = @(x,y) [x,y,x*y];
GS = tunableSurface('GS',1,domain,shapefcn);
```

Typically, you would tune the coefficients as part of a control system. For this example, instead of tuning, manually set the coefficients to non-zero values.

```
GS = setData(GS,[100,28,40,10]);
```

Evaluate the gain at selected values of α and V.

```
alpha_vec = [7:1:13]; % N1 = 7 points
V vec = [400:25:625]; % N2 = 10 points
G\overline{V}}= evalSurf(GS,alpha_vec,V_vec)
```

The breakpoints at which you evaluate the gain surface need not fall within the range specified by domain. However, if you attempt to evaluate the gain too far outside the range used for tuning, the software issues a warning.

The breakpoints also need not be regularly spaced. evalSurf evaluates the gain surface over the grid formed by ndgrid(alpha_vec, $\mathrm{V} _$vec). Examine the dimensions of the resulting array.
size(GV)

```
ans = 1\times2
```

 710
 By default, the grid dimensions N 1 - by - N 2 are first in the array, followed by the gain dimensions. GS is scalar-valued gain, so the dimensions of GV are [7,10,1,1], or equivalently [7,10].

The value in each location of GV is the gain evaluated at the corresponding (alpha_vec, V_vec) pair in the grid. For example, GV (2,3) is the gain evaluated at (alpha_vec (2) , V_vec (3)) or $(8,450)$.

Evaluate Array-Valued Gain Surface

Evaluate an array-valued gain surface with two scheduling variables over a grid of values of those variables.

Create a vector-valued gain that has two scheduling variables.

```
[alpha,V] = ndgrid(0:1.5:15,300:30:600);
domain = struct('alpha',alpha,'V',V);
shapefcn = @(x,y) [x,y,x*y];
GS = tunableSurface('GS',ones(2,2),domain,shapefcn);
```

Setting the initial constant coefficient to ones $(2,2)$ causes tunableSurface to generate a 2-by-2 gain matrix. Each entry in that matrix is an independently tunable gain surface that is a bilinear function of two scheduling variables. In other words, the gain surface is given by:

$$
G S=K_{0}+K_{1} \alpha+K_{2} V+K_{3} \alpha V
$$

where each of the coefficients K_{0}, \ldots, K_{3} is itself a 2-by-2 matrix.
Typically, you would tune the coefficients of those gain surfaces as part of a control system. For this example, instead of tuning, manually set the coefficients to non-zero values.

K0 = 10*rand (2);
K1 = 10*rand(2);
K2 $=10 *$ rand (2);
K3 = 10*rand(2);
The tunableSurface object stores array-valued coefficients by concatenating them into a 2-by-8 array (see the tunableSurface reference page). Therefore, concatenate these values of K_{0}, \ldots, K_{3} to change the coefficients of GS.

```
GS = setData(GS,[K0 K1 K2 K3]);
```

Now evaluate the gain surface at selected values of the scheduling variables.

```
alpha_vec = [7:1:13]; % N1 = 7 points
V_vec = [400:25:625]; % N2 = 10 points
GV = evalSurf(GS,alpha_vec,V_vec,'gridlast');
```

The 'gridlast' orders the array GV such that the dimensions of the grid of gain values, 7-by-10, are last. The dimensions of the gain array itself, 2-by-2, are first.

```
size(GV)
ans = 1\times4
```

 \(\begin{array}{llll}2 & 2 & 7 & 10\end{array}\)

Input Arguments

GS - Gain surface

tunableSurface object
Gain surface to evaluate, specified as a tunableSurface object. GS can have any number of scheduling variables, and can be scalar-valued or array-valued.

X - Points

array
Points at which to evaluate the gain surface, specified as an array. A point is a combination of scheduling-variable values. X has dimensions N-by- M, where M is the number of scheduling variables in GS and N is the number of points at which to evaluate GS. Thus, X is a list of scheduling-variablevalue combinations at which to evaluate the gain. For example, suppose GS has two scheduling variables, a and b, and you want to evaluate $G S$ at $10(a, b)$ pairs. In that case, X is a 10 -by- 2 array that lists the (a, b). The points in X need not match the design points in GS. SamplingGrid.

X1, ..., XM - Scheduling-variable values

arrays
Scheduling-variable values at which to evaluate the gain surface, specified as M arrays, where M is the number of scheduling variables in GS. For example, if GS has two scheduling variables, a and b, then X 1 and X 2 are vectors of a and b values, respectively. The gain surface is evaluated over the grid ndgrid ($\mathrm{X} 1, \mathrm{X} 2$). The values in that grid need not match the design points in GS. SamplingGrid.

gridflag - Layout of output array

'gridfirst' (default)|'gridlast'
Layout of output array, specified as either 'gridfirst' or 'gridlast'.

- 'gridfirst' - GV is of size [$\mathrm{N} 1, \ldots, \mathrm{NM}, \mathrm{Ny}, \mathrm{Nu}$] with the grid dimensions first and the gain dimensions last. This layout is the natural format for a scalar gain, where $\mathrm{Ny}=\mathrm{Nu}=1$.
- 'gridlast' - GV is of size [$\mathrm{Ny}, \mathrm{Nu}, \mathrm{N} 1, \ldots, \mathrm{NM}]$ with the gain dimensions first. This format is more readable for matrix-valued gains.

Output Arguments

GV - Gain values

array
Gain values, returned as an array. GV contains the gain evaluated at the points (scheduling-variable values) specified by X or $\mathrm{X} 1, \ldots, \mathrm{XM}$. The size of GV depends on the number of scheduling variables in GS, the I/O dimensions of the gain defined by GS, and the value of gridflag.

If you compute the gain at a list of N points specified in an array X, then the size of GV is [$\mathrm{N}, \mathrm{Ny}, \mathrm{Nu}$]. Here, $[\mathrm{Ny}, \mathrm{Nu}$] are the I/O dimensions of the gain. For example, suppose GS is a scalar gain surface
with two scheduling variables, a and b, and X is a 10 -by-2 array containing $10(a, b)$ pairs. Then GV is a column vector of ten values.

If you compute the gain over a grid specified by vectors $\mathrm{X} 1, \ldots, \mathrm{XM}$, then the dimensions of GV depend on the value of gridflag.

- gridflag = 'gridfirst' (default) - The size of GV is [N1, ..., NM, Ny,Nu]. Each Ni is the length of Xi , the number of values of the i-th scheduling variable. For example, suppose GS is a scalar gain surface with two scheduling variables, a and b, and $X 1$ and $X 2$ are vectors of $4 a$ values and 5 b values, respectively. Then, the size of GV is $[4,5,1,1]$ or equivalently, [4,5]. Or, if GS is a three-output, two-input vector-valued gain, then the size of GV is [4,5,3,2].
- gridflag = 'gridlast' - The size of GV is [Ny,Nu,N1,...,NM]. For example, suppose GS is a scalar gain surface with two scheduling variables, a and b, and $X 1$ and $X 2$ are vectors of $4 a$ values and 5 b values, respectively. Then, the size of GV is $[1,1,4,5]$. Or, if GS is a three-output, twoinput vector-valued gain, then the size of GV is [3,2,4,5].

Tips

- Use evalSurf to turn tuned gain surfaces into lookup tables. Set X1, ..., XM to the desired table breakpoints and use GV as table data. The table breakpoints do not need to match the design points used for tuning GS.

Version History
 Introduced in R2015b

See Also

tunableSurface | viewSurf | getData| setData

exp

Create pure continuous-time delays

Syntax

$d=\exp (\operatorname{tau}, s)$

Description

$\mathrm{d}=\exp (\mathrm{tau}, \mathrm{s})$ creates pure continuous-time delays. The transfer function of a pure delay tau is:
$d(s)=\exp \left(-t a u^{*}\right)$
You can specify this transfer function using exp.
s = zpk('s')
d $=\exp (-t a u * s)$
More generally, given a 2D array M,
s = zpk('s')
D $=\exp (-M * s)$
creates an array D of pure delays where
$D(i, j)=\exp (-M(i, j) s)$.
All entries of M should be non negative for causality.

Version History

Introduced in R2006a

See Also
zpk|tf

extendedKalmanFilter

Create extended Kalman filter object for online state estimation

Description

extendedKalmanFilter creates an object for online state estimation of a discrete-time nonlinear system using the first-order discrete-time extended Kalman filter algorithm.

When you perform online state estimation, you first create the nonlinear state transition function f and measurement function h. You then construct the extendedKalmanFilter object using these nonlinear functions, and specify whether the noise terms are additive or nonadditive. You can also specify the Jacobians of the state transition and measurement functions by either generating them using automatic differentiation in the generateJacobianFcn function or by writing them yourself. If you do not specify them, the software numerically computes the Jacobians.

After you create the object, you use the predict command to predict state estimate at the next time step, and correct to correct state estimates using the algorithm and real-time data. For information about the algorithm, see "Algorithms" on page 2-271.

Creation

Syntax

obj = extendedKalmanFilter(stateTransitionFcn,measurementFcn,initialState) obj = extendedKalmanFilter(\qquad ,Name, Value)

Description

obj = extendedKalmanFilter(stateTransitionFcn,measurementFcn,initialState) creates an extended Kalman filter object for online state estimation of a discrete-time nonlinear system.

- stateTransitionFcn is a function that calculates the state of the system at time k, given the state vector at time $k-1$. This function is stored in the StateTransitionFcn property of the object.
- measurementFcn is a function that calculates the output measurement of the system at time k, given the state at time k. This function is stored in the MeasurementFcn property of the object.
- initialState specifies the initial value of the state estimates. This value is stored in the State property of the object.

After creating the object, use the correct and predict functions to update state estimates and state estimation error covariance values using a first-order discrete-time extended Kalman filter algorithm and real-time data.

- predict updates obj.State and obj.StateCovariance with the predicted value at time step k using the state value at time step $k-1$.
- correct updates obj.State and obj.StateCovariance with the estimated values at time step k using measured data at time step k.
obj = extendedKalmanFilter \qquad , Name, Value) additionally sets properties on page 2-262 using name-value arguments. If you do not specify the state transition function, measurement function, and initial state values during creation, specify them using dot notation. For example, for a two-state system with initial state values [1;0], to specify the these values after creation, use obj.State = [1;0].

Properties

extendedKalmanFilter object properties are of three types:

- Tunable properties that you can specify multiple times, either during object construction using name-value arguments, or any time afterward during state estimation. After object creation, use dot notation to modify the tunable properties.
obj = extendedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState);
obj.ProcessNoise = 0.01;
The tunable properties are State, StateCovariance, ProcessNoise, and MeasurementNoise.
- Nontunable properties that you can specify once, either during object construction or afterward using dot notion. Specify these properties before state estimation using correct and predict. The StateTransitionFcn, MeasurementFcn, StateTransitionJacobianFcn, and MeasurementJacobianFcn properties belong to this category.
- Nontunable properties that you must specify during object construction. The HasAdditiveProcessNoise and HasAdditiveMeasurementNoise properties belong to this category.

HasAdditiveMeasurementNoise - Measurement noise characteristics

true (default) | false
Measurement noise characteristics, specified as one of the following values:

- true - Measurement noise v is additive. The measurement function h that is specified in MeasurementFcn has the following form:
$y(k)=h(x(k), U m 1, \ldots, U m n)$
Where $y(k)$ and $x(k)$ are the estimated output and estimated state at time k, and Um1, ..., Umn are any optional input arguments required by your measurement function.
- false - Measurement noise is nonadditive. The measurement function specifies how the output measurement evolves as a function of the state and measurement noise:
$y(k)=h(x(k), v(k), U m 1, \ldots, U m n)$
HasAdditiveMeasurementNoise is a nontunable property, and you can specify it only during object construction. You cannot change it using dot notation.

HasAdditiveProcessNoise - Process noise characteristics

true (default) | false
Process noise characteristics, specified as one of the following values:

- true - Process noise w is additive. The state transition function f specified in StateTransitionFcn has the following form:
$x(k)=f(x(k-1), U s 1, \ldots$, Usn $)$
Where $\mathrm{x}(\mathrm{k})$ is the estimated state at time k , and Us $1, \ldots$, Usn are any additional input arguments required by your state transition function.
- false - Process noise is nonadditive. The state transition function specifies how the states evolve as a function of the state and process noise at the previous time step:

```
x(k) = f(x(k-1),w(k-1),Us1,\ldots..,Usn)
```

HasAdditiveProcessNoise is a nontunable property, and you can specify it only during object construction. You cannot change it using dot notation.

MeasurementFcn - Measurement function

function handle

Measurement function h, specified as a function handle. The function calculates the N-element output measurement vector of the nonlinear system at time step k, given the state vector at time step $k . N$ is the number of measurements of the system. You write and save the measurement function and use it to construct the object. For example, if vdpMeasurementFcn.m is the measurement function, specify MeasurementFcn as @vdpMeasurementFcn. You can also specify MeasurementFcn as a function handle to an anonymous function.

The inputs to the function depend on whether you specify the measurement noise as additive or nonadditive in the HasAdditiveMeasurementNoise property of the object:

- HasAdditiveMeasurementNoise is true - The measurement noise vis additive, and the measurement function specifies how the measurements evolve as a function of state values:
$y(k)=h(x(k), U m 1, \ldots, U m n)$
Where $y(k)$ and $x(k)$ are the estimated output and estimated state at time k, and Um1, . . . Umn are any optional input arguments required by your measurement function. For example, if you are using multiple sensors for tracking an object, an additional input could be the sensor position. During estimation, you pass these additional arguments to the correct command which in turn passes them to the measurement function.
- HasAdditiveMeasurementNoise is false - The measurement noise is nonadditive, and the measurement function also specifies how the output measurement evolves as a function of the measurement noise:

$$
y(k)=h(x(k), v(k), U m 1, \ldots, U m n)
$$

When you have the HasMeasurementWrapping property enabled, then the output for the measurement function must also include the wrapping bounds, specified as an N-by- 2 matrix, where the first column provides the minimum measurement bound and the second column provides the maximum measurement bound. N is the number of measurements of the system.

To see an example of a measurement function with additive process noise, enter edit vdpMeasurementFcn at the command line. To see an example of a measurement function with nonadditive process noise, enter edit vdpMeasurementNonAdditiveNoiseFcn.

MeasurementFcn is a nontunable property. You can specify it once before you use the correct command, either during object construction or using dot notation after object construction. You cannot change it after using the correct command.

MeasurementJacobianFcn - Jacobian of measurement function

[] (default) | function handle

Jacobian of measurement function h, specified as one of the following:

- [] - The Jacobian is numerically computed at every call to the correct command. This can increase processing time and numerical inaccuracy of the state estimation.
- function handle - You either write and save the Jacobian function or generate the Jacobian function using generateJacobianFcn, and specify the handle to the function. For example, if vdpMeasurementJacobianFcn.m is the Jacobian function, specify MeasurementJacobianFcn as @vdpMeasurementJacobianFcn.

The function calculates the partial derivatives of the measurement function with respect to the states and measurement noise. The number of inputs to the Jacobian function must equal the number of inputs to the measurement function and must be specified in the same order in both functions. The number of outputs of the Jacobian function depends on the HasAdditiveMeasurementNoise property:

- HasAdditiveMeasurementNoise is true - The function calculates the partial derivatives of the measurement function with respect to the states ($\partial h / \partial x$). The output is as an N-by-Ns Jacobian matrix, where N is the number of measurements of the system and $N s$ is the number of states.
- HasAdditiveMeasurementNoise is false - The function also returns a second output that is the partial derivative of the measurement function with respect to the measurement noise terms ($\partial h / \partial v$). The second output is returned as an N-by- V Jacobian matrix, where V is the number of measurement noise terms.

To see an example of a Jacobian function for additive measurement noise, enter edit vdpMeasurementJacobianFcn at the command line.

MeasurementJacobianFcn is a nontunable property. You can specify it once before you use the correct command, either during object construction or using dot notation after object construction. You cannot change it after using the correct command.

MeasurementNoise - Measurement noise covariance

1 (default) | scalar | matrix
Measurement noise covariance, specified as a scalar or matrix depending on the value of the HasAdditiveMeasurementNoise property:

- HasAdditiveMeasurementNoise is true - Specify the covariance as a scalar or an N-by- N matrix, where N is the number of measurements of the system. Specify a scalar if there is no cross-correlation between measurement noise terms and all the terms have the same variance. The software uses the scalar value to create an N-by- N diagonal matrix.
- HasAdditiveMeasurementNoise is false - Specify the covariance as a V-by- V matrix, where V is the number of measurement noise terms. MeasurementNoise must be specified before using correct. After you specify MeasurementNoise as a matrix for the first time, to then change MeasurementNoise you can also specify it as a scalar. Specify as a scalar if there is no crosscorrelation between the measurement noise terms and all the terms have the same variance. The software extends the scalar to a V-by- V diagonal matrix with the scalar on the diagonals.

MeasurementNoise is a tunable property. You can change it using dot notation.

ProcessNoise - Process noise covariance

1 (default) | scalar | matrix
Process noise covariance, specified as a scalar or matrix depending on the value of the HasAdditiveProcessNoise property:

- HasAdditiveProcessNoise is true - Specify the covariance as a scalar or an Ns-by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no cross-correlation between process noise terms, and all the terms have the same variance. The software uses the scalar value to create an Ns-by-Ns diagonal matrix.
- HasAdditiveProcessNoise is false - Specify the covariance as a W-by- W matrix, where W is the number of process noise terms. ProcessNoise must be specified before using predict. After you specify ProcessNoise as a matrix for the first time, to then change ProcessNoise you can also specify it as a scalar. Specify as a scalar if there is no cross-correlation between the process noise terms and all the terms have the same variance. The software extends the scalar to a W-by- W diagonal matrix.

ProcessNoise is a tunable property. You can change it using dot notation.

State - State of nonlinear system

[] (default) | vector
State of the nonlinear system, specified as a vector of size $N s$, where $N s$ is the number of states of the system.

When you use the predict command, State is updated with the predicted value at time step k using the state value at time step $k-1$. When you use the correct command, State is updated with the estimated value at time step k using measured data at time step k.

The initial value of State is the value you specify in the InitialState input argument during object creation. If you specify InitialState as a column vector, then State is also a column vector, and the predict and correct commands return state estimates as a column vector. Otherwise, a row vector is returned. If you want a filter with single-precision floating-point variables, you must specify State as a single-precision variable during object construction using the InitialState input argument.

State is a tunable property. You can change it using dot notation.

StateCovariance - State estimation error covariance

1 (default) | scalar | matrix
State estimation error covariance, specified as a scalar or an $N s$-by- $N s$ matrix, where $N s$ is the number of states of the system. If you specify a scalar, the software uses the scalar value to create an $N s$-by-Ns diagonal matrix.

Specify a high value for the covariance when you do not have confidence in the initial state values that you specify in the InitialState input argument.

When you use the predict command, StateCovariance is updated with the predicted value at time step k using the state value at time step $k-1$. When you use the correct command, StateCovariance is updated with the estimated value at time step k using measured data at time step k.

StateCovariance is a tunable property. You can change it using dot notation after you use the correct or predict commands.

StateTransitionFcn - State transition function

function handle
State transition function f, specified as a function handle. The function calculates the $N s$-element state vector of the system at time step k, given the state vector at time step $k-1$. Ns is the number of states of the nonlinear system.

You write and save the state transition function for your nonlinear system and use it to construct the object. For example, if vdpStateFcn.m is the state transition function, specify
StateTransitionFcn as @vdpStateFcn. You can also specify StateTransitionFcn as a function handle to an anonymous function.

The inputs to the function you write depend on whether you specify the process noise as additive or nonadditive in the HasAdditiveProcessNoise property of the object:

- HasAdditiveProcessNoise is true - The process noise w is additive, and the state transition function specifies how the states evolve as a function of state values at previous time step:

```
x(k) = f(x(k-1),Us1,...,Usn)
```

Where $x(k)$ is the estimated state at time k, and Us $1, \ldots$, Usn are any additional input arguments required by your state transition function, such as system inputs or the sample time. During estimation, you pass these additional arguments to the predict command, which in turn passes them to the state transition function.

- HasAdditiveProcessNoise is false - The process noise is nonadditive, and the state transition function also specifies how the states evolve as a function of the process noise:

$$
x(k)=f(x(k-1), w(k-1), U s 1, \ldots, U s n)
$$

To see an example of a state transition function with additive process noise, enter edit vdpStateFcn at the command line.

StateTransitionFcn is a nontunable property. You can specify it once before you use the predict command, either during object construction or using dot notation after object construction. You cannot change it after using the predict command.

StateTransitionJacobianFcn - Jacobian of state transition function

[] (default) | function handle
Jacobian of the state transition function f, specified as one of the following:

- [] - The Jacobian is numerically computed at every call to the predict command. This can increase processing time and numerical inaccuracy of the state estimation.
- function handle - You either write and save the Jacobian function or generate the Jacobian function using generateJacobianFcn, and specify the handle to the function. For example, if vdpStateJacobianFcn.m is the Jacobian function, specify StateTransitionJacobianFcn as @vdpStateJacobianFcn.

The function calculates the partial derivatives of the state transition function with respect to the states and process noise. The number of inputs to the function must equal the number of inputs of the state transition function and must be specified in the same order in both functions. The number of outputs of the function depends on the HasAdditiveProcessNoise property:

- HasAdditiveProcessNoise is true - The function calculates the partial derivative of the state transition function with respect to the states ($\partial f / \partial x$). The output is an $N s$-by-Ns Jacobian matrix, where Ns is the number of states.
- HasAdditiveProcessNoise is false - The function must also return a second output that is the partial derivative of the state transition function with respect to the process noise terms $(\partial f / \partial w)$. The second output is returned as an Ns-by- W Jacobian matrix, where W is the number of process noise terms.

The extended Kalman filter algorithm uses the Jacobian to compute the state estimation error covariance.

To see an example of a Jacobian function for additive process noise, at the MATLAB command prompt, enter the following:
edit vdpStateJacobianFcn
StateTransitionJacobianFcn is a nontunable property. You can specify it once before you use the predict command, either during object construction or using dot notation after object construction. You cannot change it after using the predict command.

HasMeasurementWrapping - Enable measurement wrapping

0 (default) | 1
Enable measurement wrapping, specified as either 0 or 1 . You can enable measurement wrapping to estimate states when you have circular measurements that are independent of your model states. If you select this parameter, then the measurement function you specify must include the following two outputs:

1 The measurement, specified as a N-element output measurement vector of the nonlinear system at time step k, given the state vector at time step $k . N$ is the number of measurements of the system.
2 The measurement wrapping bounds, specified as an N-by- 2 matrix where, the first column provides the minimum measurement bound and the second column provides the maximum measurement bound.

Enabling the HasMeasurementWrapping property wraps the measurement residuals in a defined bound, which helps to prevent the filter from divergence due to incorrect measurement residual values. For an example, see "State Estimation with Wrapped Measurements Using Extended Kalman Filter".

HasMeasurementWrapping is a nontunable property. You can specify it once during the object construction. You cannot change it after creating the state estimation object.

Object Functions

correct
predict Predict state and state estimation error covariance at next time step using extended or unscented Kalman filter, or particle filter
residual Return measurement residual and residual covariance when using extended or unscented Kalman filter
clone Copy online state estimation object
generateJacobianFcn Generate MATLAB Jacobian functions for extended Kalman filter using automatic differentiation

Examples

Create Extended Kalman Filter Object for Online State Estimation

To define an extended Kalman filter object for estimating the states of your system, you first write and save the state transition function and measurement function for the system.

In this example, use the previously written and saved state transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. These functions describe a discrete-approximation to a van der Pol oscillator with nonlinearity parameter, mu, equal to 1 . The oscillator has two states.

Specify an initial guess for the two states. You specify the guess as an M-element row or column vector, where M is the number of states.
initialStateGuess = [1;0];
Create the extended Kalman filter object. Use function handles to provide the state transition and measurement functions to the object.
obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,initialStateGuess);
The object has a default structure where the process and measurement noise are additive.
To estimate the states and state estimation error covariance from the constructed object, use the correct and predict commands and real-time data.

Specify Process and Measurement Noise Covariances in Extended Kalman Filter Object

Create an extended Kalman filter object for a van der Pol oscillator with two states and one output. Use the previously written and saved state transition and measurement functions, vdpStateFcn.m and $v d p M e a s u r e m e n t F c n . m$. These functions are written for additive process and measurement noise terms. Specify the initial state values for the two states as [2;0].

Since the system has two states and the process noise is additive, the process noise is a 2 -element vector and the process noise covariance is a 2-by-2 matrix. Assume there is no cross-correlation between process noise terms, and both the terms have the same variance 0.01 . You can specify the process noise covariance as a scalar. The software uses the scalar value to create a 2 -by- 2 diagonal matrix with 0.01 on the diagonals.

Specify the process noise covariance during object construction.

```
obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0],...
```

 'ProcessNoise',0.01);
 Alternatively, you can specify noise covariances after object construction using dot notation. For example, specify the measurement noise covariance as 0.2.
obj. MeasurementNoise $=0.2$;

Since the system has only one output, the measurement noise is a 1 -element vector and the MeasurementNoise property denotes the variance of the measurement noise.

Specify Jacobians for State and Measurement Functions

Create an extended Kalman filter (EKF) object for a van der Pol oscillator with two states and one output. Use the previously written and saved state transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. Specify the initial state values for the two states as [2;0].
obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0]);
The extended Kalman filter algorithm uses Jacobians of the state transition and measurement functions for state estimation. You can write and save the Jacobian functions and provide them as function handles to the EKF object. For this object, use the previously written and saved functions vdpStateJacobianFcn.m and vdpMeasurementJacobianFcn.m.
obj. StateTransitionJacobianFcn = @vdpStateJacobianFcn;
obj.MeasurementJacobianFcn = @vdpMeasurementJacobianFcn;
If the Jacobian functions are not available, you can generate them using automatic differentiation.
obj.StateTransitionJacobianFcn = generateJacobianFcn(obj,'state');
obj.MeasurementJacobianFcn = generateJacobianFcn(obj,'measurement');
If you do not specify the Jacobians of the functions, the software numerically computes them. This numerical computation can result in increased processing time and numerical inaccuracy of the state estimation.

Specify Nonadditive Measurement Noise in Extended Kalman Filter Object

Create an extended Kalman filter object for a van der Pol oscillator with two states and one output. Assume that the process noise terms in the state transition function are additive. That is, there is a linear relation between the state and process noise. Also assume that the measurement noise terms are nonadditive. That is, there is a nonlinear relation between the measurement and measurement noise.
obj = extendedKalmanFilter('HasAdditiveMeasurementNoise',false);
Specify the state transition function and measurement functions. Use the previously written and saved functions, vdpStateFcn.m and vdpMeasurementNonAdditiveNoiseFcn.m.

The state transition function is written assuming the process noise is additive. The measurement function is written assuming the measurement noise is nonadditive.
obj.StateTransitionFcn = @vdpStateFcn;
obj.MeasurementFcn = @vdpMeasurementNonAdditiveNoiseFcn;
Specify the initial state values for the two states as [2;0].

```
obj.State = [2;0];
```

You can now use the correct and predict commands to estimate the state and state estimation error covariance values from the constructed object.

Specify State Transition and Measurement Functions with Additional Inputs

Consider a nonlinear system with input u whose state x and measurement y evolve according to the following state transition and measurement equations:

$$
\begin{aligned}
& x[k]=\sqrt{x[k-1]+u[k-1]}+w[k-1] \\
& y[k]=x[k]+2 * u[k]+v[k]^{2}
\end{aligned}
$$

The process noise w of the system is additive while the measurement noise v is nonadditive.
Create the state transition function and measurement function for the system. Specify the functions with an additional input u.
$\mathrm{f}=@(\mathrm{x}, \mathrm{u})(\mathrm{sqrt}(\mathrm{x}+\mathrm{u}))$;
$h=@(x, v, u)\left(x+2^{*} u+v^{\wedge} 2\right)$;
f and h are function handles to the anonymous functions that store the state transition and measurement functions, respectively. In the measurement function, because the measurement noise is nonadditive, v is also specified as an input. Note that v is specified as an input before the additional input u.

Create an extended Kalman filter object for estimating the state of the nonlinear system using the specified functions. Specify the initial value of the state as 1 and the measurement noise as nonadditive.
obj = extendedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);
Specify the measurement noise covariance.
obj. MeasurementNoise $=0.01$;
You can now estimate the state of the system using the predict and correct commands. You pass the values of u to predict and correct, which in turn pass them to the state transition and measurement functions, respectively.

Correct the state estimate with measurement $\mathrm{y}[\mathrm{k}]=0.8$ and input $\mathrm{u}[\mathrm{k}]=0.2$ at time step k .
correct (obj, 0.8,0.2)
Predict the state at the next time step, given $u[k]=0.2$.
predict(obj,0.2)
Retrieve the error, or residual, between the prediction and the measurement.
[Residual, ResidualCovariance] = residual(obj,0.8,0.2);

Algorithms

The first-order, discrete-time extended Kalman filter algorithm performs online state estimation of a discrete-time nonlinear system.

Consider a plant with states x, input u, output y, process noise w, and measurement noise v. Assume that you can represent the plant as a nonlinear system.

The algorithm computes the state estimates \widehat{x} of the nonlinear system using state transition and measurement functions specified by you. The software lets you specify the noise in these functions as additive or nonadditive:

- Additive Noise Terms - The state transition and measurements equations have the following form:

$$
\begin{aligned}
& x[k]=f\left(x[k-1], u_{s}[k-1]\right)+w[k-1] \\
& y[k]=h\left(x[k], u_{m}[k]\right)+v[k]
\end{aligned}
$$

Here f is a nonlinear state transition function that describes the evolution of states x from one time step to the next. The nonlinear measurement function h relates x to the measurements y at time step k. w and v are the zero-mean, uncorrelated process and measurement noises, respectively. These functions can also have additional input arguments that are denoted by u_{s} and u_{m} in the equations. For example, the additional arguments could be time step k or the inputs u to the nonlinear system. There can be multiple such arguments.

Note that the noise terms in both equations are additive. That is, $x(k)$ is linearly related to the process noise $w(k-1)$, and $y(k)$ is linearly related to the measurement noise $v(k)$.

- Nonadditive Noise Terms - The software also supports more complex state transition and measurement functions where the state $x[k]$ and measurement $y[k]$ are nonlinear functions of the process noise and measurement noise, respectively. When the noise terms are nonadditive, the state transition and measurements equation have the following form:

$$
\begin{aligned}
& x[k]=f\left(x[k-1], w[k-1], u_{s}[k-1]\right) \\
& y[k]=h\left(x[k], v[k], u_{m}[k]\right)
\end{aligned}
$$

When you perform online state estimation, you first create the nonlinear state transition function f and measurement function h. You then construct the extendedKalmanFilter object using these nonlinear functions, and specify whether the noise terms are additive or nonadditive. You can also specify the Jacobians of the state transition and measurement functions by either generating them using automatic differentiation in the generateJacobianFcn function or by writing them yourself. If you do not specify them, the software numerically computes the Jacobians.

After you create the object, you use the predict command to predict state estimate at the next time step, and correct to correct state estimates using the algorithm and real-time data. For additional
details about the algorithm, see "Extended and Unscented Kalman Filter Algorithms for Online State Estimation".

Version History

Introduced in R2016b

R2020b: Numerical Changes

Behavior changed in R2020b
Starting in R2020b, numerical improvements in the extendedKalmanFilter algorithm might produce results that are different from the results you obtained in previous versions.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder ${ }^{\mathrm{TM}}$.
Usage notes and limitations:
For more information, see "Generate Code for Online State Estimation in MATLAB".
Generated code uses an algorithm that is different from the algorithm that the extendedKalmanFilter function uses. You might see some numerical differences in the results obtained using the two methods.

If you write your own state transition and measurement Jacobian functions, depending on how you write the functions, code generation might not be possible. To create Jacobian functions that support code generation, either let the function numerically compute the Jacobian functions or generate the Jacobian functions using generateJacobianFcn.

Supports MATLAB Function block: No

See Also

Functions

predict | correct| residual|clone|unscentedKalmanFilter|kalman|kalmd|
generateJacobianFcn

Blocks

Kalman Filter | Extended Kalman Filter | Unscented Kalman Filter

Topics

"Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter"
"Generate Code for Online State Estimation in MATLAB"
"State Estimation with Wrapped Measurements Using Extended Kalman Filter"
"Extended and Unscented Kalman Filter Algorithms for Online State Estimation"
"Validate Online State Estimation at the Command Line"
"Troubleshoot Online State Estimation"

External Websites

Understanding Kalman Filters: Nonlinear State Estimators - MATLAB Video Series

fcat

Concatenate FRD models along frequency dimension

Syntax

sys $=$ fcat(sys1,sys2,...)

Description

sys = fcat(sys1,sys2,...) takes two or more frd models and merges their frequency responses into a single frd model sys. The resulting frequency vector is sorted by increasing frequency. The frequency vectors of sys1, sys2, .. should not intersect. If the frequency vectors do intersect, use fdel to remove intersecting data from one or more of the models.

Version History
 Introduced in R2006a

See Also

fdel|fselect | interp|frd

fdel

Delete specified data from frequency response data (FRD) models

Syntax

sysout = fdel(sys, freq)

Description

sysout = fdel (sys, freq) removes from the frd model sys the data nearest to the frequency values specified in the vector freq.

Input Arguments

sys

frd model.
freq
Vector of frequency values.

Output Arguments

sysout
frd model containing the data remaining in sys after removing the frequency points closest to the entries of freq.

Examples

Delete Specified Data from Frequency Response Data Model

Create a frequency response data (FRD) model at specified frequencies from a transfer function model.

```
w = logspace(0,1,10);
sys = frd(tf([1],[1 1]),w)
sys =
Frequency(rad/s) Response
    1.0000 0.5000 - 0.5000i
    1.2915 0.3748 - 0.4841i
    1.6681 0.2644 - 0.4410i
    2.1544 0.1773 - 0.3819i
    2.7826 0.1144 - 0.3183i
    3.5938 0.0719 - 0.2583i
```

```
    4.6416 0.0444 - 0.2059i
    5.9948 0.0271 - 0.1623i
    7.7426 0.0164 - 0.1270i
    10.0000 0.0099 - 0.0990i
Continuous-time frequency response.
```

w is a logarithmically-spaced grid of 10 frequency points between 1 and $10 \mathrm{rad} /$ second.
Remove the data nearest 2, 3.5, and $6 \mathrm{rad} / \mathrm{s}$ from sys.

```
freq = [2, 3.5, 6];
sys2 = fdel(sys,freq)
sys2 =
    Frequency(rad/s) Response
    --------------------
        1.0000 0.5000 - 0.5000i
        1.2915 0.3748 - 0.4841i
        1.6681 0.2644 - 0.4410i
        2.7826 0.1144 - 0.3183i
        4.6416 0.0444 - 0.2059i
        7.7426 0.0164 - 0.1270i
        10.0000 0.0099 - 0.0990i
```

Continuous-time frequency response.

Note that you do not have to specify the exact frequency of the data to remove. The fdel command removes the data corresponding to frequencies that are nearest to the specified frequencies.

Tips

- Use fdel to remove unwanted data (for example, outlier points) at specified frequencies.
- Use fdel to remove data at intersecting frequencies from frd models before merging them with fcat. fcat produces an error when you attempt to merge frd models that have intersecting frequency data.
- To remove data from an frd model within a range of frequencies, use fselect.

Version History

Introduced in R2010a

See Also

fcat|fselect|frd

feedback

Feedback connection of multiple models

Syntax

```
sys = feedback(sys1,sys2)
sys = feedback(sys1,sys2,feedin,feedout)
sys = feedback(sys1,sys2,'name')
sys = feedback(
```

\qquad

``` ,sign)
```


Description

sys = feedback(sys1,sys2) returns a model object sys for the negative feedback interconnection of model objects sys1, sys2.

From the figure, the closed-loop model sys has u as input vector and y as output vector. Both models, sys1 and sys2, must either be continuous or discrete with identical sample times.
sys = feedback(sys1,sys2,feedin,feedout) computes a closed-loop model sys using the input and output connections specified using feedin and feedout. Use this syntax when you want to connect only a subset of the available I/Os of MIMO systems.
sys = feedback(sys1,sys2,' name') computes a closed-loop model sys with the feedback connections specified by the respective I/O names of MIMO models sys1 and sys2. Use the ' name' flag only when all the required I/Os in the set of MIMO systems are properly named.
sys = feedback(\qquad , sign) returns a model object sys for a feedback loop with the type of feedback specified by sign. By default, feedback assumes negative feedback and is equivalent to feedback(sys1,sys2,-1). To compute the closed-loop system with positive feedback, use sign $=$ +1 .

Examples

Plant and Controller with Unit Feedback

pendulumModelAndController.mat contains a SISO inverted pendulum transfer function model G and its associated PID controller C.

Load the inverted pendulum and controller model to the workspace.

```
load('pendulumModelAndController','G','C');
size(G)
Transfer function with 1 outputs and 1 inputs.
size(C)
PID controller with 1 output and 1 input.
```

Use feedback to create the negative feedback loop with G and C .

```
sys = feedback(G*C,1)
```

sys =
$1.307 \mathrm{e}-06 \mathrm{~s}^{\wedge} 3+3.136 \mathrm{e}-05 \mathrm{~s}^{\wedge} 2+5.227 \mathrm{e}-06 \mathrm{~s}$
$2.3 e-06 s^{\wedge} 4+1.725 e-06 s^{\wedge} 3-4.035 e-05 s^{\wedge} 2-5.018 e-06 s$
Continuous-time transfer function.
sys is the resultant closed loop continuous-time transfer function obtained using negative feedback. feedback converts the PID controller model C to a transfer function before connecting it to the continuous-time transfer function model G. For more information, see "Rules That Determine Model Type".

Plant with Controller in Negative Feedback Path

For this example, consider two transfer functions that describe a plant G and controller C respectively.

Controller

$$
G(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \quad C(s)=\frac{5(s+2)}{s+10}
$$

Create the plant and controller transfer functions.

```
G = tf([2 5 1],[1 2 3],'inputname',"torque",'outputname',"velocity");
C = tf([5,10],[1,10]);
```

Use feedback to create the negative feedback loop using G and C.

```
sys = feedback(G,C,-1)
sys =
    From input "torque" to output "velocity":
    2 s^3 + 25 s^2 + 51 s + 10
    11 s^3 + 57 s^2 + 78 s + 40
Continuous-time transfer function.
```

sys is the resultant closed loop transfer function obtained using negative feedback with torque as the input and velocity as the output.

Positive Feedback Loop with Plant and Controller

For this example, consider two transfer functions that describe a plant G and controller C respectively.

Controller

$$
G(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} \quad C(s)=\frac{5(s+2)}{s+10}
$$

Create the plant and controller transfer functions.

```
G = tf([2 5 1],[1 2 3],'inputname',"torque",'outputname',"velocity");
C = tf([5,10],[1,10]);
```

Use feedback to create the positive feedback loop using G and C .

```
sys = feedback(G,C,+1)
```

sys =
From input "torque" to output "velocity":
-2 s^3 - 25 s^2 - 51 s - 10

$9 s^{\wedge} 3+33 s^{\wedge} 2+32 s-20$
Continuous-time transfer function.
sys is the resultant closed loop transfer function obtained using positive feedback with torque as the input and velocity as the output.

Negative Feedback Loop with MIMO Systems

Based on the figure below, consider connecting two MIMO transfer functions with two inputs and two outputs in a negative feedback loop.

For this example, create two random continuous state-space models using rss.
$G=r s s(4,2,2) ;$
C = rss (2,2,2);
size(G)
State-space model with 2 outputs, 2 inputs, and 4 states.
size(C)
State-space model with 2 outputs, 2 inputs, and 2 states.
Use feedback to connect the two state-space models in a negative feedback loop according to the above figure.

```
sys = feedback(G,C,-1);
size(sys)
State-space model with 2 outputs, 2 inputs, and 6 states.
```

The resulting state-space model sys is a 2 input, 2 output model with 6 states. The negative feedback loop is completed such that,

- The first output of G is connected to the first input of C
- The second output of G is connected to the second input of C

Feedback Loop Based on I/O Names

mimoPlantAndController.mat contains a 2 input, 2 output transfer function plant model G and a 2 input, 2 output transfer function controller model C to be connected as follows:

First, load the plant and controller models to the workspace.
load('mimoPlantAndController.mat', 'G', 'C');

```
size(G)
```

Transfer function with 2 outputs and 2 inputs.
size(C)
Transfer function with 2 outputs and 2 inputs.
By default, feedback would connect the first output of G to the first input of C and the second output of G to the second input of C . In order to connect the plant and controller according to the figure, name the respective I/Os of the two systems to ensure the correct connections.

```
G.InputName
ans = 2x1 cell
    {'torque'}
    {'angle' }
```

G.OutputName

```
ans = 2x1 cell
    {'velocity'}
    {'force' }
```

C. InputName
ans $=2 \times 1$ cell
\{'force' \}
\{'velocity'\}

C.OutputName

```
ans = 2x1 cell
    {'angle' }
    {'torque'}
```

Then use the ' name' flag with the feedback command to make the connections according to the I/O names.
sys $=$ feedback(G,C,'name');
The resulting closed loop negative feedback transfer function sys has the feedback connections in the required order.

Specify Input and Output Connections in a Feedback Loop

Consider a state-space plant G with five inputs and four outputs and a state-space feedback controller K with three inputs and two outputs. The outputs 1,3 , and 4 of the plant G must be connected the controller K inputs, and the controller outputs to inputs 2 and 4 of the plant.

Controller (K)

For this example, generate randomized continuous-time state-space models using rss for both G and K.
$\mathrm{G}=\operatorname{rss}(3,4,5)$;
$K=\operatorname{rss}(3,2,3)$;
Define the feedout and feedin vectors based on the inputs and outputs to be connected in a
feedback loop.

```
feedin = [2 4];
feedout = [1 3 4];
sys = feedback(G,K,feedin,feedout,-1);
size(sys)
State-space model with 4 outputs, 5 inputs, and 6 states.
```

sys is the resultant closed loop state-space model obtained by connecting the specified inputs and outputs of G and K .

Input Arguments

sys1, sys2 - Systems to connect in a feedback loop

dynamic system models
Systems to connect in a feedback loop, specified as dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models such as tf, zpk, pid, pidstd, or ss models.
- Frequency response models such as frd or genfrd.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)

The resulting feedback loop assumes

- current values of the tunable components for tunable control design blocks.
- nominal model values for uncertain control design blocks.

For more information, see dynamic system models.
When sys1 and sys2 are two different model types, feedback uses precedence rules to determine the resulting model sys. For example, when a state-space model and a transfer function is connected in a feedback loop, the resulting system is a state-space model based on the precedence rules. For more information, see "Rules That Determine Model Type".

feedin - Subset of inputs to be used

vector
Subset of inputs to be used, specified as a vector.

Controller (K)

From the figure, feedin contains indices of the input vector of MIMO plant P and specifies which subset of inputs u are involved in the feedback loop. The resulting model sys has the same inputs as G, with their orders preserved.

For an example, see "Specify Input and Output Connections in a Feedback Loop" on page 2-281.

feedout - Subset of outputs to be used

vector
Subset of outputs to be used, specified as a vector.
feedout specifies which outputs of MIMO plant G are used for feedback. The resulting model sys has the same outputs as G , with their orders preserved.

For an example, see "Specify Input and Output Connections in a Feedback Loop" on page 2-281.

sign - Type of feedback

- 1 (default) | +1

Type of feedback, specified as -1 for negative feedback or +1 for positive feedback. feedback assumes negative feedback by default.

Output Arguments

sys - Closed-Ioop system

dynamic system model
Closed-loop system, returned as a SISO, or MIMO dynamic system model. sys can be one of the following depending on the precedence rules:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, pid, or pidstd models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)

When sys1 and sys2 are two different model types, feedback uses precedence rules to determine the resulting model sys. For example, when a state-space model and a transfer function is connected in a feedback loop, the resulting system is a state-space model based on the precedence rules outlined in "Rules That Determine Model Type".

Limitations

- The feedback connection must be free of algebraic loops. For instance, if D_{1} and D_{2} are the feedthrough matrices of sys1 and sys2, this condition is equivalent to:
- $I+D_{1} D_{2}$ nonsingular when using negative feedback
- I $-D_{1} D_{2}$ nonsingular when using positive feedback

Tips

- For complicated feedback structures, use append and connect.

Version History

Introduced before R2006a

See Also

append | connect | series \| lft | sumblk| parallel

Topics

"Rules That Determine Model Type"
"MIMO Feedback Loop"
"Using FEEDBACK to Close Feedback Loops"

filt

Specify discrete transfer functions in DSP format

Syntax

```
sys = filt(numerator,denominator)
sys = filt(numerator,denominator,ts)
sys = filt(m)
sys = filt(
```

\qquad

``` ,Name, Value)
```


Description

Use filt to create discrete-time transfer function models in digital signal processing (DSP) form for use with Control System Toolbox linear analysis and control design tools. To apply a filter to vector data, see filter.

In DSP, it is conventional to use transfer functions as rational expressions in z^{-1} and to order the numerator and denominator terms in ascending powers of z^{-1}. For example:

$$
H\left(z^{-1}\right)=\frac{2+z^{-1}}{1+0.4 z^{-1}+2 z^{-2}}
$$

filt creates a tf object with the Variable property set to ' $z^{\wedge}-1$ '. For more information, see tf.
sys = filt(numerator, denominator) creates a discrete-time transfer function model in DSP form using the coefficients specified in the numerator and denominator arguments. The sample time is left unspecified. For more information, see the tf reference page.
sys = filt(numerator, denominator, ts) sets the sample time of the discrete-time transfer function.
sys $=$ filt (m) creates a discrete-time transfer function model that represents the static gain matrix, m.
sys = filt(\qquad ,Name, Value) sets properties of the discrete-time transfer function model using one or more Name, Value pair arguments for any of the previous input-argument combinations. For information about the available properties and their values, see the tf reference page.

Examples

Discrete-Time Transfer Function Model in DSP Form

For this example, create a discrete-time transfer function model in DSP form using the filt command.

First, specify the numerator and denominator coefficients in ascending orders of $z^{\wedge}-1$.

```
numerator = [2,5,7];
denominator = [6,8,3];
```

Use filt to create the required DSP-oriented transfer function model.

```
sys = filt(numerator,denominator)
sys =
    2 + 5 z^-1 + 7 z^-2
    0
    6 + 8 z^-1 + 3 z^-2
Sample time: unspecified
Discrete-time transfer function.
```

sys is a discrete-time transfer function model in DSP form with the sample time unspecified, that is, the coefficients are ordered in increasing powers of $z^{\wedge}-1$.

Alternatively, you can create the same model using the tf command by setting the Variable property to $z^{\wedge}-1$.

```
systf = tf(numerator,denominator,-1,'Variable','z^-1')
systf =
    2 + 5 z^-1 + 7 z^-2
    6+8 z^-1 + 3 z^^-2
Sample time: unspecified
Discrete-time transfer function.
```


DSP-Oriented Discrete-Time Transfer Function Model

For this example, create a DSP-oriented discrete-time transfer function model with a sample time 0.2 seconds.

First, specify the numerator and denominator coefficients in ascending powers of $z^{\wedge}-1$.

```
numerator = [2,9];
denominator = [3,5,7,1];
ts = 0.2;
```

Next, create the required transfer function model using filt.

```
sys = filt(numerator,denominator,ts)
sys =
    2 + 9 z^-1
    3 + 5 z^-1 + 7 z^-2 + z^-3
Sample time: 0.2 seconds
Discrete-time transfer function.
```

sys is a discrete-time transfer function model in DSP form with a sample time of 0.2 seconds. The coefficients are ordered in ascending orders of $z^{\wedge}-1$ for a DSP-oriented transfer function model.

Discrete-Time Transfer Function in DSP Format with Named Inputs

For this example, create a two-input discrete-time transfer function model in DSP format and name the inputs channel1 and channel2, respectively.

```
numerator = {1,[1 0.3]};
denominator = {[llll}
sys = filt(numerator,denominator,'InputName',{'channel1' 'channel2'})
sys =
    From input "channel1" to output:
        1
    1 + z^-1 + 2 z^-2
    From input "channel2" to output:
    1 + 0.3 z^-1
    ----------
    5 + 2 z^-1
Sample time: unspecified
Discrete-time transfer function.
```

Alternatively, you can also use the tf command to create the same discrete-time transfer function model by setting the Variable property to $z^{\wedge}-1$.

```
systf = tf(numerator,denominator,-1,'InputName',{'channel1' 'channel2'},'Variable','z^-1')
systf =
    From input "channel1" to output:
        1
    1 + z^-1 + 2 z^-2
    From input "channel2" to output:
    1+0.3 z^-1
    ------------
    5 + 2 z^-1
Sample time: unspecified
Discrete-time transfer function.
```


Input Arguments

numerator - Numerator coefficients

row vector | Ny-by-Nu cell array of row vectors
Numerator coefficients, specified as:

- A row vector of polynomial coefficients in order of ascending powers of ' $z^{\wedge}-1$ '.
- An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs and Nu is the number of inputs. Each element of the cell array specifies the
numerator coefficients for a given input/output pair. If you specify both Numerator and Denominator as cell arrays, they must have the same dimensions.

The coefficients of Numerator can be either real-valued or complex-valued

denominator - Denominator coefficients

row vector | Ny-by-Nu cell array of row vectors
Denominator coefficients, specified as:

- A row vector of polynomial coefficients in order of ascending powers of ' $z^{\wedge}-1$ '.
- An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs and Nu is the number of inputs. Each element of the cell array specifies the numerator coefficients for a given input/ output pair. If you specify both Numerator and Denominator as cell arrays, they must have the same dimensions.

If all SISO entries of a MIMO transfer function have the same denominator, you can specify Denominator as the row vector while specifying Numerator as a cell array.

The coefficients of Denominator can be either real-valued or complex-valued.

ts - Sample time

positive scalar | - 1
Sample time, specified as:

- A positive scalar representing the sampling period of a discrete-time system. Specify ts in the time unit specified by the TimeUnit property of the transfer function object.
- - 1 for a discrete-time system with an unspecified sample time.
m - Static gain
scalar | matrix
Static gain, specified as a scalar or matrix. Static gain or steady state gain of a system represents the ratio of the output to the input under steady state condition.

Output Arguments

sys - Discrete-time transfer function in DSP format

tf model object
Discrete-time transfer function in DSP format, returned as a transfer function (tf) model object with the Variable property set to ' $z^{\wedge}-1$ '. For more information, see the $t f$ reference page.

Version History
 Introduced before R2006a

See Also

tf

fnorm

Pointwise peak gain of FRD model

Syntax

```
fnrm = fnorm(sys)
fnrm = fnorm(sys,ntype)
```


Description

fnrm $=$ fnorm(sys) computes the pointwise 2-norm of the frequency response contained in the FRD model sys, that is, the peak gain at each frequency point. The output fnrm is an FRD object containing the peak gain across frequencies.
fnrm = fnorm(sys, ntype) computes the frequency response gains using the matrix norm specified by ntype. See norm for valid matrix norms and corresponding NTYPE values.

Version History

Introduced in R2006a

See Also

norm | abs

fourierBasis

Fourier basis functions for tunable gain surface

Syntax

```
shapefcn = fourierBasis(N)
shapefcn = fourierBasis(N,nvars)
shapefcn = fourierBasis(___,varnames)
```


Description

You use basis function expansions to parameterize gain surfaces for tuning gain-scheduled controllers. fourierBasis generates periodic Fourier series expansions for parameterizing gain surfaces that depend periodically on the scheduling variables, such as a gain that varies with angular position. Use the output of fourierBasis to create tunable gain surfaces with tunableSurface.
shapefcn $=$ fourierBasis(N) generates a function that evaluates the first N harmonics of $e^{i \pi x}$:

$$
F(x)=[\cos (\Pi x), \sin (\Pi x), \cos (2 \Pi x), \sin (2 \Pi x), \ldots, \cos (N \Pi x), \sin (N \Pi x)] .
$$

F is the function represented by shapefcn. The term of F are the first $2 * \mathrm{~N}$ basis functions in the Fourier series expansion of a periodically varying gain, $K(x)$, with $K(-1)=K(1)$. That expansion is given by:

$$
K(x)=\frac{a_{0}}{2}+\sum_{k}\left\{a_{k} \cos (k \Pi x)+b_{k} \sin (k \Pi x)\right\} .
$$

shapefcn = fourierBasis($\mathrm{N}, \mathrm{nvars}$) generates an nvars-dimensional Fourier basis for periodic functions on the region $[-1,1]^{\text {nvars }}$. This basis is the outer product of nvars Fourier bases with N harmonics along each dimension. The resulting function shapefon takes nvars input arguments and returns a vector with $(2 * N+1)^{\wedge}($ nvars -1$)-1$ entries.

To specify basis functions of multiple scheduling variables where the expansions are different for each variable, use ndBasis.
shapefcn = fourierBasis(\qquad , varnames) specifies variable names. Use this syntax with any of the previous syntaxes to name the variables in shapefcn. Using variable names improves readability of the tunableSurface object display and of any MATLAB code you generate using codegen.

Examples

Fourier Basis Functions of One Scheduling Variable

Create basis functions for a gain that varies as a periodic function of one scheduling variable.
shapefcn = fourierBasis(2);
shapefcn is a handle to a function of one variable that returns an array of four values corresponding to the first two harmonics of a periodic function on $x=[-1,1]$:

$$
F(x)=[\cos (\Pi x), \sin (\Pi x), \cos (2 \pi x), \sin (2 \pi x)] .
$$

Use shapefcn as an input argument to tunableSurface to define a gain surface of the form:

$$
K(x)=K_{0}+K_{1} \cos (\Pi x)+K_{2} \sin (\Pi x)+K_{3} \cos (2 \Pi x)+K_{4} \sin (2 \Pi x) .
$$

The variable x is a normalized version of the scheduling variable for your tunable surface. Because the basis functions created by fourierBasis act on normalized variables, your gain-scheduled system must use design points whose endpoint values delineate exactly one period. For example, suppose you use the following design points:

```
alpha = [-7,-4,-1,2,5];
domain = struct('alpha',alpha);
K = tunableSurface('K',0,domain,shapefcn);
```

In normalizing the domain, the software assumes that the gain surface, K , is periodic in alpha such that $K(-7)=K(5)$.

Fourier Basis Functions in Higher Dimensions

Create a two-dimensional Fourier basis for periodic functions of x and y on the domain $[-1,1]^{N}$. The basis functions should go up to the third harmonic in both the x and y dimensions.

```
F2D = fourierBasis(3,2);
```

This function is the outer product of two vectors:

```
x = fourierBasis(3);
y = fourierBasis(3);
```

Equivalently, you can obtain the outer product using ndBasis.

```
F = fourierBasis(3);
F2D = ndBasis(F,F);
```

The values in the vector returned by F include cross-terms such as $\sin (п x) \cos (п y)$ and $\sin (3 \Pi x) \cos (2 п у)$.

Input Arguments

N - Number of harmonics of Fourier expansion
positive integer
Number of harmonics of Fourier expansion, specified as a positive integer.

nvars - Number of variables

1 (default) | positive integer
Number of scheduling variables, specified as a positive integer.
varnames - Variable names
\{'x1','x2', ...\} (default)| character vector | cell array of character vectors
Variable names in the generated function shapefcn, specified as a:

- Character vector, for monovariable basis functions.
- Cell array of character vectors, for multivariable basis functions.

If you do not specify varnames, then the variables in shapefcn are named \{'x1','x2', ...\}.
Example: \{'alpha', 'V'\}

Output Arguments

shapefcn - Fourier expansion

function handle
Fourier expansion, specified as a function handle. shapefen takes as input arguments the number of variables specified by nvars. It returns a vector of polynomials in those variables, defined on the interval $[-1,1]$ for each input variable. When you use shapefcn to create a gain surface, tunableSurface automatically generates tunable coefficients for each polynomial term in the vector.

Tips

- If the gain surface K is periodic in the scheduling variable x with period P, make sure that the corresponding entry in K. Normalization. InputScaling is set to $P / 2$ to ensure consistency with the fourierBasis period, $P=2$. When using the default normalization, the x values in K. SamplingGrid must span exactly one period, $[a, a+P]$, to satisfy this requirement. See the Normalization property of tunableSurface for more details.

Version History

Introduced in R2015b

See Also
 tunableSurface|ndBasis | polyBasis

frd

Frequency-response data model

Description

Use frd to create real-valued or complex-valued frequency-response data models, or to convert dynamic system models to frequency-response data model form.

Frequency-response data models store complex frequency response data with corresponding frequency points. For example, a frequency-response data model $H\left(j w_{i}\right)$, stores the frequency response at each input frequency w_{i}, where $i=1, \ldots, n$. The frd model object can represent SISO or MIMO frequency-response data models in continuous time or discrete time. For more information, see "Frequency Response Data (FRD) Models".

You can also use frd to create generalized frequency-response data (genfr f) models.

Creation

You can obtain frd models in one of the following ways.

- Create the model from frequency response data using the frd command. For example, you can create an frd model with frequency response data taken at specific frequencies.

For an example, see "SISO Frequency-Response Data Model" on page 2-301.

- Convert a linear model such as an ss model into an frd model by computing the frequency response of the model at specified frequencies.

For an example, see "Convert State-Space Model to Frequency-Response Data Model" on page 2305.

- Estimate the model using offline frequency response estimation workflows. These workflows require Simulink Control Design software.

For more information, see "Estimate Frequency Response at the Command Line" (Simulink Control Design) and "Estimate Frequency Response Using Model Linearizer" (Simulink Control Design).

Syntax

```
sys = frd(response,frequency)
sys = frd(response,frequency,ts)
sys = frd(response,frequency,ltiSys)
sys = frd(___ ,Name,Value)
sys = frd(ltiSys,frequency)
sys = frd(ltiSys,frequency,FrequencyUnits)
```


Description

sys $=\mathrm{frd}($ response, fr requency) creates a continuous-time frequency-response data (frd) model, setting the ResponseData and Frequency properties. frequency can contain both negative and positive frequencies.
sys = frd(response,frequency,ts) creates a discrete-time frd model with the sample time ts . To leave the sample time unspecified, set ts to -1 .
sys $=\mathrm{frd}($ response,frequency,ltiSys) creates a frequency-response data model with properties inherited from the dynamic system model ltiSys, including the sample time.
sys $=\mathrm{frd}(\ldots \quad$, Name, Value) sets properties of the frequency-response data model using one or more name-value arguments for any of the previous input-argument combinations.
sys = frd(ltiSys,frequency) converts the dynamic system model ltiSys to a frequencyresponse data model. frd computes the frequency response at frequencies specified by frequency. sys inherits its frequency units rad/TimeUnit from ltiSys.TimeUnit.
sys $=$ frd(ltiSys,frequency,FrequencyUnits) interprets frequencies in the units specified by FrequencyUnit.

Input Arguments

response - Frequency response data

vector | multidimensional array

Frequency response data, specified as a vector or a multidimensional array of complex numbers.

- For SISO systems, specify a vector of frequency response values at the frequency points specified in frequency.
- For MIMO systems with Nu inputs and Ny outputs, specify a Ny-by-Nu-by-Nf array, where Nf is the number of frequency points.
- For an S1-...-by-Sn array of models with Nu inputs and Ny outputs, specify a multidimensional array of size [Ny Nu Nf S1 ... Sn].

For instance, a response of size [$\mathrm{Ny}, \mathrm{Nu}, \mathrm{Nf}, 3,4$] represents the response data for a 3-by-4 array of models. Each model has Ny outputs, Nu inputs, and Nf frequency points.

This input sets the ResponseData property.

frequency - Frequency points

vector
Frequency points corresponding to response, specified as a vector that contains Nf points.
frequency can contain both positive and negative frequencies.
This input sets the Frequency property.

ts - Sample time

scalar
Sample time, specified as a scalar.
The input sets the Ts property.

LtiSys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or an array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pid models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)

The resulting frd model assumes:

- Current values of the tunable components for tunable control design blocks
- Nominal model values for uncertain control design blocks
- Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models. (Using identified models requires System Identification Toolbox software.)

Properties

ResponseData - Frequency response data

multidimensional array of complex numbers
Frequency response data, specified as a multidimensional array of complex numbers.

- For SISO systems, ResponseData is a 1-by-1-by-Nf array of frequency response values at the Nf frequency points specified in the Frequency property.
- For MIMO systems with Nu inputs and Ny outputs, ResponseData is an Ny-by-Nu-by-Nf array, where $N f$ is the number of frequency points.

For instance, ResponseData ($k y, k u, k f$) represents the frequency response from the input ku to the output ky at the frequency Frequency (kf).

- For an S1-...-by-Sn array of models with Nu inputs and Ny outputs, ResponseData is a multidimensional array of size [Ny Nu Nf S1 ... Sn].

For instance, a ResponseData of size $[\mathrm{Ny}, \mathrm{Nu}, \mathrm{Nf}, 3,4]$ represents the response data for a 3-by-4 array of models. Each model has Ny outputs, Nu inputs, and Nf frequency points.

Frequency - Frequency points

vector
Frequency points corresponding to ResponseData, specified as a vector that contains Nf points in the units specified by FrequencyUnit.

FrequencyUnit - Units for frequency vector

```
'rad/TimeUnit' (default)|'cycles/TimeUnit'|'rad/s'|'Hz'|'kHz'|'MHz'|'GHz'|
```

'rpm'

Units of the frequency vector in the Frequency property, specified as one of the following values:

- 'rad/TimeUnit'
- 'cycles/TimeUnit'
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'

The units 'rad/TimeUnit' and 'cycles/TimeUnit' are relative to the time units specified in the TimeUnit property.

Changing this property does not resample or convert the data. Modifying the property changes only the interpretation of the existing data. Use chgFreqUnit to convert the data to different frequency units.

IODelay - Transport delay

0 (default) | scalar | Ny-by-Nu array
Transport delay, specified as one of the following:

- Scalar - Specify the transport delay for a SISO system or the same transport delay for all input/ output pairs of a MIMO system.
- Ny-by-Nu array - Specify separate transport delays for each input/output pair of a MIMO system. Here, Ny is the number of outputs and Nu is the number of inputs.

For continuous-time systems, specify transport delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify transport delays in integer multiples of the sample time, Ts.

InputDelay - Input delay

0 (default) | scalar | Nu-by-1 vector
Input delay for each input channel, specified as one of the following:

- Scalar - Specify the input delay for a SISO system or the same delay for all inputs of a multi-input system.
- Nu-by-1 vector - Specify separate input delays for input of a multi-input system, where Nu is the number of inputs.

For continuous-time systems, specify input delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

OutputDelay - Output delay

0 (default) | scalar | Ny-by-1 vector
Output delay for each output channel, specified as one of the following:

- Scalar - Specify the output delay for a SISO system or the same delay for all outputs of a multioutput system.
- Ny-by-1 vector - Specify separate output delays for output of a multi-output system, where Ny is the number of outputs.

For continuous-time systems, specify output delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify output delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

Ts - Sample time

0 (default) | positive scalar | - 1
Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.
- - 1 for a discrete-time system with an unspecified sample time.

Note Changing Ts does not discretize or resample the model.

TimeUnit - Time variable units

```
'seconds' (default)|'nanoseconds'|'microseconds'|'milliseconds'|'minutes'|
'hours'|'days'|'weeks'|'months'|'years'|...
```

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

InputName - Input channel names

' ' (default) | character vector | cell array of character vectors
Input channel names, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no names specified, for any input channels.

Alternatively, you can assign input names for multi-input models using automatic vector expansion.
For example, if sys is a two-input model, enter the following:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)'; 'controls(2)'\}.
You can use the shorthand notation u to refer to the InputName property. For example, sys. u is equivalent to sys.InputName.

Use InputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.

InputUnit - Input channel units

' ' (default) | character vector | cell array of character vectors
Input channel units, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' ' no units specified, for any input channels.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.

InputGroup - Input channel groups

structure
Input channel groups, specified as a structure. Use InputGroup to assign the input channels of MIMO systems into groups and refer to each group by name. The field names of InputGroup are the group names and the field values are the input channels of each group. For example, enter the following to create input groups named controls and noise that include input channels 1 and 2, and 3 and 5 , respectively.

```
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
```

You can then extract the subsystem from the controls inputs to all outputs using the following.
sys(:,'controls')
By default, InputGroup is a structure with no fields.

OutputName - Output channel names

' ' (default) | character vector | cell array of character vectors
Output channel names, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' ' no names specified, for any output channels.

Alternatively, you can assign output names for multi-output models using automatic vector expansion. For example, if sys is a two-output model, enter the following.

```
sys.OutputName = 'measurements';
```

The output names automatically expand to \{'measurements (1)';'measurements (2)' \}.
You can also use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.

OutputUnit - Output channel units

' ' (default) | character vector | cell array of character vectors
Output channel units, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no units specified, for any output channels.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.

OutputGroup - Output channel groups

structure
Output channel groups, specified as a structure. Use OutputGroupto assign the output channels of MIMO systems into groups and refer to each group by name. The field names of OutputGroup are the group names and the field values are the output channels of each group. For example, create output groups named temperature and measurement that include output channels 1, and 3 and 5, respectively.
sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];
You can then extract the subsystem from all inputs to the measurement outputs using the following.
sys('measurement', :)
By default, OutputGroup is a structure with no fields.

Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, ' system_1'.

Notes - User-specified text

\{ \} (default) | character vector | cell array of character vectors
User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

UserData - User-specified data

[] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

SamplingGrid - Sampling grid for model arrays

structure array
Sampling grid for model arrays, specified as a structure array.
Use SamplingGrid to track the variable values associated with each model in a model array, including identified linear time-invariant (IDLTI) model arrays.

Set the field names of the structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables must be numeric scalars, and all arrays of sampled values must match the dimensions of the model array.

For example, you can create an 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, you can create a 6-by-9 model array, M, by independently sampling two variables, zeta and w . The following code maps the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display M, each entry in the array includes the corresponding zeta and w values.
M

```
M(:,:,1,1) [zeta=0.3, w=5] =
    25
    s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
            25
    s^2 + 3.5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For instance, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid automatically.

By default, SamplingGrid is a structure with no fields.

Object Functions

The following lists contain a representative subset of the functions you can use with frd models. In general, many functions applicable to "Dynamic System Models" are also applicable to a frd object. frd models do not work with any time-domain analysis functions.

Frequency Response Analysis

bode Bode plot of frequency response, or magnitude and phase data
sigma \quad Singular value plot of dynamic system
nyquist Nyquist plot of frequency response
nichols Nichols chart of frequency response
bandwidth Frequency response bandwidth
freqresp Evaluate system response over a grid of frequencies
margin Gain margin, phase margin, and crossover frequencies

Model Transformation

chgFreqUnit Change frequency units of frequency-response data model
chgTimeUnit Change time units of dynamic system
frdfun Apply a function to the frequency response value at each frequency of an frd model object
fselect Select frequency points or range in FRD model
interp Interpolate FRD model
fcat Concatenate FRD models along frequency dimension
fnorm Pointwise peak gain of FRD model

Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

Controller Design

pidtune PID tuning algorithm for linear plant model

Examples

SISO Frequency-Response Data Model

Create an frd object from frequency response data.
For this example, load the frequency response data collected for a water tank model.

```
load wtankData.mat
```

This data contains the frequency response data collected for the frequency range $10^{-3} \mathrm{rad} / \mathrm{s}$ to 10^{2} rad/s.

Create the model.

```
sys = frd(response,frequency)
sys =
    Frequency(rad/s) Response
    0.0010 1.562e+01 - 1.9904i
    0.0018 1.560e+01 - 2.0947i
```

```
    0.0034 1.513e+01 - 3.3670i
    0.0062 1.373e+01 - 5.4306i
    0.0113 1.047e+01 - 7.5227i
    0.0207 5.829e+00 - 7.6529i
    0.0379 2.340e+00 - 5.6271i
    0.0695 7.765e-01 - 3.4188i
    0.1274 2.394e-01 - 1.9295i
    0.2336 7.216e-02 - 1.0648i
    0.4281 2.157e-02 - 0.5834i
    0.7848 6.433e-03 - 0.3188i
    1.4384 1.916e-03 - 0.1740i
    2.6367 5.705e-04 - 0.0950i
    4.8329 1.698e-04 - 0.0518i
    8.8587 5.055e-05 - 0.0283i
    16.2378 1.505e-05 - 0.0154i
    29.7635 4.478e-06 - 0.0084i
    54.5559 1.333e-06 - 0.0046i
100.0000 3.967e-07 - 0.0025i
```

Continuous-time frequency response.
Plot sys.
bode(sys)

Discrete-Time MIMO Frequency-Response Data Model

For this example, consider randomly generated response data and frequencies.
Generate a 3-by-2-by-7 complex array and a frequency vector with seven points between 0.01 and 100 $\mathrm{rad} / \mathrm{s}$. Set the sample time Ts to 5 seconds.

```
rng(0)
r= randn(3,2,7)+1i* randn(3,2,7);
w = logspace(-2,2,7);
Ts = 5;
```

Create the model.
sys $=f r d(r, w, T s)$
sys =
From input 1 to:

Frequency (rad/s)	output 1	output 2	output 3
0.0100	0.5377 + 0.3192i	$1.8339+0.3129 i$	-2.2588-0.8649i
0.0464	$-0.4336+1.0933 i$	$0.3426+1.1093 i$	3.5784-0.8637i
0.2154	0.7254 - 0.0068i	$-0.0631+1.5326 i$	0.7147-0.7697i
1.0000	$1.4090-1.0891 i$	$1.4172+0.0326 i$	$0.6715+0.5525 i$
4.6416	0.4889 - 1.4916i	1.0347-0.7423i	0.7269-1.0616i
21.5443	0.8884 - 0.1924i	-1.1471 + 0.8886i	-1.0689 - 0.7648i
100.0000	0.3252-0.1774i	-0.7549 - 0.1961i	$1.3703+1.4193 i$

 From input 2 to:
 | Frequency (rad/s) | output 1 | output 2 | output 3 |
| :---: | :---: | :---: | :---: |
| 0.0100 | 0.8622-0.0301i | 0.3188-0.1649i | $-1.3077+0.6277 i$ |
| 0.0464 | $2.7694+0.0774 i$ | -1.3499 - 1.2141i | 3.0349-1.1135i |
| 0.2154 | -0.2050 + 0.3714i | -0.1241-0.2256i | $1.4897+1.1174 i$ |
| 1.0000 | $-1.2075+1.1006 i$ | $0.7172+1.5442 i$ | $1.6302+0.0859 i$ |
| 4.6416 | $-0.3034+2.3505 i$ | 0.2939 - 0.6156i | $-0.7873+0.7481 i$ |
| 21.5443 | -0.8095-1.4023i | -2.9443-1.4224i | $1.4384+0.4882 i$ |
| 100.0000 | -1.7115 + 0.2916i | -0.1022 + 0.1978i | -0.2414 + 1.5877i |

Sample time: 5 seconds
Discrete-time frequency response.
The specified data results in a two-input, three-output frd model.

Frequency-Response Data Model with Inherited Properties

For this example, create a frequency-response data model with properties inherited from a transfer function model.

Create a transfer function sys1 with the TimeUnit property set to 'minutes' and InputDelay property set to 3 .

```
numerator1 = [2,0];
denominator1 = [1,8,0];
sys1 = tf(numerator1,denominator1,'TimeUnit','minutes','InputDelay',3)
sys1 =
    2 s
    exp(-3*s)* ---------
    s^2 + 8 s
Continuous-time transfer function.
propValues1 = {sys1.TimeUnit,sys1.InputDelay}
propValuesl=1\times2 cell array
    {'minutes'} {[3]}
```

Create an frd model with properties inherited from sys1.

```
rng(0)
```

response $=\operatorname{randn}(1,1,7)+1 i^{*} \operatorname{randn}(1,1,7)$;
w = logspace(-2,2,7);
sys2 = frd(response,w,sys1)
sys2 =
Frequency(rad/minute) Response

$0.0100 \quad 0.5377+0.3426 i$
$0.0464 \quad 1.8339+3.5784 i$
$0.2154 \quad-2.2588+2.7694 i$
$1.0000 \quad 0.8622-1.3499 i$
$4.6416 \quad 0.3188+3.0349 i$
$21.5443-1.3077+0.7254 i$
$100.0000-0.4336-0.0631 i$
Input delays (minutes): 3
Continuous-time frequency response.
propValues2 = \{sys2.TimeUnit,sys2.InputDelay\}
propValues2=1×2 cell array
\{'minutes'\} \{[3]\}

Observe that the frd model sys2 has that same properties as sys1.

Specify State and Input Names for Frequency-Response Data Model

For this example, load the frequency response data collected for a water tank model.
load wtankData.mat
The model has one input, Voltage, and one output, Water height.

Create an frd model, specifying the input and output names.
sys = frd(response,frequency,'InputName','Voltage','OutputName','Height');
Plot the frequency response.
bode(sys)
Bode Diagram

The input and output names appear on the Bode plot. Naming the inputs and outputs can be useful when dealing with response plots for MIMO systems.

Convert State-Space Model to Frequency-Response Data Model

For this example, compute the frd model of the following state-space model:

$$
A=\left[\begin{array}{cc}
-2 & -1 \\
1 & -2
\end{array}\right], B=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], D=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

Create a state-space model using the state-space matrices.

```
A = [-2 -1;1 -2];
B = [1 1;2 -1];
C = [1 0];
D = [0 1];
ltiSys = ss(A,B,C,D);
```

Convert the state-space model ltiSys to a frd model for frequencies between 0.01 and $100 \mathrm{rad} / \mathrm{s}$.

```
w = logspace(-2,2,50);
sys = frd(ltiSys,w);
```

Compare the frequency responses.

```
bode(ltiSys,'b',sys,'r--')
```


The responses are identical.

Array of Frequency-Response Data Models

To create arrays of frd models, you can specify a multidimensional array of frequency response data.
For instance, when you specify the response data as a numeric array of size [NY NU NF S1 ... Sn], the function returns a S1-by-...-by-Sn array of frd models. Each of these models has NY outputs, NU inputs, and NF frequency points.

Generate a 2-by-3 array of random response data with one-output, two-input models at 10 frequency points between 0.1 and $10 \mathrm{rad} / \mathrm{s}$.

```
w = logspace(-1,1,10);
r = randn(1, 2,10,2,3)+1i*randn(1,2,10,2,3);
sys = frd(r,w);
```

Extract the model at the index $(2,1)$ from the model array.

```
sys21 = sys(:,:,2,1)
sys21 =
    From input 1 to:
        Frequency(rad/s) output 1
            0.1668 0.7172 1.75021
            0.2783 0.4889 - 0.8314i
            0.4642 0.7269 - 1.1564i
            0.7743 0.2939 - 2.0026i
            1.2915 0.8884 + 0.5201i
            2.1544 -1.0689 - 0.0348i
            3.5938 -2.9443 + 1.0187i
            5.9948 0.3252 - 0.7145i
            10.0000 1.3703-0.2248i
    From input 2 to:
    Frequency(rad/s) output 1
            0.1000 -1.2075 - 0.2620i
            0.1668 1.6302 - 0.2857i
            0.2783 1.0347 - 0.9792i
            0.4642 -0.3034 - 0.5336i
            0.7743 -0.7873 + 0.9642i
            1.2915 -1.1471 - 0.0200i
            2.1544 -0.8095 - 0.7982i
            3.5938 1.4384 - 0.1332i
            5.9948 -0.7549 + 1.3514i
            10.0000 -1.7115 - 0.5890i
```

Continuous-time frequency response.

Frequency-Response Data Model with Negative Frequencies

You can specify negative frequency values in an frd object. This capability is useful when you want to capture the frequency response data of models with complex coefficients.

Create a frequency vector with both positive and negative values.
w0 = sort([-logspace(-2,2,50) 0 logspace(-2,2,50)]);
Create a state-space model with complex coefficients.
$A=[-3.50,-1.25-0.25 i ; 2,0] ;$
B = [1;0];
C $=$ [-0.75-0.5i,0.625-0.125i];
D = 0.5;
Gc = ss(A,B,C,D);
Convert the model to an frd model at the specified frequencies.
sys = frd(Gc,w0);
Plot the frequency response of the models.
bode(Gc,'b',sys,'r--')

The plot responses match closely. The plot shows two branches for models with complex coefficients, one for positive frequencies, with a right-pointing arrow, and one for negative frequencies, with a leftpointing arrow. In both branches, the arrows indicate the direction of increasing frequencies.

Version History

Introduced before R2006a

See Also

get | set | ss | zpk|tf|frdata|genfrd|frdfun|bode|pidtune

Topics
"Frequency Response Data (FRD) Models"
"What Are Model Objects?"
"MIMO Frequency Response Data Models"

frdata

Access data for frequency response data (FRD) object

Syntax

[response,freq] = frdata(sys)
[response,freq, covresp] = frdata(sys)
[response,freq,Ts,covresp] = frdata(sys,'v')
[response,freq,Ts] = frdata(sys)

Description

[response,freq] = frdata(sys) returns the response data and frequency samples of the FRD model sys. For an FRD model with Ny outputs and Nu inputs at Nf frequencies:

- response is an Ny-by-Nu-by-Nf multidimensional array where the (i, j) entry specifies the response from input j to output i.
- freq is a column vector of length Nf that contains the frequency samples of the FRD model.

See the frd reference page for more information on the data format for FRD response data.
[response,freq, covresp] = frdata(sys) also returns the covariance covresp of the response data resp for idfrd model sys. (Using idfrd models requires System Identification Toolbox software.) The covariance covresp is a 5D-array where $\operatorname{covH}(\mathrm{i}, \mathrm{j}, \mathrm{k},:,:$) contains the 2-by-2 covariance matrix of the response resp (i, j, k). The $(1,1)$ element is the variance of the real part, the $(2,2)$ element the variance of the imaginary part and the $(1,2)$ and $(2,1)$ elements the covariance between the real and imaginary parts.

For SISO FRD models, the syntax

```
[response,freq] = frdata(sys,'v')
```

forces frdata to return the response data as a column vector rather than a 3-dimensional array (see example below). Similarly
[response,freq,Ts,covresp] = frdata(sys,'v') for an IDFRD model sys returns covresp as a 3-dimensional rather than a 5 -dimensional array.
[response,freq,Ts] = frdata(sys) also returns the sample time Ts.
Other properties of sys can be accessed with get or by direct structure-like referencing (e.g., sys.Frequency).

Arguments

The input argument sys to frdata must be an FRD model.

Examples

Extract Data from Frequency Response Data Model

Create a frequency response data model by computing the response of a transfer function on a grid of frequencies.
$H=\operatorname{tf}([-1.2,-2.4,-1.5],[1,20,9.1])$;
w = logspace(-2,3,101);
sys $=\mathrm{frd}(\mathrm{H}, \mathrm{w})$;
sys is a SISO frequency response data (frd) model containing the frequency response at 101 frequencies.

Extract the frequency response data from sys.
[response,freq] = frdata(sys);
response is a 1-by-1-by-101 array. response ($1,1, k$) is the complex frequency response at the frequency freq(k).

Version History

Introduced before R2006a

See Also
frd|get| set|freqresp

freqresp

Evaluate system response over a grid of frequencies

Syntax

[H,wout] = freqresp(sys)
H = freqresp(sys,w)
H = freqresp(sys,w,units)
[H, wout, covH] = freqresp(sys, \qquad)

Description

Use freqresp to evaluate the system response over a grid of frequencies. To obtain the magnitude and phase data as well as plots of the frequency response, use bode.
[H, wout] = freqresp(sys) returns the frequency response of the dynamic system model sys at frequencies wout. freqresp automatically determines the frequencies based on the dynamics of sys. For more information about frequency response, see "Frequency Response" on page 2-315.
$H=f r e q r e s p(s y s, w)$ returns the frequency response on the real frequency grid specified by the vector w.
$H=f r e q r e s p(s y s, w, u n i t s)$ explicitly specifies the frequency units of w.
[H,wout, covH] = freqresp(sys, ___) also returns the covariance covH of the frequency response. Use this syntax only when sys is an identified model of one of the types listed in "Identified LTI Models".

Examples

Frequency Response of SISO System

For this example, consider the following SISO state-space model:

$$
A=\left[\begin{array}{cc}
-1.5 & -2 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D=0
$$

Create the SISO state-space model defined by the following state-space matrices:

```
A = [-1.5,-2;1,0];
B = [0.5;0];
C = [0,1];
D = 0;
sys = ss(A,B,C,D);
```

Compute the frequency response of the system.

```
[H,wout] = freqresp(sys);
size(H)
```

ans $=1 \times 3$
$1 \quad 1 \quad 56$

H contains the frequency response at 56 frequencies that are automatically chosen based on the dynamics of sys.

```
size(wout)
```

ans $=1 \times 2$
$56 \quad 1$
wout contains the corresponding 56 frequencies.

Compute Frequency Response of System

Create the following 2 -input, 2 -output system:

$$
\text { sys }=\left[\begin{array}{cc}
0 & \frac{1}{s+1} \\
\frac{s-1}{s+2} & 1
\end{array}\right]
$$

sys11 = 0;
sys22 = 1;
sys12 = tf(1,[11]);
sys21 = tf([1-1],[1 2]);
sys = [sys11,sys12;sys21,sys22];
Compute the frequency response of the system.
[H,wout] = freqresp(sys);
H is a 2-by-2-by-45 array. Each entry $\mathrm{H}(:,:, \mathrm{k})$ in H is a 2-by-2 matrix giving the complex frequency response of all input-output pairs of sys at the corresponding frequency wout (k). The 45 frequencies in wout are automatically selected based on the dynamics of sys.

Compute Frequency Response on Specified Frequency Grid

Create the following 2 -input, 2 -output system:

$$
\text { sys }=\left[\begin{array}{cc}
0 & \frac{1}{s+1} \\
\frac{s-1}{s+2} & 1
\end{array}\right]
$$

sys11 = 0;
sys22 = 1;

```
sys12 = tf(1,[ll 1]);
sys21 = tf([1 -1],[1 2]);
sys = [sys11,sys12;sys21,sys22];
```

Create a logarithmically-spaced grid of 200 frequency points between 10 and 100 radians per second. w = logspace(1,2,200);

Compute the frequency response of the system on the specified frequency grid.
$H=$ freqresp(sys,w);
H is a 2-by-2-by-200 array. Each entry $\mathrm{H}(:,:, \mathrm{k})$ in H is a 2-by-2 matrix giving the complex frequency response of all input-output pairs of sys at the corresponding frequency $\mathrm{w}(\mathrm{k})$.

Compute Frequency Response and Associated Covariance

Compute the frequency response and associated covariance for an identified process model at its peak response frequency.

Load estimation data $z 1$.
load iddatal z1
Estimate a SISO process model using the data.
model $=$ procest(z1,'P2UZ');
Compute the frequency at which the model achieves the peak frequency response gain. To get a more accurate result, specify a tolerance value of $1 \mathrm{e}-6$.
[gpeak,fpeak] = getPeakGain(model,1e-6);
Compute the frequency response and associated covariance for model at its peak response frequency.

```
[H,wout,covH] = freqresp(model,fpeak);
```

H is the response value at fpeak frequency, and wout is the same as fpeak.
covH is a 5 -dimensional array that contains the covariance matrix of the response from the input to the output at frequency fpeak. Here $\operatorname{covH}(1,1,1,1,1)$ is the variance of the real part of the response, and $\operatorname{covH}(1,1,1,2,2)$ is the variance of the imaginary part. The $\operatorname{covH}(1,1,1,1,2)$ and $\operatorname{covH}(1,1,1,2,1)$ elements are the covariance between the real and imaginary parts of the response.

Input Arguments

sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- LTI models such as ss, tf, and zpk models.
- Sparse state-space models, such as sparss or mechss models.
- Generalized or uncertain state-space models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to evaluate the frequency response.
- For uncertain control design blocks, the function evaluates the frequency response at the nominal value and random samples of the model.
- Identified state-space models, such as idss models. (Using identified models requires System Identification Toolbox software.)

For a complete list of models, see "Dynamic System Models".

w - Frequencies

vector
Frequencies at which to evaluate system response, specified as a vector. Specify frequencies in units of rad/TimeUnit, where TimeUnit is the time units specified in the TimeUnit property of sys. You can specify the frequencies directly as real values, or in terms of the Laplace variables s and z.

- To obtain the system response at specified frequencies, use real values in w.
- To obtain the system response at specified points in the s or z plane, use complex values. freqresp interprets complex values as follows:
- For continuous-time sys, the function interprets w as $w(k)=s(k)=j * f r e q(k)$, where freq (k) are the frequencies corresponding to each s value.
- For discrete-time sys, the function interprets w as $w(k)=z(k)=\exp (j * f r e q(k) * T s)$, where $\mathrm{freq}(\mathrm{k})$ are the frequencies and Ts is the sample time of sys.

units - Units of the values in the input frequency vector

rad/TimeUnit (default)|'cycles/TimeUnit'|'rad/s'|...
Units of the frequencies in the input frequency vector w, specified as one of the following values:

- 'rad/TimeUnit ' - radians per the time unit specified in the TimeUnit property of sys
- 'cycles/TimeUnit' - cycles per the time unit specified in the TimeUnit property of sys
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'

Output Arguments

H - Frequency response values

array

Frequency response values, returned as an array. The dimensions of H depend on the dimensions of sys.

- If sys is a SISO model, then H is an array of dimensions 1 -by- 1 -by-Nw, where Nw is the number of frequency points (length(w) or length (wout).
- If sys is a MIMO model with Ny outputs and Nu inputs, H is an Ny -by-Nu-by-Nw, Thus, $\mathrm{H}(:,:, \mathrm{k})$ is the response of all I/O channels at the kth frequency, and $H(a, b,:)$ is the response from input b to output a.
- If sys is a model array with array dimensions [S1 ... Sn, containing models with I/O dimensions [Ny Nu], then H is an array with dimensions Ny-by-Nu-by-Nw-by-S1-by-...-by-Sn. For instance, the response at all computed frequencies of the first output to the second input of the third system in the array is $\mathrm{H}(1,2,:, 3)$.

For frequency response data models (such as frd, genfrd, or idfrd), freqresp(sys,w) evaluates to NaN for values of w falling outside the frequency interval defined by sys. frequency. The freqresp command can interpolate between frequencies in sys.frequency. However, freqresp cannot extrapolate beyond the frequency interval defined by sys.frequency.

wout - Output frequencies corresponding to the frequency response

vector
Output frequencies corresponding to the frequency response H , returned as a vector. When you omit w from the inputs to freqresp, the command automatically determines the frequencies of wout based on the system dynamics. If you specify w, then wout $=w$

covH - Covariance of the frequency response
 array

Covariance of the frequency response, returned as a 5D array. For instance, covH(i, j, k, : , :) contains the 2 -by- 2 covariance matrix of the response from the ith input to the j th output at frequency $w(k)$. The (1,1) element of this 2 -by- 2 matrix is the variance of the real part of the response. The $(2,2)$ element is the variance of the imaginary part. The $(1,2)$ and $(2,1)$ elements are the covariance between the real and imaginary parts of the response.

More About

Frequency Response

In continuous time, the frequency response at a frequency ω is the transfer function value at $s=j \omega$. For state-space models, this value is given by

$$
H(j \omega)=D+C(j \omega I-A)^{-1} B
$$

In discrete time, the frequency response is the transfer function evaluated at points on the unit circle that correspond to the real frequencies. freqresp maps the real frequencies $w(1), \ldots, w(N)$ to points on the unit circle using the transformation $z=e^{j \omega T_{S}} . T_{s}$ is the sample time. The function returns the values of the transfer function at the resulting z values. For models with unspecified sample time, freqresp uses $T_{s}=1$.

Algorithms

For transfer functions or zero-pole-gain models, freqresp evaluates the numerator(s) and denominator(s) at the specified frequency points. For continuous-time state-space models (A, B, C, D), the frequency response is

$$
D+C(j \omega-A)^{-1} B, \omega=\omega_{1}, \ldots, \omega_{N}
$$

For efficiency, A is reduced to upper Hessenberg form and the linear equation $(j \omega-A) X=B$ is solved at each frequency point, taking advantage of the Hessenberg structure. The reduction to Hessenberg form provides a good compromise between efficiency and reliability. For more details on this technique, see [1].

Version History

Introduced before R2006a

References

[1] Laub, A.J., "Efficient Multivariable Frequency Response Computations," IEEE Transactions on Automatic Control, AC-26 (1981), pp. 407-408.

See Also
evalfr|bode|nyquist|nichols| sigma|interp|spectrum

frdfun

Apply a function to the frequency response value at each frequency of an frd model object

Syntax

fsys = frdfun(fun,sys)

Description

fsys = frdfun(fun,sys) applies the function fun to the frequency response value at each frequency of sys and collects the results in fsys.

Examples

Apply Functions to Frequency Response Model

For this example, create a frequency response data model by computing the response of a transfer function on a grid of frequencies. For this example, assume a set of 10 frequencies.

```
H = tf([-1.2,-2.4,-1.5],[1,20,9.1]);
w = logspace(-2,3,10);
sys = frd(H,w)
sys =
    Frequency(rad/s) Response
    ---------------------
        0.0100 -0.1648 + 9.847e-04i
        0.0359 -0.1644 + 3.508e-03i
        0.1292 -0.1597 + 1.130e-02i
        0.4642 -0.1294 + 9.857e-03i
        1.6681 -0.1058 - 7.515e-02i
        5.9948 -0.1883-3.050e-01i
        21.5443 -0.7004 - 5.495e-01i
        77.4264 -1.1337 - 2.623e-01i
        278.2559 -1.1946-7.725e-02i
        1000.0000 -1.1996 - 2.159e-02i
```

Continuous-time frequency response.
sys is a SISO frequency response data (frd) model containing the frequency response at 10 frequencies.

Use the frdfun command to apply the function imag on the frd model sys to obtain the imaginary parts of the frequency response as a function of frequency.

```
sysImag = frdfun(@imag,sys)
sysImag =
```

Frequency(rad/s) Response

0.0100	$9.847 \mathrm{e}-04$
0.0359	$3.508 \mathrm{e}-03$
0.1292	$1.130 \mathrm{e}-02$
0.4642	$9.857 \mathrm{e}-03$
1.6681	$-7.515 \mathrm{e}-02$
5.9948	$-3.050 \mathrm{e}-01$
21.5443	$-5.495 \mathrm{e}-01$
77.4264	$-2.623 \mathrm{e}-01$
278.2559	$-7.725 \mathrm{e}-02$
1000.0000	$-2.159 \mathrm{e}-02$

Continuous-time frequency response.
You can also obtain the magnitude of the frequency response of sys with the abs function.

```
sysMag = frdfun(@abs,sys)
sysMag =
    Frequency(rad/s) Response
    ---------------------
        0.0100 0.1648
        0.0359 0.1644
        0.1292 0.1601
        0.4642 0.1298
        1.6681 0.1298
        5.9948 0.3585
        21.5443 0.8902
        77.4264 1.1637
        278.2559 1.1971
        1000.0000 1.1998
Continuous-time frequency response.
```


Magnitude of Specific I/O Pairs in MIMO Frequency Response Model

For this example, consider a 2x2 MIMO frequency response model sys that contains 100 test frequencies for each I/O pair.

Load the frd object sys from the MAT-file frdModelMIMO . mat.
load('frdModelMIMO.mat','sys')
size(sys)
FRD model with 2 outputs, 2 inputs, and 100 frequency points.
Define a function to compute the magnitude of the frequency response of the second I/O pair in sys.
fun $=@(h) \operatorname{abs}(h(2,2))$;
Use the frdfun command to apply the function fun to the specific I/O pair in sys.
fsys = frdfun(fun,sys);

Input Arguments

fun - Function to be applied to frd model
 MATLAB function

Function to be applied to frd model, specified as a MATLAB function. The function fun must accept a single matrix and return a scalar, vector, or matrix of fixed size across frequency.
sys - Frequency response data model
frd model object | genfrd model object | ufrd model object
Frequency response data model, specified as an $f r d$, genfrd, or ufrd model object. When you specify sys as a genfrd or ufrd object, frdfun converts it to an frd object first before applying the function fun.

For more information on frequency response data models, see frd.

Output Arguments

fsys - Output frequency response data model

frd model object
Output frequency response data model, returned as an frd model object. frdfun applies the function fun to the frequency response value at each frequency of sys and collects the results in fsys.

For more information on frequency response data models, see frd.

Version History

Introduced in R2020a

See Also

frd|genfrd|ufrd

freqsep

Slow-fast decomposition

Syntax

[Gs,Gf] = freqsep(G,fcut)
[Gs,Gf] $=$ freqsep(G,fcut,options)

Description

[Gs,Gf] = freqsep(G,fcut) decomposes a linear dynamic system into slow and fast components around the specified cutoff frequency. The decomposition is such that $G=G s+G f$.
[Gs,Gf] = freqsep(G,fcut,options) specifies additional options for the decomposition.

Examples

Decompose Model into Fast and Slow Dynamics

Load a dynamic system model.
load numdemo Pd
bode(Pd)

Pd has four complex poles and one real pole. The Bode plot shows a resonance around $210 \mathrm{rad} / \mathrm{s}$ and a higher-frequency resonance below $10,000 \mathrm{rad} / \mathrm{s}$.

Decompose this model around $1000 \mathrm{rad} / \mathrm{s}$ to separate these two resonances.
[Gs,Gf] = freqsep(Pd,10^3);
bode(Pd,Gs,Gf)
legend('original','slow','fast','Location','Southwest')

The Bode plot shows that the slow component, Gs, contains only the lower-frequency resonance. This component also matches the DC gain of the original model. The fast component, Gf, contains the higher-frequency resonances and matches the response of the original model at high frequencies. The sum of the two components Gs+Gf yields the original model.

Separate Nearby Modes by Adjusting Tolerance

Decompose a model into slow and fast components between poles that are closely spaced.
The following system includes a real pole and a complex pair of poles that are all close to $s=-2$.
G = zpk(-.5,[-1.9999 -2+1e-4i -2-1e-4i],10);
Try to decompose the model about $2 \mathrm{rad} / \mathrm{s}$, so that the slow component contains the real pole and the fast component contains the complex pair.
[Gs,Gf] = freqsep(G,2);
Warning: One or more fast modes could not be separated from the slow modes. To force separation,
These poles are too close together for freqsep to separate. Increase the relative tolerance to allow the separation.

```
options = freqsepOptions('SepTol',5e10);
[Gs,Gf] = freqsep(G,2,options);
```

Now freqsep successfully separates the dynamics.

```
slowpole = pole(Gs)
slowpole = -1.9999
fastpole = pole(Gf)
fastpole = 2×1 complex
    -2.0000 + 0.0001i
    -2.0000 - 0.0001i
```


Input Arguments

G - Dynamic system to decompose

```
numeric LTI model
```

Dynamic system to decompose, specified as a numeric LTI model, such as a ss or tf model.

fcut - Cutoff frequency

positive scalar
Cutoff frequency for fast-slow decomposition, specified as a positive scalar. The output Gs contains all poles with natural frequency less than fcut. The output Gf contains all poles with natural frequency greater than or equal to fcut.

options - Options for decomposition

freqsepOptions options set
Options for the decomposition, specified as an options set you create with freqsepOptions. Available options include absolute and relative tolerance for accuracy of the decomposed systems.

Output Arguments

Gs - Slow dynamics

numeric LTI model
Slow dynamics of the decomposed system, returned as a numeric LTI model of the same type as G. Gs contains all poles of G with natural frequency less than $f c u t$, and is such that $G=G s+G f$.

Gf - Fast dynamics

numeric LTI model
Fast dynamics of the decomposed system, returned as a numeric LTI model of the same type as G. Gf contains all poles of G with natural frequency greater than or equal to fcut, and is such that $G=G s$ +Gf.

Alternative Functionality

App

Model Reducer

Live Editor Task

Reduce Model Order

Version History

Introduced in R2014a

See Also
freqsepOptions | Model Reducer | Reduce Model Order
Topics
"Model Reduction Basics"
"Mode-Selection Model Reduction"

freqsepOptions

Options for slow-fast decomposition

Syntax

opt = freqsepOptions
opt = freqsepOptions(Name,Value)

Description

opt $=$ freqsepOptions returns the default options for freqsep.
opt $=$ freqsepOptions(Name, Value) returns an options set with the options specified by one or more Name, Value pair arguments.

Examples

Separate Nearby Modes by Adjusting Tolerance

Decompose a model into slow and fast components between poles that are closely spaced.
The following system includes a real pole and a complex pair of poles that are all close to $s=-2$.
G $=$ zpk(-.5,[-1.9999 -2+1e-4i -2-1e-4i],10);
Try to decompose the model about $2 \mathrm{rad} / \mathrm{s}$, so that the slow component contains the real pole and the fast component contains the complex pair.
[Gs,Gf] = freqsep(G,2);
Warning: One or more fast modes could not be separated from the slow modes. To force separation,
These poles are too close together for freqsep to separate. Increase the relative tolerance to allow the separation.

```
options = freqsepOptions('SepTol',5e10);
[Gs,Gf] = freqsep(G,2,options);
```

Now freqsep successfully separates the dynamics.

```
slowpole = pole(Gs)
slowpole = -1.9999
fastpole = pole(Gf)
fastpole = 2×1 complex
    -2.0000 + 0.0001i
    -2.0000 - 0.0001i
```


Input Arguments

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'SepTol',5

SepTol - Accuracy loss factor

10 (default) | nonnegative scalar
Accuracy loss factor for slow-fast decomposition, specified as a nonnegative scalar value. freqresp ensures that the frequency responses of the original system, G , and the sum of the decomposed systems G1+G2, differ by no more than SepTol times the absolute accuracy of the computed value of $\mathrm{G}(\mathrm{s})$. Increasing SepTol helps separate modes straddling the slow/fast boundary at the expense of accuracy.

Output Arguments

opt - Options for freqsep
freqsepOptions options set
Options for freqsep, returned as a freqsepOptions options set. Use opt as the last argument to freqsep when computing slow-fast decomposition.

Version History

Introduced in R2014a

See Also

freqsep

fselect

Select frequency points or range in FRD model

Syntax

```
subsys = fselect(sys,fmin,fmax)
subsys = fselect(sys,index)
```


Description

subsys = fselect(sys,fmin,fmax) takes an FRD model sys and selects the portion of the frequency response between the frequencies fmin and fmax. The selected range [fmin, fmax] should be expressed in the FRD model units. For an IDFRD model (requires System Identification Toolbox software), the SpectrumData, CovarianceData and NoiseCovariance values, if nonempty, are also selected in the chosen range.
subsys = fselect(sys,index) selects the frequency points specified by the vector of indices index. The resulting frequency grid is
sys.Frequency(index)

Version History

Introduced before R2006a

See Also

interp|fcat|fdel|frd

full

Convert sparse models to dense storage

Syntax

```
fsys = full(sys)
```


Description

fsys = full(sys) converts the sparss and mechss model sys to dense state-space representation ss. For mechss models, the conversion to dense representation is equivalent to full (sparss(sys)). For other model types, full leaves sys unchanged.

Use the full command to convert small scale sparse models to dense storage to perform operations like pole/zero extraction, model order reduction, and controller design and tuning. Converting to dense storage is not recommended for large scale sparse models as it may saturate available memory and cause severe performance degradation.

Examples

Convert Sparse Second-Order Model to Dense Representation

For this example, consider sparseSOFull .mat that contains a sparse second-order model with 50 nodes.

Load the sparse second-order model and convert it to dense representation using full.

```
load('sparseS0Full.mat','sys');
fsys = full(sys);
size(fsys)
State-space model with 1 outputs, 1 inputs, and 100 states.
```

Since, sys is a mechss model, the conversion to dense storage is equivalent to fsys = full(sparss(sys)). The resultant model fsys is a full storage ss model object with 100 states since the mass matrix is full rank.

Compare the storage size of the two representations.
whos

Name	Size	Bytes	Class	Attributes
fsys	1×1	162930	ss	
sys	1×1	6576	mechss	sparse

Converting to dense storage is not recommended for large scale sparse models as it may saturate available memory and cause severe performance degradation.

Input Arguments

sys - Sparse state-space model

sparss model object | mechss model object
Sparse state-space model, specified as a sparss or mechss model object. For other model types, full leaves sys unchanged.

Output Arguments

fsys - Dense state-space model
ss model object
Dense state-space model, returned as an ss model object. For more information on dense state-space model representation, see ss

Version History

Introduced in R2020b

See Also

sparss|mechss|ss

Topics

"Sparse Model Basics"

gcare

(Not recommended) Generalized solver for continuous-time algebraic Riccati equation

Note gcare is not recommended. Use icare instead. For more information, see "Compatibility Considerations".

Syntax

[X,L, report] = gcare($\mathrm{H}, \mathrm{J}, \mathrm{ns}$)
[X1, X2, D, L] = gcare(H,...,'factor')

Description

$[\mathrm{X}, \mathrm{L}$, report $]=$ gcare $(\mathrm{H}, \mathrm{J}, \mathrm{ns})$ computes the unique stabilizing solution X of the continuoustime algebraic Riccati equation associated with a Hamiltonian pencil of the form

$$
H-t J=\left[\begin{array}{ccc}
A & F & S 1 \\
G & -A^{\prime} & -S 2 \\
S 2^{\prime} & S 1^{\prime} & R
\end{array}\right]-\left[\begin{array}{ccc}
E & 0 & 0 \\
0 & E^{\prime} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The optional input ns is the row size of the A matrix. Default values for J and ns correspond to $E=I$ and $R=[$].

Optionally, gcare returns the vector L of closed-loop eigenvalues and a diagnosis report with value:

- -1 if the Hamiltonian pencil has $j w$-axis eigenvalues
- -2 if there is no finite stabilizing solution X
- 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist.
$[\mathrm{X} 1, \mathrm{X} 2, \mathrm{D}, \mathrm{L}]=\operatorname{gcare}(\mathrm{H}, \ldots$, 'factor') returns two matrices $\mathrm{X} 1, \mathrm{X} 2$ and a diagonal scaling matrix D such that $\mathrm{X}=\mathrm{D} *(\mathrm{X} 2 / \mathrm{X} 1) * \mathrm{D}$. The vector L contains the closed-loop eigenvalues. All outputs are empty when the associated Hamiltonian matrix has eigenvalues on the imaginary axis.

Version History

Introduced before R2006a

R2019a: gcare is not recommended
Not recommended starting in R2019a
Starting in R2019a, use the icare command to solve continuous-time Riccati equations. This approach has improved accuracy through better scaling and the computation of K is more accurate when R is ill-conditioned relative to gcare. Furthermore, icare includes an optional info structure to gather the implicit solution data of the Riccati equation.

The following table shows some typical uses of gcare and how to update your code to use icare instead.

Not Recommended	Recommended
$[X, L]=$ gcare $(H, J, N S)$	$[X, K, L]=$ icare (A, B, Q, R, S, E, G) computes the stabilizing solution X, the state-feedback gain K and the closed-loop eigenvalues L of the continuous-time algebraic Riccati equation. For more information, see icare.
$[X, L$, report $]=$ gcare $(H, J, N S)$	$[X, K, L$, info $=$ icare (A, B, Q, R, S, E, G) computes the stabilizing solution X, the state- feedback gain K, the closed-loop eigenvalues L of the continuous-time algebraic Riccati equation. The info structure contains the implicit solution data. For more information, see icare.

There are no plans to remove gcare at this time.

See Also

icare

gdare

(Not recommended) Generalized solver for discrete-time algebraic Riccati equation

Note gdare is not recommended. Use idare instead. For more information, see "Compatibility Considerations".

Syntax

[X,L,report] = gdare(H, J, ns)
[X1,X2,D,L] = gdare(H,J,NS,'factor')

Description

$[X, L$, report $]=$ gdare ($H, J, n s$) computes the unique stabilizing solution X of the discrete-time algebraic Riccati equation associated with a Symplectic pencil of the form

$$
H-t J=\left[\begin{array}{ccc}
A & F & B \\
-Q & E^{\prime} & -S \\
S^{\prime} & 0 & R
\end{array}\right]-\left[\begin{array}{ccc}
E & 0 & 0 \\
0 & A^{\prime} & 0 \\
0 & B^{\prime} & 0
\end{array}\right]
$$

The third input ns is the row size of the A matrix.
Optionally, gdare returns the vector L of closed-loop eigenvalues and a diagnosis report with value:

- -1 if the Symplectic pencil has eigenvalues on the unit circle
- -2 if there is no finite stabilizing solution X
- 0 if a finite stabilizing solution X exists

This syntax does not issue any error message when X fails to exist.
[$\mathrm{X} 1, \mathrm{X} 2, \mathrm{D}, \mathrm{L}]=$ gdare($\mathrm{H}, \mathrm{J}, \mathrm{NS}$, 'factor') returns two matrices $\mathrm{X} 1, \mathrm{X} 2$ and a diagonal scaling matrix D such that $\mathrm{X}=\mathrm{D} *(\mathrm{X} 2 / \mathrm{X} 1) * \mathrm{D}$. The vector L contains the closed-loop eigenvalues. All outputs are empty when the Symplectic pencil has eigenvalues on the unit circle.

Version History

Introduced before R2006a

R2019a: gdare not recommended

Not recommended starting in R2019a
Starting in R2019a, use the idare command to solve discrete-time Riccati equations. This approach has improved accuracy through better scaling and the computation of K is more accurate when R is ill-conditioned relative to gdare. Furthermore, idare includes an optional info structure to gather the implicit solution data of the Riccati equation.

The following table shows some typical uses of gdare and how to update your code to use idare instead.

Not Recommended	Recommended
$[X, L]=$ gdare $(H, J, N S)$	$[X, K, L]=$ idare (A, B, Q, R, S, E) computes the stabilizing solution X, the state-feedback gain K and the closed-loop eigenvalues L of the discrete-time algebraic Riccati equation. For more information, see idare.
$[X, L$, report $]=$ gdare $(H, J, N S)$	$[X, K, L$, info $=$ idare (A, B, Q, R, S, E) computes the stabilizing solution X, the state- feedback gain K, the closed-loop eigenvalues L of the discrete-time algebraic Riccati equation. The info structure contains the implicit solution data. For more information, see idare.

There are no plans to remove gdare at this time.

See Also

idare

generateJacobianFcn

Generate MATLAB Jacobian functions for extended Kalman filter using automatic differentiation

Syntax

fcnStateJac = generateJacobianFcn(obj,'state',Us1, ...,Usn)
fcnMeasurementJac = generateJacobianFcn(obj,'measurement',Um1,..., Umn)
[___, constants] = generateJacobianFcn(__)
[___] = generateJacobianFcn(__ ,FileName=filename)

Description

fcnStateJac = generateJacobianFcn(obj,'state',Us1,...,Usn) generates the state transition Jacobian function for an extended Kalman filter (EKF) using the automatic differentiation technique.

This function generates two MATLAB function files in the current folder:

- stateTransitionJacobianFcn.m - The generated state transition Jacobian function
- stateTransitionJacobianFcnAD.m - A helper function that uses automatic differentiation to generate the state transition Jacobian function
fcnStateJac is a handle to an anonymous function that calls stateTransitionJacobianFcn.m using the input extendedKalmanFilter object (obj), the additional input arguments passed to the predict function of obj (Us1, .. , Usn), and the constants used internally to compute the state transition Jacobian.

To use this Jacobian in the EKF object, specify fcnStateJac in the StateTransitionJacobianFcn property of the object. For example:
obj.StateTransitionJacobianFcn = fcnStateJac;
fcnMeasurementJac = generateJacobianFcn(obj, 'measurement', Um1, . . . Umn) generates the measurement Jacobian function for an extended Kalman filter (EKF) using the automatic differentiation technique.

This function generates two MATLAB function files in the current folder:

- measurementJacobianFcn.m - The generated measurement Jacobian function
- measurementJacobianFcnAD.m - A helper function that uses automatic differentiation to generate the measurement Jacobian function
fcnMeasurementJac is a handle to an anonymous function that calls measurementJacobianFcn.m using the input extendedKalmanFilter object (obj), the additional input arguments passed to the correct function of obj (Um1, ... Umn), and the constants used internally to compute the measurement Jacobian.

To use this Jacobian in the EKF object, specify fcnMeasurementJac in the MeasurementJacobianFcn property of the object. For example:
obj.MeasurementJacobianFcn = fcnMeasurementJac;
[, constants] = generateJacobianFcn(__) also returns the constants used to compute the Jacobian function. You can return the constants for either Jacobian function.
[___] = generateJacobianFcn(__, FileName=filename) specifies the name of the generated Jacobian function files and the folder location in which to generate them.

Examples

Specify Jacobians for State and Measurement Functions

Create an extended Kalman filter (EKF) object for a van der Pol oscillator with two states and one output. Use the previously written and saved state transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. Specify the initial state values for the two states as [2;0].
obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0]);
The extended Kalman filter algorithm uses Jacobians of the state transition and measurement functions for state estimation. You can write and save the Jacobian functions and provide them as function handles to the EKF object. For this object, use the previously written and saved functions vdpStateJacobianFcn.m and vdpMeasurementJacobianFcn.m.

```
obj.StateTransitionJacobianFcn = @vdpStateJacobianFcn;
```

obj.MeasurementJacobianFcn = @vdpMeasurementJacobianFcn;
If the Jacobian functions are not available, you can generate them using automatic differentiation.
obj.StateTransitionJacobianFcn = generateJacobianFcn(obj,'state');
obj.MeasurementJacobianFcn = generateJacobianFcn(obj,'measurement');
If you do not specify the Jacobians of the functions, the software numerically computes them. This numerical computation can result in increased processing time and numerical inaccuracy of the state estimation.

Generate Jacobian Functions to Specific Folder

Generate the state transition and measurement Jacobian functions of an EKF object using automatic differentiation techniques. Save the Jacobian function files to a nondefault location.

Create an extended Kalman filter (EKF) object for a van der Pol oscillator with two states and one output. Use the previously written and saved state transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. Specify the initial state values for the two states as [2;0].

```
obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0]);
```

Create a folder in which to generate the Jacobian function files. Add the folder to the path.

```
folder = 'jacobians';
[status,msg,msgID] = mkdir(folder);
addpath(folder)
```

Generate the Jacobian function files to the new folder. Display the generated files.

```
fcnStateJac = generateJacobianFcn(obj,"state",FileName=fullfile(folder,'sJac'));
fcnMeasurementJac = generateJacobianFcn(obj,"measurement",FileName=fullfile('jacobians','mJac'))
{dir(fullfile(folder,"*.m")).name}'
ans = 4\times1 cell
    {'mJac.m' }
    {'mJacAD.m'}
    {'sJac.m' }
    {'sJacAD.m'}
```

Add the generated function handles to the EKF object.
obj.StateTransitionJacobianFcn = @fcnStateJac;
obj.MeasurementJacobianFcn = @fcnMeasurementJac;

Input Arguments

obj - Extended Kalman filter
extendedKalmanFilter object
Extended Kalman filter, specified as an extendedKalmanFilter object.

Us1, . . . Usn - Additional input arguments to state transition function

additional input arguments used by predict function
Additional input arguments to the state transition function. The state transition function f is specified in the StateTransitionFcn property of obj. Specify the same additional input arguments used by the predict function of obj. The input arguments can be of any type.

Um1, . . . Umn - Additional input arguments to measurement function

additional input arguments used by correct function
Additional input arguments to the measurement function. The measurement function h is specified in the MeasurementFcn property of obj. Specify the same additional input arguments used by the correct function of obj. The input arguments can be of any type.

filename - Jacobian function file name

character vector
Jacobian function file name, specified as a character vector. The function applies this naming convention to the generated Jacobian function files:

- filename.m
- filenameAD.m

If filename contains an absolute or relative folder path, then generateJacobianFcn generates the files to that folder. If filename is unable to find the specified path, then generateJacobianFcn returns an error.

If the folder that generateJacobianFcn generates the files to is not on the MATLAB path, then generateJacobianFcn returns the Jacobian function handle as []. If this issue occurs, to generate the function handle, follow these steps:

Note To use this procedure, you must return the constants output argument in your call to generateJacobianFcn.

1 Add the folder to the MATLAB search path, or move the generated function files to a folder on the MATLAB search path.
2 Obtain the name part of filename to use in the function handle name, FcnName.
[~,FcnName] = fileparts(filename);
3 Generate the function handle using this name, where constants is the second output argument of your previous call to generateJacobianFcn.
fcnJac = @(varargin)FcnName(varargin\{:\}, constants);
You can then specify fcnJac handle in the appropriate Jacobian function property of obj.
For more details on working with the MATLAB search path, see "What Is the MATLAB Search Path?"
Example: FileName='measjac' generates measjac.mand measjacAD.m files in the current folder.
Example: FileName='AD/measjac' generates measjac.m and measjacAD.m files in the AD subfolder of the current folder.
Example: FileName='C:/AD/measjac' generates ekfjac.mand measjacAD.m files in the C:/AD folder.
Data Types: char

Output Arguments

constants - Additional constants used to compute Jacobian

length- N cell array of constant values
Additional constants used to compute the Jacobian, returned as a length- N cell array of constant values, where N is the number of constants. If the Jacobian function requires no constants, then constants is an empty cell array.

If you specify filename, and the folder specified in filename is not on the MATLAB search path, you can use these constants to manually construct the function handle.

fenStateJac - Jacobian of state transition function

function handle
Jacobian of the state transition function, returned as a function handle.

- If obj. HasAdditiveMeasurementNoise = true, then fcnStateJac has this signature:
dx = fcnStateJac(obj,Us1,...,Usn, constants)
- If obj.HasAdditiveMeasurementNoise = false, then fcnStateJac has this signature:

```
[dx,dw] = fcnStateJac(obj,w,Us1,\ldots..,Usn,constants)
```

In these function signatures:

- dx is the Jacobian of the predicted state with respect to the previous state.
- $d w$ is the Jacobian of the predicted state with respect to the process noise elements.
- w is the process noise variable.
- Us1,... Usn are the additional input arguments used by the predict function of obj.
- constants are the additional constants used to compute the Jacobians.

fcnMeasurementJac - Jacobian of measurement function

function handle
Jacobian of the measurement function, returned as a function handle.

- If obj.HasAdditiveMeasurementNoise = true, then fcnMeasurementJac has this signature:
dy = fcnMeasurementJac(obj,Um1,...,Umn, constants)
- If obj.HasAdditiveMeasurementNoise = false, then fcnMeasurementJac has this signature:
[dy,dv] = fcnMeasurementJac(obj,v,Um1,....,Umn, constants)
In these function signatures:
- dy is the Jacobian of the measurement function with respect to the state.
- $d v$ is the Jacobian of the measurement function with respect to the measurement noise.
- v is the measurement noise variable.
- Um1, ... Umn are the additional input arguments used by the correct function of obj.
- constants are the additional constants used to compute the Jacobians.

Limitations

- Automatic differentiation currently supports only a limited set of mathematical operations, which are described in "Supported Operations for Optimization Variables and Expressions" (Optimization Toolbox). If your original state transition or measurement function uses operations or functions that are not in the list, or has if-else statements or loops, generateJacobianFcn terminates with an error.
- To generate Jacobian functions, do not preallocate any optimization variable in the original function. For example, suppose you try to generate Jacobians from a function containing the following code.

```
dxdt = zeros(2,1);
dxdt(1) = x(1)*x(2);
dxdt(2) = x(1)/x(2);
```

This code results in the following error.

```
Unable to perform assignment because value of type
'optim.problemdef.OptimizationExpression'
is not convertible to 'double'.
```

Instead, use this code.

```
dxdt = [x(1)*x(2); x(1)/x(2)];
```

- Specifying the state transition and measurement functions in obj as files in the current folder or in a folder on the MATLAB path is recommended. While handles to local functions are supported
for Jacobian function generation, they are not supported for generation of C/C++ deployment code. For more information on local functions, see "Local Functions".

Version History

Introduced in R2023a

See Also

extendedKalmanFilter|predict|correct|clone|initialize|residual

Topics

"Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter"
"Extended and Unscented Kalman Filter Algorithms for Online State Estimation"
"Generate Code for Online State Estimation in MATLAB"

genfrd

Generalized frequency response data (FRD) model

Description

Generalized FRD ($g e n f r d$) models arise when you combine numeric FRD models with models containing tunable components (Control Design Blocks). genfrd models keep track of how the tunable blocks interact with the tunable components. For more information about Control Design Blocks, see "Generalized Models".

Construction

To construct a genfrd model, use series, parallel, lft, or connect, or the arithmetic operators $+,-, *, /, \backslash$, and \wedge, to combine a numeric FRD model with control design blocks.

You can also convert any numeric LTI model or control design block sys to genfrd form.
frdsys $=$ genfrd(sys,freqs, frequnits) converts any static model or dynamic system sys to a generalized FRD model. If sys is not an frd model object, genfrd computes the frequency response of each frequency point in the vector freqs. The frequencies freqs are in the units specified by the optional argument frequnits. If frequnits is omitted, the units of freqs are 'rad/TimeUnit'.
frdsys = genfrd(sys,freqs,frequnits,timeunits) further specifies the time units for converting sys to genfrd form.

For more information about time and frequency units of genfrd models, see "Properties" on page 2341.

Input Arguments

sys

A static model or dynamic system model object.

freqs

Vector of frequency points. Express frequencies in the unit specified in frequnits.

frequnits

Frequency units of the genfrd model, specified as one of the following values:

- 'rad/TimeUnit'
- 'cycles/TimeUnit'
- 'rad/s'
- 'Hz'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rpm'

Default: 'rad/TimeUnit'

timeunits

Time units of the genfrd model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Default: 'seconds'

Properties

Blocks

Structure containing the control design blocks included in the generalized LTI model or generalized matrix. The field names of Blocks are the Name property of each control design block.

You can change some attributes of these control design blocks using dot notation. For example, if the generalized LTI model or generalized matrix M contains a realp tunable parameter a, you can change the current value of a using:
M.Blocks.a.Value =-1;

Frequency

Frequency points of the frequency response data. Specify Frequency values in the units specified by the FrequencyUnit property.

FrequencyUnit

Frequency units of the model.
FrequencyUnit specifies the units of the frequency vector in the Frequency property. Set FrequencyUnit to one of the following values:

- 'rad/TimeUnit'
- 'cycles/TimeUnit'
- 'rad/s'
- 'Hz'
- ' kHz'
- 'MHz'
- 'GHz'
- 'rpm'

The units 'rad/TimeUnit' and 'cycles/TimeUnit' are relative to the time units specified in the TimeUnit property.

Changing this property changes the overall system behavior. Use chgFreqUnit to convert between frequency units without modifying system behavior.

Default: 'rad/TimeUnit'

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sample time Ts. For example, InputDelay = 3 means a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output channel. For continuous-time systems, specify output delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify output delays in integer multiples of the sample time Ts. For example, OutputDelay $=3$ means a delay of three sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny -by-1 vector, where each entry is a numerical value representing the output delay for the corresponding output channel. You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels

Ts

Sample time. For continuous-time models, Ts = 0. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sample time, set Ts =-1.

Changing this property does not discretize or resample the model.
Default: 0 (continuous time)

TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names, specified as one of the following:

- Character vector - For single-input models, for example, ' controls '.
- Cell array of character vectors - For multi-input models.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)' ;'controls(2)'\}.
You can use the shorthand notation u to refer to the InputName property. For example, sys. u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all input channels

InputUnit

Input channel units, specified as one of the following:

- Character vector - For single-input models, for example, ' seconds ' .
- Cell array of character vectors - For multi-input models.

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.
Default: ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
creates input groups named controls and noise that include input channels 1, 2 and 3,5, respectively. You can then extract the subsystem from the controls inputs to all outputs using:

```
sys(:,'controls')
```

Default: Struct with no fields

OutputName

Output channel names, specified as one of the following:

- Character vector - For single-output models. For example, ' measurements '.
- Cell array of character vectors - For multi-output models.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
sys.OutputName = 'measurements';
The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all output channels

OutputUnit

Output channel units, specified as one of the following:

- Character vector - For single-output models. For example, ' seconds '.
- Cell array of character vectors - For multi-output models.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.

Default: ' ' for all output channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
```

sys.OutputGroup.measurement = [35];
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

Name

System name, specified as a character vector. For example, 'system_1'.

Default: ' '

Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans =
    "sys1 has a string."
ans =
    'sys2 has a character vector.'
```

Default: [0×1 string]
UserData
Any type of data you want to associate with system, specified as any MATLAB data type.

Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For model arrays that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model in the array. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two variables, zeta and w. The following code attaches the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display M, each entry in the array includes the corresponding zeta and w values.

```
M
M(:,:,1,1) [zeta=0.3, w=5] =
    25
    s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
            2 5
    s^2 + 3 5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For example, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid in this way.

Default: []

Tips

- You can manipulate genfrd models as ordinary frd models. Frequency-domain analysis commands such as bode evaluate the model by replacing each tunable parameter with its current value.

Version History
 Introduced in R2011a

See Also

frd|frdfun | genss | getValue | chgFreqUnit
Topics
"Models with Tunable Coefficients"
"Generalized Models"

genmat

Generalized matrix with tunable parameters

Description

Generalized matrices (genmat) are matrices that depend on tunable parameters (see realp). You can use generalized matrices for parameter studies. You can also use generalized matrices for building generalized LTI models (see genss) that represent control systems having a mixture of fixed and tunable components.

Construction

Generalized matrices arise when you combine numeric values with static blocks such as realp objects. You create such combinations using any of the arithmetic operators $+,-, *, /, \backslash$, and ${ }^{\wedge}$. For example, if a and b are tunable parameters, the expression $M=a+b$ is represented as a generalized matrix.

The internal data structure of the genmat object M keeps track of how M depends on the parameters a and b. The Blocks property of M lists the parameters a and b.
$M=$ genmat (A) converts the numeric array or tunable parameter A into a genmat object.

Input Arguments

A

Static control design block, such as a realp object.
If A is a numeric array, M is a generalized matrix of the same dimensions as A , with no tunable parameters.

If A is a static control design block, M is a generalized matrix whose Blocks property lists A as the only block.

Properties

Blocks

Structure containing the control design blocks included in the generalized LTI model or generalized matrix. The field names of Blocks are the Name property of each control design block.

You can change some attributes of these control design blocks using dot notation. For example, if the generalized LTI model or generalized matrix M contains a realp tunable parameter a, you can change the current value of a using:
M.Blocks.a.Value $=-1$;

SamplingGrid

Sampling grid for model arrays, specified as a data structure.

For model arrays that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model in the array. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two variables, zeta and w. The following code attaches the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display M, each entry in the array includes the corresponding zeta and w values.

```
M
M(:,:,1,1) [zeta=0.3, w=5] =
    2 5
    s^2 + 3s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
    25
    s^2 + 3.5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For example, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid in this way.

Default: []

Name

System name, specified as a character vector. For example, 'mat_1'. When you convert a static control design block such as tunableSurface to a generalized matrix using genmat (blk), the Name property of the block is preserved.

Default: ' '

Examples

Generalized Matrix With Two Tunable Parameters

This example shows how to use algebraic combinations of tunable parameters to create the generalized matrix:

$$
M=\left[\begin{array}{cc}
1 & a+b \\
0 & a b
\end{array}\right],
$$

where a and b are tunable parameters with initial values -1 and 3 , respectively.
1 Create the tunable parameters using realp.

$$
\begin{aligned}
& a=r e a l p(' a ',-1) ; \\
& b=\operatorname{realp}(' b ', 3) ;
\end{aligned}
$$

2 Define the generalized matrix using algebraic expressions of a and b.
M = [1 a+b;0 a*b]
M is a generalized matrix whose B locks property contains a and b. The initial value of M is $M=$
[1 2;0-3], from the initial values of a and b.
3 (Optional) Change the initial value of the parameter a.
M.Blocks.a.Value = -3;

4 (Optional) Use double to display the new value of M.
double(M)
The new value of M is $M=[10 ; 0-9]$.

Version History

Introduced in R2011a

See Also

realp|genss | getValue

Topics

"Models with Tunable Coefficients"
"Dynamic System Models"

gensig

Create periodic signals for simulating system response with lsim

Syntax

```
[u,t] = gensig(type,tau)
[u,t] = gensig(type,tau,Tf)
[u,t] = gensig(type,tau,Tf,Ts)
```


Description

[$u, \mathrm{t}]=$ gensig(type,tau) generates a unit-amplitude periodic signal with the specified type and period. Use the signal u and corresponding time vector t to simulate the time response of a singleinput dynamic system using lsim or lsimplot or to obtain response characteristics using lsiminfo. To create signals for multi-input systems, use repeated calls to gensig and stack the resulting u vectors into a matrix. When you use u and t to simulate a dynamic system model, the software interprets t as having the units of the TimeUnit property of the model.
$[u, t]=$ gensig(type,tau,Tf) generates a signal with a duration of Tf. t runs from 0 to Tf in increments of tau/64.
$[u, t]=$ gensig(type, tau, Tf, Ts) generates a signal with a sample time of Ts. t runs from 0 to Tf in increments of Ts. To generate a signal for simulating a discrete-time model, use this syntax and set Ts to the sample time of the model.

Examples

Generate Square Wave

Generate a square wave with a period of 2 s to use for simulating a dynamic system response with lsim.

```
tau = 2;
[u,t] = gensig("square",tau);
```

gensig returns the signal as the vector u and the corresponding time vector t. When you do not specify the duration of the signal, gensig generates a signal that runs for five periods ($\mathrm{Tf}=$ $5 *$ tau). When you do not specify a time step, the function defaults to 64 samples per period (Ts = tau/64). Thus, this signal runs for 10 s with a time step of 0.03125 s . Plot the signal.

```
plot(t,u)
```


gensig returns a square wave of unit amplitude that starts at zero. You can modify u to obtain a square wave with a different amplitude and different endpoints. Create a square wave of period 5 that runs for 15 s , and that switches between values of -1 and 1 .

```
tau = 5;
Tf = 15;
[u0,t] = gensig("square",tau,Tf);
u = 2*u0-1;
plot(t,u)
```


Use t and u to simulate the response of a dynamic system with lim. The lim command assumes the values of t are in the units of the dynamic system model that you simulate (sys. TimeUnit).
sys = tf(30,[1 5 30]);
lsim(sys,u,t)

Generate Signal with Specified Sample Time

If you do not specify a time step (sample time), gensig defaults to 64 samples per period, or Ts $=$ tau/64. When you want to simulate a discrete-time model with lsim, the time step must equal the sample time of the model. Provide gensig with this sample time to generate a suitable signal. For example, generate a sine wave for simulating a discrete-time dynamic system model with a 0.1 s sample time.
tau = 3;
Tf = 6;
Ts = 0.1;
[u,t] = gensig("sine",tau,Tf,Ts);
Simulate the model response to the generated signal.
sys = zpk([],[-0.1,-0.5],1,Ts);
lsim(sys,u,t,Ts)

Generate Input for Simulating Multi-Input System

To simulate a multi-input system with lsim, you provide the input signals as a matrix whose columns represent the signal applied to each input. In other words, $u(:, j)$ is the signal applied to the j th input at each time step. To use gensig to generate such an input matrix, create the signals for each input together and stack them together in a matrix.

For instance, create a signal for simulating a two-input system that injects a square wave of period 2 s into the first input, and a pulse every 1.5 s into the second input. Specify a duration and sample time so that the two vectors have the same length, which is necessary for combining them into a matrix.

Tf = 8;
Ts = 0.02;
[uSq,t] = gensig("square", 2,Tf,Ts);
[uPu, ~] = gensig("pulse",1.5,Tf,Ts);
u = [uSq uPu];
size(u)
ans $=1 \times 2$
$401 \quad 2$

Each row $u(i,:)$ of u is the signal ($u 1, u 2$) applied to the inputs at the corresponding time $t(i)$.

You can combine signals that are not created with gensig provided they have the same length. For instance, suppose that you want to simulate a three-input system by applying $u S q$ to the first input and uPu to second input. You also want to apply a ramp to the third input that starts at 0 and increases to 1 at the final time $\mathrm{Tf}=8$. Ensure that the signal is a column vector with the same length as $u S q$ and $u P u$. Then combine it with the other signals to create the input matrix.
uRa $=$ linspace(0,1,401)';
u = [uSq uPu uRa];
size(u)
ans $=1 \times 2$
4013
plot(t,u)

You can now use u and t to simulate a three-input model. Generate a three-input, two-output statespace model, and simulate the response at its two outputs to u applied at the inputs.

```
rng('default')
sys = rss(3,2,3);
lsim(sys,u,t)
```


Input Arguments

type - Type of periodic signal

"sine"| "square"| "pulse"
Type of periodic signal to generate, specified as one of the following:

- "sine" - Sine wave
- "square" - Square wave
- "pulse" - Periodic pulse

All signals have unit amplitude and have the initial value 0 at $t=0$. You can specify the type with a character vector instead of a string (for example, 'sine').

tau - Period

positive scalar
Period of generated signal, specified as a positive scalar value. Specify tau in the units of the dynamic system model you want to simulate with lsim. For instance, if sys. TimeUnit is ' seconds ', then to generate a signal for simulating sys with a period of 30 s , set tau to 30 . If sys.TimeUnit is 'minutes', then to generate such a signal, set tau to 0.5 .

Tf - Duration

5*tau (default) | positive scalar

Duration of signal for simulation, specified as a positive scalar value. The output vector t is of the form $0: T \mathrm{Ts}: \mathrm{Tf}$, where the time step is set by Ts. When you use t with lsim to simulate a dynamic system model, lsim interprets t as having the units specified in the TimeUnit property of the model.

Ts - Time step
 tau/64 (default) | positive scalar

Time step, specified as a positive scalar value. The output vector t is of the form $0: T s: T f$. The units of Ts are the units specified by the TimeUnit property dynamic system model you intend to simulate with lsim. When you are simulating a discrete-time model, set Ts equal to the sample time Ts of the model.

Output Arguments

u - Generated signal
column vector
Generated signal, returned as a column vector of the same length as t. The shape of the signal is determined by type. The signal has unit amplitude with a baseline of 0 .

t - Time vector

column vector
Time vector, returned as a column vector of the form $0: T s: T f$. If you do not specify a duration $T f$, then gensig uses $\mathrm{Tf}=5^{*}$ tau. If you do not specify a time step T, then gensig uses tau/64.

Version History

Introduced before R2006a

See Also

lsim|lsiminfo|lsimplot

genss

Generalized state-space model

Description

Generalized state-space (genss) models are state-space models that include tunable parameters or components. genss models arise when you combine numeric LTI models with models containing tunable components (control design blocks). For more information about numeric LTI models and control design blocks, see "Models with Tunable Coefficients".

You can use generalized state-space models to represent control systems having a mixture of fixed and tunable components. Use generalized state-space models for control design tasks such as parameter studies and parameter tuning with commands such as systune and looptune.

Construction

To construct a genss model:

- Use series, parallel, lft, or connect, or the arithmetic operators $+,-, *, /, \backslash$, and \wedge, to combine numeric LTI models with control design blocks.
- Use tf or ss with one or more input arguments that is a generalized matrix (genmat) instead of a numeric array
- Convert any numeric LTI model, control design block, or slTuner interface (requires Simulink Control Design), for example, sys, to genss form using:

```
gensys = genss(sys)
```

When sys is an slTuner interface, gensys contains all the tunable blocks and analysis points specified in this interface. To compute a tunable model of a particular I/O transfer function, call getIOTransfer(gensys, in, out). Here, in and out are the analysis points of interest. (Use getPoints(sys) to get the full list of analysis points.) Similarly, to compute a tunable model of a particular open-loop transfer function, use getLoopTransfer(gensys, loc). Here, loc is the analysis point of interest.

Properties

Blocks

Structure containing the control design blocks included in the generalized LTI model or generalized matrix. The field names of Blocks are the Name property of each control design block.

You can change some attributes of these control design blocks using dot notation. For example, if the generalized LTI model or generalized matrix M contains a realp tunable parameter a, you can change the current value of a using:
M.Blocks.a.Value = -1;

A, B, C, D

Dependency of state-space matrices on tunable and uncertain parameters, stored as a generalized matrix (genmat), uncertain matrix (umat), or double array.

These properties model the dependency of the state-space matrices on static control design blocks, realp, ureal, ucomplex, or ucomplexm. Dynamic control design blocks such as tunableGain or tunableSS set to their current values, and internal delays are set to zero.

When the corresponding state-space matrix does not depend on any static control design blocks, these properties evaluate to double matrices.

For an example, see "Dependence of State-Space Matrices on Parameters" on page 2-369.

E

E matrix, stored as a double matrix when the generalized state-space equations are implicit. The value $\mathrm{E}=$ [] means that the generalized state-space equations are explicit. For more information about implicit state-space models, see "State-Space Models".

StateName

State names, stored as one of the following:

- Character vector - For first-order models, for example, 'velocity '.
- Cell array of character vectors - For models with two or more states, for example, \{'position';'velocity'\}.
- ' ' - For unnamed states.

You can assign state names to a genss model only when all its control design blocks are static. Otherwise, specify the state names for the component models before interconnecting them to create the genss model. When you do so, the genss model tracks the assigned state names. For an example, see "Track State Names in Generalized State-Space Model" on page 2-368.

Default: ' ' for all states

StateUnit

State unit labels, stored as one of the following:

- Character vector - For first-order models, for example, ' m / s ' .
- Cell array of character vectors - For models with two or more states, for example, \{'m' ; 'm/s'\}.
- ' ' - For unnamed states.

StateUnit labels the units of each state for convenience, and has no effect on system behavior.
You can assign state units to a genss model only when all its control design blocks are static. Otherwise, specify the state units for the component models before interconnecting them to create the genss model. When you do so, the genss model tracks the assigned state units. For an example, see "Track State Names in Generalized State-Space Model" on page 2-368.

Default: ' ' for all states

InternalDelay

Vector storing internal delays.
Internal delays arise, for example, when closing feedback loops on systems with delays, or when connecting delayed systems in series or parallel. For more information about internal delays, see "Closing Feedback Loops with Time Delays".

For continuous-time models, internal delays are expressed in the time unit specified by the TimeUnit property of the model. For discrete-time models, internal delays are expressed as integer multiples of the sample time Ts. For example, InternalDelay $=3$ means a delay of three sampling periods.

You can modify the values of internal delays. However, the number of entries in sys. InternalDelay cannot change, because it is a structural property of the model.

InputDelay

Input delay for each input channel, specified as a scalar value or numeric vector. For continuous-time systems, specify input delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sample time Ts. For example, InputDelay = 3 means a delay of three sample times.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for the corresponding input channel.

You can also set InputDelay to a scalar value to apply the same delay to all channels.

Default: 0

OutputDelay

Output delays. OutputDelay is a numeric vector specifying a time delay for each output channel. For continuous-time systems, specify output delays in the time unit stored in the TimeUnit property. For discrete-time systems, specify output delays in integer multiples of the sample time Ts. For example, OutputDelay $=3$ means a delay of three sampling periods.

For a system with Ny outputs, set OutputDelay to an Ny-by-1 vector, where each entry is a numerical value representing the output delay for the corresponding output channel. You can also set OutputDelay to a scalar value to apply the same delay to all channels.

Default: 0 for all output channels

Ts

Sample time. For continuous-time models, Ts $=0$. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sample time, set Ts $=-1$.

Changing this property does not discretize or resample the model.
Default: 0 (continuous time)

TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

InputName

Input channel names, specified as one of the following:

- Character vector - For single-input models, for example, ' controls '.
- Cell array of character vectors - For multi-input models.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)' ;'controls(2)'\}.
You can use the shorthand notation u to refer to the InputName property. For example, sys. u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all input channels

InputUnit

Input channel units, specified as one of the following:

- Character vector - For single-input models, for example, ' seconds '.
- Cell array of character vectors - For multi-input models.

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.
Default: ' ' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:
sys(:,'controls')
Default: Struct with no fields

OutputName

Output channel names, specified as one of the following:

- Character vector - For single-output models. For example, 'measurements '.
- Cell array of character vectors - For multi-output models.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
sys.OutputName = 'measurements';
The output names automatically expand to \{'measurements (1)' ; 'measurements (2)' \}.
You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all output channels

OutputUnit

Output channel units, specified as one of the following:

- Character vector - For single-output models. For example, ' seconds ' .
- Cell array of character vectors - For multi-output models.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.
Default: ' ' for all output channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this
structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];
```

creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:

```
sys('measurement',:)
```

Default: Struct with no fields

Name

System name, specified as a character vector. For example, 'system_1'.

Default: '

Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans =
    "sys1 has a string."
ans =
    'sys2 has a character vector.'
```

Default: [0×1 string]

UserData

Any type of data you want to associate with system, specified as any MATLAB data type.
Default: []

SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For model arrays that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model in the array. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, suppose you create a 6 -by- 9 model array, M, by independently sampling two variables, zeta and w. The following code attaches the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display M, each entry in the array includes the corresponding zeta and w values.

```
M
M(:,:,1,1) [zeta=0.3, w=5] =
    25
    s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
            2 5
```



```
    s^2 + 3.5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For example, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid in this way.

Default: []

Examples

Tunable Low-Pass Filter

In this example, you will create a low-pass filter with one tunable parameter a :

$$
F=\frac{a}{s+a}
$$

Since the numerator and denominator coefficients of a tunableTF block are independent, you cannot use tunableTF to represent F. Instead, construct F using the tunable real parameter object realp.

Create a real tunable parameter with an initial value of 10.

```
a = realp('a',10)
a =
        Name: 'a'
        Value: 10
    Minimum: -Inf
    Maximum: Inf
        Free: 1
Real scalar parameter.
```

Use $t f$ to create the tunable low-pass filter F.

```
numerator = a;
denominator = [1,a];
F = tf(numerator,denominator)
```

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 1 states, and the follow.
a: Scalar parameter, 2 occurrences.
Type "ss(F)" to see the current value and "F.Blocks" to interact with the blocks.
F is a genss object which has the tunable parameter a in its Blocks property. You can connect F with other tunable or numeric models to create more complex control system models. For an example, see "Control System with Tunable Components".

Create State-Space Model with Both Fixed and Tunable Parameters

This example shows how to create a state-space genss model having both fixed and tunable parameters.

$$
A=\left[\begin{array}{cc}
1 & a+b \\
0 & a b
\end{array}\right], \quad B=\left[\begin{array}{c}
-3.0 \\
1.5
\end{array}\right], \quad C=\left[\begin{array}{ll}
0.3 & 0
\end{array}\right], \quad D=0,
$$

where a and b are tunable parameters, whose initial values are -1 and 3, respectively.
Create the tunable parameters using realp.
$a=r e a l p(' a ',-1) ;$
b = realp('b',3);
Define a generalized matrix using algebraic expressions of a and b.
$A=[1 a+b ; 0$ a*b];
A is a generalized matrix whose Blocks property contains a and b. The initial value of A is [1 $2 ; 0$ $-3]$, from the initial values of a and b.

Create the fixed-value state-space matrices.
$B=[-3.0 ; 1.5] ;$
$C=[0.30] ;$
D = 0;
Use ss to create the state-space model.

```
sys = ss(A,B,C,D)
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 2 states, and the follow:
    a: Scalar parameter, 2 occurrences.
    b: Scalar parameter, 2 occurrences.
Type "ss(sys)" to see the current value and "sys.Blocks" to interact with the blocks.
sys is a generalized LTI model (genss) with tunable parameters a and b.
```


Control System Model with Both Numeric and Tunable Components

This example shows how to create a tunable model of a control system that has both fixed plant and sensor dynamics and tunable control components.

Consider the control system of the following illustration.

Suppose that the plant response is $G(s)=1 /(s+1)^{2}$, and that the model of the sensor dynamics is $S(s)=5 /(s+4)$. The controller C is a tunable PID controller, and the prefilter $F=a /(s+a)$ is a lowpass filter with one tunable parameter, a.

Create models representing the plant and sensor dynamics. Because the plant and sensor dynamics are fixed, represent them using numeric LTI models.

```
G = zpk([],[-1,-1],1);
S = tf(5,[1 4]);
```

To model the tunable components, use Control Design Blocks. Create a tunable representation of the controller C.

C = tunablePID('C','PID');
C is a tunablePID object, which is a Control Design Block with a predefined proportional-integralderivative (PID) structure.

Create a model of the filter $F=a /(s+a)$ with one tunable parameter.

```
a = realp('a',10);
F = tf(a,[1 a]);
```

a is a realp (real tunable parameter) object with initial value 10. Using a as a coefficient in tf creates the tunable genss model object F.

Interconnect the models to construct a model of the complete closed-loop response from r to y.

```
T = feedback(G*C,S)*F
```

```
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 5 states, and the follow.
    C: Tunable PID controller, 1 occurrences.
    a: Scalar parameter, 2 occurrences.
Type "ss(T)" to see the current value and "T.Blocks" to interact with the blocks.
```

T is a genss model object. In contrast to an aggregate model formed by connecting only numeric LTI models, T keeps track of the tunable elements of the control system. The tunable elements are stored in the Blocks property of the genss model object. Examine the tunable elements of T .

T.Blocks

```
ans = struct with fields:
    C: [1x1 tunablePID]
    a: [1x1 realp]
```

When you create a genss model of a control system that has tunable components, you can use tuning commands such as systune to tune the free parameters to meet design requirements you specify.

Track State Names in Generalized State-Space Model

Create a genss model with labeled state names. To do so, label the states of the component LTI models before connecting them. For instance, connect a two-state fixed-coefficient plant model and a one-state tunable controller.

```
A = [-1 -1; 1 0];
B = [1; 0];
C = [0 1];
D = 0;
G = ss(A,B,C,D);
G.StateName = {'Pstate1','Pstate2'};
C = tunableSS('C',1,1,1);
L}=G*C
```

The genss model L preserves the state names of the components that created it. Because you did not assign state names to the tunable component C, the software automatically does so. Examine the state names of L to confirm them.

```
L.StateName
ans = 3x1 cell
    {'Pstate1'}
    {'Pstate2'}
    {'C.x1' }
```

The automatic assignment of state names to control design blocks allows you to trace which states in the generalized model are contributed by tunable components.

State names are also preserved when you convert a genss model to a fixed-coefficient state-space model. To confirm, convert L to ss form.

Lfixed = ss(L);
Lfixed.StateName
ans $=3 x 1$ cell
\{'Pstate1'\}
\{'Pstate2'\}
\{'C.x1' \}

State unit labels, stored in the StateUnit property of the genss model, behave similarly.

Dependence of State-Space Matrices on Parameters

Create a generalized model with a tunable parameter, and examine the dependence of the A matrix on that parameter. To do so, examine the A property of the generalized model.

```
G = tf(1,[1 10]);
k = realp('k',1);
F = tf(k,[1 k]);
L1 = G*F;
L1.A
Generalized matrix with 2 rows, 2 columns, and the following blocks:
    k: Scalar parameter, 2 occurrences.
Type "double(ans)" to see the current value and "ans.Blocks" to interact with the blocks.
```

The A property is a generalized matrix that preserves the dependence on the real tunable parameter k . The state-space matrix properties $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D only preserve dependencies on static parameters. When the genss model has dynamic control design blocks, these are set to their current value for evaluating the state-space matrix properties. For example, examine the A matrix property of a genss model with a tunable PI block.

```
C = tunablePID('C','PI');
L2 = G*C;
L2.A
ans = 2\times2
    -10.0000 0.0010
```

Here, the A matrix is stored as a double matrix, whose value is the A matrix of the current value of L2.

L2cur = ss(L2);
L2cur.A
ans $=2 \times 2$

$$
\begin{array}{rr}
-10.0000 & 0.0010 \\
0 & 0
\end{array}
$$

Additionally, extracting state-space matrices using ssdata sets all control design blocks to their current or nominal values, including static blocks. Thus, the following operations all return the current value of the A matrix of L1.

```
[A,B,C,D] = ssdata(L1);
A
A=2\times2
    -10
double(L1.A)
ans = 2\times2
    -10 rr 1
Llcur = ss(L1);
Llcur.A
ans = 2\times2
    -10 1
        0 - 1
```


Tips

- You can manipulate genss models as ordinary ss models. Analysis commands such as bode and step evaluate the model by replacing each tunable parameter with its current value.

Version History

Introduced in R2011a

See Also

realp|genmat|genfrd|tf|ss|getValue|tunablePID|feedback|connect

Topics

"Models with Tunable Coefficients"
"Dynamic System Models"
"Control Design Blocks"

get

Access model property values

Syntax

Value = get(sys,'PropertyName')
Struct $=$ get(sys)

Description

Value $=$ get (sys,'PropertyName') returns the current value of the property PropertyName of the model object sys. 'PropertyName' can be the full property name (for example, 'UserData') or any unambiguous case-insensitive abbreviation (for example, 'user'). See reference pages for the individual model object types for a list of properties available for that model.

Struct $=$ get (sys) converts the TF, SS, or ZPK object sys into a standard MATLAB structure with the property names as field names and the property values as field values.

Without left-side argument,

```
get(sys)
```

displays all properties of sys and their values.

Examples

Display Model Property Values

Create the following discrete-time SISO transfer function model:

$$
H(z)=\frac{1}{z+2}
$$

Specify the sample time as 0.1 seconds and input channel name as Voltage.

```
h = tf(1,[1 2],0.1,'InputName','Voltage')
h =
    From input "Voltage" to output:
        1
    -----
    z + 2
```

Sample time: 0.1 seconds
Discrete-time transfer function.

Display all the properties of the transfer function.
get (h)

```
        Numerator: {[[0 1]}
Denominator: {[1 2]}
            Variable: 'z'
                IODelay: 0
        InputDelay: 0
OutputDelay: 0
        InputName: {'Voltage'}
        InputUnit: {''}
        InputGroup: [1x1 struct]
        OutputName: {''}
        OutputUnit: {''}
OutputGroup: [1x1 struct]
            Notes: [0x1 string]
        UserData: []
            Name: ''
            Ts: 0.1000
            TimeUnit: 'seconds'
SamplingGrid: [1x1 struct]
```

Display the numerator of the transfer function.

```
num = get(h,'Numerator')
num = 1x1 cell array
    {[0 1] }
```

The numerator data is stored as a cell array, thus the Numerator property is a cell array containing the row vector [0 1].

```
num{1}
```

ans $=1 \times 2$
$0 \quad 1$

Display the sample time Ts of the transfer function.
get(h,'Ts')
ans $=0.1000$
Alternatively, use dot notation to access the property value.
h.Ts
ans $=0.1000$

Tips

An alternative to the syntax
Value = get(sys,'PropertyName')
is the structure-like referencing
Value = sys.PropertyName

For example,
sys.Ts
sys.A
sys.user
return the values of the sample time, A matrix, and UserData property of the (state-space) model sys.

Version History

Introduced before R2006a

See Also

frdata| set| ssdata|tfdata|zpkdata|idssdata|polydata

getBlockValue

Current value of Control Design Block in Generalized Model

Syntax

val = getBlockValue(M,blockname)
[val1,val2,...] = getBlockValue(M,blockname1,blockname2, ...)
S = getBlockValue(M)

Description

val = getBlockValue(M , blockname) returns the current value of the Control Design Block blockname in the Generalized Model M. (For uncertain blocks, the "current value" is the nominal value of the block.)
$[$ val1, val2,..$]=$ getBlockValue(M, blockname1,blockname2, \ldots) returns the values of the specified Control Design Blocks.
$\mathrm{S}=$ getBlockValue(M) returns the values of all Control Design Blocks of the generalized model in a structure. This syntax lets you transfer the block values from one generalized model to another model that uses the same Control Design Blocks, as follows:

```
S = getBlockValue(M1);
setBlockValue(M2,S);
```


Input Arguments

M

Generalized LTI (genss) model or generalized matrix (genmat).

blockname

Name of the Control Design Block in the model M whose current value is evaluated.
To get a list of the Control Design Blocks in M, enter M. Blocks.

Output Arguments

val

Numerical LTI model or numerical value, equal to the current value of the Control Design Block blockname.

S

Current values of all Control Design Blocks in M, returned as a structure. The names of the fields in S are the names of the blocks in M. The values of the fields are numerical LTI models or numerical values equal to the current values of the corresponding Control Design Blocks.

Examples

Get Current Values of Single Blocks

Create a tunable genss model, and evaluate the current value of the Control Design Blocks of the model.

Typically, you use getBlockValue to retrieve the tuned values of control design blocks after tuning the genss model using a tuning command such as systune. For this example, create the model and retrieve the initial block values.

```
G = zpk([],[-1,-1],1);
C = tunablePID('C','PID');
a = realp('a',10);
F = tf(a,[1 a]);
T = feedback(G*C,1)*F;
Cval = getBlockValue(T,'C')
Continuous-time I-only controller:
Ki * 
    S
With Ki = 0.001
```

Cval is a numeric pid controller object.

```
aval = getBlockValue(T,'a')
aval =
```

 10
 aval is a numeric scalar, because a is a real scalar parameter.

Get All Current Values as Structure

Using the genss model of the previous example, get the current values of all blocks in the model.

```
G = zpk([],[-1,-1],1);
C = tunablePID('C','PID');
a = realp('a',10);
F = tf(a,[1 a]);
T = feedback(G*C,1)*F;
S = getBlockValue(T)
S =
    C: [1x1 pid]
    a: 10
```


Version History
 Introduced in R2011b

See Also

setBlockValue | showBlockValue | getValue

Topics

Generalized Model
Control Design Block

getCompSensitivity

Complementary sensitivity function from generalized model of control system

Syntax

T = getCompSensitivity(CL,location)
$\mathrm{T}=$ getCompSensitivity(CL,location,opening)

Description

T = getCompSensitivity(CL,location) returns the complementary sensitivity on page 2-380 measured at the specified location for a generalized model of a control system.

T = getCompSensitivity(CL,location,opening) specifies additional loop openings for the complementary sensitivity function calculation. Use an opening, for example, to calculate the complementary sensitivity function of an inner loop, with the outer loop open.

If opening and location list the same point, the software opens the loop after adding the disturbance signal at the point.

Examples

Complementary Sensitivity Function at a Location

Compute the complementary sensitivity at the plant output, X , of the control system of the following illustration.

Create a model of the system by specifying and connecting a numeric LTI plant model G , a tunable controller C, and the AnalysisPoint block X. Use the AnalysisPoint block to mark the location where you assess the complementary sensitivity, which in this example is the plant output.

```
G = tf([1],[1 5]);
C = tunablePID('C','p');
C.Kp.Value = 3;
X = AnalysisPoint('X');
CL = feedback(G*C,X);
```

CL is a genss model that represents the closed-loop response of the control system from r to y. Examine the Control Design Blocks of the model.
CL.Blocks
ans = struct with fields:
C: [1x1 tunablePID]

X: [1x1 AnalysisPoint]

The model's blocks include the AnalysisPoint block, X, that identifies the analysis-point location. Calculate the complementary sensitivity, T, at X.

T = getCompSensitivity(CL, 'X')
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 1 states, and the follow
C: Tunable PID controller, 1 occurrences.
X: Analysis point, 1 channels, 1 occurrences.
Type "ss(T)" to see the current value and "T.Blocks" to interact with the blocks.
getCompSensitivity preserves the Control Design Blocks of CL, and returns a genss model. To get a numeric model, you can convert T to transfer-function form, using the current value of the tunable block.

Tnum $=\operatorname{tf}(\mathrm{T})$
Tnum =

```
    From input "X" to output "X":
        -3
    -
    s + 8
```

Continuous-time transfer function.

Specify Additional Loop Opening for Complementary Sensitivity Function Calculation

In the multiloop system of the following illustration, calculate the inner-loop sensitivity at the output of G2, with the outer loop open.

Create a model of the system by specifying and connecting the numeric plant models, tunable controllers, and AnalysisPoint blocks. G1 and G2 are plant models, C1 and C2 are tunable controllers, and X1 and X2 are AnalysisPoint blocks that mark potential loop-opening locations.

```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
X1 = AnalysisPoint('X1');
```

```
X2 = AnalysisPoint('X2');
CL = feedback(G1*feedback(G2*C2,X2)*C1,X1);
```

Calculate the complementary sensitivity, T, at X 2 , with the outer loop open at X 1 . Specifying X 1 as the third input argument tells getCompSensitivity to open the loop at that location.

```
T = getCompSensitivity(CL,'X2','X1');
tf(T)
ans =
    From input "X2" to output "X2":
        -s - 2
    s^2 + 1.2 s + 12
Continuous-time transfer function.
```


Input Arguments

CL - Model of control system

generalized state-space model
Model of a control system, specified as a generalized state-space model (genss).
Locations at which you can perform sensitivity analysis or open loops are marked by AnalysisPoint blocks in CL. Use getPoints (CL) to get the list of such locations.

location - Location

character vector | cell array of character vectors
Location at which you calculate the complementary sensitivity function on page 2-380, specified as a character vector or cell array of character vectors. To extract the complementary sensitivity function at multiple locations, use a cell array of character vectors.

Each specified location must match an analysis point in CL. Analysis points are marked using AnalysisPoint blocks. To get the list of available analysis points in CL, use getPoints (CL).
Example: 'u' or \{'u', 'y'\}

opening - Additional loop opening

character vector | cell array of character vectors
Additional loop opening used to calculate the complementary sensitivity function on page 2-380, specified as a character vector or cell array of character vectors. To open the loop at multiple locations, use a cell array of character vectors.

Each specified opening must match an analysis point in CL. Analysis points are marked using AnalysisPoint blocks. To get the list of available analysis points in CL, use getPoints (CL).

Use an opening, for example, to calculate the complementary sensitivity function of an inner loop, with the outer loop open.

If opening and location list the same point, the software opens the loop after adding the disturbance signal at the point.

Example: 'y_outer' or \{'y_outer','y_outer2'\}

Output Arguments

T-Complementary sensitivity function

generalized state-space model
Complementary sensitivity function on page 2-380 of the control system, T , measured at location, returned as a generalized state-space model (genss).

- If location specifies a single analysis point, then T is a SISO genss model.
- If location is a vector signal, or specifies multiple analysis points, then T is a MIMO genss model.

More About

Complementary Sensitivity

The complementary sensitivity function, T, at a point is the closed-loop transfer function around the feedback loop measured at the specified location. It is related to the open-loop transfer function, L, and the sensitivity function, S, at the same point as follows:

$$
T=\frac{L}{1-L}=S-1 .
$$

Use getLoopTransfer and getSensitivity to compute L and S.
Consider the following model:

The complementary sensitivity, T, at y is defined as the transfer function from dy to y .

Observe that, in contrast to the sensitivity function, the disturbance, dy , is added after the measurement, y.

$$
\begin{aligned}
& y=-G K(y+d y) \\
& \rightarrow y=-G K y-G K d y \\
& \rightarrow(I+G K) y=-G K d y \\
& \rightarrow y=\square^{(I+G K)^{-1} G K d y .}
\end{aligned}
$$

Here, I is an identity matrix of the same size as $G K$. The complementary sensitivity transfer function at y is equal to -1 times the closed-loop transfer function from r to y .

Complementary sensitivity at multiple locations, for example, u and y, is defined as the MIMO transfer function from the disturbances to measurements:

$$
T=\left[\begin{array}{ll}
T_{d u \rightarrow u} & T_{d y \rightarrow u} \\
T_{d u \rightarrow y} & T_{d y \rightarrow y}
\end{array}\right] .
$$

Version History
 Introduced in R2014a

See Also

getPoints | AnalysisPoint | genss | getLoopTransfer|systune | getIOTransfer| getSensitivity|getValue|getCompSensitivity

getComponents

Extract SISO control components from a 2-DOF PID controller

Syntax

[C,X] = getComponents(C2, looptype)

Description

$[\mathrm{C}, \mathrm{X}]=$ getComponents (C2, looptype) decomposes the 2-DOF PID controller C2 into two SISO control components. One of the control components, C , is a 1-DOF PID controller. The other, X , is a SISO dynamic system. When C and X are connected in the loop structure specified by looptype, the resulting closed-loop system is equivalent to the 2-DOF control loop.

For more information about 2-DOF PID control architectures, see "Two-Degree-of-Freedom PID Controllers".

Examples

Extract SISO Components from 2-DOF PID Controller

Decompose a 2-DOF PID controller into SISO control components, using each of the feedforward, feedback, and filter configurations.

To start, obtain a 2-DOF PID controller. For this example, create a plant model and tune a 2-DOF PID controller for it.

```
G = tf(1,[1 0.5 0.1]);
C2 = pidtune(G,'pidf2',1.5)
C2 =
    u=Kp (b*r-y) +Ki 
    with Kp = 1.12, Ki = 0.23, Kd = 1.3, Tf = 0.122, b = 0.664, c = 0.0136
Continuous-time 2-DOF PIDF controller in parallel form.
```

C2 is a pid2 controller object, with two inputs and one output. Decompose C2 into SISO control components using the feedforward configuration.
[Cff,Xff] = getComponents(C2,'feedforward')
Cff =

$$
\begin{array}{ll}
\mathrm{s} & \mathrm{Tf} * \mathrm{~s}+1
\end{array}
$$

```
    with Kp = 1.12, Ki = 0.23, Kd = 1.3, Tf = 0.122
Continuous-time PIDF controller in parallel form.
Xff =
    -10.898 (s+0.2838)
        (s+8.181)
Continuous-time zero/pole/gain model.
```

As the display shows, this command returns the SISO PID controller Cff as a pid object. The feedforward compensator X is returned as a zpk object.

Decompose C2 using the feedback configuration. In this case as well, Cfb is a pid controller object, and the feedback compensator X is a zpk model.
[Cfb,Xfb] = getComponents(C2,'feedback');
Decompose C2 using the filter configuration. Again, the components are a SISO pid controller and a zpk model representing the prefilter.

```
[Cfr,Xfr] = getComponents(C2,'filter');
```


Input Arguments

C2 - 2-DOF PID controller

pid2 object | pidstd2 object
2-DOF PID controller to decompose, specified as a pid2 or pidstd2 controller object.

looptype - Loop structure

'feedforward' (default)|'feedback' |'filter'
Loop structure for decomposing the 2-DOF controller, specified as 'feedforward', 'feedback', or 'filter'. These correspond to the following control decompositions and architectures:

- 'feedforward ' - C is a conventional SISO PID controller that takes the error signal as its input. X is a feedforward controller, as shown:

If C 2 is a continuous-time, parallel-form controller, then the components are given by:

$$
\begin{gathered}
C(s)=K_{p}+\frac{K_{i}}{s}+\frac{K_{d} S}{T_{f} S+1}, \\
X(s)=(b-1) K_{p}+\frac{(c-1) K_{d} S}{T_{f} S+1} .
\end{gathered}
$$

The following command constructs the closed-loop system from r to y for the feedforward configuration.
$\mathrm{T}=\mathrm{G}^{*}(\mathrm{C}+\mathrm{X}) *$ feedback ($1, \mathrm{G} * \mathrm{C}$);

- 'feedback ' -C is a conventional SISO PID controller that takes the error signal as its input. X is a feedback controller from y to u, as shown:

If C2 is a continuous-time, parallel-form controller, then the components are given by:

$$
\begin{gathered}
C(s)=b K_{p}+\frac{K_{i}}{s}+\frac{c K_{d} S}{T_{f} S+1}, \\
X(s)=(1-b) K_{p}+\frac{(1-c) K_{d} S}{T_{f} S+1} .
\end{gathered}
$$

The following command constructs the closed-loop system from r to y for the feedback configuration.
$\mathrm{T}=\mathrm{G}^{*} \mathrm{C}^{*}$ feedback(1, $\mathrm{G}^{*}(\mathrm{C}+\mathrm{X})$);

- 'filter' - X is a prefilter on the reference signal. C is a conventional SISO PID controller that takes as its input the difference between the filtered reference and the output, as shown:

If C2 is a continuous-time, parallel-form controller, then the components are given by:

$$
\begin{gathered}
C(s)=K_{p}+\frac{K_{i}}{s}+\frac{K_{d} s}{T_{f} s+1}, \\
X(s)=\frac{\left(b K_{p} T_{f}+c K_{d}\right) s^{2}+\left(b K_{p}+K_{i} T_{f}\right) s+K_{i}}{\left(K_{p} T_{f}+K_{d}\right) s^{2}+\left(K_{p}+K_{i} T_{f}\right) s+K_{i}} .
\end{gathered}
$$

The following command constructs the closed-loop system from r to y for the filter configuration.

```
T = X*feedback(G*C,1);
```

The formulas shown above pertain to continuous-time, parallel-form controllers. Standard-form controllers and controllers in discrete time can be decomposed into analogous configurations. The getComponents command works on all 2-DOF PID controller objects.

Output Arguments

C - SISO PID controller

pid object | pidstd object
SISO PID controller, returned as a pid or pidstd controller object. The form of C corresponds to the form of the input controller C2. For example, if C2 is a standard-form pidstd2 controller, then C is a pidstd object.

The precise functional form of C depends on the loop structure you specify with the looptype argument, as described in "Input Arguments" on page 2-383.

X - SISO control component
 zpk model

SISO control component, specified as a zero-pole-gain (zpk) model. The precise functional form of X depends on the loop structure you specify with the looptype argument, as described in "Input Arguments" on page 2-383.

Version History

Introduced in R2015b

See Also

pid2 | pidstd2 | make1D0F | make2D0F

Topics

"Decompose a 2-DOF PID Controller into SISO Components"
"Two-Degree-of-Freedom PID Controllers"

getData

Get current values of tunable-surface coefficients

Syntax

Kco = getData(K)
KcoJ = getData(K, J)

Description

Kco = getData (K) extracts the current value of a tunable surface. K is a tunableSurface object that represents the parametric gain surface:

$$
K(n(\sigma))=\gamma\left[K_{0}+K_{1} F_{1}(n(\sigma))+\ldots+K_{M} F_{M}(n(\sigma))\right],
$$

where:

- σ is a vector of scheduling variables.
- $n(\sigma)$ is a normalization function (see the Normalization property of tunableSurface).
- γ is a scaling factor (see the Normalization property of tunableSurface).
- F_{1}, \ldots, F_{M} are basis functions.
- K_{0}, \ldots, K_{M} are tunable coefficients.
getData evaluates K at the current values of the coefficients K_{0}, \ldots, K_{M}.
KcoJ $=$ getData (K, J) extracts the current value of the coefficient of the J th basis function F_{J}. Use $\mathrm{J}=0$ to get the constant coefficient K_{0}.

Input Arguments

K - Gain surface
tunableSurface object
Gain surface, specified as a tunableSurface object,

J - Index of basis function

nonnegative integer
Index of basis function, specified as a nonnegative integer. To extract the constant coefficient K_{0}, use $\mathrm{J}=0$.

Output Arguments

Kco - Current coefficient values array

Current coefficient values of the tunable surface, returned as an array.

If the tunable surface K is a scalar-valued gain, then the length of K is ($\mathrm{M}+1$), where M is the number of basis functions in the parameterization. For example, if K represents the tunable gain surface:

$$
K(\alpha, V)=K_{0}+K_{1} \alpha+K_{2} V+K_{3} \alpha V
$$

then Kco is the 1 -by- 4 vector [$K_{0}, K_{1}, K_{2}, K_{3}$].
For array-valued gains, each coefficient expands to the I/O dimensions of the gain. These expanded coefficients are concatenated horizontally in Kco. (See tunableSurface.) For example, for a twoinput, two-output gain surface, Kco has dimensions [2,2(M+1)].

KcoJ - Coefficient of Jth basis function

scalar | array
Coefficient of the Jth basis function in the tunable surface parameterization, returned as a scalar or an array.

If the tunable surface K is a scalar-valued gain, then $K c o J$ is a scalar. If K is an array-valued gain, then KcoJ is an array that matches the I/O dimensions of the gain.

Version History
 Introduced in R2015b

See Also

tunableSurface | setData | evalSurf | viewSurf

getDelayModel

State-space representation of internal delays

Syntax

[H,tau] = getDelayModel(sys)
[A, B1, B2, C1, C2, D11, D12, D21, D22, E,tau] = getDelayModel(sys)

Description

[H, tau] = getDelayModel(sys) decomposes a state-space model sys with internal delays into a delay-free state-space model, H , and a vector of internal delays, tau. The relationship among sys, H , and tau is shown in the following diagram.

$[A, B 1, B 2, C 1, C 2, D 11, D 12, D 21, D 22, E$, tau] = getDelayModel(sys) returns the set of statespace matrices and internal delay vector, tau, that explicitly describe the state-space model sys. These state-space matrices are defined by the state-space equations:

- Continuous-time sys:

$$
\begin{gathered}
E \frac{d x(t)}{d t}=A x(t)+B_{1} u(t)+B_{2} w(t) \\
y(t)=C_{1} x(t)+D_{11} u(t)+D_{12} w(t) \\
z(t)=C_{2} x(t)+D_{21} u(t)+D_{22} w(t) \\
w(t)=z(t-\tau)
\end{gathered}
$$

- Discrete-time sys:

$$
\begin{gathered}
E x[k+1]=A x[k]+B_{1} u[k]+B_{2} w[k] \\
y[k]=C_{1} x[k]+D_{11} u[k]+D_{12} w[k] \\
z[k]=C_{2} x[k]+D_{21} u[k]+D_{22} w[k] \\
w[k]=z[k-\tau]
\end{gathered}
$$

Input Arguments

sys
Any state-space (ss) model.

Output Arguments

H

Delay-free state-space model (ss). H results from decomposing sys into a delay-free component and a component $\exp (-t a u * s)$ that represents all internal delays.

If sys has no internal delays, H is equal to sys.

tau

Vector of internal delays of sys, expressed in the time units of sys. The vector tau results from decomposing sys into a delay-free state-space model H and a component exp(-tau*s) that represents all internal delays.

If sys has no internal delays, tau is empty.

A, B1, B2, C1, C2, D11, D12, D21, D22,E

Set of state-space matrices that, with the internal delay vector tau, explicitly describe the state-space model sys.

For explicit state-space models $(E=I$, or sys.e $=[])$, the output $\mathrm{E}=$ [].
If sys has no internal delays, the outputs B2, C2, D12, D21, and D22 are all empty ([]).

Examples

Get Delay-Free State-Space Model and Internal Delay

Decompose the following closed-loop system with internal delay into a delay-free component and a component representing the internal delay.

Create the closed-loop model sys from r to y.

```
G = tf(1,[1 10],'InputDelay',2.1);
C = pid(0.5,2.3);
sys = feedback(C*G,1);
```

sys is a state-space (ss) model with an internal delay that arises from closing the feedback loop on a plant with an input delay.

Decompose sys into a delay-free state-space model and the value of the internal delay.
[H, tau] = getDelayModel(sys);
Confirm that the internal delay matches the original input delay on the plant.
tau
tau = 2.1000

Version History
 Introduced in R2006a

See Also

setDelayModel
Topics
"Internal Delays"

getGainCrossover

Crossover frequencies for specified gain

Syntax

wc = getGainCrossover(sys,gain)

Description

wc = getGainCrossover(sys,gain) returns the vector wc of frequencies at which the frequency response of the dynamic system model, sys, has principal gain of gain. For SISO systems, the principal gain is the frequency response. For MIMO models, the principal gain is the largest singular value of sys.

Examples

Unity Gain Crossover

Find the 0 dB crossover frequencies of a single-loop control system with plant given by:

$$
G(s)=\frac{1}{(s+1)^{3}},
$$

and PI controller given by:

```
\[
C(s)=1.14+\frac{0.454}{s} .
\]
\[
\mathrm{G}=\operatorname{zpk}([],[-1,-1,-1], 1) ;
\]
\[
C=\operatorname{pid}(1.14,0.454)
\]
\[
\text { sys }=\mathrm{G} * \mathrm{C} \text {; }
\]
\[
\text { wC }=\operatorname{getGainCrossover(sys,1)~}
\]
\[
w C=0.5214
\]
```

The 0 dB crossover frequencies are the frequencies at which the open-loop response sys $=\mathrm{G}^{*} \mathrm{C}$ has unity gain. Because this system only crosses unity gain once, getGainCrossover returns a single value.

Notch Filter Stopband

Find the 20 dB stopband of

$$
\text { sys }=\frac{s^{2}+0.05 s+100}{s^{2}+5 s+100} .
$$

sys is a notch filter centered at $10 \mathrm{rad} / \mathrm{s}$.

```
sys = tf([1 0.05 100],[1 5 100]);
gain = db2mag(-20);
wc = getGainCrossover(sys,gain)
wC = 2\times1
    9.7531
    10.2531
```

The db2mag command converts the gain value of -20 dB to absolute units. The getGainCrossover command returns the two frequencies that define the stopband.

Input Arguments

sys - Input dynamic system
dynamic system model
Input dynamic system, specified as any SISO or MIMO dynamic system model.

gain - Input gain

positive real scalar
Input gain in absolute units, specified as a positive real scalar.

- If sys is a SISO model, the gain is the frequency response magnitude of sys.
- If sys is a MIMO model, gain means the largest singular value of sys.

Output Arguments

wc - Crossover frequencies

column vector
Crossover frequencies, returned as a column vector. This vector lists the frequencies at which the gain or largest singular value of sys is gain.

Algorithms

getGainCrossover computes gain crossover frequencies using structure-preserving eigensolvers from the SLICOT library. For more information about the SLICOT library, see http://slicot.org.

Version History

Introduced in R2012a

See Also

freqresp | bode | sigma | bandwidth | getPeakGain

Topics

"Dynamic System Models"

getGoal

Evaluate variable tuning goal at specified design point

Syntax

TG = getGoal(VG,'index',k)
TG = getGoal(VG,'index',k1,k2,...)
TG = getGoal(VG,'value',x1,x2,...)

Description

When tuning controllers for multiple operating conditions, varyingGoal lets you adjust the tuning objectives as a function of the design point. Use getGoal to evaluate a variable goal at a particular design point or for particular values of the sampling variables.

TG = getGoal(VG,'index',k) returns the effective tuning goal at the kth design point. The absolute index k is relative to the arrays of parameter values in the Parameters property of the varying goal VG. If you have specified VG. SamplingGrid, then k is relative to the grid of design points in that property.

TG = getGoal(VG,'index',k1,k2,...) returns the effective tuning goal at the design point with coordinates ($k 1, k 2, \ldots$). These coordinates are indices into the multidimensional arrays in VG.Parameters and VG. SamplingGrid. This syntax is useful when your design grid includes multiple scheduling variables.

TG = getGoal (VG, 'value' $, x 1, \times 2, \ldots$) returns the effective tuning goal at the design point whose scheduling-variable values are ($x 1, x 2, \ldots$). Use this syntax only if you have specified design points in VG.SamplingGrid. For example, if VG. SamplingGrid specifies a grid of design points (a, b), then TG $=$ getGoal (VG, 'value' $,-1,3$) returns the tuning goal at the design point (a, b) $=(-1,3)$. If $(x 1, x 2, \ldots)$ does not match any point in VG.SamplingGrid, then getGoal returns the nearest point, in a relative sense.

Examples

Get Goal at Design Point from Varying Tuning Goal

Suppose you use the following 5 -by- 5 grid of design points to tune your controller.

```
[alpha,V] = ndgrid(linspace(0,20,5),linspace(700,1300,5));
```

Create a variable tuning goal that specifies gain and phase margins at a signal named ' u ' that vary across a grid of design points.

```
[GM,PM] = ndgrid(linspace(7,20,5),linspace(45,70,5));
FH = @(gm,pm) TuningGoal.Margins('u',gm,pm);
VG = varyingGoal(FH,GM,PM);
```

Use the grid to specify the SamplingGrid property of VG.

```
VG.SamplingGrid = struct('alpha',alpha,'V',V);
```

Evaluate this variable design goal at $(a l p h a, V)=(5,1150)$. This point is the second alpha value and the fourth V value, so you can index into the varyingGoal using $(k 1, k 2)=(2,4)$.

TGi = getGoal(VG,'index',2,4);
Because you have the specific (alpha, V) values at which you want the tuning goal, you can use those values instead of indexing.

```
TGv = getGoal(VG,'value',5,1150)
```

TGv =
Margins with properties:
GainMargin: 10.2500
PhaseMargin: 63.7500
ScalingOrder: 0
Focus: [0 Inf]
Location: \{'u'\}
Models: 17
Openings: \{0x1 cell\}
Name:

Input Arguments

VG - Varying tuning goal

varyingGoal object
Varying tuning goal, specified as a varyingGoal object. VG captures the variation of a tuning goal over a grid of design points for gain-scheduled tuning (see tunableSurface).

k - Index into design-point grid

integer
Index into design point grid, specified as an integer. You can provide one integer index, k, or multiple indices k1, k2,

If you provide a single index, k, then getGoal treats k as a linear index into the parameter arrays of VG. Parameters or the structures of VG. SamplingGrid that specify the design points.

- If VG varies over a 1-D sampling grid (one scheduling variable), then TG = getGoal (VG, 'index' , k) returns the tuning goal for the kth entry in VG.Parameters.
- If VG varies over two or more scheduling-variables, then TG = getGoal(VG, 'index' ,k) returns the kth entry in that grid, determined by linear indexing. (See "Array Indexing".)

If you provide multiple indices, $\mathrm{k} 1, \mathrm{k} 2, \ldots$, then getGoal treats them as indices into the multidimensional arrays of VG. Parameters or VG. SamplingGrid.

x - Variable value at design point

scalar
Variable value at design point, specified as a scalar. Use inputs $\times 1, \times 2, \ldots$, to get the tuning goal for a particular set of scheduling-variable values. Provide as many values as you have scheduling variables in your system. For example, if the operating conditions are described by two scheduling
variables (a, b), then use $(x 1, x 2)$ to specify the (a, b) value at which you want to extract the tuning goal.

Output Arguments

TG - Tuning goal at design point

TuningGoal object | []
Tuning goal at the specified design point, returned as a TuningGoal object. If any of the tuning goal parameters is NaN at the specified design point, then TG = []. (See varyingGoal).

Version History

Introduced in R2017b

See Also

varyingGoal|tunableSurface

getIOTransfer

Closed-loop transfer function from generalized model of control system

Syntax

H = getIOTransfer(T,in,out)
H = getIOTransfer(T,in,out,openings)

Description

$H=$ getIOTransfer(T,in, out) returns the transfer function from specified inputs to specified outputs of a control system, computed from a closed-loop generalized model of the control system.
$H=$ getIOTransfer(T,in, out,openings) returns the transfer function calculated with one or more loops open.

Examples

Closed-Loop Responses of Control System Model

Analyze responses of a control system by using getIOTransfer to compute responses between various inputs and outputs of a closed-loop model of the system.

Consider the following control system.

Create a genss model of the system by specifying and connecting the numeric plant models G1 and G2, the tunable controllers C1 and C2, and the AnalysisPoint blocks X1 and X2 that mark potential loop-opening or signal injection sites.

```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
X1 = AnalysisPoint('X1');
X2 = AnalysisPoint('X2');
T = feedback(G1*feedback(G2*C2,X2)*C1,X1);
T.InputName = 'r';
T.OutputName = 'y';
```

If you tuned the free parameters of this model (for example, using the tuning command systune), you might want to analyze the tuned system performance by examining various system responses.

For example, examine the response at the output, y, to a disturbance injected at the point d_{1}.
H1 = getIOTransfer(T,'X1','y');
H1 represents the closed-loop response of the control system to a disturbance injected at the implicit input associated with the AnalysisPoint block X1, which is the location of d_{1} :

H 1 is a genss model that includes the tunable blocks of T . If you have tuned the free parameters of T , H1 allows you to validate the disturbance response of your tuned system. For example, you can use analysis commands such as bodeplot or stepplot to examine the responses of H1. You can also use getValue to obtain the current value of H 1 , in which all the tunable blocks are evaluated to their current numeric values.

Similarly, examine the response at the output to a disturbance injected at the point d_{2}.

```
H2 = getIOTransfer(T,'X2','y');
```

You can also generate a two-input, one-output model representing the response of the control system to simultaneous disturbances at both d_{1} and d_{2}. To do so, provide getIOTransfer with a cell array that specifies the multiple input locations.
$H=\operatorname{getIOTransfer(T,\{ 'X1','X2'\} ,'y');~}$

Responses with Some Loops Open and Others Closed

Compute the response from r to y of the following cascaded control system, with the inner loop open, and the outer loop closed.

Create a genss model of the system by specifying and connecting the numeric plant models G1 and G2, the tunable controllers C1 and C2, and the AnalysisPoint blocks X1 and X2 that mark potential loop-opening or signal injection sites.

```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
```

```
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
X1 = AnalysisPoint('X1');
X2 = AnalysisPoint('X2');
T = feedback(G1*feedback(G2*C2,X2)*C1,X1);
T.InputName = 'r';
T.OutputName = 'y';
```

If you tuned the free parameters of this model (for example, using the tuning command systune), you might want to analyze the tuned system performance by examining various system responses.

For example, compute the response of the system with the inner loop open, and the outer loop closed.
H = getIOTransfer(T,'r','y','X2');
By default, the loops are closed at the analysis points X 1 and X 2 . Specifying ' X 2 ' for the openings argument causes getIOTransfer to open the loop at $X 2$ for the purposes of computing the requested transfer from r to y. The switch at X1 remains closed for this computation.

Input Arguments

T - Model of control system
generalized state-space model
Model of a control system, specified as a generalized state-space model (genss).

in - Input to extracted transfer function
 character vector | cell array of character vectors

Input to extracted transfer function, specified as a character vector or cell array of character vectors. To extract a multiple-input transfer function from the control system, use a cell array of character vectors. Each specified input must match either:

- An input of the control system model T; that is, a channel name fromT. InputName.
- An analysis point in T, corresponding to a channel of an AnalysisPoint block in T. To get the list of available analysis points in T, use getPoints (T).

When you specify an analysis point as an input in, getIOTransfer uses the input implicitly associated with the AnalysisPoint channel, arranged as follows.

This input signal models a disturbance entering at the output of the switch.
If an analysis point has the same name as an input of T , then getIOTransfer uses the input of T .
Example: \{'r','X1'\}
out - Output of extracted transfer function
character vector | cell array of character vectors

Output of extracted transfer function, specified as a character vector or cell array of character vectors. To extract a multiple-output transfer function from the control system, use a cell array of character vectors. Each specified output must match either:

- An output of the control system model T; that is, a channel name from T.OutputName.
- An analysis point in T, corresponding to a channel of an AnalysisPoint block in T. To get the list of available analysis points in T, use getPoints (T).

When you specify an analysis point as an output out, getIOTransfer uses the output implicitly associated with the AnalysisPoint channel, arranged as follows.

If an analysis point has the same name as an output of T , then getIOTransfer uses the output of T .
Example: \{'y', 'X2'\}

openings - Locations for opening feedback loops

character vector | cell array of character vectors
Locations for opening feedback loops for computation of the response from in to out, specified as a character vector or cell array of character vectors that identify analysis points in T. Analysis points are marked by AnalysisPoint blocks in T . To get the list of available analysis points in T , use getPoints(T).

Use openings when you want to compute the response from in to out with some loops in the control system open. For example, in a cascaded loop configuration, you can calculate the response from the system input to the system output with the inner loop open.

Output Arguments

H - Closed-loop transfer function

generalized state-space model
Closed-loop transfer function of the control system T from in to out, returned as a generalized statespace model (genss).

- If both in and out specify a single signal, then T is a SISO genss model.
- If in or out specifies multiple signals, then T is a MIMO genss model.

Tips

- You can use getIOTransfer to extract various subsystem responses, given a generalized model of the overall control system. This is useful for validating responses of a control system that you tune with tuning commands such as systune.

For example, in addition to evaluating the overall response of a tuned control system from inputs to outputs, you can use getIOTransfer to extract the transfer function from a disturbance input
to a system output. Evaluate the responses of that transfer function (such as with step or bode) to confirm that the tuned system meets your disturbance rejection requirements.

- getIOTransfer is the genss equivalent to the Simulink Control Design getIOTransfer command, which works with the slTuner and slLinearizer interfaces. Use the Simulink Control Design command when your control system is modeled in Simulink.

Version History

Introduced in R2012b

See Also

AnalysisPoint|getPoints|genss| getLoopTransfer|systune|getIOTransfer

getLFTModel

Decompose generalized LTI model

Syntax

[$\mathrm{H}, \mathrm{B}, \mathrm{S}]=$ getLFTModel (M)

Description

$[H, B, S]=$ getLFTModel (M) extracts the components H, B, and S that make up the Generalized matrix or Generalized LTI model M. The model M decomposes into H, B, and S. These components are related to M as shown in the following illustration.

The cell array B contains the Control Design Blocks of M . The component H is a numeric matrix, ss model, or frd model that describes the fixed portion of M and the interconnections between the blocks of B . The matrix $\mathrm{S}=\mathrm{blkdiag}(\mathrm{S} 1, \ldots, \mathrm{Sk})$ contains numerical offsets that ensure that the interconnection is well-defined when the current (nominal) value of M is finite.

You can recombine H, B, and S into M using lft, as follows:
$M=\operatorname{lft}(H, b l k d i a g(B\{:\})-S) ;$

Input Arguments

M

Generalized LTI model (genss or genfrd) or Generalized matrix (genmat).

Output Arguments

H

Matrix, ss model, or frd model describing the numeric portion of M and how it the numeric portion is connected to the Control Design Blocks of M .

B
Cell array of Control Design Blocks (for example, realp or tunableSS) of M.

S

Matrix of offset values. The software might introduce offsets when you build a Generalized model to ensure that H is finite when the current (nominal) value of M is finite.

Tips

- getLFTModel gives you access to the internal representation of Generalized LTI models and Generalized Matrices. For more information about this representation, see "Internal Structure of Generalized Models".

Version History
 Introduced in R2011a

See Also

genfrd|genss| genmat|lft|getValue|nblocks

Topics

"Generalized Matrices"
"Generalized and Uncertain LTI Models"
"Models with Tunable Coefficients"
"Internal Structure of Generalized Models"

getLoopTransfer

Open-loop transfer function of control system represented by genss model

Syntax

L = getLoopTransfer(T,Locations)
L = getLoopTransfer(T,Locations,sign)
L = getLoopTransfer(T,Locations,sign,openings)

Description

$\mathrm{L}=$ getLoopTransfer(T,Locations) returns the point-to-point open-loop transfer function of a control system at specified analysis points. The control system is represented by a generalized statespace model T , containing the analysis points specified by Locations. The point-to-point open-loop transfer function is the response obtained by opening the loop at the specified locations, injecting signals at those locations, and measuring the return signals at the same locations.
$\mathrm{L}=$ getLoopTransfer(T,Locations, sign) specifies the feedback sign for calculating the openloop response. The relationship between the closed-loop response T and the open-loop response L is T $=$ feedback(L, 1, sign $)$.

L = getLoopTransfer(T,Locations,sign,openings) specifies additional loop-opening locations to open for computing the open-loop response at Locations.

Examples

Open-Loop Transfer Function at Analysis Point

Compute the open-loop response of the following control system model at an analysis point specified by an AnalysisPoint block, X.

Create a model of the system by specifying and connecting a numeric LTI plant model, G , a tunable controller, C, and the AnalysisPoint, X.

```
G = tf([1 2],[1 0.2 10]);
C = tunablePID('C','pi');
X = AnalysisPoint('X');
T = feedback(G*X*C,1);
```

T is a genss model that represents the closed-loop response of the control system from r to y. The model contains AnalysisPoint block X, which identifies the potential loop-opening location.

Calculate the open-loop point-to-point loop transfer at location X.

L = getLoopTransfer(T,'X');
This command computes the transfer function you would obtain by opening the loop at X, injecting a signal into G , and measuring the resulting response at the output of C. By default, getLoopTransfer computes the positive feedback transfer function, which is the loop transfer assuming that the loop will be closed at X without a change of sign. In this example, the positive feedback transfer function is $L(s)=-C(s) G(s)$.

The output L is a genss model that includes the tunable block C . You can use getValue to obtain the current value of L, in which all the tunable blocks of L are evaluated to their current numeric value.

Stability Margins of Closed-Loop System

Compute the stability margins of the following closed-loop system at an analysis point specified by an AnalysisPoint block, X.

Create a model of the system by specifying and connecting a numeric LTI plant model G , a tunable controller C, and the AnalysisPoint block X.
$G=t f\left(\left[\begin{array}{ll}1 & 2\end{array}\right],\left[\begin{array}{lll}1 & 0.2 & 10\end{array}\right]\right) ;$
C = pid(0.1,1.5);
X = AnalysisPoint('X');
T = feedback(G* ${ }^{*}$ C,1);
T is a genss model that represents the closed-loop response of the control system from r to y. The model contains the AnalysisPoint block X that identifies the potential loop-opening location.

By default, getLoopTransfer returns a transfer function L at the specified analysis point such that T = feedback($L, 1,+1$). However, margin assumes negative feedback, so that margin(L) computes the stability margin of the negative feedback closed-loop system feedback ($L, 1$). Therefore, to analyze the stability margins, set the sign input argument to -1 to extract a transfer function L such that $\mathrm{T}=$ feedback $(\mathrm{L}, 1)$. In this example, this transfer function is $L(s)=C(s) G(s)$.

L = getLoopTransfer(T,'X',-1);
This command computes the open-loop transfer function from the input of G to the output of C , assuming that the loop is closed with negative feedback, so that you can use it with analysis commands like margin.
[Gm, Pm] = margin(L)
$\mathrm{Gm}=1.4100$
$\mathrm{Pm}=4.9486$

Transfer Function with Additional Loop Openings

Compute the open-loop response of the inner loop of the following cascaded control system, with the outer loop open.

Create a model of the system by specifying and connecting the numeric plant models G1 and G2, the tunable controllers C1, and the AnalysisPoint blocks X1 and X2 that mark potential loop-opening locations.

```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
X1 = AnalysisPoint('X1');
X2 = AnalysisPoint('X2');
T = feedback(G1*feedback(G2*C2,X2)*C1,X1);
```

Compute the negative-feedback open-loop response of the inner loop, at the location X2, with the outer loop opened at X1.

L = getLoopTransfer(T,'X2',-1,'X1');
By default, the loop is closed at the analysis-point location marked by the AnalysisPoint block X1. Specifying 'X1' for the openings argument causes getLoopTransfer to open the loop at X1 for the purposes of computing the requested loop transfer at X 2 . In this example, the negative-feedback open-loop response $L(s)=G_{2}(s) C_{2}(s)$.

Input Arguments

T - Model of control system
 generalized state-space model

Model of a control system, specified as a Generalized State-Space (genss) Model. Locations at which you can open loops and perform open-loop analysis are marked by AnalysisPoint blocks in T.

Locations - Analysis-point locations

character vector | cell array of character vectors
Analysis-point locations in the control system model at which to compute the open-loop point-to-point response, specified as a character vector or a cell array of character vectors that identify analysispoint locations in T .

Analysis-point locations are marked by AnalysisPoint blocks in T. An AnalysisPoint block can have single or multiple channels. The Location property of an AnalysisPoint block gives names to these feedback channels.

The name of any channel in an AnalysisPoint block in T is a valid entry for the Locations argument to getLoopTransfer. To get a full list of available analysis points in T, use getPoints(T).
getLoopTransfer computes the open-loop response you would obtain by injecting a signal at the implicit input associated with an AnalysisPoint channel, and measuring the response at the implicit output associated with the channel. These implicit inputs and outputs are arranged as follows.

L is the open-loop transfer function from in to out.

sign - Sign of transfer function for analysis

+1 (default) | - 1
Sign of open-loop transfer function for analysis, specified as +1 or -1 .
By default, for an input closed-loop system T, the function returns a transfer function L at the specified analysis point, such that $T=$ feedback $(L, 1,+1)$. However, certain analysis commands that take an open-loop response assume that the loop will be closed with negative feedback. For instance, margin(L) computes the stability margin of the negative feedback closed-loop system feedback (L, 1). Similarly, the stability margins you can obtain by right-clicking on a bode plot make the same assumption. Therefore, when you use getLoopTransfer to extract an open-loop transfer function with the purpose of analyzing closed-loop stability, you can set sign =-1 to extract a transfer function L such that $T=$ feedback $(L, 1)$.

For example, consider the following system, where T is the closed-loop transfer function from r to y.

By default, $\mathrm{L}=$ getLoopTransfer(T, ' X ') computes the transfer function $L=-C(s) G(s)$, such that $\mathrm{T}=$ feedback $(\mathrm{L}, 1,+1)$. To compute the stability margins at X using the margin command, which assumes negative feedback, you must compute a transfer function $L=C(s) G(s)$, such that $\mathrm{T}=$ feedback(L, 1). To do so, use $L=$ getLoopTransfer(T,'X',-1).

openings - Additional locations for opening feedback loops

character vector | cell array of character vectors
Additional locations for opening feedback loops for computation of the open-loop response, specified as character vector or cell array of character vectors that identify analysis-point locations in T .
Analysis-point locations are marked by AnalysisPoint blocks in T. Any channel name contained in the Location property of an AnalysisPoint block in T is a valid entry for openings.

Use openings when you want to compute the open-loop response at one analysis-point location with other loops also open at other locations. For example, in a cascaded loop configuration, you can calculate the inner loop open-loop response with the outer loop also open. Use getPoints(T) to get a full list of available analysis-point locations in T .

Output Arguments

L - Point-to-point open-loop response

generalized state-space model
Point-to-point open-loop response of the control system T measured at the analysis points specified by Locations, returned as a generalized state-space (genss) model.

- If Locations specifies a single analysis point, then L is a SISO genss model. In this case, L represents the response obtained by opening the loop at Locations, injecting signals and measuring the return signals at the same location.
- If Locations is a vector signal, or specifies multiple analysis points, then L is a MIMO genss model. In this case, L represents the open-loop MIMO response obtained by opening loops at all locations listed in Locations, injecting signals and measuring the return signals at those locations.

Tips

- You can use getLoopTransfer to extract open-loop responses given a generalized model of the overall control system. This is useful, for example, for validating open-loop responses of a control system that you tune with the a tuning command such as systune.
- getLoopTransfer is the genss equivalent to the Simulink Control Design command getLoopTransfer, which works with the slTuner and slLinearizer interfaces. Use the Simulink Control Design command when your control system is modeled in Simulink.

Version History

Introduced in R2012b

See Also

AnalysisPoint|getPoints|genss| getIOTransfer|systune|getLoopTransfer

getoptions

Package:

Return plot options handle or plot options property

Syntax

$\mathrm{p}=$ getoptions(h)
$\mathrm{p}=$ getoptions(h, propertyName)

Description

You can use getoptions to obtain the plot handle options or properties list and use it to customize the plot, such as modify the axes labels, limits and units. For a list of the properties and values available for each plot type, see "Properties and Values Reference". To customize an existing plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line".
$\mathrm{p}=$ getoptions(h) returns the plot options handle associated with plot handle $\mathrm{h} . \mathrm{p}$ contains all the settable options for a given response plot.
$\mathrm{p}=$ getoptions(h, propertyName) returns the specified options property, propertyName, for the plot with handle h . You can use this to interrogate a plot handle.

Examples

Impulse Plot with Specified Grid Color

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a impulse plot with red colored grid lines.

Create the MIMO state-space model sys_mimo.
$\mathrm{J}=[8$-3 -3 ; -3 (8 -3; -3 -3 8 ;
$F=0.2^{*}$ eye (3);
$\mathrm{A}=-\mathrm{J} \backslash \mathrm{F}$;
$\mathrm{B}=\operatorname{inv}(\mathrm{J})$;
C = eye(3);
D = 0;
sys_mimo $=s s(A, B, C, D)$;
size(sys_mimo)
State-space model with 3 outputs, 3 inputs, and 3 states.
Create an impulse plot with plot handle h and use getoptions for a list of the options available.
h = impulseplot(sys_mimo)


```
h =
    resppack.timeplot
p = getoptions(h)
p =
```

Normalize: 'off'
SettleTimeThreshold: 0.0200
RiseTimeLimits: [0.1000 0.9000]
TimeUnits: 'seconds'
ConfidenceRegionNumberSD: 1
IOGrouping: 'none'
InputLabels: [1x1 struct]
OutputLabels: [1x1 struct]
InputVisible: \{3x1 cell\}
OutputVisible: \{3x1 cell\}
Title: [1x1 struct]
XLabel: [1x1 struct]
YLabel: [1x1 struct]
TickLabel: [1x1 struct]
Grid: 'off'
GridColor: [0.1500 0.1500 0.1500]
XLim: \{3x1 cell\}
YLim: $\{3 \times 1$ cell\}

XLimMode: \{3x1 cell\}
 YLimMode: \{3x1 cell\}

Use setoptions to update the plot with the required customization.

The impulse plot automatically updates when you call setoptions. For MIMO models, impulseplot produces a grid of plots, each plot displaying the impulse response of one I/O pair.

Bode Plot with Specified Frequency Scale and Units

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a Bode plot with linear frequency scale, specify frequency units in Hz and turn the grid on.

Create the MIMO state-space model sys_mimo.

```
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)
```

State-space model with 3 outputs, 3 inputs, and 3 states.
Create a Bode plot with plot handle h and use getoptions for a list of the options available.

```
h = bodeplot(sys_mimo);
p = getoptions(h)
p =
```

```
                FreqUnits: 'rad/s'
```

 FreqUnits: 'rad/s'
 FreqScale: 'log'
 FreqScale: 'log'
 MagUnits: 'dB'
 MagUnits: 'dB'
 MagScale: 'linear'
 MagScale: 'linear'
 MagVisible: 'on'
 MagVisible: 'on'
 MagLowerLimMode: 'auto'
 MagLowerLimMode: 'auto'
 PhaseUnits: 'deg'
 PhaseUnits: 'deg'
 PhaseVisible: 'on'
 PhaseVisible: 'on'
 PhaseWrapping: 'off'
 PhaseWrapping: 'off'
 PhaseMatching: 'off'
 PhaseMatching: 'off'
 PhaseMatchingFreq: 0
 PhaseMatchingFreq: 0
 ConfidenceRegionNumberSD: 1
 ConfidenceRegionNumberSD: 1
 MagLowerLim: 0
 MagLowerLim: 0
 PhaseMatchingValue: 0
 PhaseMatchingValue: 0
 PhaseWrappingBranch: -180
 PhaseWrappingBranch: -180
 IOGrouping: 'none'
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3x1 cell}
 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 XLim: {3x1 cell}
 YLim: {6x1 cell}
 YLim: {6x1 cell}
 XLimMode: {3x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {6xl cell}
    ```
                    YLimMode: {6xl cell}
```

Use setoptions to update the plot with the requires customization.

```
setoptions(h,'FreqScale','linear','FreqUnits','Hz','Grid','on');
```


The Bode plot automatically updates when you call setoptions. For MIMO models, bodeplot produces an array of Bode plots, each plot displaying the frequency response of one I/O pair.

Input Arguments

h - Plot handle

plot handle object
Plot handle, specified as a plot handle object. For example, h is a mpzplot object for a pole-zero or I/O pole-zero plot.

propertyName - Specific property name

string | character vector
Specific property name, specified as a string or character vector. For a list of the properties and values available for each plot type, see "Properties and Values Reference".

Output Arguments

p - Plot options handle

plot options handle object
Plot options handle, returned as a plot options handle object. For example, p is a PZMapOptions object for a pole-zero or I/O pole-zero plot.

Version History

Introduced before R2006a

See Also

setoptions

Topics

"Properties and Values Reference"
"Customizing Response Plots from the Command Line"

getPassiveIndex

Compute passivity index of linear system

Syntax

$R=$ getPassiveIndex(G)
nu = getPassiveIndex(G,'input')
rho = getPassiveIndex(G,'output')
tau = getPassiveIndex(G,'io')
DX = getPassiveIndex(G,dQ)
index = getPassiveIndex (__ , tol)
index = getPassiveIndex (- , tol, fband)
[index,FI] = getPassiveIndex(__)
[index,FI,Qout,dQout] = getPassiveIndex(\qquad)

Description

getPassiveIndex computes various measures of the excess or shortage of passivity for a given system.

A linear system $G(s)$ is passive if all its I/O trajectories $(u(t), y(t))$ satisfy:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>0,
$$

for all $T>0$. Equivalently, a system is passive if its frequency response is positive real, such that for all $\omega>0$,

$$
G(j \omega)+G(j \omega)^{H}>0
$$

(or the discrete-time equivalent).
$R=$ getPassiveIndex(G) computes the relative passivity index. G is passive when R is less than one. R measures the relative excess ($R<1$) or shortage ($R>1$) of passivity.

For more information about the notion of passivity indices, see "About Passivity and Passivity Indices".
nu = getPassiveIndex(G,'input') computes the input passivity index. The system is input strictly passive when nu >0. nu is also called the input feedforward passivity (IFP) index. The value of $n u$ is the minimum feedforward action such that the resulting system is passive.

For more information about the notion of passivity indices, see "About Passivity and Passivity Indices".
rho = getPassiveIndex(G, 'output') computes the output passivity index. The system is output strictly passive when rho >0. rho is also called the output feedback passivity (OFP) index. The value of rho is the minimum feedback action such that the resulting system is passive.

For more information about the notion of passivity indices, see "About Passivity and Passivity Indices".
tau $=$ getPassiveIndex (G, 'io') computes the combined I/O passivity index. The system is very strictly passive when tau >0.

For more information about the notion of passivity indices, see "About Passivity and Passivity Indices".
$D X=\operatorname{getPassiveIndex}(G, d Q)$ computes the directional passivity index in the direction specified by the matrix dQ.
index = getPassiveIndex (__ , tol) computes the passivity index with relative accuracy specified by tol. Use this syntax with any of the previous combinations of input arguments. index is the corresponding passivity index R, nu, rho, tau, or DX.
index = getPassiveIndex(\qquad , tol, fband) computes passivity indices restricted to a specified frequency interval.
[index,FI] = getPassiveIndex(\qquad) also returns the frequency at which the returned index value is achieved.
[index,FI,Qout,dQout] = getPassiveIndex(\qquad) also returns the sector matrix Qout for passivity and the directional index matrix dQout.

Examples

Relative, Input, and Output Passivity Indices

Compute passivity indices for the following dynamic system:
$G(s)=\frac{s^{2}+s+5 s+0.1}{s^{3}+2 s^{2}+3 s+4}$
$G=t f([1,1,5, .1],[1,2,3,4])$;
Compute the relative passivity index.
$R=\operatorname{getPassiveIndex}(G)$
$R=0.9512$
The system is passive, but with a relatively small excess of passivity.
Compute the input and output passivity indices.

```
nu = getPassiveIndex(G,'input')
nu = 0.0250
rho = getPassiveIndex(G,'output')
rho = 0.2583
```

This system is both input strictly passive and output strictly passive.

Compute the combined I/O passivity index.
tau = getPassiveIndex(G,'io')
tau $=0.0250$
The system is very strictly passive as well. A system that is very strictly passive is also strictly positive real. Examining the Nyquist plot confirms this, showing that the frequency response lies entirely within the right half-plane.
nyquistplot(G)

The relatively small tau value is reflected in how close the frequency response comes to the imaginary axis.

Relative Passivity Index and Frequency for Systems with Complex Coefficients

For systems with complex coefficients, getPassiveIndex can return indices at a negative or positive frequency depending on the fband you specify.

Load the state-space model with complex data.
load compCoeffModel.mat

Compute the relative passivity index and its frequency with a relative accuracy of 0.0001%. Also, specify fband $=[0.1,1]$ to compute the index in the frequency interval $[-1,-0.1] \cup[0.1,1]$.
$[R, F I]=$ getPassiveIndex(sys,1e-6,[0.1,1])
$R=3.0050$
FI $=-0.6518$
In this interval, sys achieves a relative passivity index of 3.0050 at a negative frequency value of $0.6518 \mathrm{rad} / \mathrm{s}$. Use passiveplot to plot the indices in this range.

```
opt = sectorplotoptions;
opt.FreqScale = 'Linear';
opt.IndexScale = 'Linear';
w = linspace(-1,1,100);
passiveplot(sys,w,opt)
```


Now compute the relative passivity index in the frequency interval $[-10,-1.5] \cup[1.5,10]$. To do so, specify fband $=[1.5,10]$.
$[\mathrm{R}, \mathrm{FI}]=\operatorname{getPassiveIndex(sys,1e-6,[1.5,10])}$
$R=2.4162$
$\mathrm{FI}=2.1707$
In this interval, sys achieves a relative passivity index of 2.4162 at a positive frequency value of $2.1707 \mathrm{rad} / \mathrm{s}$. Plot the indices in this range to confirm the result.

```
w = linspace(-10,10,1000);
```

passiveplot(sys,w,opt)

Input Arguments

G - Model to analyze

dynamic system model \| model array
Model to analyze for passivity, specified as a dynamic system model such as a tf, ss, or genss model. G can be MIMO, if the number of inputs equals the number of outputs. G can be continuous or discrete. If G is a generalized model with tunable or uncertain blocks, getPassiveIndex evaluates passivity of the current, nominal value of G.

If G is a model array, then getPassiveIndex returns the passivity index as an array of the same size, where:

```
index(k) = getPassivityIndex(G(:,:,k),
```

\qquad _)

Here, index is any of R, nu, rho, tau, or $D X$, depending on which input arguments you use.

dQ - Custom direction

matrix
Custom direction in which to compute passivity, specified as a symmetric square matrix that is $2 *$ ny on a side, where ny is the number of outputs of G .

The rho, nu, and tau indices each correspond to a particular direction in the y / u space of the system, with a corresponding dQ value. (See dQout for these values.) Use this argument to specify your own value for this direction.

tol - Relative accuracy

0.01 (default) | positive real value

Relative accuracy for the calculated passivity index. By default, the tolerance is 1%, meaning that the returned passivity index is within 1% of the actual passivity index.

fband - Frequency interval

1-by-2 array

Frequency interval for determining passivity index, specified as an array of the form [fmin,fmax] with $0 \leq f m i n<f m a x$. When you provide fband, then getPassiveIndex restricts the frequencydomain computation of the passivity index to that frequency range. For example, the relative passivity index R is the peak gain of the bilinear-transformed system (I-G) (I+G)^-1 (for minimum-phase (I $+G)$). When you provide fband, then R is the peak gain within the frequency band.

For models with complex coefficients, getPassiveIndex computes the passivity index in the range [-fmax, -fmin$] \cup[f \min , f \max]$. As a result, the function can return indices at a negative frequency.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the dynamic system model G.

Output Arguments

R - Relative passivity index

scalar | array
Relative passivity index, returned as a scalar, or an array if G is an array.
The system G is passive when R is less than one.

- $R<1$ indicates a relative excess of passivity.
- $R>1$ indicates a relative shortage of passivity.

When $I+G$ is minimum phase, R is the peak gain of the bilinear-transformed system (I - G) (I + $\mathrm{G})^{\wedge}-1$.

For more information about the notion of passivity indices, see "About Passivity and Passivity Indices".

nu - Input passivity index

scalar | array
Input passivity index, returned as a scalar, or an array if G is an array. nu is defined as the largest value of ν for which:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>\nu \int_{0}^{T} u(t)^{T} u(t) d t
$$

for all $T>0$. Equivalently, nu is the largest ν for which:

$$
G(j \omega)+G(j \omega)^{H}>2 \nu I
$$

(or the discrete-time equivalent). The system is input strictly passive when nu >0. nu is also called the input feedforward passivity (IFP) index. The value of nu is the minimum feedforward action such that the resulting system is passive.

rho - Output passivity index

scalar | array
Output passivity index, returned as a scalar, or an array if G is an array. rho is defined as the largest value of ρ for which:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>\rho \int_{0}^{T} y(t)^{T} y(t) d t
$$

for all $T>0$. The system is output strictly passive when rho >0. rho is also called the output feedback passivity (OFP) index. The value of rho is the minimum feedback action such that the resulting system is passive.

tau - Combined I/O passivity index

scalar | array
Combined I/O passivity index, returned as a scalar, or an array if G is an array. tau is defined as the largest value of τ for which:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>\tau \int_{0}^{T}\left(u(t)^{T} u(t)+y(t)^{T} y(t)\right) d t
$$

for all $T>0$. The system is very strictly passive when tau >0.

DX - Directional passivity index

scalar | array
Directional passivity index in the direction specified by dQ, returned as a scalar, or an array if G is an array. The directional passivity index is the largest value of D for which:

$$
\int^{T} y(t)^{T} u(t) d t>D \int_{0}^{T}\left(\binom{y(t)}{u(t)}^{T} d Q\binom{y(t)}{u(t)}\right) d t
$$

for all $T>0$. The rho, nu, and tau indices correspond to particular choices of $d Q$ (see the output argument dQout). To compute $D X$, the software uses the custom $d Q$ value you supply, dQ.

FI - Frequency at which index is achieved

scalar | array
Frequency at which the returned passivity index is achieved, returned as a scalar, or an array if G is an array. In general, the passivity indices vary with frequency (see passiveplot). For each index type, the returned value is the largest value over all frequencies. FI is the frequency at which this value occurs, returned in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of G .

FI can be negative for systems with complex coefficients.

Qout - Sector geometry

matrix
Sector geometry used for computing the passivity index, returned as a matrix. For passivity indices, Qout is given by:

```
Qout = [zeros(ny),-1/2*eye(ny);-1/2*eye(ny),zeros(ny)];
```

where ny is the number of outputs of G. For example, for a SISO G,

```
Qout = [ 0, -0.5;
    -0.5, 0 ];
```

For more information about sector geometry, see getSectorIndex.

dQout - Direction

matrix
Direction in which passivity is computed, returned as a square matrix that is $2 *$ ny on a side, where ny is the number of outputs of G. The value returned for dQout depends on what kind of passivity index you calculate:

- nu - For the input passivity index, dQout is given by:
dQout $=$ [zeros(ny), zeros(ny);zeros(ny), eye(ny)];
For instance, for a SISO system, dQout $=[0,0 ; 0,1]$.
- rho - For the output passivity index, dQout is given by:
dQout $=$ [eye(ny),zeros(ny);zeros(ny),zeros(ny)];
For instance, for a SISO system, dQout $=[1,0 ; 0,0]$.
- tau - For the combined I/O passivity index, dQout is given by:
dQout $=$ eye(2*ny);
For instance, for a SISO system, dQout $=[1,0 ; 0,1]$.
- $D X-d Q o u t$ is the custom value you provide in the $d Q$ input argument.
- R - The relative passivity index does not involve a direction, so in this case the function returns dQout = [].

For more information about directional indices, see getSectorIndex.

Limitations

- getPassiveIndex(G, 'output') might return incorrect results when one of the following conditions occurs:
- $G^{\wedge}-1$ is improper, that is, has infinite gain at $s=\operatorname{Inf}$ or $z=$ Inf.
- $\mathrm{G}^{\wedge}-1$ has poles on the imaginary axis (for continuous-time G) or on the unit circle (for discretetime G).

To circumvent this limitation, perturb G to have as many zeros as poles and only stable zeros. For example:

```
G = tf([1 0],[1 0.2 1]);
[rho,freq] = getPassiveIndex(G,'output') % returns incorrect answer
zpk(G+1e-4) % perturbed G is bi-proper and has stable zeros
[rho,freq] = getPassiveIndex(G+1e-4,'output') % returns expected answer
```


Version History

Introduced in R2016a

References

[1] Xia, M., P. Gahinet, N. Abroug, C. Buhr, and E. Laroche. "Sector Bounds in Stability Analysis and Control Design." International Journal of Robust and Nonlinear Control 30, no. 18 (December 2020): 7857-82. https://doi.org/10.1002/rnc.5236.

See Also

isPassive | passiveplot|getSectorIndex| getSectorCrossover|nyquist| sectorplot

Topics

"Passivity Indices"
"About Passivity and Passivity Indices"

getPeakGain

Peak gain of dynamic system frequency response

Syntax

```
gpeak = getPeakGain(sys)
gpeak = getPeakGain(sys,tol)
gpeak = getPeakGain(sys,tol,fband)
[gpeak,fpeak] = getPeakGain(
```

\qquad

``` )
```


Description

gpeak = getPeakGain(sys) returns the peak input/output gain in absolute units of the dynamic system model, sys.

- If sys is a SISO model, then the peak gain is the largest value of the frequency response magnitude.
- If sys is a MIMO model, then the peak gain is the largest value of the frequency response 2-norm (the largest singular value across frequency) of sys. This quantity is also called the L_{∞} norm of sys, and coincides with the H_{∞} norm for stable systems (see norm).
- If sys is a model that has tunable or uncertain parameters, getPeakGain evaluates the peak gain at the current or nominal value of sys.
- If sys is a model array, getPeakGain returns an array of the same size as sys, where gpeak(k) = getPeakGain(sys(:,:,k)).
gpeak = getPeakGain(sys,tol) returns the peak gain of sys with relative accuracy tol.
gpeak $=$ getPeakGain(sys,tol,fband) returns the peak gain in the frequency interval fband $=$ [fmin, fmax] with $0 \leq f m i n<f m a x$. This syntax also takes into account the negative frequencies in the band [-fmax,-fmin] for models with complex coefficients.
[gpeak, fpeak] = getPeakGain (___) also returns the frequency fpeak at which the gain achieves the peak value gpeak, and can include any of the input arguments in previous syntaxes. fpeak can be negative for systems with complex coefficients.

Examples

Peak Gain of Transfer Function

Compute the peak gain of the resonance in the following transfer function:

$$
\begin{aligned}
& \text { sys }=\frac{90}{s^{2}+1.5 s+90} . \\
& \text { sys }=\operatorname{tf}(90,[1,1.5,90]) ; \\
& \text { gpeak }=\text { getPeakGain(sys) } \\
& \text { gpeak }=6.3444
\end{aligned}
$$

The getPeakGain command returns the peak gain in absolute units.

Peak Gain with Specified Accuracy

Compute the peak gain of the resonance in the transfer function with a relative accuracy of 0.01%.

$$
\begin{aligned}
& \qquad \text { sys }=\frac{90}{s^{2}+1.5 s+90} . \\
& \text { sys }=\operatorname{tf}(90,[1,1.5,90]) ; \\
& \text { gpeak }=\text { getPeakGain(sys }, 0.0001) \\
& \text { gpeak }=6.3444
\end{aligned}
$$

The second argument specifies a relative accuracy of 0.0001 . The getPeakGain command returns a value that is within $0.0001(0.01 \%)$ of the true peak gain of the transfer function. By default, the relative accuracy is $0.01(1 \%)$.

Peak Gain Within Specified Band

Compute the peak gain of the higher-frequency resonance in the transfer function

$$
\text { sys }=\left(\frac{1}{s^{2}+0.2 s+1}\right)\left(\frac{100}{s^{2}+s+100}\right) .
$$

sys is the product of resonances at $1 \mathrm{rad} / \mathrm{s}$ and $10 \mathrm{rad} / \mathrm{s}$.
sys $=\operatorname{tf}(1,[1, .2,1]) * t f(100,[1,1,100])$;
fband = [8,12];
gpeak = getPeakGain(sys,0.01,fband);
The fband argument causes getPeakGain to return the local peak gain between 8 and $12 \mathrm{rad} / \mathrm{s}$.

Frequency of Peak Gain

Identify which of the two resonances has higher gain in the transfer function

$$
\text { sys }=\left(\frac{1}{s^{2}+0.2 s+1}\right)\left(\frac{100}{s^{2}+s+100}\right) .
$$

sys is the product of resonances at $1 \mathrm{rad} / \mathrm{s}$ and $10 \mathrm{rad} / \mathrm{s}$.

```
sys = tf(1,[1,.2,1])*tf(100,[1,1,100]);
[gpeak,fpeak] = getPeakGain(sys)
gpeak = 5.0747
fpeak = 0.9902
```

fpeak is the frequency corresponding to the peak gain gpeak. The peak at $1 \mathrm{rad} / \mathrm{s}$ is the overall peak gain of sys.

Frequency of Peak Gain for System with Complex Coefficients

For systems with complex coefficients, getPeakGain can return a peak at a negative or positive frequency depending on the shape and fband you specify.

Generate a random state-space model with complex data.
rng(1)
A = complex(randn(10), randn(10));
$B=\operatorname{complex}(\operatorname{randn}(10,3)$, randn $(10,3))$;
$C=\operatorname{complex}(\operatorname{randn}(2,10)$, randn $(2,10))$;
$\mathrm{D}=\operatorname{complex}(\operatorname{randn}(2,3), \operatorname{randn}(2,3))$;
sys = ss(A,B,C,D);
Compute the peak gain with a relative accuracy of 0.1%. Also, specify fband $=[0,1]$ to compute the peak in the frequency interval [-1,1].

```
[gPeak,fPeak] = getPeakGain(sys,1e-3,[0,1])
gPeak = 126.2396
fPeak = -0.4579
```

In this interval, sys attains a peak at a negative frequency value. Create a singular value plot in this range to confirm the result.

```
w = linspace(-1,1,100);
opt = sigmaoptions;
opt.FreqScale = 'Linear';
opt.MagUnits = 'abs';
sigmaplot(sys,w,opt)
```


Now compute the peak gain in the frequency interval $[-50,-1] \cup[1,50]$. To do so, specify fband $=$ [1,50].

```
[gPeak,fPeak] = getPeakGain(sys,1e-3,[1,50])
gPeak = 43.3303
fPeak = 1.8097
```

In this interval, sys attains a peak at a positive frequency value.
Create a singular value plot in this range to confirm the result.

```
w = linspace(-50,50,5000);
sigmaplot(sys,w,opt)
```


For this interval, getPeakGain returns the magnitude and frequency value for the smaller peak shown in the plot.

Input Arguments

sys - Input dynamic system

dynamic system model | model array
Input dynamic system, specified as any dynamic system model or model array. sys can be SISO or MIMO.

tol - Relative accuracy

0.01 (default) | positive real scalar

Relative accuracy of the peak gain, specified as a positive real scalar value. getPeakGain calculates gpeak such that the fractional difference between gpeak and the true peak gain of sys is no greater than tol. The default value is 0.01 , meaning that gpeak is within 1% of the true peak gain.

fband - Frequency interval

[0, Inf] (default) | 1-by-2 vector of positive real values

Frequency interval in which to calculate the peak gain, specified as a 1 -by- 2 vector of positive real values. Specify fband as a row vector of the form [fmin, fmax] with $0 \leq f m i n<f m a x$.

For models with complex coefficients, getPeakGain calculates the peak gain in the range [-fmax,$f m i n] \cup[f m i n, f m a x]$. As a result, the function can return a peak at a negative frequency.

Output Arguments

gpeak - Peak gain of dynamic system

scalar | array
Peak gain of the dynamic system model or model array sys, returned as a scalar value or an array.

- If sys is a single model, then gpeak is a scalar value.
- If sys is a model array, then gpeak is an array of the same size as sys, where gpeak(k) = getPeakGain(sys(:,:,k)).

fpeak - Frequency of peak gain

real scalar | array of real values
Frequency at which the gain achieves the peak value gpeak, returned as a real scalar value or an array of real values. The frequency is expressed in units of rad/TimeUnit, relative to the TimeUnit property of sys.

- If sys is a single model, then fpeak is a scalar.
- If sys is a model array, then fpeak is an array of the same size as sys, where fpeak(k) is the peak gain frequency of sys (: : : , k).
fpeak can be negative for systems with complex coefficients.

Algorithms

getPeakGain uses the algorithm of [1]. All eigenvalue computations are performed using structurepreserving algorithms from the SLICOT library. For more information about the SLICOT library, see http://slicot.org.

Version History

Introduced in R2012a

References

[1] Bruinsma, N.A., and M. Steinbuch. "A Fast Algorithm to Compute the H_{∞} Norm of a Transfer Function Matrix." Systems \& Control Letters, 14, no. 4 (April 1990): 287-93.

See Also

freqresp | bode | sigma | getGainCrossover|norm|hinfnorm

Topics

"Dynamic System Models"

getPIDLoopResponse

Closed-loop and open-loop responses of systems with PID controllers

Syntax

response $=$ getPIDLoopResponse(C,G,looptype)

Description

response $=$ getPIDLoopResponse(C,G,looptype) returns a response of the control loop formed by the PID controller C and the plant G. The function returns the closed-loop, open-loop, controller action, or disturbance response that you specify with the looptype argument. The function assumes the following control architecture.

- When C is a pid or pidstd controller object (1-DOF controller):

- When C is a pid2 or pidstd2 controller object (2-DOF controller):

Examples

Validate Controller Performance by Examining Closed-Loop Responses

Design a PI controller for a SISO plant and examine its performance in reference tracking and disturbance rejection. For reference tracking, use the "closed-loop" response. For rejection of a load disturbance, use "input-disturbance".

G = tf(1,[111]);
C = pidtune(G,'PI');
Tref = getPIDLoopResponse(C,G,"closed-loop");
Tdist = getPIDLoopResponse(C,G,"input-disturbance");
step(Tref,Tdist)
legend("Reference Tracking","Disturbance Rejection")

Validate the tuned controller by comparing the extracted responses to your design requirements for settling time and overshoot.

Responses of System with 2-DOF PID Controller

Design a two-degree-of-freedom (2-DOF) PID controller for a plant and examine its performance in reference tracking and disturbance rejection. For reference tracking, use the "closed-loop" response. For rejection of a load disturbance, use "input-disturbance".

G = tf(1,[10.5 0.1]);
$\mathrm{w} 0=1.5$;

```
C = pidtune(G,'PID2',w0);
Tref = getPIDLoopResponse(C,G,"closed-loop");
Tdist = getPIDLoopResponse(C,G,"input-disturbance");
step(Tref,Tdist)
legend("Reference Tracking","Disturbance Rejection")
```


Input Arguments

C - PID controller

PID controller object
PID controller, specified as a PID controller object (pid, pidstd, pid2, or pidstd2).

G - Plant

dynamic system model
Plant, specified as a SISO dynamic system model, such as a tf, ss, zpk, or frd model object. If G is a model with tunable or uncertain elements (such as a genss or uss model), then the function uses the current or nominal value of the model.

looptype - Loop response to return

string | character vector
Loop response to return, specified as a string or character vector. The available loop responses are given in the following table.

Response	1-DOF Controller	2-DOF Controller	Description
"open-loop"	$G C$	$-G C_{y}$	Response of the open-loop controller-plant system. Use for frequency-domain design. Use when your design specifications include robustness criteria such as open-loop gain margin and phase margin.
"closed-loop"	$\frac{G C}{1+G C}$ (from r to y)	$\frac{G C_{r}}{1-G C_{y}}$ (from r to y)	Closed-loop system response to a step change in setpoint. Use when your design specifications include setpoint tracking.
"controller-effort"	$\frac{C}{1+G C}$ (from r to u)	$\frac{C_{r}}{1-G C_{y}}$ (from r to u)	Closed-loop controller output response to a step change in setpoint. Use when your design is limited by practical constraints, such as controller saturation.
"input-disturbance"	$\frac{G}{1+G C}$ (from d_{1} to y)	$\frac{G}{1-G C_{y}}$ (from d_{1} to y)	Closed-loop system response to load disturbance (a step disturbance at the plant input). Use when your design specifications include input disturbance rejection.
"output-disturbance"	$\frac{1}{1+G C}$ (from d_{2} to y)	$\frac{1}{1-G C_{y}}$ (from d_{2} to y)	Closed-loop system response to a step disturbance at plant output. Use when you want to analyze sensitivity to modeling errors.

Output Arguments

response - Selected loop response

ss model | frd model
Selected loop response, returned as a state-space (ss) or frequency-response data (frd) model. If G is an frd model, then response is also an frd model with the same frequencies as G. Otherwise, response is an ss model.

Version History

Introduced in R2019a

See Also

pid | pidstd| pid2 | pidstd2 | pidtune

getPoints

Get list of analysis points in generalized model of control system

Syntax

points = getPoints(T)

Description

points $=$ getPoints (T) returns the names of all analysis-point locations in a generalized statespace model of a control system. Use this function to query the list of available analysis points in the model for control system analysis or tuning. You can refer to the analysis-point locations by name to create design goals control system tuning or to compute open-loop and closed-loop responses using analysis commands such as getLoopTransfer and getIOTransfer.

Examples

Analysis-Point Locations in Control System Model

Build a closed-loop model of a cascaded feedback loop system, and get a list of analysis point locations in the model.

Create a model of the following cascaded feedback loop. C_{1} and C_{2} are tunable controllers. $A P_{1}$ and $A P_{2}$ are points of interest for analysis, which you mark with AnalysisPoint blocks.


```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
AP1 = AnalysisPoint('AP1');
AP2 = AnalysisPoint('AP2');
T = feedback(G1*feedback(G2*C2,AP2)*C1,AP1);
```

T is a genss model whose Control Design Blocks include the tunable controllers and the switches AP1 and AP2.

Get a list of the loop-opening sites in T .

```
points = getPoints(T)
points = 2x1 cell
    {'AP1'}
```

\{'AP2'\}
getPoints returns a cell array listing loop-opening sites in the model.
For more complicated closed-loop models, you can use getPoints to keep track of a larger number of analysis points.

Input Arguments

T - Model of control system
 generalized state-space model

Model of a control system, specified as a generalized state-space (genss) model. Locations in the model at which you can calculate system responses or specify design goals for tuning are marked by AnalysisPoint blocks in T.

Output Arguments

points - Analysis-point locations

cell array of character vectors
Analysis-point locations in the control system model, returned as a cell array of character vectors. This output is obtained by concatenating the Location properties of all AnalysisPoint blocks in the control system model.

Version History

Introduced in R2014b

See Also
AnalysisPoint | genss | getLoopTransfer|getIOTransfer
Topics
"Generalized Models"

getSectorCrossover

Crossover frequencies for sector bound

Syntax

```
wc = getSectorCrossover(H,Q)
```


Description

$w c=$ getSectorCrossover (H, Q) returns the frequencies at which the following matrix $M(\omega)$ is singular:

$$
M(\omega)=H(j \omega)^{H} Q H(j \omega) .
$$

When a frequency-domain sector plot exists, these frequencies are the frequencies at which the relative sector index (R-index) for H and Q equals 1. See "About Sector Bounds and Sector Indices" for details.

Examples

Find Sector Crossover Frequency

Find the crossover frequencies for the dynamic system $G(s)=(s+2) /(s+1)$ and the sector defined by:

$$
S=\left\{(y, u): a u^{2}<u y<b u^{2}\right\},
$$

for various values of a and b.
In U / Y space, this sector is the shaded region of the following diagram (for $a, b>0$).

The Q matrix for this sector is given by:

$$
Q=\left[\begin{array}{cc}
1 & -(a+b) / 2 \\
-(a+b) / 2 & a b
\end{array}\right] ; \quad a=0.1, b=10 .
$$

getSectorCrossover finds the frequencies at which $H(s)^{H} Q H(s)$ is singular, for $H(s)=[G(s) ; I]$. For instance, find these frequencies for the sector defined by Q with $a=0.1$ and $b=10$.

```
G = tf([1 2],[1 1]);
H = [G;1];
a = 0.1;
b = 10;
Q = [1 -(a+b)/2 ; -(a+b)/2 a*b];
w = getSectorCrossover(H,Q)
w =
    0x1 empty double column vector
```

The empty result means that there are no such frequencies.
Now find the frequencies at which $H^{H} Q H$ is singular for a narrower sector, with $a=0.5$ and $b=1.5$.

```
a2 = 0.5;
b2 = 1.5;
Q2 = [1 -(a2+b2)/2 ; -(a2+b2)/2 a2*b2];
w2 = getSectorCrossover(H,Q2)
w2 = 1.7321
```

Here the resulting frequency is where the R-index for H and $\mathbf{Q} 2$ is equal to 1 , as shown in the sector plot.

```
sectorplot(H,Q2)
```


Thus, when a sector plot exists for a system H and sector \mathbf{Q}, getSectorCrossover finds the frequencies at which the R -index is 1 .

Input Arguments

H - Model to analyze

dynamic system model
Model to analyze against sector bounds, specified as a dynamic system model such as a tf, ss, or genss model. H can be continuous or discrete. If H is a generalized model with tunable or uncertain blocks, getSectorCrossover analyzes the current, nominal value of H .

To get the frequencies at which the I/O trajectories (u, y) of a linear system G lie in a particular sector, use $H=[G ; I]$, where $I=\operatorname{eyes}(n u)$, and nu is the number of inputs of G.

Q - Sector geometry

matrix | LTI model
Sector geometry, specified as:

- A matrix, for constant sector geometry. Q is a symmetric square matrix that is ny on a side, where ny is the number of outputs of H .
- An LTI model, for frequency-dependent sector geometry. Q satisfies $Q(s)^{\prime}=Q(-s)$. In other words, $Q(s)$ evaluates to a Hermitian matrix at each frequency.

The matrix Q must be indefinite to describe a well-defined conic sector. An indefinite matrix has both positive and negative eigenvalues.

For more information, see "About Sector Bounds and Sector Indices".

Output Arguments

wc - Sector crossover frequencies

vector | []
Sector crossover frequencies, returned as a vector. The frequencies are expressed in rad/TimeUnit, relative to the TimeUnit property of H . If the trajectories of H never cross the boundary, $\mathrm{wc}=[$].

Version History

Introduced in R2016a

See Also

getSectorIndex | getGainCrossover| sectorplot

Topics

"About Sector Bounds and Sector Indices"

getSectorIndex

Compute conic-sector index of linear system

Syntax

$\mathrm{RX}=$ getSectorIndex (H, Q)
$\mathrm{RX}=$ getSectorIndex (H, Q, tol $)$
RX = getSectorIndex (H, Q, tol, fband)
[RX,FX] = getSectorIndex(\qquad
[RX,FX,W1,W2,Z] = getSectorIndex(\qquad)

DX = getSectorIndex(H,Q,dQ)
DX $=$ getSectorIndex (H, Q, dQ,tol)

Description

$R X=$ getSectorIndex (H, Q) computes the relative index $R X$ for the linear system H and the conic sector specified by Q . When $\mathrm{RX}<1$, all output trajectories $y(t)=H u(t)$ lie in the sector defined by:

$$
\int_{0}^{T} y(t)^{T} Q y(t) d t<0,
$$

for all $T \geq 0$.
getSectorIndex can also check whether all I/O trajectories $\{u(t), y(t)\}$ of a linear system G lie in the sector defined by:

$$
\int_{0}^{T}\binom{y(t)}{u(t)}^{T} Q\binom{y(t)}{u(t)} d t<0
$$

for all $T \geq 0$. To do so, use getSectorIndex with $H=[G ; I]$, where $I=$ eyes(nu), and nu is the number of inputs of G.

For more information about sector bounds and the relative index, see "About Sector Bounds and Sector Indices".
$R X=$ getSectorIndex $(H, Q$, tol $)$ computes the index with relative accuracy specified by tol.
RX = getSectorIndex(H,Q,tol,fband) computes the passivity index by restricting the inequalities that define the index to a specified frequency interval. This syntax is available only when Q has as many negative eigenvalues as there are inputs in H .
[RX,FX] = getSectorIndex(\qquad) also returns the frequency $F X$ at which the index value $R X$ is achieved. FX is set to NaN when the number of negative eigenvalues in Q differs from the number of inputs in H . You can use this syntax with any of the previous combinations of input arguments.
[RX,FX,W1,W2,Z] = getSectorIndex(\qquad) also returns the decomposition of Q into its positive and negative parts, as well as the spectral factor Z when Q is dynamic. When Q is a matrix (constant sector bounds), $Z=1$. You can use this syntax with any of the previous combinations of input arguments.
$\mathrm{DX}=$ getSectorIndex $(\mathrm{H}, \mathrm{Q}, \mathrm{dQ})$ computes the index in the direction specified by the matrix dQ . If $D X>0$, then the output trajectories of H fit in the conic sector specified by Q . For more information about the directional index, see "About Sector Bounds and Sector Indices".

The directional index is not available if H is a frequency-response data (frd) model.
$\mathrm{DX}=$ getSectorIndex $(\mathrm{H}, \mathrm{Q}, \mathrm{dQ}, \mathrm{tol})$ computes the index with relative accuracy specified by tol.

Examples

Check Sector Bounds

Test whether, on average, the I/O trajectories of $G(s)=(s+2) /(s+1)$ belong within the sector defined by:

$$
S=\left\{(y, u): 0.1 u^{2}<u y<10 u^{2}\right\} .
$$

In U / Y space, this sector is the shaded region of the following diagram.

The \mathbf{Q} matrix corresponding to this sector is given by:

$$
Q=\left[\begin{array}{cc}
1 & -(a+b) / 2 \\
-(a+b) / 2 & a b
\end{array}\right] ; \quad a=0.1, b=10 .
$$

A trajectory $y(t)=G u(t)$ lies within the sector S when for all $T>0$,
$0.1 \int_{0}^{T} u(t)^{2}<\int_{0}^{T} u(t) y(t) d t<10 \int_{0}^{T} u(t)^{2} d t$.
To check whether trajectories of G satisfy the sector bound, represented by Q , compute the R-index for $H=[G ; 1]$.

```
G = tf([ll 2],[lll]);
a = 0.1; b = 10;
Q = [1 -(a+b)/2 ; -(a+b)/2 a*b];
R = getSectorIndex([G;1],Q)
R = 0.4074
```

This resulting R is less than 1, indicating that the trajectories fit within the sector. The value of R tells you how much tightly the trajectories fit in the sector. This value, $\mathrm{R}=0.41$, means that the trajectories would fit in a narrower sector with a base $1 / 0.41=2.4$ times smaller.

R-Index in Frequency Band for System with Complex Coefficients

For systems with complex coefficients, getSectorIndex can return indices at a negative or a positive frequency depending on the fband you specify.

Load a state-space model with complex coefficients and complex sector matrix.
load dataSysQ sys Q
Compute the R-index and its frequency with a relative accuracy of 0.0001%. Also, specify fband $=$ $[1,10]$ to compute the index in the frequency interval $[-10,-1] \cup[1,10]$.

```
[R,FX] = getSectorIndex(sys,Q,1e-6,[1,10])
R = 1.5811
FX = -7.2320
```

In this interval, sys achieves an index of 1.5811 at a negative frequency value of $-7.2320 \mathrm{rad} / \mathrm{s}$. Use sectorplot to plot the indices in this range.

```
opt = sectorplotoptions;
opt.FreqScale = 'Linear';
opt.IndexScale = 'Linear';
w = linspace(-10,10,1000);
sectorplot(sys,Q,w,opt)
```


Now compute the index in the frequency interval $[-5,-1] \cup[1,5]$. To do so, specify fband $=[1,5]$.
$[r, f]=$ getSectorIndex(sys,Q,1e-6,[1,5])
$r=1.4630$
$f=2.2499$
In this interval, sys achieves an index of 1.4630 at a positive frequency value of $2.2499 \mathrm{rad} / \mathrm{s}$. Plot the indices in this range to confirm the result.

```
w = linspace(-5,5,500);
sectorplot(sys,Q,w,opt)
```


Input Arguments

H - Model to analyze

dynamic system model | model array
Model to analyze against sector bounds, specified as a dynamic system model such as a tf, ss, or genss model. H can be continuous or discrete. If H is a generalized model with tunable or uncertain blocks, getSectorIndex analyzes the current, nominal value of H .

To analyze whether all I/O trajectories $\{u(t), y(t)\}$ of a linear system G lie in a particular sector, use H = [G;I].

If H is a model array, then getSectorIndex returns the passivity index as an array of the same size, where:
index(k) = getSectorIndex(H(:,:,k), \qquad)

Here, index is either RX, or DX, depending on which input arguments you use.

Q - Sector geometry
 matrix | LTI model

Sector geometry, specified as:

- A matrix, for constant sector geometry. Q is a symmetric square matrix that is ny on a side, where ny is the number of outputs of H .
- An LTI model, for frequency-dependent sector geometry. Q satisfies $Q(s)^{\prime}=Q(-s)$. In other words, $Q(s)$ evaluates to a Hermitian matrix at each frequency.

The matrix Q must be indefinite to describe a well-defined conic sector. An indefinite matrix has both positive and negative eigenvalues.

For more information, see "About Sector Bounds and Sector Indices".

tol - Relative accuracy

0.01 (default) | positive real value

Relative accuracy for the calculated sector index. By default, the tolerance is 1%, meaning that the returned index is within 1% of the actual index.

fband - Frequency interval

1-by-2 array
Frequency interval for calculating the sector index, specified as an array of the form [fmin, fmax] with $0 \leq$ fmin < fmax. When you provide fband, getSectorIndex restricts to the specified frequency interval the inequalities that define the index.

For models with complex coefficients, getSectorIndex computes the index in the range [-fmax,fmin] \cup [fmin , fmax]. As a result, the function can return indices at a negative frequency.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the dynamic system model H .

dQ - Direction

matrix
Direction in which to compute directional sector index, specified as a nonnegative definite matrix. The matrix dQ is a symmetric square matrix that is ny on a side, where ny is the number of outputs of H.

Output Arguments

RX - Relative sector index

scalar | array
Relative index of the system H for the sector specified by Q, returned as a scalar value, or an array if H is an array. If $\mathrm{RX}<1$, then the output trajectories of H fit inside the cone of Q .

The value of RX provides a measure of how tightly the output trajectories of H fit inside the cone. Let the following be an orthogonal decomposition of the symmetric matrix Q into its positive and negative parts.

$$
Q=W_{1} W_{1}^{T}-W_{2} W_{2}^{T}, \quad W_{1}^{T} W_{2}=0
$$

(Such a decomposition is readily obtained from the Schur decomposition of Q.) Then, RX is the smallest R that satisfies:

$$
\int_{0}^{T} y(t)^{T}\left(W_{1} W_{1}^{T}-R^{2} W_{2} W_{2}^{T}\right) y(t) d t<0
$$

for all $T \geq 0$. Varying R is equivalent to adjusting the slant angle of the cone specified by Q until the cone fits tightly around the output trajectories of H . The cone base-to-height ratio is proportional to R.

For more information about interpretations of the relative index, see "About Sector Bounds and Sector Indices".

FX - Frequency at which index is achieved

scalar | array
Frequency at which the index RX is achieved, returned as a scalar, or an array if H is an array. In general, the index varies with frequency (see sectorplot). The returned value is the largest value over all frequencies. FX is the frequency at which this value occurs, returned in units of rad/ TimeUnit, where TimeUnit is the TimeUnit property of H .

FX can be negative for systems with complex coefficients.

W1, W2 - Positive and negative factors of Q

matrices
Positive and negative factors of Q, returned as matrices. For a constant $Q, W 1$ and $W 2$ satisfy:

$$
Q=W_{1} W_{1}^{T}-W_{2} W_{2}^{T}, \quad W_{1}^{T} W_{2}=0 .
$$

Z - Bistable model

state-space model | 1
Bistable model in the factorization of Q , returned as:

- If Q is a constant matrix, $\mathrm{Z}=1$.
- If Q is frequency-dependent, then Z is a state-space (ss) model such that:

$$
Q(j \omega)=Z(j \omega)^{H}\left(W_{1} W_{1}^{T}-W_{2} W_{2}^{T}\right) Z(j \omega) .
$$

DX - Directional sector index

scalar | array
Directional sector index of the system \mathbf{H} for the sector specified by Q in the direction dQ , returned as a scalar value, or an array if H is an array. The directional index is the largest τ which satisfies:

$$
\int^{T} y(t)^{T}(Q+\tau d Q) y(t) d t<0,
$$

for all $T \geq 0$.

Version History

Introduced in R2016a

See Also

getSectorCrossover| getPassiveIndex| getPeakGain| nyquist| sectorplot

Topics

"About Sector Bounds and Sector Indices"

getSensitivity

Sensitivity function from generalized model of control system

Syntax

S = getSensitivity(T,location)
S = getSensitivity(T,location,opening)

Description

$S=$ getSensitivity(T,location) returns the sensitivity function on page 2-450 at the specified location for a generalized model of a control system.
$\mathrm{S}=$ getSensitivity(T, location, opening) specifies additional loop openings for the sensitivity function calculation. Use an opening, for example, to calculate the sensitivity function of an inner loop, with the outer loop open.

If opening and location list the same point, the software opens the loop after measuring the signal at the point.

Examples

Sensitivity Function at a Location

Compute the sensitivity at the plant input, marked by the analysis point X .

Create a model of the system by specifying and connecting a numeric LTI plant model G , a tunable controller C, and the AnalysisPoint block X. Use the AnalysisPoint block to mark the location where you assess the sensitivity (plant input in this example).

```
G = tf([1],[1 5]);
C = tunablePID('C','p');
C.Kp.Value = 3;
X = AnalysisPoint('X');
T = feedback(G*X*C,1);
```

T is a genss model that represents the closed-loop response of the control system from r to y. The model contains the AnalysisPoint block, X , that identifies the analysis point.

Calculate the sensitivity, S, at X.
S = getSensitivity(T,'X');
tf(S)

```
ans =
    From input "X" to output "X":
    s + 5
    ----
    s + 8
```

Continuous-time transfer function.

Specify Additional Loop Opening for Sensitivity Function Calculation

Calculate the inner-loop sensitivity at the output of G2, with the outer loop open.

Create a model of the system by specifying and connecting the numeric plant models, tunable controllers, and AnalysisPoint blocks. G1 and G2 are plant models, C1 and C2 are tunable controllers, and X1 and X2 are AnalysisPoint blocks that mark potential loop-opening locations.

```
G1 = tf(10,[1 10]);
G2 = tf([1 2],[1 0.2 10]);
C1 = tunablePID('C','pi');
C2 = tunableGain('G',1);
X1 = AnalysisPoint('X1');
X2 = AnalysisPoint('X2');
T = feedback(G1*feedback(G2*C2,X2)*C1,X1);
```

Calculate the sensitivity, S, at X 2 , with the outer loop open at X 1 .

```
S = getSensitivity(T,'X2','X1');
tf(S)
ans =
    From input "X2" to output "X2":
    s^2 + 0.2 s + 10
    ---------------
    s^2 + 1.2 s + 12
Continuous-time transfer function.
```


Input Arguments

T - Model of control system

generalized state-space model

Model of a control system, specified as a generalized state-space model (genss).
Locations at which you can perform sensitivity analysis or open loops are marked by AnalysisPoint blocks in T. Use getPoints (T) to get the list of such locations.

location - Location

character vector | cell array of character vectors
Location at which you calculate the sensitivity function on page 2-450, specified as a character vector or cell array of character vectors. To extract the sensitivity function at multiple locations, use a cell array of character vectors.

Each specified location must match an analysis point in T. Analysis points are marked using AnalysisPoint blocks. To get the list of available analysis points in T, use getPoints(T).
Example: 'u' or \{'u', 'y'\}

opening - Additional loop opening

character vector | cell array of character vectors
Additional loop opening used to calculate the sensitivity function on page 2-448, specified as a character vector or cell array of character vectors. To open the loop at multiple locations, use a cell array of character vectors.

Each specified opening must match an analysis point in T. Analysis points are marked using AnalysisPoint blocks. To get the list of available analysis points in T, use getPoints (T).

Use an opening, for example, to calculate the sensitivity function of an inner loop, with the outer loop open.

If opening and location list the same point, the software opens the loop after measuring the signal at the point.

```
Example: 'y_outer' or {'y_outer','y_outer2'}
```


Output Arguments

S - Sensitivity function

generalized state-space model
Sensitivity function on page 2-450 of the control system, T , measured at location, returned as a generalized state-space model (genss).

- If location specifies a single analysis point, then S is a SISO genss model.
- If location is a vector signal, or specifies multiple analysis points, then S is a MIMO genss model.

More About

Sensitivity Function

The sensitivity function, also referred to simply as sensitivity, measures how sensitive a signal is to an added disturbance. Feedback reduces the sensitivity in the frequency band where the open-loop gain is greater than 1.

Consider the following model:

The sensitivity, S_{u}, at u is defined as the transfer function from du to u :

$$
\begin{aligned}
& u=d u-K G u \\
& \rightarrow(I+K G) u=d u \\
& \rightarrow u=\left(\underset{S}{+}{ }_{S} G\right)^{-1} d u .
\end{aligned}
$$

Here, I is an identity matrix of the same size as $K G$.
Sensitivity at multiple locations, for example, u and y, is defined as the MIMO transfer function from the disturbances to sensitivity measurements:

$$
S=\left[\begin{array}{ll}
S_{d u \rightarrow u} & S_{d y \rightarrow u} \\
S_{d u \rightarrow y} & S_{d y \rightarrow y}
\end{array}\right] .
$$

Version History

Introduced in R2014a

See Also

getPoints|AnalysisPoint | genss | getLoopTransfer|systune|getIOTransfer| getCompSensitivity|getValue|getSensitivity

getStateEstimate

Extract best state estimate and covariance from particles

Syntax

State = getStateEstimate(pf)
[State,StateCovariance] = getStateEstimate(pf)

Description

State = getStateEstimate(pf) returns the best state estimate based on the current set of particles. The estimate is extracted based on the StateEstimationMethod property from the particleFilter object, pf.
[State,StateCovariance] = getStateEstimate(pf) also returns the covariance of the state estimate. The covariance is a measure of the uncertainty of the state estimate. Not all state estimation methods support covariance output. In this case, getStateEstimate returns StateCovariance as [].

The State and StateCovariance information can directly be accessed as properties of the particle filter object pf, as pf.State and pf.StateCovariance. However, when both these quantities are needed, using the getStateEstimation method with two output arguments is more computationally efficient.

Examples

State Estimation using Particle Filter

Create a particle filter, and set the state transition and measurement likelihood functions.

```
myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);
```

Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.

```
initialize(myPF, 1000, [2;0], eye(2));
```

Pick the mean state estimation and systematic resampling methods.

```
myPF.StateEstimationMethod = 'mean';
myPF.ResamplingMethod = 'systematic';
myPF
myPF =
    particleFilter with properties:
                NumStateVariables: 2
                    NumParticles: 1000
                StateTransitionFcn: @vdpParticleFilterStateFcn
        MeasurementLikelihoodFcn: @vdpMeasurementLikelihoodFcn
        IsStateVariableCircular: [0 0]
```

```
    ResamplingPolicy: [1x1 particleResamplingPolicy]
    ResamplingMethod: 'systematic'
StateEstimationMethod: 'mean'
    StateOrientation: 'column'
            Particles: [2x1000 double]
        Weights: [1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03
            State: 'Use the getStateEstimate function to see the value.
StateCovariance: 'Use the getStateEstimate function to see the value.'
```

Assuming a measurement 2.1, run one predict and correct step.

```
[PredictedState, PredictedStateCovariance] = predict(myPF);
[CorrectedState, CorrectedStateCovariance] = correct(myPF,2.1);
```

Get the best state estimate and covariance based on the StateEstimationMethod property.
[State, StateCovariance] = getStateEstimate(myPF)
State = 2×1
2.1018
-0.1413

StateCovariance $=2 \times 2$
$0.0175-0.0096$
$-0.0096 \quad 0.5394$

Input Arguments

pf - Particle filter

particleFilter object
Particle filter, specified as an object. See particleFilter for more information.

Output Arguments

State - Best state estimate

[] (default) | vector
Best state estimate, defined as a vector based on the condition of the StateOrientation property:

- If StateOrientation is 'row' then State is a 1-by-NumStateVariables vector
- If StateOrientation is 'column' then State is a NumStateVariables-by-1 vector

StateCovariance - Current estimate of state estimation error covariance

NumStateVariables-by-NumStateVariables array (default)|[]| array
Current estimate of state estimation error covariance, defined as an NumStateVariables-byNumStateVariables array. StateCovariance is calculated based on the StateEstimationMethod. If you specify a state estimation method that does not support covariance, then the function returns StateCovariance as [].

Version History

Introduced in R2017b

See Also
 correct|particleFilter|initialize|predict
 Topics

"Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter"

getTestValue

Access test values for validating data function

Syntax

```
t0 = getTestValue(vSys)
```

[t0, p0] = getTestValue(vSys)

Description

t0 $=$ getTestValue(vSys) returns the test time t 0 used to validate the data function.
[$\mathrm{t} 0, \mathrm{p} 0$] $=$ getTestValue(vSys) returns the test time t 0 and parameter values p 0 used to validate the data function of LPV models.

Examples

Get Test Value for LPV Model

For this example, consider dataFcnMaglev.m data function which describes the dynamics of a magnetic levitation system.

This model is not valid for height $h=0$. Create the LPV model with a different value for the test height. For this model set $\mathrm{t} 0=0$ because the parameters do not depend explicitly on time.

```
h0 = 1;
sys = lpvss('h',@dataFcnMaglev,0,0,h0)
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 2 states, and 1 parameters.
```

Get the test values lpvss used to validate dataFcnMaglev.m.

```
[t0,p0] = getTestValue(sys)
```

$\mathrm{t} 0=0$
p0 = 1

The function returns the same value that was used to validate the data function when you created the LPV object.

Data function code.

```
type dataFcnMaglev.m
function [A,B,C,D,E,dx0,x0,u0,y0,Delays] = dataFcnMaglev(~,p)
% MAGLEV example:
% x = [h ; dh/dt]
% p=hbar (equilibrium height)
mb = 0.02; % kg
g = 9.81;
```

```
alpha = 2.4832e-5;
A = [0 1;2*g/p 0];
B = [0 ; -2*sqrt(g*alpha/mb)/p];
C = [1 0]; % h
D = 0;
E = [];
dx0 = [];
x0 = [p;0];
u0 = sqrt(mb*g/alpha)*p; % ibar
y0 = p; % y = h = hbar + (h-hbar)
Delays = [];
```


Input Arguments

vSys - LTV or LPV Model

ltvss object| lpvss object
LTV or LPV model, specified as an ltvss or lpvss object, respectively.

Output Arguments

t0 - Time test value
 scalar

Test value of time, returned as a scalar. This is the value ltvss and lpvss uses to evaluate the data function.
p0 - Parameter test value
vector
Test value of parameters, returned as a vector of length equal to the number of parameters in the model. This is the value lpvss uses to evaluate the data function.

Version History

Introduced in R2023a

See Also

lpvss|ltvss| setTestValue

getValue

Current value of Generalized Model

Syntax

curval = getValue(M)
curval = getValue(M,blockvalues)
curval = getValue(M,Mref)

Description

curval = getValue(M) returns the current value curval of the Generalized LTI model or Generalized matrix M. The current value is obtained by replacing all Control Design Blocks in M by their current value. (For uncertain blocks, the "current value" is the nominal value of the block.)
curval = getValue($\mathrm{M}, \mathrm{blockvalues)}$) uses the block values specified in the structure blockvalues to compute the current value. The field names and values of blockvalues specify the block names and corresponding values. Blocks of M not specified in blockvalues are replaced by their current values.
curval = getValue(M,Mref) inherits block values from the generalized model Mref. This syntax is equivalent to curval = getValue(M,Mref.Blocks). Use this syntax to evaluate the current value of M using block values computed elsewhere (for example, tuned values obtained with tuning commands such as systune, looptune, or the Robust Control Toolbox command hinfstruct).

Input Arguments

M
Generalized LTI model or Generalized matrix.

blockvalues

Structure specifying blocks of M to replace and the values with which to replace those blocks.
The field names of blockvalues match names of Control Design Blocks of M. Use the field values to specify the replacement values for the corresponding blocks of M. The field values can be numeric values, dynamic system models, or static models. If some field values are Control Design Blocks or Generalized LTI models, the current values of those models are used to compute curval.

Mref

Generalized LTI model. If you provide Mref, getValue computes curval using the current values of the blocks in Mref whose names match blocks in M.

Output Arguments

curval

Numeric array or Numeric LTI model representing the current value of M.

If you do not specify a replacement value for a given Control Design Block of M, getValue uses the current value of that block.

Examples

Evaluate Model for Specified Values of its Blocks

This example shows how to replace a Control Design Block in a Generalized LTI model with a specified replacement value using getValue.

Consider the following closed-loop system:

The following code creates a genss model of this system with $G(s)=\frac{(s-1)}{(s+1)^{3}}$ and a tunable PI controller C.
$\mathrm{G}=\operatorname{zpk}(1,[-1,-1,-1], 1)$;
C = tunablePID('C','pi');
Try $=$ feedback $\left(G^{*} C, 1\right)$
The genss model Try has one Control Design Block, C. The block C is initialized to default values, and the model Try has a current value that depends on the current value of C. Use getValue to evaluate C and Try to examine the current values.
1 Evaluate C to obtain its current value.

```
Cnow = getValue(C)
```

This command returns a numeric pid object whose coefficients reflect the current values of the tunable parameters in C.
2 Evaluate Try to obtain its current value.
Tnow = getValue(Try)
This command returns a numeric model that is equivalent to feedback (G^{*} Cnow, 1).

Access Values of Tuned Models and Blocks

Propagate changes in block values from one model to another using getValue.
This technique is useful for accessing values of models and blocks tuned with tuning commands such as systune, looptune, or hinfstruct. For example, if you have a closed-loop model of your control system T0, with two tunable blocks, C1 and C2, you can tune it using:
[T,fSoft] = systune(T0,SoftReqs);
You can then access the tuned values of C 1 and C 2 , as well as any closed-loop model H that depends on C1 and C2, using the following:

```
C1t = getValue(C1,T);
C2t = getValue(C2,T);
Ht = getValue(H,T);
```


Version History

Introduced in R2011b

See Also

genss|replaceBlock| systune| looptune|hinfstruct

getx0

Map initial conditions from a mechss object to a sparss object

Syntax

$x 0=\operatorname{get} x 0(s y s, q 0, d q 0)$
x0 = getx0(sys,q1,q2)

Description

$\mathrm{x} 0=$ get $\mathrm{x} 0(\mathrm{sys}, \mathrm{q} 0, \mathrm{dq} 0)$ computes a matching initial condition x 0 for an equivalent sparse firstorder model using the initial conditions for displacement q0 and velocity dq0 from the continuoustime sparse second-order model sys. You can omit the second and third input arguments when q0 and dq0 are zero. The output, $x 0=\left[\begin{array}{c}q 0 \\ d q 0\end{array}\right]=\left[\begin{array}{c}q(0) \\ \frac{d q}{d t}(0)\end{array}\right]$ when the [sys.M; sys.G] matrices has no zero columns.

In general, the states of the sparss model is $x=\left[\begin{array}{c}q \\ d q(j n z)\end{array}\right]$ where $j n z$ are the indices of the nonzero columns of [sys.M; sys.G]. The resulting number of states n_{x} is $n_{x}=n_{q}+\operatorname{numel}(j n z) \leq 2 n_{q}$ where n_{q} is the number of nodes in the mechss object sys.
$x 0=$ getx0(sys,q1,q2) computes a matching initial condition using initial values $q 1=q[k]$ and $q 2=q[k+1]$ for discrete-time systems. The second and third input arguments can be omitted when $q 0$ and dq0 are zero. The output, $x 0=\left[\begin{array}{c}q 1 \\ q 2\end{array}\right]=\left[\begin{array}{c}q[k] \\ q[k+1]\end{array}\right]$ when the M and G matrices of the mechss model sys has no zero columns.

Examples

Map Initial Conditions from Continuous-Time Sparse Second-Order Model to Equivalent First-Order Model

For this example, consider a continuous-time sparse second-order model with 108 nodes. The row vectors q0 and dq0 are the initial conditions for displacement and velocity, respectively. The vectors q 0 and dq0 have the same size as the number of nodes in sys.

Load the data in sparseSOC . mat and find the initial conditions for an equivalent sparse first-order model using getx0.

```
load('sparseS0C.mat','sys','q0','dq0');
x0 = getx0(sys,q0,dq0);
size(x0)
ans = 1\times2
    216 1
```

In this case, vector x 0 contains 216 states, since $\mathrm{x} 0=\left[\begin{array}{c}q 0 \\ d q 0\end{array}\right]$.

Map Initial Conditions from Discrete-Time Sparse Second-Order Model to Equivalent FirstOrder Model

For this example, consider a discrete-time sparse second-order model with 7102 nodes. The row vectors $q 1$ and $q 2$ are the initial conditions for k and $k+1$ time steps, respectively. The vectors $q 1$ and q 2 have the same size as the number of nodes in sys.

Load the data in sparseSOD.mat and find the initial conditions for an equivalent discrete-time sparse first-order model using getx0.

```
load('sparseSOD.mat','sys','q1','q2');
x0 = getx0(sys,q1,q2);
size(x0)
ans = 1\times2
    14204 1
```

In this case, vector $x 0$ contains 14204 states since $x 0=\left[\begin{array}{l}q 1 \\ q 2\end{array}\right]$.

Input Arguments

sys - Continuous-time or discrete-time sparse second-order model
mechss model object
Continuous-time or discrete-time sparse second-order model to be converted to a sparse first-order model, specified as a mechss model object.

For more information, see the mechss reference page.

q0 - Initial values of the displacement vector

row vector of length Nq
Initial values of the displacement vector, specified as a row vector of length Nq , where Nq is the number of states in the continuous-time second-order sparse model sys.

dq0 - Initial values of the velocity vector

row vector of length Nq
Initial values of the velocity vector, specified as a row vector of length $N q$, where $N q$ is the number of states in the continuous-time second-order sparse model sys.

q1 - Initial values of state vector at \mathbf{k}

row vector of length Nq
Initial values of state vector at k, specified as a row vector of length $N q$, where $N q$ is the number of states in the continuous-time second-order sparse model sys. In other words, $q 1=q[k]$.

q2 - Initial values of state vector at $\mathbf{k + 1}$

row vector of length Nq
Initial values of state vector at k, specified as a row vector of length $N q$, where $N q$ is the number of states in the continuous-time second-order sparse model sys. In other words, $q 2=q[k+1]$.

Output Arguments

x0 - Mapped initial conditions for the equivalent sparse first-order model
array of doubles
Mapped initial conditions for the equivalent sparse first-order model, returned as an array of doubles. When the mass matrix M and the velocity-to-output matrix G of the mechss object contains no zero columns, then:

- $x 0=\left[\begin{array}{c}q 0 \\ d q 0\end{array}\right]=\left[\begin{array}{c}q(0) \\ \frac{d q}{d t}(0)\end{array}\right]$ for continuous-time systems.
- $x 0=\left[\begin{array}{c}q 1 \\ q 2\end{array}\right]=\left[\begin{array}{c}q[k] \\ q[k+1]\end{array}\right]$ for discrete-time systems.

Version History

Introduced in R2020b

See Also

mechss|sparss
Topics
"Sparse Model Basics"

gram

Controllability and observability Gramians

Syntax

```
Wc = gram(sys,'c')
Wc = gram(sys,'o')
Wc = gram(
```

\qquad

``` ,opt)
```


Description

Wc $=$ gram(sys, ' c^{\prime}) calculates the controllability Gramian of the state-space (ss) model sys.
Wc = gram(sys,'o') calculates the observability Gramian of the ss model sys.
Wc = gram(\qquad , opt) calculates time-limited or frequency-limited Gramians. opt is an option set that specifies time or frequency intervals for the computation. Create opt using the gramOptions command.

You can use Gramians to study the controllability and observability properties of state-space models and for model reduction [1]. They have better numerical properties than the controllability and observability matrices formed by ctrb and obsv.

Given the continuous-time state-space model

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

the controllability Gramian is defined by

$$
W_{C}=\int_{0}^{\infty} e^{A \tau} B B^{T} e^{A^{T} \tau} d \tau
$$

The controllability Gramian is positive definite if and only if (A, B) is controllable.
The observability Gramian is defined by

$$
W_{o}=\int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} d \tau
$$

The observability Gramian is positive definite if and only if (A, C) is observable.
The discrete-time counterparts of the controllability and observability Gramians are

$$
W_{C}=\sum_{k=0}^{\infty} A^{k} B B^{T}\left(A^{T}\right)^{k}, W_{o}=\sum_{k=0}^{\infty}\left(A^{T}\right)^{k} C^{T} C A^{k}
$$

respectively.

Use time-limited or frequency-limited Gramians to examine the controllability or observability of states within particular time or frequency intervals. The definition of these Gramians is as described in [2].

Examples

Compute Frequency-Limited Gramian

Compute the controllability Gramian of the following state-space model. Focus the computation on the frequency interval with the most energy.

```
sys = ss([-.1 -1;1 0],[1;0],[0 1],0);
```

The model contains a peak at $1 \mathrm{rad} / \mathrm{s}$. Use gram0ptions to specify an interval around that frequency.

```
opt = gramOptions('FreqIntervals',[0.8 1.2]);
gc = gram(sys,'c',opt)
gc = 2\times2
    4.2132 -0.0000
    -0.0000 4.2433
```


Limitations

The A matrix must be stable (all eigenvalues have negative real part in continuous time, and magnitude strictly less than one in discrete time).

Algorithms

The controllability Gramian W_{c} is obtained by solving the continuous-time Lyapunov equation

$$
A W_{C}+W_{C} A^{T}+B B^{T}=0
$$

or its discrete-time counterpart

$$
A W_{c} A^{T}-W_{c}+B B^{T}=0
$$

Similarly, the observability Gramian W_{o} solves the Lyapunov equation

$$
A^{T} W_{o}+W_{o} A+C^{T} C=0
$$

in continuous time, and the Lyapunov equation

$$
A^{T} W_{o} A-W_{O}+C^{T} C=0
$$

in discrete time.
The computation of time-limited and frequency-limited Gramians is as described in [2].

Version History

Introduced before R2006a

References

[1] Kailath, T., Linear Systems, Prentice-Hall, 1980.
[2] Gawronski, W. and J.N. Juang. "Model Reduction in Limited Time and Frequency Intervals." International Journal of Systems Science. Vol. 21, Number 2, 1990, pp. 349-376.

See Also
 gram0ptions | hsvd|balreal|lyap|dlyap

gramOptions

Options for the gram command

Syntax

```
opt = gramOptions
opt = gramOptions(Name,Value)
```


Description

opt $=$ gramOptions returns an option set with the default options for gram.
opt = gramOptions(Name, Value) returns an options set with the options specified by one or more Name, Value pair arguments.

Examples

Compute Frequency-Limited Gramian

Compute the controllability Gramian of the following state-space model. Focus the computation on the frequency interval with the most energy.

```
sys = ss([-.1 -1;1 0],[1;0],[0 1],0);
```

The model contains a peak at $1 \mathrm{rad} / \mathrm{s}$. Use gramOptions to specify an interval around that frequency.

```
opt = gramOptions('FreqIntervals',[0.8 1.2]);
gc = gram(sys,'c',opt)
gc = 2\times2
    4.2132 -0.0000
    -0.0000 4.2433
```


Input Arguments

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FreqIntervals',[0.8 1.2]

FreqIntervals - Frequency intervals for computing Gramians

[] (default) | two-column matrix

Frequency intervals for computing frequency-limited controllability and observability Gramians, specified as a matrix with two columns. Each row specifies a frequency interval [fmin fmax], where fmin and fmax are nonnegative frequencies, expressed in the frequency unit of the model. For example:

- To restrict the computation to the range between $3 \mathrm{rad} / \mathrm{s}$ and $15 \mathrm{rad} / \mathrm{s}$, assuming the frequency unit of the model is rad/s, set FreqIntervals to [3 15].
- To restrict the computation to two frequency intervals, 3-15 rad/s and 40-60 rad/s, use [3 15 ; 40 60].
- To specify all frequencies below a cutoff frequency fcut, use [0 fcut].
- To specify all frequencies above the cutoff, use [fcut Inf] in continuous time, or [fcut $\mathrm{pi} / \mathrm{Ts}$] in discrete time, where Ts is the sample time of the model.

The default value, [], imposes no frequency limitation and is equivalent to [0 Inf] in continuous time or [0 pi/Ts] in discrete time. However, if you specify a TimeIntervals value other than [], then this limit overrides FreqIntervals = []. If you specify both a TimeIntervals value and a FreqIntervals value, then the computation uses the union of these intervals.

TimeIntervals - Time intervals for computing Gramians

[] (default) | two-column matrix
Time intervals for computing time-limited controllability and observability Gramians, specified as a matrix with two columns. Each row specifies a time interval [tmin tmax], where tmin and tmax are nonnegative times, expressed in the time unit of the model. For example:

- To restrict the computation to the range between 3 s and 15 s , assuming the time unit of the model is seconds, set TimeIntervals to [3 15].
- To restrict the computation to two time intervals, 3-15 s and 40-60 s, use [3 15; 40 60].
- To specify all times from zero up to a cutoff time tcut, use [0 tcut]. To specify all times after the cutoff, use [tcut Inf].

The default value, [], imposes no time limitation and is equivalent to [0 Inf]. However, if you specify a FreqIntervals value other than [], then this limit overrides Timeintervals = []. If you specify both a TimeIntervals value and a FreqIntervals value, then the computation uses the union of these intervals.

Output Arguments

opt - Options for gram

gram0ptions options set
Options for gram, returned as a gram0ptions options set. Use opt as the last argument to gram to compute time-limited or frequency-limited Gramians.

Version History
 Introduced in R2016a

See Also

gram | hsvd

hasdelay

True for linear model with time delays

Syntax

$B=$ hasdelay(sys)
$B=$ hasdelay(sys,'elem')

Description

B = hasdelay(sys) returns 1 (true) if the model sys has input delays, output delays, I/O delays, or internal delays, and 0 (false) otherwise. If sys is a model array, then B is true if least one model in sys has delays.

B = hasdelay(sys, 'elem') returns a logical array of the same size as the model array sys. The logical array indicates which models in sys have delays.

Version History

Introduced before R2006a

See Also
absorbDelay|totaldelay

hasInternalDelay

Determine if model has internal delays

Syntax

B = hasInternalDelay(sys)
B = hasInternalDelay(sys,'elem')

Description

$B=$ hasInternalDelay(sys) returns 1 (true) if the model sys has internal delays, and 0 (false) otherwise. If sys is a model array, then B is true if least one model in sys has delays.
$B=$ hasInternalDelay(sys, 'elem') checks each model in the model array sys and returns a logical array of the same size as sys. The logical array indicates which models in sys have internal delays.

Examples

Check Model for Internal Delays

Build a dynamic system model of the following closed-loop system.


```
s = tf('s');
G = exp(-2.4*s)/(s-5);
C = pid(5,0.1);
sys = feedback(G*C,1);
```

Check the model for internal delays.

```
B = hasInternalDelay(sys)
B = logical
    1
```

The model, sys, has an internal delay because of the transport delay in the plant G. Therefore, hasInternalDelay returns 1.

Input Arguments

Model or array to check for internal delays, specified as a dynamic system model or array of dynamic system models.

Output Arguments

B - Flag indicating presence of internal delays
logical | logical array
Flag indicating presence of internal delays in input model or array, returned as a logical value or logical array.

Version History

Introduced in R2013a

See Also

hasdelay | getDelayModel

hsvd

(Not recommended) Hankel singular values of dynamic system

Note hsvd is not recommended. Use balred instead. For more information, see "Compatibility Considerations".

Syntax

```
hsv = hsvd(sys)
hsv = hsvd(sys,opts)
[hsv,baldata] = hsvd(
```

\qquad

``` )
hsvd(
``` \(\qquad\)

\section*{Description}
hsv = hsvd(sys) computes the Hankel singular values hsv of the dynamic system sys. In state coordinates that equalize the input-to-state and state-to-output energy transfers, the Hankel singular values measure the contribution of each state to the input/output behavior. Hankel singular values are to model order what singular values are to matrix rank. In particular, small Hankel singular values signal states that can be discarded to simplify the model (see bal red).

For models with unstable poles, hsvd only computes the Hankel singular values of the stable part and entries of hsv corresponding to unstable modes are set to Inf.
hsv = hsvd(sys,opts) computes the Hankel singular values using options that you specify using hsvdOptions. Options include offset and tolerance options for computing the stable-unstable decompositions. The options also allow you to limit the HSV computation to energy contributions within particular time and frequency intervals. See balredOptions for details.
[hsv, baldata] = hsvd(__) returns additional data to speed up model order reduction. You can use this syntax with any of the previous combinations of input arguments.
hsvd(\(\qquad\)) displays a Hankel singular values plot.

\section*{Examples}

\section*{Compute Hankel Singular Values of System With Near-Unstable Pole}

Create a system with a stable pole very near to 0 , and display the Hankel singular values.
```

sys = zpk([1 2],[-1 -2 -3 -10 -1e-7],1);
hsv = hsvd(sys)
hsv = 5 < 1
105 x
0.0000
0.0000
0.0000

Notice the dominant Hankel singular value with magnitude $10^{5}$, which is so much larger that the significant digits of the other modes are not displayed. This value is due to the near-unstable mode at $s=10^{-7}$. Use the 'Offset' option to treat this mode as unstable.
opts = hsvdOptions('Offset',1e-7);
hsvu = hsvd(sys,opts)
hsvu $=5 \times 1$
Inf
0.0688
0.0138
0.0024
0.0001

The Hankel singular value of modes that are unstable, or treated as unstable, is returned as Inf. Create a Hankel singular-value plot while treating this mode as unstable.

```
hsvd(sys,opts)
```

ans $=5 \times 1$

Inf
0.0688
0.0138
0.0024
0.0001

The unstable mode is shown in red on the plot.
By default, hsvd uses a linear scale. To switch the plot to a log scale, right-click on the plot and select Y Scale > Log. For information about programmatically changing properties of HSV plots, see hsvplot.

## Frequency-Limited Hankel Singular Values

Compute the Hankel singular values of a model with low-frequency and high-frequency dynamics. Focus the calculation on the high-frequency modes.

Load the model and examine its frequency response.

```
load modeselect Gms
bodeplot(Gms)
```



Gms has two sets of resonances, one at relatively low frequency and the other at relatively high frequency. Compute the Hankel singular values of the high-frequency modes, excluding the energy contributions to the low-frequency dynamics. To do so, use hsvdOptions to specify a frequency interval above $30 \mathrm{rad} / \mathrm{s}$.

```
opts = hsvdOptions('FreqInterval',[30 Inf]);
hsvd(Gms,opts)
ans = 18\times1
10-4}
 0.6237
 0.4558
 0.3183
 0.2468
 0.0895
 0.0847
 0.0243
 0.0028
 0.0000
 0.0000
```


## Tips

To create a Hankel singular-value plot with more flexibility to programmatically customize the plot, use hsvplot.

## Version History

## Introduced before R2006a

## R2021a: hsvd is not recommended

Not recommended starting in R2021a
Starting in R2021a, use the bal red command to compute Hankel singular values. This approach facilitates better workflow since you can also compute reduced-order model approximations using the same command. Furthermore, the enhanced workflow also includes new options that preserve roll-off characteristics.

The following table shows some typical uses of hsvd and how to update your code to use bal red instead.

Not Recommended	Recommended
hsv $=$ hsvd(sys)	$[\sim$, info $=$ bal red(sys, order) computes   the Hankel singular values and the error   approximations of sys. For more information, see   balred.
hsv = hsvd(sys, opts)	$[\sim$, info $=$ balred(sys, order, opts)   computes the Hankel singular values with options   specified in the option set opts. For more   information, see balred.

There are no plans to remove hsvd at this time.

## See Also

balredOptions |hsvplot|balred|balreal

## hsvdOptions

(Not recommended) Create option set for computing Hankel singular values and input/output balancing

Note hsvdOptions is not recommended. Use balredOptions instead. For more information, see "Compatibility Considerations".

## Syntax

opts = hsvdOptions
opts $=$ hsvdOptions(Name, Value)

## Description

opts $=$ hsvdOptions returns the default options for the hsvd and balreal commands.
opts $=$ hsvdOptions(Name, Value) returns an options set with the options specified by one or more Name, Value pair arguments.

## Input Arguments

## Name-Value Pair Arguments

Specify comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## FreqIntervals

Frequency intervals for computing frequency-limited Hankel singular values (balred) or balanced realization (balreal), specified as a matrix with two columns. Each row specifies a frequency interval [fmin fmax], where fmin and fmax are nonnegative frequencies, expressed in the frequency unit of the model. For example:

- To restrict the computation to the range between $3 \mathrm{rad} / \mathrm{s}$ and $15 \mathrm{rad} / \mathrm{s}$, assuming the frequency unit of the model is rad/s, set FreqIntervals to [315].
- To restrict the computation to two frequency intervals, 3-15 rad/s and 40-60 rad/s, use [3 15 ; 40 60].
- To specify all frequencies below a cutoff frequency fcut, use [0 fcut].
- To specify all frequencies above the cutoff, use [fcut Inf] in continuous time, or [fcut $\mathrm{pi} / \mathrm{Ts}]$ in discrete time, where Ts is the sample time of the model.

The default value, [], imposes no frequency limitation and is equivalent to [ 0 Inf] in continuous time or [0 pi/Ts] in discrete time. However, if you specify a TimeIntervals value other than [], then this limit overrides FreqIntervals = []. If you specify both a TimeIntervals value and a FreqIntervals value, then the computation uses the union of these intervals.

## Default: []

## TimeIntervals

Time intervals for computing time-limited Hankel singular values (bal red) or balanced realization (bal real), specified as a matrix with two columns. Each row specifies a time interval [tmin tmax], where tmin and tmax are nonnegative times, expressed in the time unit of the model. The software computes state contributions to the system's impulse response in these time intervals only. For example:

- To restrict the computation to the range between 3 s and 15 s , assuming the time unit of the model is seconds, set TimeIntervals to [315].
- To restrict the computation to two time intervals, $3-15 \mathrm{~s}$ and $40-60 \mathrm{~s}$, use [3 15 ; 40 60].
- To specify all times from zero up to a cutoff time tcut, use [0 tcut]. To specify all times after the cutoff, use [tcut Inf].

The default value, [ ], imposes no time limitation and is equivalent to [0 Inf]. However, if you specify a FreqIntervals value other than [], then this limit overrides Timeintervals = []. If you specify both a TimeIntervals value and a FreqIntervals value, then the computation uses the union of these intervals.

## SepTol

Maximum loss of accuracy value in stable and unstable decomposition. For models with unstable poles, bal red first extracts the stable dynamics using stabsep. Use 'SepTol' to control the decomposition accuracy.

For more information, see bal redOptions.
Default: SepTol = 'auto'

## Offset

Offset for the stable/unstable boundary. Positive scalar value. In the stable/unstable decomposition, the stable term includes only poles satisfying:

- Re(s) < -Offset * max(1,|Im(s)|) (Continuous time)
- $|z|<1$ - Offset (Discrete time)

Increase the value of Offset to treat poles close to the stability boundary as unstable.

## Default: 1e-8

For additional information on the options and how they affect the calculation, see bal redOptions. The time-limited and frequency-limited state contributions are calculated using the time-limited and frequency-limited controllability and observability Gramians, as described in gram and in [1].

## Examples

## Hankel Singular-Value Plot with Near-Unstable Pole

Compute the Hankel singular values of the system given by:

$$
\text { sys }=\frac{(s+0.5)}{\left(s+10^{-6}\right)(s+2)}
$$

Use the Offset option to force hsvd to exclude the pole at $s=10^{-6}$ from the stable term of the stable/unstable decomposition.

```
sys = zpk(-.5,[-1e-6 -2],1);
opts = hsvdOptions('Offset',.001);
hsvd(sys,opts)
ans = 2×1
 Inf
 0.1875
```

The plot shows that one state is treated as unstable. hsvd computes the energy contributions of the stable states only.

## Frequency-Limited Hankel Singular Values

Compute the Hankel singular values of a model with low-frequency and high-frequency dynamics. Focus the calculation on the high-frequency modes.

Load the model and examine its frequency response.

```
load modeselect Gms
bodeplot(Gms)
```



Gms has two sets of resonances, one at relatively low frequency and the other at relatively high frequency. Compute the Hankel singular values of the high-frequency modes, excluding the energy contributions to the low-frequency dynamics. To do so, use hsvdOptions to specify a frequency interval above $30 \mathrm{rad} / \mathrm{s}$.

```
opts = hsvdOptions('FreqInterval',[30 Inf]);
hsvd(Gms,opts)
ans = 18\times1
10-4}
 0.6237
 0.4558
 0.3183
 0.2468
 0.0895
 0.0847
 0.0243
 0.0028
 0.0000
 0.0000
```


## Version History

Introduced in R2010a

## R2021a: hsvdOptions is not recommended

Not recommended starting in R2021a
Starting in R2021a, use the bal redOptions command to create the options set with your specific options. balredOptions also includes new options that preserve roll-off characteristics.

The following table shows some typical uses of hsvd and how to update your code to use balredOptions instead.

Not Recommended	Recommended
opts = hsvdOptions (Name, Value)	opts = bal redOptions (Name, Value) creates   the option set with the specified options. For   more information, see bal redOptions.

There are no plans to remove hsvdOptions at this time.

## References

[1] Gawronski, W. and J.N. Juang. "Model Reduction in Limited Time and Frequency Intervals." International Journal of Systems Science. Vol. 21, Number 2, 1990, pp. 349-376.

## See Also

bal real | gram | balred | balredOptions

## hsvoptions

Create list of Hankel singular value plot options

## Description

Use the hsvoptions command to create a HSVOptions object to customize Hankel singular value (HSV) plot appearance. You can also use the command to override the plot preference settings in the MATLAB session in which you create the HSV plots.

## Creation

## Syntax

plotoptions = hsvoptions
plotoptions = hsvoptions('cstprefs')

## Description

plotoptions = hsvoptions returns a default set of plot options for use with the hsvplot command. You can use these options to customize the HSV plot appearance using the command line. This syntax is useful when you want to write a script to generate plots that look the same regardless of the preference settings of the MATLAB session in which you run the script.
plotoptions = hsvoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor". This syntax is useful when you want to change a few plot options but otherwise use your default preferences. A script that uses this syntax may generate results that look different when run in a session with different preferences.

## Properties

## YScale - Scale for Y-axis

'log' (default) |'linear'
Scale for Y-axis, specified as either 'log' or 'linear'.

## Title - Title text and style

structure (default)
Title text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the plot is titled 'Hankel Singular Values and Approximation Error'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## XLabel - X-axis label text and style

structure (default)
X -axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the axis is titled 'Order (Number of States)'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## YLabel - Y-axis label text and style

structure (default)
Y-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a cell array of character vectors. By default, the axis label is titled 'State Contribution'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## TickLabel - Tick label style

## structure (default)

Tick label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].


## Grid - Toggle grid display

## 'off' (default) | 'on'

Toggle grid display on the plot, specified as either 'off' or 'on'.

## GridColor - Color of the grid lines

[0.15, 0. 15, 0.15] (default) | RGB triplet
Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB triplet [0.15, 0.15, 0.15].

## XLimMode - X-axis limit selection mode

'auto' (default) | 'manual' | cell array
Selection mode for the x -axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the XLim property.


## YLimMode - Y-axis limit selection mode

'auto' (default) | 'manual' | cell array
Selection mode for the $y$-axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the YLim property.


## XLim - X-axis limits

' $\{[1,10]\}$ ' (default) | cell array of two-element vector of the form [min, max] |cell array
X-axis limits, specified as a cell array of two-element vector of the form [min, max].
YLim - $\mathbf{Y}$-axis limits
' $\{[1,10]\}$ ' (default) |cell array of two-element vector of the form [min, max] |cell array
Y-axis limits, specified as a cell array of two-element vector of the form [min, max].

## Object Functions

hsvplot Plot Hankel singular values and return plot handle

## Examples

## Set Properties in HSV Plot

Use hsvplot to create a Hankel singular-value plot and customized plot properties.
Create an options set for hsvplot that sets the Yscale property and the title font size.

```
P = hsvoptions;
P.YScale = 'linear';
P.Title.FontSize = 14;
```

Use the options set to generate an HSV plot. Note the linear y-axis scale in the plot.
h = hsvplot(rss(12),P);

hsvplot returns a plot handle. You can use the plot handle to change properties of the existing plot. For example, switch to log scale and turn off the grid.
setoptions(h,'Yscale','log','Grid','Off')


## Tips

- Both balred and hsvplot generate Hankel singular-value plots. hsvplot is useful when you want to customize properties of your plot such as axis limits, scale, and label styles. Use hsvoptions with hsvplot to define properties for your plot. For information on the ways to change properties of your plots, see "Ways to Customize Plots".


## Version History <br> Introduced in R2008a

## See Also

balred|balred0ptions | hsvplot | getoptions | setoptions | stabsep

## Topics

"Toolbox Preferences Editor"

## hsvplot

Plot Hankel singular values and return plot handle

## Syntax

```
hsvplot(sys)
hsvplot(AX,sys,...)
hsvplot(...,numOpts,plotOpts)
h = hsvplot(
```

$\qquad$

``` )
```


## Description

hsvplot (sys) plots the Hankel singular values (HSVs) of the LTI model sys. See bal red for details on the meaning and purpose of Hankel singular values. The Hankel singular values for the stable and unstable modes of sys are shown in blue and red, respectively. Reduced-order models of various orders can be obtained by dropping the states associated with the smallest HSVs. hsvplot also shows the maximum approximation error as a function of the approximation order (number of states in reduced-order model).
hsvplot (AX, sys,...) attaches the plot to the axes AX.
hsvplot (..., numOpts, plotOpts) specifies additional options for computing and plotting the results. Use balredOptions to create numOpts and hsvoptions to create plotOpts.
h = hsvplot( ) returns the plot handle $h$ to the Hankel singular value plot. You can use this handle to customize the plot with the getoptions and setoptions commands. See hsvoptions for a list of some available plot options.

## Examples

## Set Properties in HSV Plot

Use hsvplot to create a Hankel singular-value plot and customized plot properties.
Create an options set for hsvplot that sets the Yscale property and the title font size.

```
P = hsvoptions;
P.YScale = 'linear';
P.Title.FontSize = 14;
```

Use the options set to generate an HSV plot. Note the linear y-axis scale in the plot.

```
h = hsvplot(rss(12),P);
```


hsvplot returns a plot handle. You can use the plot handle to change properties of the existing plot. For example, switch to log scale and turn off the grid.
setoptions(h,'Yscale','log','Grid','Off')


## Tips

- Both balred and hsvplot generate Hankel singular-value plots. hsvplot is useful when you want to customize properties of your plot such as axis limits, scale, and label styles. Use hsvoptions with hsvplot to define properties for your plot. For information on the ways to change properties of your plots, see "Ways to Customize Plots".


## Version History <br> Introduced before R2006a

## See Also

balred|balredOptions| getoptions|hsvoptions| setoptions

## icare

Implicit solver for continuous-time algebraic Riccati equations

## Syntax

```
[X,K,L] = icare(A,B,Q,R,S,E,G)
[X,K,L,info] = icare(
[___] = icare
```

$\qquad$

``` , 'noscaling')
[___] = icare(___,'anti')
```


## Description

$[X, K, L]=$ icare (A, B, $Q, R, S, E, G$ ) computes the unique stabilizing solution $X$, state-feedback gain $K$, and the closed-loop eigenvalues $L$ of the following continuous-time algebraic Riccati equation.

$$
A^{T} X E+E^{T} X A+E^{T} X G X E-\left(E^{T} X B+S\right) R^{-1}\left(B^{T} X E+S^{T}\right)+Q=0
$$

The stabilizing solution $X$ puts all the eigenvalues $L$ in the left half-plane.
Algebraic Riccati equations play a key role in LQR/LQG control, H2- and H-infinity control, Kalman filtering, and spectral or co-prime factorizations.
[ $\mathrm{X}, \mathrm{K}, \mathrm{L}, \mathrm{info}$ ] = icare( $\qquad$ ) also returns a structure info which contains additional information about the solution to the continuous-time algebraic Riccati equation.
[___] = icare (__, 'noscaling') turns off the built-in scaling and sets all entries of the scaling vectors info. $\bar{x} x$ and info. Sr to 1. Turning off scaling speeds up computation but can be detrimental to accuracy when $A, B, Q, R, S, E, G$ are poorly scaled.
[__] = icare (__ in the right half-plane.

## Examples

## Solve Continuous-Time Algebraic Riccati Equation

To solve the algebraic Riccati equation $A^{T} X+\mathrm{XA}-\mathrm{XB} B^{T} X+C C^{T}=0$, consider the following matrices:

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad B=\left[\begin{array}{c}
5 \\
6 \\
-7
\end{array}\right] \quad C=\left[\begin{array}{lll}
7 & -8 & 9
\end{array}\right] .
$$

The least effort approach is to use $G=-B B^{T}$ and $Q=C^{T} C$, and then find the solution using icare.

```
A = [-1,2,3;4,5,-6;7,-8,9];
B = [5;6;-7];
C = [7, -8,9];
```

```
G = -B*B';
Q = C'*C;
[X1,K1,L1] = icare(A,[],Q,[],[],[],G)
X1 = 3\times3
 15.3201 4.2369 17.0090
 4.2369 2.6252 4.4123
 17.0090 4.4123 19.0374
K1 =
 0x3 empty double matrix
L1 = 3\times1
 -3.2139
 -10.1191
 -76.9693
```

The above approach may lead to numerical inaccuracies when matrices $B$ and $C$ have large entries, since they are squared-up to compute the G and Q matrices. Due to limited numerical range, the computation may be less accurate or even fail. For example, if norm (B) is le6, then norm( $G$ ) is 1 e 12 , and any eigenvalue within le-4 of the imaginary axis may be diagnosed as 'imaginary' due to numerical errors.

For greater numerical accuracy, re-write the algebraic Riccati equation in the following way:

$$
A^{T} X+\mathrm{XA}-\left[\mathrm{XB}, C^{T}\right] *[I, 0 ; 0,-I]\left[B^{T} X ; C\right]=0
$$

The above equation is the standard form of $A^{T} X+\mathrm{XA}-(\mathrm{XB}+S) R^{-1}\left(B^{T} X+S^{T}\right)=0$,
where $B=[B, 0], S=\left[0, C^{T}\right]$, and $R=[I, 0 ; 0,-I]$.
Compute the solution using icare with the above values.

```
n = size(A,1);
m = size(B,2);
p = size(C,1);
R = blkdiag(eye(m),-eye(p));
BB = [B,zeros(n,p)];
S = [zeros(n,m),C'];
[X2,K2,L2,info] = icare(A,BB,0,R,S,[],[])
X2 = 3\times3
 15.3201 4.2369 17.0090
 4.2369 2.6252 4.4123
 17.0090 4.4123 19.0374
K2 = 2 *3
 -17.0406 6.0501 -21.7435
```

Sx: [3x1 double]
Sr: [2x1 double]
U: [3x3 double]
V: [3x3 double]
W: [2x3 double]
Report: 0

Here, X2 is the unique stabilizing solution, K2 contains the state-feedback gain and L2 contains the closed-loop eigenvalues.

## Anti-Stabilizing Solution of Continuous-Time Algebraic Riccati Equation

To find the anti-stabilizing solution of the continuous-time algebraic Riccati equation $A^{T} X+\mathrm{XA}-\mathrm{XBB}^{T} X+C C^{T}=0$, consider the following matrices:

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
-4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad B=\left[\begin{array}{c}
5 \\
6 \\
-7
\end{array}\right] \quad C=\left[\begin{array}{lll}
7 & -8 & 9
\end{array}\right] .
$$

For greater numerical accuracy, re-write the algebraic Riccati equation in the following way:

$$
A^{T} X+\mathrm{XA}-\left[\mathrm{XB}, C^{T}\right] *[I, 0 ; 0,-I]\left[B^{T} X ; C\right]=0 .
$$

The above equation is the standard form of $A^{T} X+\mathrm{XA}-(\mathrm{XB}+S) R^{-1}\left(B^{T} X+S^{T}\right)=0$,
where $B=[B, 0], S=\left[0, C^{T}\right]$, and $R=[I, 0 ; 0,-I]$.
Compute the anti-stabilizing solution using the 'anti' option.

```
A = [-1,2,3;4,5,-6;7,-8,9];
B = [5;6;-7];
C = [7, -8,9];
n = size(A,1);
m = size(B,2);
p = size(C,1);
R = blkdiag(eye(m),-eye(p));
BB = [B,zeros(n,p)];
S = [zeros(n,m),C'];
[X,K,L] = icare(A,BB,0,R,S,[],[],'anti')
```

```
X = 3\times3
\begin{tabular}{rrr}
-18.0978 & 10.9090 & -1.8466 \\
10.9090 & -6.7195 & 1.4354 \\
-1.8466 & 1.4354 & -0.9426
\end{tabular}
K = 2×3
 -12.1085 4.1803 5.9774
 -7.0000 8.0000 -9.0000
L = 3\times1
 76.9693
 10.1191
 3.2139
```

Here, X is the unique anti-stabilizing solution, K contains the state-feedback gain and L contains the closed-loop eigenvalues.

## Input Arguments

## $A, B, Q, R, S, E, G-\operatorname{Input}$ matrices

matrices
Input matrices, specified as matrices.
The matrices $\mathrm{Q}, \mathrm{R}$ and G must be Hermitian. A square matrix is Hermitian if it is equal to its complex conjugate transpose, that is, $a_{i, j}=\bar{a}_{j, i}$.

For more information on Hermitian matrices, see ishermitian.
Matrices R and E must be invertible.
When matrices B, R, S, E and G are omitted or set to [ ], icare uses the following default values:

- $B=0$
- $\mathrm{R}=\mathrm{I}$
- $\mathrm{S}=0$
- $E=I$
- $G=0$

If the inputs $Q, R$ and $G$ are scalar-valued, icare interprets them as multiples of the identity matrix.

## 'noscaling' - Option to turn off built-in scaling <br> 'noscaling'

Option to turn off built-in scaling, specified as 'noscaling'. When you turn off the built-in scaling, icare sets all entries in the scaling vectors info. Sx and info. Sr to 1 . Turning off scaling speeds up computation but can be detrimental to accuracy when $A, B, Q, R, S, E, G$ are poorly scaled.

## 'anti' - Option to compute the anti-stabilizing solution <br> 'anti'

Option to compute the anti-stabilizing solution, specified as 'anti' ' When you enable this option, icare computes the anti-stabilizing solution $X$ that puts all eigenvalues of $(A+G * X * E-B * K, E)$ in the right half-plane.

The unique stabilizing and anti-stabilizing are both needed to know the complete phase portrait of the Riccati differential equations.

## Output Arguments

## $X$ - Unique solution to the Riccati equation

matrix
Unique solution to the continuous-time algebraic Riccati equation, returned as a matrix.
By default, X is the stabilizing solution of the continuous-time algebraic Riccati equation. When the 'anti ' option is used, X is the anti-stabilizing solution.
icare returns [] for X when the associated Hamiltonian matrix has eigenvalues on the imaginary axis.

## K - State-feedback gain

matrix
State-feedback gain, returned as a matrix.
The state-feedback gain K is computed as:

$$
K=R^{-1}\left(B^{T} X E+S^{T}\right) .
$$

icare returns [ ] for K when the associated Hamiltonian matrix has eigenvalues on the imaginary axis.

## L - Closed-loop eigenvalues

matrix
Closed-loop eigenvalues, returned as a matrix.
The closed-loop eigenvalues $L$ is computed as:
$L=\operatorname{eig}(A+G X E-B K, E)$.
icare returns [] for X and K when the associated Hamiltonian matrix has eigenvalues on the imaginary axis. In other words, $L$ is non-empty even when $X$ and $K$ are empty matrices.

## info - Information about the unique solution

## structure

Information about the unique solution, returned as a structure with the following fields:

- Sx - Vector of values used to scale the states.
- Sr - Vector of values used to scale the R matrix.
- $\quad U, V$ and $W$ - Vectors of values representing the basis of the stable invariant subspace of the associated scaled matrix pencil. For more information, see "Algorithms" on page 2-493.
- Report - A scalar with one of the following values:
- 0 - The unique solution is accurate.
- 1 - The solution accuracy is poor.
- 2 - The solution is not finite.
- 3 - No solution found since the Hamiltonian spectrum, denoted by [L; -L], has eigenvalues on the imaginary axis.


## Limitations

- ( $A-s E, B$ ) must be stabilizable, and $E$ and $R$ must be invertible for a finite stabilizing solution $X$ to exist and be finite. While these conditions are not sufficient in general, they become sufficient when the following conditions are met:
- $\left[\begin{array}{cc}Q & S \\ S^{T} & R\end{array}\right] \geq 0$
- $\left[A-B R^{-1} S^{T} Q-S R^{-1} S^{T}\right]$ is detectible


## Algorithms

## Basis of the invariant subspace

icare works with the following pencil, and computes a basis [U;V;W] of the invariant subspace associated with the stable or anti-stable finite eigenvalues of this pencil.

$$
M-s N=\left[\begin{array}{ccc}
A & G & B \\
-Q & -A^{T} & -S \\
S^{T} & B^{T} & R
\end{array}\right]-s\left[\begin{array}{ccc}
E & 0 & 0 \\
0 & E^{T} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The data is automatically scaled to reduce the sensitivity of eigenvalues near the imaginary axis and increase separation between the stable and anti-stable invariant subspaces.

## Relationship between the solution, the state-feedback gain, and the scaling vectors

The solution $X$ and state-feedback gain $K$ are related to the scaling vectors, and $U, V, W$ by the following set of equations:

$$
\begin{aligned}
& X=\mathrm{D}_{\chi} V U^{-1} \mathrm{D}_{\chi} E^{-1} \\
& K=-D_{r} \mathrm{WU}^{-1} \mathrm{D}_{\chi}
\end{aligned}
$$

where,

$$
\begin{aligned}
& D_{x}=\operatorname{diag}\left(S_{x}\right) \\
& D_{r}=\operatorname{diag}\left(S_{r}\right)
\end{aligned}
$$

## Version History

Introduced in R2019a

```
See Also
ishermitian|idare|lyap|lqr|lqg| kalman|h2syn| hinfsyn| spectralfact| lncf|
rncf
```


## idare

Implicit solver for discrete-time algebraic Riccati equations

## Syntax

$[X, K, L]=$ idare $(A, B, Q, R, S, E)$
[X,K,L,info] = idare( ___)
[___] = idare(__, 'noscaling')
[___] = idare(__,'anti')

## Description

$[\mathrm{X}, \mathrm{K}, \mathrm{L}]=$ idare $(\mathrm{A}, \mathrm{B}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{E})$ computes the unique stabilizing solution X , state-feedback gain $K$, and the closed-loop eigenvalues $L$ of the following discrete-time algebraic Riccati equation.

$$
A^{T} X A-E^{T} X E-\left(A^{T} X B+S\right)\left(B^{T} X B+R\right)^{-1}\left(A^{T} X B+S\right)^{T}+Q=0
$$

The stabilizing solution $X$ puts all the eigenvalues $L$ inside the unit disk.
Algebraic Riccati equations play a key role in LQR/LQG control, H2- and H-infinity control, Kalman filtering, and spectral or co-prime factorizations.
[ $\mathrm{X}, \mathrm{K}, \mathrm{L}, \mathrm{info}$ ] = idare( $\qquad$ ) also returns a structure info which contains additional information about the solution to the discrete-time algebraic Riccati equation.
[___] = idare( __ , 'noscaling' ) turns off the built-in scaling and sets all entries of the scaling vectors info. $\bar{x} x$ and info. Sr to 1. Turning off scaling speeds up computation but can be detrimental to accuracy when $A, B, Q, R, S, E$ are poorly scaled.
[___] = idare( $\qquad$ , 'anti') computes the anti-stabilizing solution $X$ that puts all eigenvalues $L$ outside the unit disk.

## Examples

## Solve Discrete-Time Algebraic Riccati Equation

For this example, solve the discrete-time algebraic Riccati equation considering the following set of matrices:

$$
A=\left[\begin{array}{cc}
-0.9 & -3 \\
0.7 & 0.1
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \quad R=0.1 .
$$

Find the stabilizing solution using idare to solve for the above matrices with default values for S and E.

```
A = [-0.9,-0.3;0.7,0.1];
B = [1;1];
Q = [1,0;0,3];
```

```
R = 0.1;
[X,K,L,info] = idare(A,B,Q,R,[],[])
X = 2\times2
 4.7687 0.9438
 0.9438 3.2369
K = 1\times2
 -0.2216 -0.1297
L = 2\times1
 -0.4460
 -0.0027
info = struct with fields:
 Sx: [2x1 double]
 Sr: 1
 U: [2x2 double]
 V: [2x2 double]
 W: [-0.0232 0.0428]
 Report: 0
```

Here, X is the unique stabilizing solution, K contains the state-feedback gain, L contains the closedloop eigenvalues, while info contains additional information about the solution.

## Anti-Stabilizing Solution of Discrete-Time Algebraic Riccati Equation

For this example, solve the discrete-time algebraic Riccati equation considering the following set of matrices:

$$
A=\left[\begin{array}{cc}
-0.9 & -3 \\
0.7 & 0.1
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \quad R=0.1
$$

Find the anti-stabilizing solution using the 'anti ' option to solve for the above matrices with default values for $S$ and $E$.

```
A = [-0.9,-0.3;0.7,0.1];
B = [1;1];
Q = [1,0;0,3];
R = 0.1;
[X,K,L] = idare(A,B,Q,R,[],[],'anti')
x = 2\times2
\begin{tabular}{rr}
-0.5423 & 0.4996 \\
0.4996 & -0.5569
\end{tabular}
```

```
K = 1\times2
 -118.0177 490.9023
L = 2\times1
 -371.4426
 -2.2420
```

Here, X is the unique anti-stabilizing solution, K contains the state-feedback gain, and L contains the closed-loop eigenvalues.

## Input Arguments

## $A, B, Q, R, S, E-$ Input matrices

matrices
Input matrices, specified as matrices.
The matrices $\mathbf{Q}$ and R must be Hermitian. A square matrix is Hermitian if it is equal to its complex conjugate transpose, that is, $a_{i, j}=\bar{a}_{j, i}$.

For more information on Hermitian matrices, see ishermitian.
Matrix E must be non-singular.
When matrices R, S and E are omitted or set to [ ], idare uses the following default values:

- $\mathrm{R}=\mathrm{I}$
- $S=0$
- $E=I$

If the inputs $Q$ and $R$ are scalar-valued, idare interprets them as multiples of the identity matrix.

## 'noscaling' - Option to turn off built-in scaling <br> 'noscaling'

Option to turn off built-in scaling, specified as 'noscaling'. When you turn off the built-in scaling, idare sets all entries in the scaling vectors info. Sx and info. Sr to 1 . Turning off scaling speeds up computation but can be detrimental to accuracy when $A, B, Q, R, S, E$ are poorly scaled.

## 'anti' - Option to compute the anti-stabilizing solution <br> 'anti'

Option to compute the anti-stabilizing solution, specified as 'anti'. When you enable this option, idare computes the anti-stabilizing solution $X$ that puts all eigenvalues of ( $A-B * K, E$ ) outside the unit disk.

The unique stabilizing and anti-stabilizing are both needed to know the complete phase portrait of the Riccati differential equations.

## Output Arguments

## $X$ - Unique solution to the Riccati equation

matrix
Unique solution to the discrete-time algebraic Riccati equation, returned as a matrix.
By default, X is the stabilizing solution of the discrete-time algebraic Riccati equation. When the 'anti ' option is used, X is the anti-stabilizing solution.
idare returns [] for X when there is no finite stabilizing solution.

## K - State-feedback gain

matrix
State-feedback gain, returned as a matrix.
The state-feedback gain K is computed as:

$$
K=\left(B^{T} X B+R\right)^{-1}\left(B^{T} X A+S^{T}\right) .
$$

idare returns [] for K when there is no finite stabilizing solution.

## L - Closed-loop eigenvalues

## matrix

Closed-loop eigenvalues, returned as a matrix.
The closed-loop eigenvalues $L$ is computed as:
$L=\operatorname{eig}(A-B K, E)$.
idare returns [ ] for X and K when there is no finite stabilizing solution. L is non-empty even when X and K are empty matrices.

## info - Information about the unique solution

structure
Information about the unique solution, returned as a structure with the following fields:

- $S x$ - Vector of values used to scale the states.
- Sr - Vector of values used to scale the R matrix.
- $\mathrm{U}, \mathrm{V}$ and W - Vectors of values representing the basis of the stable invariant subspace of the associated scaled matrix pencil. For more information, see "Algorithms" on page 2-493.
- Report - A scalar with one of the following values:
- 0 - The unique solution is accurate.
- 1 - The solution accuracy is poor.
- 2 - The solution is not finite.
- $3-$ No solution found since the Symplectic spectrum, denoted by [L;1./L], has eigenvalues on the unit circle.


## Limitations

- ( $\mathrm{A}-\mathrm{zE}, \mathrm{B}$ ) must be stabilizable, E and R must be invertible, and $[\mathrm{B} ; \mathrm{S} ; \mathrm{R}$ ] have full column rank for a finite stabilizing solution $X$ to exist and be finite. While these conditions are not sufficient in general, they become sufficient when the following conditions are met:
- $\left[\begin{array}{cc}Q & S \\ S^{T} & R\end{array}\right] \geq 0$
- $\left[A-B R^{-1} S^{T} Q-S R^{-1} S^{T}\right]$ is detectible


## Algorithms

## Basis of the invariant subspace

idare works with the following pencil, and computes a basis [U; V;W] of the invariant subspace associated with the stable or anti-stable finite eigenvalues of this pencil.

$$
M-z N=\left[\begin{array}{ccc}
A & 0 & B \\
-Q & E^{T} & -S \\
S^{T} & 0 & R
\end{array}\right]-z\left[\begin{array}{ccc}
E & 0 & 0 \\
0 & A^{T} & 0 \\
0 & -B^{T} & 0
\end{array}\right]
$$

The data is automatically scaled to reduce the sensitivity of eigenvalues near the unit circle and increase separation between the stable and anti-stable invariant subspaces.

## Relationship between the solution, the state-feedback gain, and the scaling vectors

The solution $X$ and state-feedback gain $K$ are related to the scaling vectors, and $U, V, W$ by the following set of equations:

$$
\begin{aligned}
& X=\mathrm{D}_{\chi} V U^{-1} \mathrm{D}_{\chi} E^{-1} \\
& K=-D_{r} \mathrm{WU}^{-1} \mathrm{D}_{\chi}
\end{aligned}
$$

where,

$$
\begin{aligned}
& D_{\chi}=\operatorname{diag}\left(S_{\chi}\right), \\
& D_{r}=\operatorname{diag}\left(S_{r}\right) .
\end{aligned}
$$

## Version History <br> Introduced in R2019a

## See Also

ishermitian|dlyap|icare|lqr|lqg|kalman|h2syn|hinfsyn|spectralfact|lncf| rncf

## imp2exp

Convert implicit linear relationship to explicit input-output relation

## Syntax

$B=i m p 2 e x p(A, y i d x, u i d x)$
$B=i m p 2 \exp (A, y i d x, u i d x, ' m i n ')$

## Description

$B=i m p 2 e x p(A, y i d x, u i d x)$ transforms a linear constraint between variables $y$ and $u$ of the form $A(:,[y i d x ; u i d x]) *[y ; u]=0$ into an explicit input/output relationship $y=B^{*} u$. The vectors yidx and uidx refer to the columns (inputs) of A as referenced by the explicit relationship for B .
$B=\operatorname{imp} 2 \exp (A, y i d x, u i d x, ' m i n ')$ eliminates extra states to obtain a model B with as many states as A. Use this syntax when $A(:, y i d x)$ has a proper inverse. This option is ignored for sparse models because it typically destroys sparsity. For ss, genss and uss models, B is returned in implicit form by default. Use isproper or ss(sys, 'explicit') to extract an explicit model if desired.

## Examples

## Uncertain Matrix Algebraic Constraint

Consider two uncertain motor/generator constraints among 4 variables $\left[\begin{array}{c}V \\ I \\ T \\ W\end{array}\right]$, namely
$\left[\begin{array}{ccc}1 & -R & 0 \\ 0 & -K & - \\ 0\end{array}\right] *\left[\begin{array}{c}V \\ I \\ T \\ W\end{array}\right]=0$. Find the uncertain 2-by-2 matrix B so that $\left[\begin{array}{l}V \\ T\end{array}\right]=B^{*}\left[\begin{array}{c}W \\ I\end{array}\right]$.
R = ureal('R',1,'Percentage', [-10 40]);
K = ureal('K',2e-3,'Percentage',[-30 30]);
A = [1 -R 0 -K;0 -K 1 0];
Yidx = [ll 3];
Uidx = [4 2];
$B=\operatorname{imp} 2 \exp (A, Y i d x, U i d x)$
Uncertain matrix with 2 rows and 2 columns.
The uncertainty consists of the following blocks:
K: Uncertain real, nominal $=0.002$, variability $=[-30,30] \%, 2$ occurrences
R: Uncertain real, nominal $=1$, variability $=[-10,40] \%$, 1 occurrences
Type "B.NominalValue" to see the nominal value and "B.Uncertainty" to interact with the uncertai

## Scalar Dynamic System Constraint

Consider a standard single-loop feedback connection of controller C and an uncertain plant P , described by the equations $e=r-y ; u=C e ; f=d+u ; y=P f$.

$P=t f([1],[10]) ;$
$C=t f([2 * .707 * 1$ 1^2],[1 0]);
$A=[1-1000-1 ; 0-C 1000 ; 00-1-110 ; 0000-P 1] ;$
OutputIndex $=[6 ; 3 ; 2 ; 5] ; \%[y ; u ; e ; f]$
InputIndex $=[1 ; 4] ; \quad \%[r ; d]$
Sys = imp2exp(A,OutputIndex,InputIndex);
Sys.InputName = \{'r';'d'\};
Sys.OutputName = \{'y';'u';'e';'f'\};
pole(Sys)
ans $=14 \times 1$ complex
$-0.7070+0.7072 i$
-0.7070 - 0.7072i
$-0.7070+0.7072 i$
$-0.7070-0.7072 i$
$-0.7070+0.7072 i$
-0.7070 - 0.7072i
$-0.7070+0.7072 i$
$-0.7070-0.7072 i$
$-0.7070+0.7072 i$
-0.7070 - 0.7072i
stepplot(Sys)

## Step Response



## Input Arguments

## A - Implicit system

static or dynamic input/output model
Implicit system, specified as a static, or dynamic input/output model. A can be:

- A numeric LTI model such as tf, zpk, ss, or frd object
- An uncertain model such as umat, uss, or ufrd object

The number of rows in model A must equal the length of the index vector yidx.

## yidx - Indices to partition implicit model channels into output signals

 vectorIndices to partition the model channel into output signals, specified as a vector. The index vectors yidx and uidx specify how to partition the input channels of $A$ into $y$ and $u$ signals, respectively.

If [yidx, uidx] does not include all inputs of A, imp2exp excludes the missing $y$ channels from the output model B. In such cases, imp2exp retains only a subset $B(I,:)$ of the outputs/rows of $B$ and does not affect how the explicit model B is computed.
uidx - Indices to partition implicit model channels into input signals
vector

Indices to partition the model channel into input signals, specified as a vector. The index vectors yidx and uidx specify how to partition the input channels of A into $y$ and $u$ signals, respectively.

## Output Arguments

## B - Explicit system

static or dynamic input/output model
Explicit system, returned as a static, or dynamic input/output model. The output explicit model B is of the same subclass as model A. For instance, if A is specified as an ss model, then imp2exp also returns B as an ss model.

## Version History <br> Introduced in R2011b

## See Also

connect |inv

## impulse

Impulse response plot of dynamic system; impulse response data

## Syntax

```
impulse(sys)
impulse(sys,tFinal)
impulse(sys,t)
impulse(sys,t,p)
impulse(sys1,sys2,...,sysN,___)
impulse(sys1,LineSpec1,...,sysN,LineSpecN,___)
impulse(___,config)
y = impulse(sys,t)
y = impulse(sys,t,p)
[y,tOut] = impulse(sys)
[y,tOut] = impulse(sys,tFinal)
[y,t,x] = impulse(sys)
[y,t,x,ysd] = impulse(sys,___)
[y,t,x,~,pOut] = impulse(sys,t,p,___)
[___] = impulse(___,config)
```


## Description

## Impulse Response Plots

impulse(sys) plots the response of a dynamic system model to an impulse input. The model sys can be continuous or discrete.

- For continuous-time sys, the impulse input is the Dirac impulse $\delta$ ( $t$ ). For continuous-time sys with direct feedthrough, impulse ignores the infinite pulse at $\mathrm{t}=0$.
- For discrete-time sys with sample time Ts, the function computes the response to a unit-area pulse of length Ts and height $1 /$ Ts. This pulse approaches the continuous-time Dirac impulse $\delta(t)$ as Ts goes to zero.
sys can be SISO or MIMO. For MIMO systems, the plot displays the impulse responses for each I/O channel. impulse automatically determines the time steps and duration of the simulation based on the system dynamics.
impulse(sys, tFinal ) simulates the impulse response from $t=0$ to the final time $t=t F i n a l$. The function uses system dynamics to determine the intervening time steps.
impulse(sys,t) plots the impulse response at the times that you specify in the vector t .
impulse(sys,t,p) plots the impulse response for LPV model with parameter trajectory p .
impulse (sys1,sys2, ...sysN, __ ) plots the impulse response of multiple dynamic systems on the same plot. All systems must have the same number of inputs and outputs. You can use multiple dynamic systems with any of the previous input-argument combinations.
impulse(sys1,LineSpec1,..., sysN, LineSpecN, $\qquad$ ) specifies a color, line style, and marker for each system in the plot. You can use LineSpec with any of the previous input-argument combinations. When you need additional plot customization options, use impulseplot instead.
impulse (__ , config) specifies additional options for computing the impulse response, such as the amplitude or input offset. Use RespConfig to create the option set config. You can use config with any of the previous input-argument and output-argument combinations.

Impulse Response Data
$y=i m p u l s e(s y s, t)$ returns the impulse response sys at the times specified in the vector $t$. This syntax does not draw a plot.
$y=i m p u l s e(s y s, t, p)$ also specifies the parameter trajectory $p$ for LPV models.
[y,t0ut] = impulse(sys) also returns a vector of times tOut corresponding to the responses in $y$. If you do not provide an input vector $t$ of times, impulse chooses the length and time step of t0ut based on the system dynamics.
[y,tOut] = impulse(sys,tFinal) computes the impulse response up to the end time tFinal. impulse chooses the time step of t0ut based on the system dynamics.
$[y, t, x]=$ impulse(sys) also returns the state trajectories $x$, when sys is a state-space model such as an ss or idss model.
$[y, t, x, y s d]=$ impulse(sys,__ ) also computes the standard deviation ysd of the impulse response $y$, when sys is an identified model such as an idss, idtf, or idnlarx model.
[y,t,x,,$~ p 0 u t]=$ impulse(sys,t,p,__) also returns parameter trajectories p0ut, when sys is an lpvss model.
[___ ] = impulse (__, config) specifies additional options for computing the impulse response, such as the amplitude or input offset. Use RespConfig to create the option set config. You can use config with any of the previous input-argument and output-argument combinations.

## Examples

## Impulse Response of Dynamic System

Plot the impulse response of a continuous-time system represented by the following transfer function.

$$
\operatorname{sys}(s)=\frac{4}{s^{2}+2 s+10}
$$

For this example, create a tf model that represents the transfer function. You can similarly plot the impulse response of other dynamic system model types, such as zero-pole gain (zpk) or state-space (ss) models.
sys $=t f(4,[12$ 10]);
Plot the impulse response.
impulse(sys)


The impulse plot automatically includes a dotted horizontal line indicating the steady-state response. In a MATLAB® figure window, you can right-click on the plot to view other impulseresponse characteristics such as peak response and transient time.

## Impulse Response of Discrete-Time System

Plot the impulse response of a discrete-time system. The system has a sample time of 0.2 s and is represented by the following state-space matrices.
$A=\left[\begin{array}{cc}1.6 & -0.7 \\ 1 & 0]\end{array}\right.$
1 0];
$\mathrm{B}=[0.5 ; 0]$;
C = [0.1 0.1];
D = 0;
Create the state-space model and plot its impulse response.
sys = ss(A,B,C,D,0.2);
impulse(sys)


The impulse response reflects the discretization of the model, as it shows the response as computed every 0.2 seconds.

## Impulse Response at Specified Times

Examine the impulse response of the following zero-pole-gain model.

```
sys = zpk(-1,[-0.2+3j,-0.2-3j],1) * tf([1 1],[1 0.05])
sys =
```

```
 \((s+1)^{\wedge} 2\)
 \((s+0.05)\left(s^{\wedge} 2+0.4 s+9.04\right)\)
```

Continuous-time zero/pole/gain model.
impulse(sys)


By default, impulse chooses an end time that shows the steady state that the response is trending toward. To get a closer look at the transient response, limit the impulse plot to $t=20 \mathrm{~s}$.
impulse(sys,20)


Alternatively, you can specify the exact times at which you want to examine the impulse response, provided they are separated by a constant interval. For instance, examine the response from the end of the transient until the system reaches steady state.
$\mathrm{t}=20: 0.2: 120$;
impulse(sys,t)


Even though this plot begins at $\mathrm{t}=20$, impulse always applies the impulse input at $\mathrm{t}=0$.

## Impulse Response Plot of MIMO Systems

Consider the following second-order state-space model:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& y=\left[\begin{array}{lll}
1.9691 & 6.4493
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

$A=[-0.5572,-0.7814 ; 0.7814,0] ;$
B = [1,-1;0,2];
$C=[1.9691,6.4493]$;
sys $=s s(A, B, C, 0)$;
This model has two inputs and one output, so it has two channels: from the first input to the output and from the second input to the output. Each channel has its own impulse response.

When you use impulse, it computes the responses of all channels.
impulse(sys)

Impulse Response


The left plot shows the impulse response of the first input channel, and the right plot shows the impulse response of the second input channel. Whenever you use impulse to plot the responses of a MIMO model, it generates an array of plots representing all the I/O channels of the model. For instance, create a random state-space model with five states, three inputs, and two outputs, and plot its impulse response.

```
sys = rss(5,2,3);
```

impulse(sys)

## Impulse Response



In a MATLAB figure window, you can restrict the plot to a subset of channels by right-clicking on the plot and selecting I/O Selector.

## Compare Impulse Response of Multiple Systems

impulse allows you to plot the responses of multiple dynamic systems on the same axis. For instance, compare the closed-loop response of a system with a PI controller and a PID controller. Create a transfer function of the system and tune the controllers.

```
H = tf(4,[1 2 10]);
C1 = pidtune(H,'PI');
C2 = pidtune(H,'PID');
```

Form the closed-loop systems and plot their impulse responses.

```
sys1 = feedback(H*C1,1);
sys2 = feedback(H*C2,1);
impulse(sys1,sys2)
legend('PI','PID','Location','SouthEast')
```



By default, impulse chooses distinct colors for each system that you plot. You can specify colors and line styles using the LineSpec input argument.

```
impulse(sys1,'r--',sys2,'b')
legend('PI','PID','Location','SouthEast')
```



The first LineSpec 'r-- ' specifies a dashed red line for the response with the PI controller. The second LineSpec 'b' specifies a solid blue line for the response with the PID controller. The legend reflects the specified colors and linestyles. For more plot customization options, use impulseplot.

## Impulse Response of Systems in a Model Array

The example Compare Impulse Response of Multiple Systems shows how to plot responses of several individual systems on a single axis. When you have multiple dynamic systems arranged in a model array, impul se plots all their responses at once.

Create a model array. For this example, use a one-dimensional array of second-order transfer functions having different natural frequencies. First, preallocate memory for the model array. The following command creates a 1-by-5 row of zero-gain SISO transfer functions. The first two dimensions represent the model outputs and inputs. The remaining dimensions are the array dimensions.

```
sys = tf(zeros(1,1,1,5));
```

Populate the array.

```
w0 = 1.5:1:5.5; % natural frequencies
zeta = 0.5; % damping constant
for i = 1:length(w0)
```

```
 sys(:,:,1,i) = tf(w0(i)^2,[1 2*zeta*w0(i) w0(i)^2]);
end
```

(For more information about model arrays and how to create them, see "Model Arrays".) Plot the impulse responses of all models in the array.
impulse(sys)

impulse uses the same linestyle for the responses of all entries in the array. One way to distinguish among entries is to use the SamplingGrid property of dynamic system models to associate each entry in the array with the corresponding $w 0$ value.

```
sys.SamplingGrid = struct('frequency',w0);
```

Now, when you plot the responses in a MATLAB figure window, you can click a trace to see which frequency value it corresponds to.

## Impulse Response Data

When you give it an output argument, impul se returns an array of response data. For a SISO system, the response data is returned as a column vector of length equal to the number of time points at which the response is sampled. You can provide the vector $t$ of time points, or allow impulse to select time points for you based on system dynamics. For instance, extract the impulse response of a SISO system at 101 time points between $t=0$ and $t=5 \mathrm{~s}$.

```
sys = tf(4,[1 2 10]);
t = 0:0.05:5;
y = impulse(sys,t);
size(y)
ans = 1\times2
 101 1
```

For a MIMO system, the response data is returned in an array of dimensions $N$-by- Ny -by- Nu , where $N y$ and $N u$ are the number of outputs and inputs of the dynamic system. For instance, consider the following state-space model, representing a two-input, one-output system.

```
A = [-0.5572,-0.7814;0.7814,0];
B = [1,-1;0,2];
C = [1.9691,6.4493];
sys = ss(A,B,C,0);
```

Extract the impulse response of this system at 200 time points between $t=0$ and $t=20 \mathrm{~s}$.

```
t = linspace(0,20,200);
y = impulse(sys,t);
size(y)
ans = 1\times3
 200 1 2
```

$y(:, i, j)$ is a column vector containing the impulse response from the $j$ th input to the $i$ th output at the times $t$. For instance, extract the impulse response from the second input to the output.

```
y12 = y(:,1,2);
plot(t,y12)
```



## Impulse Responses of Identified Models with Confidence Regions

Compare the impulse response of a parametric identified model to a non-parametric (empirical) model. Also view their $3 \sigma$ confidence regions.

Load the data.
load iddatal $z 1$
Estimate a parametric model.
sys1 = ssest(z1,4);
Estimate a non-parametric model.

```
sys2 = impulseest(z1);
```

Plot the impulse responses for comparison.

```
t = (0:0.1:10)';
[y1, ~, ~, ysd1] = impulse(sys1,t);
[y2, ~, ~, ysd2] = impulse(sys2,t);
plot(t, y1, 'b', t, y1+3*ysd1, 'b:', t, y1-3*ysd1, 'b:')
hold on
plot(t, y2, 'g', t, y2+3*ysd2, 'g:', t, y2-3*ysd2, 'g:')
```



## Impulse Response of Identified Time-Series Model

Compute the impulse response of an identified time-series model.
A time-series model, also called a signal model, is one without measured input signals. The impulse plot of this model uses its (unmeasured) noise channel as the input channel to which the impulse signal is applied.

Load the data.
load iddata9;
Estimate a time-series model.
sys = ar(z9, 4);
sys is a model of the form $A y(t)=e(t)$, where $e(t)$ represents the noise channel. For computation of impulse response, $\mathrm{e}(\mathrm{t})$ is treated as an input channel, and is named e@y1.

Plot the impulse response.
impulse(sys)


## Configure Options for Impulse Response

Create a state-space model.
$A=[-0.8429,-0.2134 ;-0.5162,-1.2139] ;$
$B=[0.7254,0.7147 ; 0,-0.2050] ;$
$C=[-0.1241,1.4090 ; 1.4897,1.4172] ;$
D = [0.6715,0.7172;-1.2075,0];
sys $=s s(A, B, C, D) ;$
Create a default option set and use the dot notation to specify values.

```
resp0pt = RespConfig;
respOpt.InputOffset = [-2,3];
respOpt.Amplitude = [2,-0.5];
respOpt.InitialState = [0.1,-0.1];
respOpt.Delay = 5;
```

Compute the impulse response.

```
t = 0:0.1:20;
impulse(sys,t,resp0pt)
```



## Impulse Response of LPV Model

This example shows how to simulate the impulse response of an LPV model. This example simulates the closed-loop response of a levitating ball model defined in fcnMaglev.m to a disturbance $d u$.


You must set the reference to $h_{0}$ to properly initialize the system and maintain it around $h=h_{0}$. Create the model and discretize it.

```
hmin = 0.05;
hmax = 0.25;
h0 = (hmin+hmax)/2;
Ts = 0.01;
Glpv = lpvss("h",@fcnMaglev,0,0,h0);
Glpvd = c2d(Glpv,Ts,'tustin');
```

Sample the LPV model for three height values and tune a PID controller.

```
hpid = linspace(hmin,hmax,3);
[Ga,Goffset] = sample(Glpvd,[],hpid);
wc = 50;
Ka = pidtune(Ga,'pidf',wc);
Ka.Tf = 0.01;
```

Create the gain-scheduled PID controller.

```
Ka.SamplingGrid = struct('h',hpid);
Koffset = struct('y',{Goffset.u});
Clpv = ssInterpolant(ss(Ka),Koffset);
```

Create the closed-loop model.

```
CL = feedback(Glpvd*[1,Clpv],1,2,1);
CL.InputName = {'du';'href'};
CL.OutputName = 'h';
```

Get steady-state current for $h=h_{0}$ to size the disturbance
$[\sim, \sim, \sim, \sim, \sim, \sim, \sim, u 0]=$ Glpv.DataFunction(0,h0);
Response to impulse change in $d u$ and $h_{0}$.
$\mathrm{t}=0: \mathrm{Ts}: 2$;
$\mathrm{pFcn}=@(\mathrm{k}, \mathrm{x}, \mathrm{u}) \mathrm{x}(1)$;
Config = RespConfig('Input0ffset',[0;h0],'Amplitude',0.2*[u0;h0]*Ts,'Delay',0.5,'InitialParamete impulse(CL,t,pFcn,Config)
title('Impulse disturbance in current and impulse change in height')

Impulse disturbance in current and impulse change in height


## Input Arguments

## sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns response data for the nominal model only.
- Sparse state-space models such as sparss and mechss models. You must specify final time tFinal for sparse state-space models.
- Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can also plot confidence intervals and return standard deviations of the frequency response. (Using identified models requires System Identification Toolbox software.)
- Linear time-varying (ltvss) and linear parameter-varying (lpvss) models.
impulse does not support frequency-response data models such as frd , genfrd, or idfrd models.
If sys is an array of models, the function plots the responses of all models in the array on the same axes.


## tFinal - End time for impulse response

positive scalar
End time for impulse response, specified as a positive scalar value. impulse simulates the impulse response from $t=0$ to $t=t F i n a l$.

- For continuous-time systems, the function determines the step size and number of points automatically from system dynamics. Express tFinal in the system time units, specified in the TimeUnit property of sys.
- For discrete-time systems, the function uses the sample time of sys as the step size. Express tFinal in the system time units, specified in the TimeUnit property of sys.
- For discrete-time systems with unspecified sample time (Ts = -1), impulse interprets tFinal as the number of sampling periods to simulate.


## t-Time vector

vector
Time vector at which to compute the impulse response, specified as a vector of positive scalar values. Express $t$ in the system time units, specified in the TimeUnit property of sys.

- For continuous-time models, specify t in the form T0:dt:Tf. To obtain the response at each time step, the function uses dt as the sample time of a discrete approximation to the continuous system. The simulation starts at T0 and ends at Tf
- For discrete-time models, specify t in the form T0:Ts:Tf, where Ts is the sample time of sys.


## p - LPV model parameter trajectory

matrix | function handle
Parameter trajectory of the LPV model, specified as a matrix or a function handle.

- For exogenous or explicit trajectories, specify p as a matrix with dimensions $N$-by- $N p$, where $N$ is the number of time samples and $N p$ is the number of parameters.

Thus, the row vector $\mathrm{p}(\mathrm{i},:$ ) contains the parameter values at the ith time step.

- For endogenous or implicit trajectories, specify p as a function handle of the form $p=F(k, x, u)$ that gives parameters as a function of time sample $k$, state $x$, and input $u$. impulse only supports this option for discrete-time LPV models.

This option is useful when you want to simulate quasi-LPV models.

## config - Response configuration

RespConfig options set
Configuration of the applied impulse signal, specified as a RespConfig option set. By default, impulse applies an input at time $t=0$. Use this input argument to change the response configuration such as specify delay or input offset. See "Configure Options for Impulse Response" on page 2-519 for an example.

For lpvss and ltvss models with offsets $\left(x_{0}(t), u_{0}(t)\right.$ ), you can use RespConfig to define the input relative to $u_{0}(t, p)$ and initialize the simulation with the state $x_{0}(t, p)$.

## LineSpec - Line style, marker, and color

## character vector | string

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

## Output Arguments

y - Impulse response data
array
Impulse response data, returned as an array.

- For SISO systems, $y$ is a column vector of the same length as $t$ (if provided) or tOut (if you do not provide t).
- For single-input, multi-output systems, y is a matrix with as many rows as time samples and as many columns as outputs. Thus, the $j$ th column of $y$, or $y(:, j)$, contains the impulse response of from the input to the $j$ th output.
- For MIMO systems, the impulse responses of each input channel are stacked up along the third dimension of y . The dimensions of y are then N -by- Ny -by- Nu , where:
- $N$ is the number of time samples.
- $N y$ is the number of system outputs.
- $N u$ is the number of system inputs.

Thus, $y(:, i, j)$ is a column vector containing the impulse response from the $j$ th input to the $i$ th output at the times specified in $t$ or tOut.

## tOut - Times at which impulse response is computed

vector
Times at which impulse response is computed, returned as a vector. When you do not provide a specific vector $t$ of times, impulse chooses this time vector based on the system dynamics. The times are expressed in the time units of sys.

## x - State trajectories

array
State trajectories, returned as an array. When sys is a state-space model, $x$ contains the evolution of the states of sys at each time in $t$ or tOut. The dimensions of $x$ are $N$-by- $N x$-by- $N u$, where:

- $N$ is the number of time samples.
- $N x$ is the number of states.
- $N u$ is the number of system inputs.

Thus, the evolution of the states in response to an impulse injected at the $k$ th input is given by the array $x(:,:, k)$. The row vector $x(i,:, k)$ contains the state values at the ith time step.

## ysd - Standard deviation of impulse response <br> array

Standard deviation of the impulse response of an identified model, returned as an array of the same dimensions as y. If sys does not contain parameter covariance information, then ysd is empty.

## p0ut - Parameter trajectories

array
Parameter trajectories, returned as an array. When sys is a linear-parameter varying model, p0ut contains the evolution of the parameters of sys at each time in $t$ or tOut. The dimensions of p0ut are $N$-by- $N p$-by- $N u$, where:

- $N$ is the number of time samples.
- $N p$ is the number of parameters.
- $N u$ is the number of system inputs.

Thus, the evolution of the parameters in response to a signal injected at the $k$ th input is given by the array pOut (: , : , k). The row vector p0ut (i, :,k) contains the parameter values at the $i$ th time step.

## Limitations

- The impulse response of a continuous system with nonzero $D$ matrix is infinite at $t=0$. impulse ignores this discontinuity and returns the lower continuity value $C b$ at $t=0$.
- The impulse command does not work on continuous-time models with internal delays. For such models, use pade to approximate the time delay before computing the impulse response.
- The impulse command does not support simulation along an implicit parameter trajectory for continuous-time LPV models.


## Tips

- When you need additional plot customization options, use impulseplot instead.
- To simulate system responses to arbitrary input signals, use lim.


## Algorithms

Continuous-time LTI models are first converted to state-space form. The impulse response of a singleinput state-space model

$$
\begin{aligned}
& \dot{x}=A x+b u \\
& y=C x
\end{aligned}
$$

is equivalent to the following unforced response with initial state $b$.

$$
\begin{aligned}
& \dot{x}=A x, x(0)=b \\
& y=C x
\end{aligned}
$$

To simulate this response, the system is discretized using zero-order hold on the inputs. The sample time is chosen automatically based on the system dynamics, except when a time vector $t=$ T0:dt:Tf is supplied. Hence, dt is used as sample time.

## Version History

Introduced before R2006a
R2023a: Support for nonzero start time
Behavior changed in R2023a
You can now specify a nonzero start time for the impulse command using a time vector input of the form Ti:dt:Tf. Previously, the command always applied the input at $t=0$, regardless of Ti.

See Also<br>Linear System Analyzer | step |initial|lsim| pade |impulseplot

## impulseplot

Plot impulse response with additional plot customization options

## Syntax

h = impulseplot(sys)
h = impulseplot(sys1,sys2,...,sysN)
h = impulseplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = impulseplot(__, tFinal)
h = impulseplot ( , t)
h = impulseplot (AX,__ $)$
h = impulseplot( __, ,plotoptions)

## Description

impulseplot lets you plot dynamic system impulse responses with a broader range of plot customization options than impulse. You can use impulseplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use impulseplot to draw an impulse response plot on an existing set of axes represented by an axes handle. To customize an existing impulse plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create impulse plots with default options or to extract impulse response data, use impulse.
h = impulseplot(sys) plots the impulse response of the dynamic system model sys and returns the plot handle $h$ to the plot. You can use this handle $h$ to customize the plot with the getoptions and setoptions commands.
h = impulseplot(sys1,sys2,...sysN) plots the impulse response of multiple dynamic systems sys 1, sys $2, . .$. , sysN on the same plot. All systems must have the same number of inputs and outputs to use this syntax.
h = impulseplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and color for the impulse response of each system. All systems must have the same number of inputs and outputs to use this syntax.
$\mathrm{h}=$ impulseplot (__, tFinal ) simulates the impulse response from $\mathrm{t}=0$ to the final time $\mathrm{t}=$ tFinal. Specify tFinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sample time ( $\mathrm{Ts}=-1$ ), impulseplot interprets tFinal as the number of sampling intervals to simulate.
h = impulseplot( $\qquad$ ,t) simulates the impulse response using the time vector t . Specify t in the system time units, specified in the TimeUnit property of sys.
h = impulseplot(AX, $\qquad$ ) plots the impulse response on the Axes object in the current figure with the handle AX.
h = impulseplot ( $\qquad$ , plotoptions) plots the impulse response with the options set specified in plotoptions. You can use these options to customize the impulse plot appearance using the command line. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run impulseplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

## Examples

## Customize Impulse Plot using Plot Handle

For this example, use the plot handle to change the time units to minutes and turn on the grid.
Generate a random state-space model with 5 states and create the impulse response plot with plot handle h .

```
rng("default")
sys = rss(5);
h = impulseplot(sys);
```



Change the time units to minutes and turn on the grid. To do so, edit properties of the plot handle, h using setoptions.
setoptions(h,'TimeUnits','minutes','Grid','on');


The impulse plot automatically updates when you call setoptions.
Alternatively, you can also use the timeoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.

```
plotoptions = timeoptions('cstprefs');
```

Change properties of the options set by setting the time units to minutes and enabling the grid.
plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on'; impulseplot(sys,plotoptions);


You can use the same option set to create multiple impulse plots with the same customization.
Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example TimeUnits and Grid, override the toolbox preferences.

## Impulse Plot with Specified Grid Color

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a impulse plot with red colored grid lines.

Create the MIMO state-space model sys_mimo.

```
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)
State-space model with 3 outputs, 3 inputs, and 3 states.
```

Create an impulse plot with plot handle $h$ and use getoptions for a list of the options available.
h = impulseplot(sys_mimo)

$\mathrm{h}=$
resppack.timeplot
$\mathrm{p}=$ getoptions(h)
$p=$
Normalize: 'off'
SettleTimeThreshold: 0.0200
RiseTimeLimits: [0.1000 0.9000]
TimeUnits: 'seconds'
ConfidenceRegionNumberSD: 1
IOGrouping: 'none'
InputLabels: [1x1 struct]
OutputLabels: [1x1 struct]
InputVisible: \{3x1 cell\}
OutputVisible: \{3x1 cell\}
Title: [1x1 struct]
XLabel: [1x1 struct]
YLabel: [1x1 struct]
TickLabel: [1x1 struct]
Grid: 'off'
GridColor: [0.1500 0.1500 0.1500]
XLim: \{3x1 cell\}
YLim: $\{3 \times 1$ cell\}

## XLimMode: \{3x1 cell\} <br> YLimMode: \{3x1 cell\}

Use setoptions to update the plot with the required customization.
setoptions(h,'Grid','on','GridColor',[100]);
Impulse Response


The impulse plot automatically updates when you call setoptions. For MIMO models, impulseplot produces a grid of plots, each plot displaying the impulse response of one I/O pair.

## Plot Impulse Responses of Identified Models with Confidence Region

Compare the impulse response of a parametric identified model to a nonparametric (empirical) model, and view their 3- $\sigma$ confidence regions. (Identified models require System Identification Toolbox ${ }^{\text {TM }}$ software.)

Identify a parametric and a nonparametric model from sample data.

```
load iddata1 z1
sys1 = ssest(z1,4);
sys2 = impulseest(z1);
```

Plot the impulse responses of both identified models. Use the plot handle to display the 3-б confidence regions.

```
t = -1:0.1:5;
h = impulseplot(sys1,'r',sys2,'b',t);
showConfidence(h,3)
legend('parametric','nonparametric')
```


## Impulse Response



The nonparametric model sys 2 shows higher uncertainty.

## Customized Impulse Response Plot at Specified Time

For this example, examine the impulse response of the following zero-pole-gain model and limit the impulse plot to tFinal = 15 s . Use 15-point blue text for the title. This plot should look the same, regardless of the preferences of the MATLAB session in which it is generated.
sys $=$ zpk(-1,[-0.2+3j,-0.2-3j],1)*tf([1 1],[1 0.05]);
tFinal = 15;
First, create a default options set using timeoptions.
plotoptions = timeoptions;
Next change the required properties of the options set plotoptions.

```
plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];
```

Now, create the impulse response plot using the options set plotoptions.
h = impulseplot(sys,tFinal, plotoptions);
Time Response


Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Sparse state-space models, such as sparss or mechss models. Final time tFinal must be specified when using sparse models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to plot the impulse response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model.
- Identified LTI models, such as idtf, idss, or idproc models. (Using identified models requires System Identification Toolbox software.)

If sys is an array of models, the function plots the impulse response of all models in the array on the same axes.

## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - - or' is a red dashed line with circle markers

Line Style	Description
-	Solid line
--	Dashed line
$:$	Dotted line
.-	Dash-dot line


Marker	Description
'0'	Circle
' + '	Plus sign
'*'	Asterisk
'.'	Point
' x '	Cross
'_'	Horizontal line
' \| '	Vertical line
's'	Square
'd'	Diamond
'^1	Upward-pointing triangle
'v'	Downward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'p'	Pentagram
'h'	Hexagram


Color	Description
y	yellow
m	magenta


Color	Description
c	cyan
r	red
g	green
b	blue
W	white
k	black

## tFinal - Final time for impulse response computation <br> scalar

Final time for impulse response computation, specified as a scalar. Specify tFinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sample time (Ts $=-1$ ), impulseplot interprets tFinal as the number of sampling intervals to simulate.

## t - Time for impulse response simulation

vector
Time for impulse response simulation, specified as a vector. Specify the time vector $t$ in the system time units, specified in the TimeUnit property of sys. The time vector must be real, finite, and must contain monotonically increasing and evenly spaced time samples.

The time vector t is:

- $t=T_{\text {initial }}: T_{\text {sample }}: T_{\text {final }}$, for discrete-time systems.
- $t=T_{\text {initial }}: d t: T_{\text {final }}$, for continuous-time systems. Here, $d t$ is the sample time of a discrete approximation of the continuous-time system.


## AX - Target axes

Axes object
Target axes, specified as an Axes object. If you do not specify the axes and if the current axes are Cartesian axes, then impulseplot plots on the current axes. Use AX to plot into specific axes when creating a impulse plot.

## plotoptions - Impulse plot options set

TimePlotOptions object
Impulse plot options set, specified as a TimePlotOptions object. You can use this option set to customize the impulse plot appearance. Use timeoptions to create the option set. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run impulseplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see timeoptions.

## Output Arguments

## h - Plot handle

handle object

Plot handle, returned as a handle object. Use the handle $h$ to get and set the properties of the impulse plot using getoptions and setoptions. For the list of available options, see the Properties and Values Reference section in "Customizing Response Plots from the Command Line".

## Version History

Introduced before R2006a

## See Also

getoptions|impulse| setoptions

## Topics

"Customizing Response Plots from the Command Line"

## initial

System response to initial states of state-space model

## Syntax

```
initial(sys,x0)
initial(sys,x0,tFinal)
initial(sys,x0,t)
initial(sys,x0,t,p)
initial(sys,{x0,p0},t,p)
initial(sys1,sys2,...,sysN,x0,___)
initial(sys1,LineSpec1,...,sysN,LineSpecN,x0,
```

$\qquad$

``` )
\(y=\) initial(sys, x0,t)
\(y=\) initial(sys, x0,t,p)
\(y=\) initial(sys,\{x0,p0\},t,p)
[y,tOut,x] = initial(sys,x0)
[y,t0ut, x, pOut] = initial(sys, x0,t,p)
```


## Description

For state-space and sparse state-space models, initial computes the unforced system response $y$ to initial states $x_{0}$.

- Continuous time:

$$
\begin{aligned}
& \dot{x}=A x, x\left(t_{0}\right)=x_{0} \\
& y=C x
\end{aligned}
$$

- Discrete time:

$$
\begin{aligned}
& x[k+1]=A x[k] x\left[k_{0}\right]=x_{0} \\
& \quad y=C x[k]
\end{aligned}
$$

For linear time-varying or linear parameter-varying state-space models, initial computes the response with initial state $x_{0}$, initial parameter $p_{0}$ (LPV models), and input held to the offset value $\left(u(t)=u_{0}(t)\right.$ or $u(t)=u_{0}(t, p)$. This corresponds to the initial condition response of the local linear dynamics.

## Initial Response Plots

initial (sys,x0) plots the unforced system response to initial states of a state-space (ss) model sys with an initial condition on the states specified by the vector $\times 0$ :

The state-space model sys can be continuous-time or discrete-time, and SISO or MIMO. For MIMO state-space systems, the plot displays the responses for the outputs of each channel. initial automatically determines the time steps and duration of the simulation based on the system dynamics.
initial (sys, $x 0$, tFinal ) plots the simulated response from $t=0$ to the final time $t=t$ Final. The function uses system dynamics to determine the intervening time steps.
initial (sys,x0,t) plots the response at the times that you specify in the vector $t$.
initial (sys,x0,t,p) also specifies the parameter trajectory $p$ for lpvss models.
initial (sys, $\{x 0, p 0\}, t, p$ ) also specifies the initial parameter value $p 0$ and parameter trajectory $p$ for LPV models. p0 is required for implicit parameter trajectories.
initial(sys1,sys2,...,sysN,x0, $\qquad$ ) plots the response of multiple dynamic systems on the same plot. All systems must have the same number of inputs and outputs. You can use multiple dynamic systems with any of the previous input-argument combinations.
initial(sys1,LineSpec1,...,sysN, LineSpecN,x0, __ ) specifies a color, line style, and marker for each system in the response plot. You can use LineSpec with any of the previous inputargument combinations. When you need additional plot customization options, use initialplot instead.

## Initial Response Data

$y=$ initial (sys, $x 0, t)$ returns the initial response sys at the times specified in the vector $t$.
This syntax does not draw a plot.
$y=$ initial (sys,x0,t,p) also specifies the parameter trajectory $p$ for LPV models.
$y=i n i t i a l(s y s,\{x 0, p 0\}, t, p)$ also specifies the initial parameter value and parameter trajectory $p$ for LPV models. p0 is required for implicit parameter trajectories.
$[y, t 0 u t, x]=$ initial (sys, x0) returns the output response $y$, the time vector t0ut and the state trajectories $x$. The array y has as many rows as time samples (length of tout) and as many columns as outputs. Similarly, $x$ has length(tOut) rows and as many columns as states.
[y,t0ut,x,p0ut] = initial(sys,x0,t,p) also returns parameter trajectories p0ut, when sys is an lpvss model.

## Examples

## Initial Conditions Response Plot

For this example, generate a random state-space model with 5 states and create the plot for the system response to the initial states.

```
rng("default")
sys = rss(5);
x0 = [1,2,3,4,5];
initial(sys,x0)
```



## Response of State-Space Model to Initial Condition

Plot the response of the following state-space model:

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
y & =\left[\begin{array}{ll}
1.9691 & 6.4493]
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
\end{aligned}
$$

Take the following initial condition:

$$
x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

a = [-0.5572, -0.7814; 0.7814, 0];
$c=\left[\begin{array}{ll}1.9691 & 6.4493\end{array}\right] ;$
x 0 = [1 ; 0];
sys = ss(a,[],c,[]);
initial(sys,x0)


## Initial Condition Response Plot of MIMO System

Consider the following two-input, two-output dynamic system.

$$
\operatorname{sys}(s)=\left[\begin{array}{cc}
0 & \frac{3 s}{s^{2}+s+10} \\
\frac{s+1}{s+5} & \frac{2}{s+6}
\end{array}\right]
$$

Convert the sys to state-space form since initial condition response plots are supported only for state-space models.
sys = ss([0, tf([3 0],[1 1 10]) ; tf([1 1],[1 5]), tf(2,[1 6])]);
size(sys)
State-space model with 2 outputs, 2 inputs, and 4 states.
The resultant state-space model has four states. Hence, provide an initial condition vector with four elements.
$\mathrm{x} 0=[0.3,0.25,1,4]$;
Create the initial condition response plot.
initial(sys,x0);


The resultant plot contains two subplots - one for each output in sys.

## Initial Conditions Response Plot at Specified Time

For this example, examine the initial condition response of the following zero-pole-gain model and limit the plot to tFinal $=15 \mathrm{~s}$.

First, convert the zpk model to an ss model since initial only supports state-space models.
sys $=$ ss(zpk(-1,[-0.2+3j,-0.2-3j],1)*tf([1 1],[1 0.05]));
tFinal = 15;
$\mathrm{x} 0=[4,2,3]$;
Now, create the initial conditions response plot.
initial(sys,x0,tFinal);


## Initial Condition Responses of Multiple Systems

For this example, plot the initial condition responses of three dynamic systems.
First, create the three models and provide the initial conditions. All the models should have the same number of states.

```
rng('default');
sys1 = rss(4);
sys2 = rss(4);
sys3 = rss(4);
x0 = [1,1,1,1];
```

Plot the initial condition responses of the three models using time vector $t$ that spans 5 seconds.

```
t = 0:0.1:5;
initial(sys1,'r--',sys2,'b',sys3,'g-.',x0,t)
```



## Initial Condition Response Data of State-Space Model

Extract the initial condition response data of the following state-space model with two states:

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
y & =\left[\begin{array}{ll}
1.9691 & 6.4493]
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
\end{aligned}
$$

Use the following initial conditions:

$$
x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$a=[-0.5572,-0.7814 ; 0.7814,0]$;
$c=\left[\begin{array}{ll}1.9691 & 6.4493\end{array}\right] ;$
x 0 = [1 ; 0];
sys = ss(a,[],c,[]);
[y,tOut, x] = initial(sys,x0);
The array y has as many rows as time samples (length of t0ut) and as many columns as outputs. Similarly, $x$ has rows equal to the number of time samples (length of t0ut) and as many columns as states.

## Initial Condition Response Data with Specified Time

For this example, extract the initial condition response data of a state-space model with 6 states, 3 outputs and 2 inputs.

First, create the model and provide the initial conditions.

```
rng('default');
```

sys $=\operatorname{rss}(6,3,2)$;
$\mathrm{x} 0=[0.1,0.3,0.05,0.4,0.75,1]$;

Extract the initial condition responses of the model using time vector $t$ that spans 15 seconds.

```
t = 0:0.1:15;
[y,tOut,x] = initial(sys,x0,t);
```

The array y has as many rows as time samples (length of tOut) and as many columns as outputs. Similarly, $x$ has rows equal to the number of time samples (length of t0ut) and as many columns as states.

## Initial Response of Linear-Parameter Varying State-Space Model

For this example, consider lpvHCModel.m that defines the following model.

$$
\begin{aligned}
& \dot{x}=-\left(x-x_{0}(p)\right)+\left(u-u_{0}(p)\right) \\
& y=y_{0}(p)+\left(1-p^{2}\right)\left(x-x_{0}(p)\right) \\
& \left(x_{0}(p), u_{0}(p), y_{0}(p)\right)=\left(\tanh ^{-1}(p), \tanh ^{-1}(p), p\right)
\end{aligned}
$$

Use lpvss to construct this LPV plant. Since $\tanh ^{-1}(p)$ is infinite for $|p|=1$, clip $p$ to the range [ $-p_{\max }, p_{\max }$ ] to stay away from singularity.
pmax $=0.99$;
vSys = lpvss('p',@(t,p) lpvHCModel(t,p,pmax),'StateName','x');
You can compute the initial response for this model along a trajectory $p(t)$.
Define $p(t)$ implicitly as a function $F(t, x, u)$ of time $t$, state $x$, and input $u$. For this model, use $p(t)=y(t)=\tanh (x)$.
pinit $=0.5$;
xinit = 0.5;
$\mathrm{t}=$ linspace(0,1,100);
$\mathrm{p}=\mathrm{@}(\mathrm{t}, \mathrm{x}, \mathrm{u}) \tanh (\mathrm{x})$;
initial(vSys,\{xinit,pinit\},t,p);

initial computes the response with initial state, initial parameter, and input held to offset value $u_{0}(t, p)$.

## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. You can only use state-space models of the following types:

- Continuous-time or discrete-time numeric ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns response data for the nominal model only.
- Sparse state-space models such as sparss and mechss models. You must specify final time tFinal for sparse state-space models.
- Linear time-varying (ltvss) and linear parameter-varying (lpvss) models.

If sys is an array of models, the function plots the responses of all models in the array on the same axes.

## tFinal - End time to compute the response

positive scalar
End time to compute the response, specified as a positive scalar value. initial simulates the response from $\mathrm{t}=0$ to $\mathrm{t}=\mathrm{tFinal}$.

- For continuous-time systems, the function determines the step size and number of points automatically from system dynamics. Express tFinal in the system time units, specified in the TimeUnit property of sys.
- For discrete-time systems, the function uses the sample time of sys as the step size. Express tFinal in the system time units, specified in the TimeUnit property of sys.
- For discrete-time systems with unspecified sample time (Ts = -1), initial interprets tFinal as the number of sampling periods to simulate.


## t-Time vector

vector
Time vector at which to compute the response, specified as a vector of positive scalar values. Express t in the system time units, specified in the TimeUnit property of sys.

- For continuous-time models, specify t in the form Ti:dt:Tf. To obtain the response at each time step, the function uses dt as the sample time of a discrete approximation to the continuous system.
- For discrete-time models, specify t in the form Ti:Ts:Tf, where Ts is the sample time of sys.


## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: ' $y$ ' specifies a yellow line

## x0 - Initial condition of the states

vector
Initial condition of the states, specified as a vector. $x 0$ must have the same length as the number of states in sys.

## p - LPV model parameter trajectory

matrix | function handle
Parameter trajectory of the LPV model, specified as a matrix or a function handle.

- For exogenous or explicit trajectories, specify p as a matrix with dimensions $N$-by- $N p$, where $N$ is the number of time samples and $N p$ is the number of parameters.

Thus, the row vector $\mathrm{p}(\mathrm{i},:$ ) contains the parameter values at the ith time step.

- For endogenous or implicit trajectories, specify p as a function handle of the form $p=F(t, x, u)$ in continuous time and $p=F(k, x, u)$ in discrete time that gives parameters as a function of time $t$ or time sample $k$, state $x$, and input $u$. The initial parameter value p 0 is required for this input method.


## p0 - Initial parameter value

vector
Initial value of the parameters of LPV model, specified as a vector. p0 must have the same length as the number of parameters in sys.

## Output Arguments

## y - Response data

array
Response data, returned as an array.

- For SISO systems, $y$ is a column vector of the same length as $t$ (if provided) or tOut (if you do not provide t).
- For single-input, multi-output systems, y is a matrix with as many rows as there are time samples and as many columns as there are outputs. Thus, the jth column of $y$, or $y(:, j)$, contains the response of from the input to the $j$ th output.
- For MIMO systems, the dimensions of $y$ are then $N$-by- $N y$, where:
- $N$ is the number of time samples.
- $N y$ is the number of system outputs.


## tOut - Times at which response is computed

vector
Times at which response is computed, returned as a vector. When you do not provide a specific vector $t$ of times, initial chooses this time vector based on the system dynamics. The times are expressed in the time units of sys.

## x - State trajectories

array
State trajectories, returned as an array. $x$ contains the evolution of the states of sys at each time in $t$ or tOut. The dimensions of x are $N$-by- $N x$, where:

- $N$ is the number of time samples.
- $N x$ is the number of states.
pOut - Parameter trajectories
array
Parameter trajectories, returned as an array. When sys is a linear-parameter varying (lpvss) model, pOut contains the evolution of the parameters of sys. The dimensions of pOut are $N$-by- $N p$, where:
- $N$ is the number of time samples.
- $N p$ is the number of parameters.


## Version History

Introduced before R2006a

## See Also

initialplot|impulse|lsim|Linear System Analyzer | step
Topics
"Ways to Customize Plots"
"Response from Initial Conditions"

## initialize

Initialize the state of the particle filter

## Syntax

```
initialize(pf,numParticles,mean,covariance)
initialize(pf,numParticles,stateBounds)
initialize(
```

$\qquad$

``` ,Name, Value)
```


## Description

initialize(pf,numParticles, mean, covariance) initializes a particle filter object with a specified number of particles. The initial states of the particles in the state space are determined by sampling from the multivariate normal distribution with the specified mean and covariance. The number of state variables (NumStateVariables) is retrieved automatically based on the length of the mean vector.
initialize(pf,numParticles,stateBounds) determines the initial location of numParticles particles by sampling from the multivariate uniform distribution with the given stateBounds.
initialize( $\qquad$ ,Name, Value) initializes the particles with additional options specified by one or more Name, Value pair arguments.

## Examples

## Initialize Particle Filter Object for Online State Estimation

To create a particle filter object for estimating the states of your system, create appropriate state transition function and measurement function for the system.

In this example, the functions vdpParticleFilterStateFcn and vdpMeasurementLikelihoodFcn describe a discrete-approximation to van der Pol oscillator with nonlinearity parameter, mu, equal to 1.

Create the particle filter object. Use function handles to provide the state transition and measurement likelihood functions to the object.

```
myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);
```

Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.

```
initialize(myPF, 1000, [2;0], eye(2));
myPF
myPF =
 particleFilter with properties:
 NumStateVariables: 2
 NumParticles: 1000
 StateTransitionFcn: @vdpParticleFilterStateFcn
```

```
MeasurementLikelihoodFcn: @vdpMeasurementLikelihoodFcn
 IsStateVariableCircular: [0 0]
 ResamplingPolicy: [1x1 particleResamplingPolicy]
 ResamplingMethod: 'multinomial'
 StateEstimationMethod: 'mean'
 StateOrientation: 'column'
 Particles: [2x1000 double]
 Weights: [1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03 1.0000e-03
 State: 'Use the getStateEstimate function to see the value.
 StateCovariance: 'Use the getStateEstimate function to see the value.'
```

To estimate the states and state estimation error covariance from the constructed object, use the predict and correct commands.

## Input Arguments

## pf - Particle filter

particleFilter object
Particle filter, specified as a object. See particleFilter for more information.
numParticles - Number of particles used in the filter
scalar
Number of particles used in the filter, specified as a scalar.
Unless performance is an issue, do not use fewer than 1000 particles. A higher number of particles can improve the estimate but sacrifices performance speed, because the algorithm has to process more particles. Tuning the number of particles is the best way to improve the tracking of your particle filter.

## mean - Mean of particle distribution <br> vector

Mean of particle distribution, specified as a vector. The NumStateVariables property of pf is set based on the length of this vector.

## covariance - Covariance of particle distribution <br> $N$-by- $N$ matrix

Covariance of particle distribution, specified as an $N$-by- $N$ matrix, where $N$ is the value of NumStateVariables property from pf.

## stateBounds - Bounds of state variables

$n$-by-2 matrix
Bounds of state variables, specified as an $n$-by- 2 matrix. The NumStateVariables property of pf is set based on the value of $n$. Each row corresponds to the lower and upper limit of the corresponding state variable. The number of state variables (NumStateVariables) is retrieved automatically based on the number of rows of the stateBounds array.

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . , NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ...'State0rientation','row'

## CircularVariables - Circular variables

logical vector
Circular variables, the comma-separated pair consisting of CircularVariables and specified as a logical vector. Each state variable that uses circular or angular coordinates is indicated with a 1 . The length of the vector is equal to the NumStateVariables property of particleFilter.

## StateOrientation - Orientation of states

'column' (default) | 'row'
Orientation of states, specified as the comma-separated pair consisting of StateOrientation as one of these values: 'column' or 'row'. If it is 'column', State property and getStateEstimate method of the object pf returns the states as a column vector, and the Particles property has dimensions NumStateVariables-by-NumParticles. If it is 'row', the states have the row orientation and Particles has dimensions NumParticles-by-NumStateVariables.

## Version History

## Introduced in R2017b

## See Also <br> predict | correct | particleFilter|unscentedKalmanFilter|extendedKalmanFilter| clone

## Topics

"Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter" "Generate Code for Online State Estimation in MATLAB"

## initialplot

Plot initial condition response with additional plot customization options

## Syntax

```
h = initialplot(sys,x0)
h = initialplot(sys1,sys2,...,sysN,x0)
h = initialplot(sys1,LineSpec1,...,sysN,LineSpecN,x0)
h = initialplot(___,tFinal)
h = initialplot(___,t)
h = initialplot(AX,
)
h = initialplot(___,plotoptions)
```


## Description

initialplot lets you plot initial condition responses with a broader range of plot customization options than initial. You can use initialplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use initialplot to plot initial condition response on an existing set of axes represented by an axes handle. To customize an existing plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create initial condition response plots with default options or to extract initial condition response data, use initial.
$\mathrm{h}=$ initialplot(sys,x0) plots the initial condition response of states of the dynamic system model sys and returns the plot handle h to the plot. You can use this handle h to customize the plot with the getoptions and setoptions commands.
h = initialplot(sys1,sys2,...,sysN,x0) plots the initial condition response of multiple dynamic systems sys1, sys2,... sysN on the same plot. All systems must have the same number of inputs and outputs to use this syntax.
h = initialplot(sys1,LineSpec1,...,sysN,LineSpecN,x0) sets the line style, marker type, and color for the initial condition response of each system. All systems must have the same number of inputs and outputs to use this syntax.
$\mathrm{h}=$ initialplot( _ , tFinal) simulates the response of initial conditions from $\mathrm{t}=0$ to the final time $t=t F i n a l$. Specify tFinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sample time ( $T s=-1$ ), initialplot interprets tFinal as the number of sampling intervals to simulate.
h = initialplot( $\qquad$ , t$)$ simulates the response of initial conditions using the time vector t . Specify $t$ in the system time units, specified in the TimeUnit property of sys.
h = initialplot(AX, $\qquad$ ) plots the initial condition response of the states on the Axes object in the current figure with the handle $A X$.
h = initialplot( $\qquad$ , plotoptions) plots the response of the initial conditions with the options set specified in plotoptions. You can use these options to customize the plot appearance using the command line. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run initialplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

## Examples

## Customize Initial Conditions Plot using Plot Handle

For this example, use the plot handle to change the time units to minutes and turn on the grid.
Generate a random state-space model with 5 states and create the initial conditon response plot with plot handle h.

```
rng("default")
sys = rss(5);
x0 = [1,2,3,4,5];
h = initialplot(sys,x0);
```



Change the time units to minutes and turn on the grid. To do so, edit properties of the plot handle, h using setoptions.

```
setoptions(h,'TimeUnits','minutes','Grid','on');
```



The plot automatically updates when you call setoptions.
Alternatively, you can also use the timeoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.
plotoptions = timeoptions('cstprefs');
Change properties of the options set by setting the time units to minutes and enabling the grid.
plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on';
h = initialplot(sys,x0,plotoptions);


You can use the same option set to create multiple initial condition plots with the same customization. Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example TimeUnits and Grid, override the toolbox preferences.

## Custom Initial Condition Plot of MIMO System

Consider the following two-input, two-output dynamic system.

$$
\operatorname{sys}(s)=\left[\begin{array}{cc}
0 & \frac{3 s}{s^{2}+s+10} \\
\frac{s+1}{s+5} & \frac{2}{s+6}
\end{array}\right]
$$

Convert the sys to state-space form since initial condition plots are supported only for state-space models.

```
sys = ss([0, tf([3 0],[1 1 10]) ; tf([1 1],[1 5]), tf(2,[1 6])]);
size(sys)
State-space model with 2 outputs, 2 inputs, and 4 states.
```

The resultant state-space model has four states. Hence, provide an initial condition vector with four elements.
$x 0=[0.3,0.25,1,4]$;
Use timeoptions to create a plot options set and turn the grid on. Provide an appropriate title before creating the initial conditions plot.

```
plotoptions = timeoptions;
plotoptions.Grid = 'on';
plotoptions.Title.String = 'Initial Condition Plot of MIMO System sys(s)';
h = initialplot(sys,x0,plotoptions);
```



## Initial Condition Plot with Specified Grid Color

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create an initial condition plot with red colored grid lines.

Create the MIMO state-space model sys_mimo.

```
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)
```

State-space model with 3 outputs, 3 inputs, and 3 states.
Create an initial condition plot with plot handle $h$ and use getoptions for a list of the options available.
$\mathrm{x} 0=[0.35,0.1,4]$;
h = initialplot(sys_mimo,x0);


```
p = getoptions(h)
```

$\mathrm{p}=$

```
 Normalize: 'off'
 SettleTimeThreshold: 0.0200
 RiseTimeLimits: [0.1000 0.9000]
 TimeUnits: 'seconds'
 ConfidenceRegionNumberSD: 1
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {0x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
```

```
 XLim: {[0 400]}
 YLim: {3x1 cell}
XLimMode: {'auto'}
YLimMode: {3x1 cell}
```

Use setoptions to update the plot with the requires customization.

```
setoptions(h,'Grid','on','GridColor',[1 0 0]);
```



Response to Initial Conditions

The plot automatically updates when you call setoptions. For MIMO models, initialplot produces a grid of plots, each plot displaying the initial condition response of one I/O pair.

## Customized Initial Conditions Response Plot at Specified Time

For this example, examine the initial condition response of the following zero-pole-gain model and limit the plot to tFinal = 15 s . Use 15 -point blue text for the title. This plot should look the same, regardless of the preferences of the MATLAB session in which it is generated.

First, convert the zpk model to an ss model since initialplot only supports state-space models.

```
sys = ss(zpk(-1,[-0.2+3j,-0.2-3j],1)*tf([1 1],[1 0.05]));
tFinal = 15;
x0 = [4,2,3];
```

Then, create a default options set using timeoptions.
plotoptions = timeoptions;
Next change the required properties of the options set plotoptions.
plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];
Now, create the initial conditions response plot using the options set plotoptions.
h = initialplot(sys,x0,tFinal,plotoptions);
Time Response


Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

## Plot Initial Condition Responses of Multiple Systems

For this example, plot the initial condition responses of three dynamic systems and use the plot handle to enable the grid.

First, create the three models and provide the initial conditions.

```
rng('default');
sys1 = rss(4);
sys2 = rss(4);
```

sys3 = rss(4);
x0 = [1,1,1,1];
Plot the initial condition responses of the three models.
$\mathrm{t}=0: 0.1: 5$;
h = initialplot(sys1,'r--',sys2,'b',sys3,'g-'',x0,t);
legend('sys1','sys2','sys3')


Use the plot handle to enable the grid.
setoptions(h,'Grid','on');


## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- State-space ss models.
- Sparse state-space models, such as sparss or mechss models. Final time tFinal must be specified when using sparse models.
- Generalized or uncertain state-space models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to plot the step response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model.
- Identified state-space models, such as idss models. (Using identified models requires System Identification Toolbox software.)

If sys is an array of models, the function plots the initial condition response of all models in the array on the same axes.

## x0 - Initial condition of states

vector
Initial condition of states, specified as a vector of size equal to the number of states in sys.

## LineSpec - Line style, marker, and color

character vector $\mid$ string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - - or' is a red dashed line with circle markers

Line Style	Description
-	Solid line
--	Dashed line
$:$	Dotted line
.-	Dash-dot line


Marker	Description
'0'	Circle
'+'	Plus sign
'*'	Asterisk
'.'	Point
'x'	Cross
' _'	Horizontal line
'1'	Vertical line
's'	Square
'd'	Diamond
'^'	Upward-pointing triangle
'v'	Downward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'p'	Pentagram
'h'	Hexagram


Color	Description
y	yellow
m	magenta
c	cyan
r	red


Color	Description
g	green
b	blue
W	white
k	black

## tFinal - Final time for initial condition response computation <br> scalar

Final time for initial condition response computation, specified as a scalar. Specify tFinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sample time (Ts = -1), initialplot interprets tFinal as the number of sampling intervals to simulate.

## t - Time for initial condition response simulation

vector
Time for initial condition response simulation, specified as a vector. Specify the time vector $t$ in the system time units, specified in the TimeUnit property of sys. The time vector must be real, finite, and must contain monotonically increasing and evenly spaced time samples.

The time vector t is:

- $t=T_{\text {initial }}: T_{\text {sample }}: T_{\text {final }}$, for discrete-time systems.
- $t=T_{\text {initial }}: d t: T_{\text {fnal }}$, for continuous-time systems. Here, $d t$ is the sample time of a discrete approximation of the continuous-time system.


## AX - Target axes

Axes object
Target axes, specified as an Axes object. If you do not specify the axes and if the current axes are Cartesian axes, then initialplot plots on the current axes. Use AX to plot into specific axes when creating a plot of the initial condition response.

## plotoptions - Initial condition plot options set

TimePlotOptions object
Initial condition plot options set, specified as a TimePlotOptions object. You can use this option set to customize the plot appearance. Use timeoptions to create the option set. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run impulseplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see timeoptions.

## Output Arguments

h - Plot handle
handle object

Plot handle, returned as a handle object. Use the handle $h$ to get and set the properties of the plot using getoptions and setoptions. For the list of available options, see the Properties and Values Reference section in "Customizing Response Plots from the Command Line".

## Version History

Introduced before R2006a

## See Also

getoptions|initial|setoptions

## Topics

"Customizing Response Plots from the Command Line"

## interface

Specify physical connections between components of mechss model

## Syntax

```
sysCon = interface(sys,C1,IC1,C2,IC2)
sysCon = interface(sys,C,IC)
sysCon = interface(__,KI,CI)
sysCon = interface(__, method)
```


## Description

sysCon = interface(sys,C1,IC1,C2,IC2) specifies physical couplings between components C1 and C2 in the second-order sparse model sys. IC1 and IC2 contain the indices of the coupled degrees of freedom (DOFs) relative to the DOFs of C1 and C2. The physical interface is assumed rigid and satisfies the standard consistency and equilibrium conditions. sysCon is the resultant model with the specified physical connections. Use showStateInfo to get the list of all available components of sys.
sysCon = interface(sys, C,IC) specifies that component C interfaces with the ground. Connecting the degrees of freedom q of C to the ground amounts to the zero displacement constraint $q(I C)=0$.
sysCon = interface (__, KI, CI) further specifies the stiffness KI and damping CI for nonrigid interfaces.
sysCon = interface( _ _ , method) specifies the assembly method. By default, method = 'dual ' and the function uses the dual-assembly method of physical coupling. Set method = 'primal ' to use the primal-assembly method of physical coupling. For more information, see "Algorithms" on page 2-571.

## Examples

## Physical Connections Between Components in Sparse Second-Order Model

For this example, consider a structural model that consists of two square plates connected with pillars at each vertex as depicted in the figure below. The lower plate is attached rigidly to the ground while the pillars are attached rigidly to each vertex of the square plate.


Load the finite element model matrices contained in platePillarModel.mat and create the sparse second-order model representing the above system.

```
load('platePillarModel.mat')
model = ...
 mechss(M1,[],K1,B1,F1,'Name','Plate1') + ...
 mechss(M2,[],K2,B2,F2,'Name','Plate2') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar3') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar4') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar5') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar6');
sys = model;
```

Use showStateInfo to examine the components of the mechss model object.

```
showStateInfo(sys)
```

The state groups are:

Type	Name	Size
Component	Platel	2646
Component	Plate2	2646
Component	Pillar3	132
Component	Pillar4	132
Component	Pillar5	132
Component	Pillar6	132

Now, load the interfaced degree of freedom (DOF) index data from dofData.mat and use interface to create the physical connections between the two plates and the four pillars. dofs is a $6 \times 7$ cell array where the first two rows contain DOF index data for the first and second plates while the remaining four rows contain index data for the four pillars. By default, the function uses dualassembly method of physical coupling.

```
load('dofData.mat','dofs')
for i=3:6
 sys = interface(sys,"Plate1",dofs{1,i},"Pillar"+i,dofs{i,1});
 sys = interface(sys,"Plate2",dofs{2,i},"Pillar"+i,dofs{i,2});
end
```

Specify connection between the bottom plate and the ground.

```
sysConDual = interface(sys,"Plate2",dofs{2,7});
```

Use showStateInfo to confirm the physical interfaces.

The state groups are:		
Type	Name	Size
Component	Platel	2646
Component	Plate2	2646
Component	Pillar3	132
Component	Pillar4	132
Component	Pillar5	132
Component	Pillar6	132
Interface	Plate1-Pillar3	12
Interface	Plate2-Pillar3	12
Interface	Plate1-Pillar4	12
Interface	Plate2-Pillar4	12
Interface	Plate1-Pillar5	12
Interface	Plate2-Pillar5	12
Interface	Plate1-Pillar6	12
Interface	Plate2-Pillar6	12
Interface	Plate2-Ground	6

You can use spy to visualize the sparse matrices in the final model.

```
spy(sysConDual)
```



Now, specify physical connections using the primal-assembly method.

```
sys = model;
for i=3:6
 sys = interface(sys,"Plate1",dofs{1,i},"Pillar"+i,dofs{i,1},'primal');
 sys = interface(sys,"Plate2",dofs{2,i},"Pillar"+i,dofs{i,2},'primal');
end
sysConPrimal = interface(sys,"Plate2",dofs{2,7},'primal');
```

Use showStateInfo to confirm the physical interfaces.

```
showStateInfo(sysConPrimal)
```

The state groups are:

Type	Name	Size
------------------------		
Component	Plate1	2646
Component	Plate2	2640
Component	Pillar3	108
Component	Pillar4	108
Component	Pillar5	108
Component	Pillar6	108

Primal assembly eliminates half of the redundant DOFs associated with the shared set of DOFs in the global finite element mesh.

You can use spy to visualize the sparse matrices in the final model.
spy(sysConPrimal)


The data set for this example was provided by Victor Dolk from ASML.

## Input Arguments

sys - Sparse second-order model
mechss model object
Sparse second-order model, specified as a mechss model object. For more information, see mechss.

## C - Components to connect

string | array of character vectors
Components of sys to connect, specified as a string or an array of character vectors. Use showStateInfo to get the list of all available components of sys.

## IC - Index information of components to connect

Nc-by-Ni cell array
Index information of components to connect, specified as an Nc-by-Ni cell array, where Nc is the number of components and Ni is the number of physical interfaces.

KI - Stiffness matrix
Nq -by-Nq sparse matrix

Stiffness matrix, specified as an Nq-by-Nq sparse matrix, where Nq is the number of DOFs in sys.

## CI - Damping matrix

Nq-by-Nq sparse matrix
Damping matrix, specified as an Nq-by-Nq sparse matrix, where Nq is the number of DOFs in sys.

## method - Assembly method

'dual' (default)|'primal'
Interface assembly method, specified as one of the following:

- 'dual ' - Use the dual-assembly method of physical coupling. This method maintains sparsity at the expense of additional algebraic variables.
- 'primal ' - Use the primal-assembly method of physical coupling. This method uses a minimal number of DOFs but the system may suffer from fill-in.

For more information, see "Algorithms" on page 2-571.

## Output Arguments

## sysCon - Output system with physical interfaces

mechss model object
Output system with physical interfaces, returned as a mechss model object. Use showStateInfo to examine the list of physical interfaces in the system.

## Algorithms

## Rigid Interface

For $n$ substructures in the physical domain, the sparse matrices in block diagonal form are:

$$
\begin{aligned}
& M \triangleq \operatorname{diag}\left(M_{1}, \ldots, M_{n}\right)=\left[\begin{array}{ccc}
M_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & M_{n}
\end{array}\right] \\
& C \triangleq \operatorname{diag}\left(C_{1}, \ldots, C_{n}\right) \\
& K \triangleq \operatorname{diag}\left(K_{1}, \ldots, K_{n}\right) \\
& q \triangleq\left[\begin{array}{c}
q_{1} \\
\vdots \\
q_{n}
\end{array}\right], \quad \mathrm{B} \triangleq\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{n}
\end{array}\right], \quad \mathrm{F} \triangleq\left[\begin{array}{lll}
F_{1} & \cdots & F_{n}
\end{array}\right], \quad \mathrm{G} \triangleq\left[\begin{array}{lll}
G_{1} & \cdots & G_{n}
\end{array}\right],
\end{aligned}
$$

Two interfaced components share a set of DOFs in the global finite element mesh q: the subset $N_{1}$ of DOFs from the first component coincides with the subset $N_{2}$ of DOFs from the second component. The coupling between the two components is rigid only if:

- The displacements $q$ at the shared DOFs are the same for both components.

$$
q\left(N_{1}\right)=q\left(N_{2}\right)
$$

- The forces $g$ one component exerts on the other are opposite (by the action/reaction principle).

$$
g\left(N_{1}\right)+g\left(N_{2}\right)=0
$$

These relations can be summarized as:

$$
\begin{aligned}
& M \ddot{q}+C \dot{q}+K q=B u+g, \quad H q=0, \quad g=-H^{T} \lambda, \\
& y=F q+G \dot{q}+D u,
\end{aligned}
$$

where $H$ is a localisation matrix with entries 0,1 , or -1 . The equation $H q=0$ is equivalent to $q\left(N_{1}\right)=$ $q\left(N_{2}\right)$, and the equation $g=-H^{T} \lambda$ is equivalent to $g\left(N_{1}\right)=-\lambda$ and $g\left(N_{2}\right)=\lambda$.

## Dual-Assembly Model

The equations

$$
\begin{aligned}
& M \ddot{q}+C \dot{q}+K q=B u+g, \quad H q=0, \quad g=-H^{T} \lambda, \\
& y=F q+G \dot{q}+D u,
\end{aligned}
$$

can be combined in the differential-algebraic equation (DAE) form:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
M & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\ddot{q} \\
\dot{\lambda}
\end{array}\right]+\left[\begin{array}{ll}
C & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{q} \\
\dot{\lambda}
\end{array}\right]+\left[\begin{array}{cc}
K & H^{T} \\
H & 0
\end{array}\right]\left[\begin{array}{l}
q \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
B \\
0
\end{array}\right]} \\
& y=\left[\begin{array}{ll}
F & 0
\end{array}\right]\left[\begin{array}{l}
q \\
\lambda
\end{array}\right]+\left[\begin{array}{ll}
G & 0
\end{array}\right]\left[\begin{array}{l}
\dot{q} \\
\dot{\lambda}
\end{array}\right]+D u .
\end{aligned}
$$

This DAE model is called the dual-assembly model of the overall structure. While the principle was explained for two components, this model can accommodate multiple interfaces, including interfaces involving more than two components.

## Primal-Assembly Model

For rigid interfaces, primal assembly consists of eliminating half of the redundant DOFs associated with the following constraint.

$$
q\left(N_{1}\right)=q\left(N_{2}\right)
$$

If $H q=0$ is the matrix expression of this constraint, this amounts to writing $q=L q_{r}$. Here, $q_{r}$ is the set of independent (free) DOFs and $L$ spans the null space of $H$.

$$
H L=0
$$

Using $q=L q_{r}$, the equations

$$
\begin{aligned}
& M \ddot{q}+C \dot{q}+K q=B u+g, g=-H^{T} \lambda \\
& y=F q+G \dot{q}+D u
\end{aligned}
$$

become

$$
M L \ddot{q}_{r}+C L \dot{q}_{r}+K L q_{r}=B u+g, y=F L q_{r}+G L \dot{q}_{r}+D u
$$

Using $L^{T} H^{T}=(H L)^{T}=0$, the first part of equation can be projected onto the range of $L$ by premultiplying by $L^{T}$ :

$$
\left(L^{T} M L\right) \ddot{q}_{r}+\left(L^{T} C L\right) \dot{q}_{r}+\left(L^{T} K L\right) q_{r}=L^{T} B u, y=F L q_{r}+G L \dot{q}_{r}+D u .
$$

This is the primal-assembly model of the overall structure. It has $2 N_{1}$ fewer algebraic variables than its dual-assembly counterpart, at the expense of potential fill-in in the reduced $M, C$, and $K$.

## Nonrigid Interface

In non-rigid interfaces, the displacements $q_{1}\left(N_{1}\right)$ and $q_{2}\left(N_{2}\right)$ are allowed to differ and the internal force is given by:

$$
\lambda=K_{i} \delta+C_{i} \dot{\delta}, \delta \triangleq H q=q_{1}\left(N_{1}\right)-q_{2}\left(N_{2}\right)
$$

This models spring-damper-like connections between DOFs $N_{1}$ in the first component and DOFs $N_{2}$ in the second component. Going from rigid to non-rigid connection eliminates the algebraic constraints $H q=0$ and explicates the internal forces. Then, eliminate $\lambda$ to obtain:

$$
M \ddot{q}+\left(C+H^{T} C_{i} H\right) \dot{q}+\left(K+H^{T} K_{i} H\right) q=0, \quad y=F q+G \dot{q}+D u
$$

This is the set of the primal-assembly equations for non-rigid coupling form that remains symmetric when the uncoupled model is symmetric. A drawback of this form is that the coupling terms $H^{T} C_{i} H$ and $H^{T} K_{i} H$ may cause fill-in. To avoid this, you can use the equivalent dual-assembly form:

$$
\left[\begin{array}{ccc}
M & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\ddot{q} \\
\ddot{\delta} \\
\ddot{\lambda}
\end{array}\right]+\left[\begin{array}{ccc}
C & 0 & 0 \\
0 & C_{i} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\dot{q} \\
\dot{\delta} \\
\dot{\lambda}
\end{array}\right]+\left[\begin{array}{ccc}
K & 0 & H^{T} \\
0 & K_{i} & -I \\
H & -I & 0
\end{array}\right]\left[\begin{array}{l}
q \\
\delta \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
B \\
0 \\
0
\end{array}\right] u .
$$

## Version History <br> Introduced in R2020b

## See Also

mechss | xsort| showStateInfo

## Topics

"Sparse Model Basics"
"Rigid Assembly of Model Components"

## interp

Interpolate FRD model

## Syntax

isys = interp(sys,freqs)

## Description

isys = interp(sys,freqs) interpolates the frequency response data contained in the FRD model sys at the frequencies freqs. interp, which is an overloaded version of the MATLAB function interp, uses linear interpolation and returns an FRD model isys containing the interpolated data at the new frequencies freqs. If sys is an IDFRD model (requires System Identification Toolbox software), the noise spectrum, if non-empty, is also interpolated. The response and noise covariance data, if available, are also interpolated.

You should express the frequency values freqs in the same units as sys.frequency. The frequency values must lie between the smallest and largest frequency points in sys (extrapolation is not supported).

## Version History

Introduced before R2006a

## See Also

freqresp|frd

## inv

Invert dynamic system models

## Syntax

inv
inv(sys,'min')

## Description

inv inverts the input/output relation

$$
y=G(s) u
$$

to produce the model with the transfer matrix $H(s)=G(s)^{-1}$.

$$
u=H(s) y
$$

This operation is defined only for square systems (same number of inputs and outputs) with an invertible feedthrough matrix $D$. inv handles both continuous- and discrete-time systems.
inv(sys,'min') inverts sys to eliminate the extra states and obtain a model with as many states as sys or A respectively. For ss, genss and uss models, the inverse model is returned in implicit form by default. This option is ignored for sparse models because it typically destroys sparsity. Use isproper or ss(sys, 'explicit') to extract an explicit model if desired.

## Examples

Consider

$$
H(s)=\left[\begin{array}{cc}
1 & \frac{1}{s+1} \\
0 & 1
\end{array}\right]
$$

At the MATLAB prompt, type
H = [1 tf(1,[1 1]);0 1]
$\mathrm{Hi}=\operatorname{inv}(\mathrm{H})$
to invert it. These commands produce the following result.

```
Transfer function from input 1 to output...
 #1: 1
 #2: 0
Transfer function from input 2 to output...
 -1
 #1: -----
 s + 1
 #2: 1
```

You can verify that
H * Hi
is the identity transfer function (static gain I).

## Limitations

Do not use inv to model feedback connections such as


While it seems reasonable to evaluate the corresponding closed-loop transfer function $(I+G H)^{-1} G$ as inv(1+g*h) * g
this typically leads to nonminimal closed-loop models. For example,

```
g = zpk([],1,1)
h = tf([2 1],[1 0])
cloop = inv(1+g*h) * g
```

yields a third-order closed-loop model with an unstable pole-zero cancellation at $\mathrm{s}=1$.
cloop
Zero/pole/gain:
s (s-1)
$(\mathrm{s}-1)\left(\mathrm{s}^{\wedge} 2+\mathrm{s}+1\right)$
Use feedback to avoid such pitfalls.

```
cloop = feedback(g,h)
```

Zero/pole/gain:

S
$\left(s^{\wedge} 2+s+1\right)$

## Version History <br> Introduced before R2006a

## iopzmap

Plot pole-zero map for I/O pairs of model

## Syntax

```
iopzmap(sys)
```

iopzmap(sys1,sys2,...)

## Description

iopzmap(sys) computes and plots the poles and zeros of each input/output pair of the dynamic system model sys. The poles are plotted as x's and the zeros are plotted as o's.
iopzmap (sys1, sys2, ...) shows the poles and zeros of multiple models sys1,sys $2, \ldots$ on a single plot. You can specify distinctive colors for each model, as in iopzmap(sys1,'r',sys2,'y',sys3,'g').

The functions sgrid or zgrid can be used to plot lines of constant damping ratio and natural frequency in the $s$ or $z$ plane.

For model arrays, iopzmap plots the poles and zeros of each model in the array on the same diagram.

## Examples

## Pole-Zero Map for MIMO System

Create a one-input, two-output dynamic system.

```
H = [tf(-5 ,[1 -1]); tf([1 -5 6],[1 1 0])];
```

Plot a pole-zero map.
iopzmap(H)

iopzmap generates a separate map for each I/O pair in the system.

## Pole-Zero Map of Identified Model

View the poles and zeros of an over-parameterized state-space model estimated from input-output data. (Requires System Identification Toolbox ${ }^{\mathrm{TM}}$ ).
load iddatal
sys = ssest(z1,6,ssestOptions('focus','simulation')); iopzmap(sys)


The plot shows that there are two pole-zero pairs that almost overlap, which hints are their potential redundancy.

## Tips

For additional options for customizing the appearance of the pole-zero plot, use iopzplot.

## Version History

Introduced before R2006a

## See Also

pzmap|pole|zero|sgrid|zgrid|iopzplot

## iopzplot

Plot pole-zero map for I/O pairs with additional plot customization options

## Syntax

h = iopzplot(sys)
h = iopzplot(sys1,sys2,...,sysN)
h = iopzplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = iopzplot(ax,...)
h = iopzplot(...,plotoptions)

## Description

iopzplot lets you plot pole-zero maps for input/output pairs with a broader range of plot customization options than iopzmap. You can use iopzplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use iopzplot to draw a pole-zero plot on an existing set of axes represented by an axes handle. To customize an existing plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create pole-zero maps with default options or to extract pole-zero data, use iopzmap.
$\mathrm{h}=$ iopzplot(sys) plots the poles and zeros of each input/output pair of the dynamic system model sys and returns the plot handle $h$ to the plot. $x$ and $o$ indicates poles and zeros respectively.
h = iopzplot(sys1,sys2,...,sysN) displays the poles and transmission zeros of multiple models on a single plot. You can specify distinct colors for each model individually.
h = iopzplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and color for the plot of each system. All systems must have the same number of inputs and outputs to use this syntax.
$h=$ iopzplot $(a x, \ldots)$ plots into the axes specified by ax instead of the current axis gca.
h = iopzplot(...,plotoptions) plots the poles and transmission zeros with the options specified in plotoptions. For more information on the ways to change properties of your plots, see "Ways to Customize Plots".

## Examples

## Change I/O Grouping on Pole/Zero Map

Create a pole/zero map of a two-input, two-output dynamic system.
sys $=\operatorname{rss}(3,2,2)$;
h = iopzplot(sys);


By default, the plot displays the poles and zeros of each I/O pair on its own axis. Use the plot handle to view all I/Os on a single axis.
setoptions(h,'IOGrouping','all')


## Use Pole-Zero Map to Examine Identified Model

View the poles and zeros of a sixth-order state-space model estimated from input-output data. Use the plot handle to display the confidence intervals of the identified model's pole and zero locations.

```
load iddata1
sys = ssest(z1,6,ssestOptions('focus','simulation'));
h = iopzplot(sys);
showConfidence(h)
```


## Pole-Zero Map



There is at least one pair of complex-conjugate poles whose locations overlap with those of a complex zero, within the 1- $\sigma$ confidence region. This suggests their redundancy. Hence, a lower (4th) order model might be more robust for the given data.

```
sys2 = ssest(z1,4,ssest0ptions('focus','simulation'));
h = iopzplot(sys,sys2);
showConfidence(h)
legend('6th-order','4th-order')
axis([-20, 10 -30 30])
```


## Pole-Zero Map



The fourth-order model sys2 shows less variability in the pole-zero locations.

## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as tf, zpk, or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, pzplot returns the poles and transmission zeros of the current or nominal value of sys. If sys is an array of models, pzplot plots the poles and zeros of each model in the array on the same diagram.

## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - - or' is a red dashed line with circle markers

Line Style	Description
-	Solid line
--	Dashed line
$:$	Dotted line
.-	Dash-dot line


Marker	Description
'o'	Circle
'+'	Plus sign
'*'	Asterisk
'.'	Point
' x '	Cross
'_'	Horizontal line
'\|1'	Vertical line
's'	Square
'd'	Diamond
1^1	Upward-pointing triangle
'v'	Downward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'p'	Pentagram
'h'	Hexagram


Color	Description
y	yellow
m	magenta
C	cyan
r	red
g	green
b	blue
W	white
k	black

## ax - Axes handle

axes object
Axes handle, specified as an axes object. If you do not specify the axes object, then pzplot uses the current axes gca to plot the poles and zeros of the system.
plotoptions - Pole-zero plot options
options object

Pole-zero plot options, specified as an options object. See pzoptions for a list of available plot options.

## Output Arguments

h - Pole-zero plot options handle
scalar
Pole-zero plot options handle, returned as a scalar. Use $h$ to query and modify properties of your polezero plot. You can use this handle to customize the plot with the getoptions and setoptions commands.

## Tips

- Use sgrid or zgrid to plot lines of constant damping ratio and natural frequency in the $s$ - or $z$ plane.


## Version History

Introduced before R2006a

## See Also

getoptions|iopzmap| setoptions

## Topics

"Ways to Customize Plots"

## isct

Determine if dynamic system model is in continuous time

## Syntax

```
bool = isct(sys)
```


## Description

bool = isct(sys) returns a logical value of 1 (true) if the dynamic system model sys is a continuous-time model. The function returns a logical value of 0 (false) otherwise.

## Input Arguments

## sys

Dynamic system model or array of such models.

## Output Arguments

## bool

Logical value indicating whether sys is a continuous-time model.
bool = 1 (true) if sys is a continuous-time model (sys.Ts = 0). If sys is a discrete-time model, bool $=0$ (false).

For a static gain, both isct and isdt return true unless you explicitly set the sample time to a nonzero value. If you do so, isdt returns true and isct returns false.

For arrays of models, bool is true if the models in the array are continuous.

## Version History

Introduced in R2007a

## See Also

isdt|isstable

## isdt

Determine if dynamic system model is in discrete time

## Syntax

```
bool = isdt(sys)
```


## Description

bool = isdt(sys) returns a logical value of 1 (true) if the dynamic system model sys is a discrete-time model. The function returns a logical value of 0 (false) otherwise.

## Input Arguments

## sys

Dynamic system model or array of such models.

## Output Arguments

## bool

Logical value indicating whether sys is a discrete-time model.
bool $=1$ (true) if sys is a discrete-time model (sys.Ts $\neq 0$ ). If sys is a continuous-time model, bool = 0 (false).

For a static gain, both isct and isdt return true unless you explicitly set the sample time to a nonzero value. If you do so, isdt returns true and isct returns false.

For arrays of models, bool is true if the models in the array are discrete.

## Version History

Introduced in R2007a

## See Also

isct|isstable

## isempty

Determine whether dynamic system model is empty

## Syntax

isempty(sys)

## Description

isempty (sys) returns a logical value of 1 (true) if the dynamic system model sys has no input or no output, and a logical value of 0 (false) otherwise. Where sys is a frd model, isempty (sys) returns 1 when the frequency vector is empty. Where sys is a model array, isempty(sys) returns 1 when the array has empty dimensions or when the LTI models in the array are empty.

## Examples

## Determine Whether Dynamic Model Is Empty

Create a continuous-time state-space model with 1 input and no outputs. In this example, specify the $A$ and $B$ matrices as 1 and 2, respectively.

```
sys1 = ss(1,2,[],[]);
```

Determine whether sys 1 is empty.

```
isempty(sys1)
ans = logical
 1
```

The isempty command returns 1 because the system does not have any outputs.
Similarly, isempty returns 1 for an empty transfer function.

```
isempty(tf)
ans = logical
 1
```

Now create a state-space model with 1 input and 1 output. In this example, specify the A, B, C, and D matrices as $1,2,3$, and 4 , respectively.
sys2 = ss(1,2,3,4);
Determine whether sys2 is empty.
isempty(sys2)

```
ans = logical
 0
```

The command returns 0 because the system has inputs and outputs.

## Version History

Introduced before R2006a

## See Also

issiso|size

## isfinite

Determine if model has finite coefficients

## Syntax

B = isfinite(sys)
B = isfinite(sys,'elem')

## Description

$B=$ isfinite(sys) returns a logical value of 1 (true) if the model sys has finite coefficients, and a logical value of 0 (false) otherwise. If sys is a model array, then $B=1$ if all models in sys have finite coefficients.

B = isfinite(sys,'elem') checks each model in the model array sys and returns a logical array of the same size as sys. The logical array indicates which models in sys have finite coefficients.

## Examples

## Check Model for Finite Coefficients

Create model and check whether its coefficients are all finite.

```
sys = rss(3);
B = isfinite(sys)
B = logical
 1
```

The model, sys, has finite coefficients.

## Check Each Model in Array

Create a 1-by-5 array of models, and check each model for finite coefficients.
sys $=\operatorname{rss}(2,2,2,1,5)$;
B = isfinite(sys,'elem')
B $=1 \times 5$ logical array
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$
isfinite checks each model in the model array, sys, and returns a logical array indicating which models have all finite coefficients.

## Input Arguments

## sys - Model or array to check

input-output model | model array
Model or array to check, specified as an input-output model or model array. Input-output models include dynamic system models such as numeric LTI models and generalized models. Input-output models also include static models such as tunable parameters or generalized matrices.

## Output Arguments

B - Flag indicating whether model has finite coefficients
logical | logical array
Flag indicating whether model has finite coefficients, returned as a logical value or logical array.

## Version History

Introduced in R2013a

## See Also

isreal

## isParametric

Determine if model has tunable parameters

## Syntax

```
bool = isParametric(M)
```


## Description

bool = isParametric(M) returns a logical value of 1 (true) if the model $M$ contains parametric (tunable) "Control Design Blocks". The function returns a logical value of 0 (false) otherwise.

## Input Arguments

## M

A Dynamic System model or Static model, or an array of such models.

## Output Arguments

## bool

Logical value indicating whether M contains tunable parameters.
bool = 1 (true) if the model M contains parametric (tunable) "Control Design Blocks" such as realp or tunableSS. If $M$ does not contain parametric Control Design Blocks, bool $=0$ (false).

## Version History

Introduced in R2011a

## See Also

nblocks

## Topics

"Control Design Blocks"
"Dynamic System Models"
"Static Models"

## isPassive

Check passivity of linear systems

## Syntax

pf = isPassive(G)
$\mathrm{pf}=$ isPassive(G,nu,rho)
[pf,R] = isPassive(G, $\qquad$

## Description

$\mathrm{pf}=$ isPassive( G ) returns a logical value of 1 (true) if the dynamic system model G is passive, and a logical value of 0 (false) otherwise. A system is passive if all its I/O trajectories $(u(t), y(t))$ satisfy:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>0
$$

for all $T>0$. Equivalently, a system is passive if its frequency response is positive real, which means that for all $\omega>0$,

$$
G(j \omega)+G(j \omega)^{H}>0
$$

(or the discrete-time equivalent). If G is a model array, then isPassive returns a logical array of the same array dimensions as $G$, where each entry in the array reflects the passivity of the corresponding entry in G.

For more information about the notion of passivity, see "About Passivity and Passivity Indices".
$\mathrm{pf}=$ isPassive( $\mathrm{G}, \mathrm{nu}$, rho) returns 1 (true) if G is passive with index nu at the inputs, and index rho at the outputs. Such systems satisfy:

$$
\int_{0}^{T} y(t)^{T} u(t) d t>\nu \int_{0}^{T} u(t)^{T} u(t) d t+\rho \int_{0}^{T} y(t)^{T} y(t) d t,
$$

for all $T>0$.

- Use rho $=0$ to check whether a system is input passive with index nu at the inputs.
- Use $n u=0$ to check whether a system is output passive with index rho at the outputs.

For more information about input and output passivity, see "About Passivity and Passivity Indices".
$[\mathrm{pf}, \mathrm{R}]=\operatorname{isPassive}(\mathrm{G}, \quad$ ) also returns the relative index for the corresponding passivity bound (see getPassiveIndex). R measures the amount by which the passivity property is satisfied ( $R<1$ ) or violated $(R>1)$. You can use this syntax with any of the previous combinations of input arguments.

## Examples

## Check Passivity of Dynamic System

Test whether the following transfer function is passive:

```
 G(s)= 拉1
G = tf([1,1],[1,2]);
[pf,R] = isPassive(G)
pf = logical
 1
R = 0.3333
```

pf $=1$ indicates that $G$ is passive. $R=0.3333$ indicates that $R$ has a relative excess of passivity.

## Check Input and Output Passivity

Test whether the transfer function G is input passive with index 0.25 . To do so, use $\mathrm{nu}=0.25$ and rho $=0$.

```
G = tf([1,1],[1,2]);
[pfin,Rin] = isPassive(G,0.25,0)
pfin = logical
Rin = 0.6096
```

The result shows that G is input passive with this nu value and has some excess passivity.
Test whether G is output passive with index 2 .

```
[pfout,Rout] = isPassive(G,0,2)
pfout = logical
 0
Rout = 2.6180
```

Here, the result pfout $=0$ shows that $G$ is not output passive with this rho value. The $R$ value gives a relative measure of the shortage of passivity.

## Check Passivity of Models in Array

You can use isPassive to evaluate the passivity of multiple models in a model array simultaneously. For this example, generate a random array of transfer function models.

G = rss(3,1,1,1,5);

G is a 1-by-5 array of 3-state SISO models. Check the passivity of all the models in G .

```
[pf,R] = isPassive(G)
pf = 1x5 logical array
 0 0 0 1 0
R = 1\times5
 43.8048 Inf Inf 0.2989 9.6958
```

pf and $R$ are also 1-by-5 arrays. Each pf entry indicates whether the corresponding model in G is passive. Likewise, each $R$ value gives the relative excess or shortage of passivity in the corresponding model in G . For instance, examine the passivity of the second entry in G, and compare the result with the second entries in pf and R.

```
[pf2,R2] = isPassive(G(:,:,2))
pf2 = logical
 0
R2 = Inf
```


## Input Arguments

## G - Model to analyze

dynamic system model \| model array
Model to analyze for passivity, specified as a dynamic system model such as a tf, ss, or genss model. G can be MIMO, if the number of inputs equals the number of outputs. G can be continuous or discrete. If G is a generalized model with tunable or uncertain blocks, isPassive evaluates passivity of the current, nominal value of G .

## nu - Input passivity index

0 (default) | real scalar
Input passivity index, specified as a real scalar value. Use nu and rho to specify particular passivity bounds. To check whether a system is passive with a particular index at the inputs, set nu to that value and set rho $=0$.

## rho - Output passivity index

0 (default) | real scalar
Output passivity index, specified as a real scalar value. Use nu and rho to specify particular passivity bounds. To check whether a system is passive with a particular passivity index at the outputs, set rho to that value and set nu $=0$.

## Output Arguments

## pf - Passivity indicator

1 (true) | 0 (false) | logical array

Passivity indicator, returned as a boolean value:

- 1 (true) if G is passive.
- 0 (false) if $G$ is not passive.

If you specify input and output passivity indices nu and rho, then pf indicates passivity with respect to the corresponding passivity bound.

If G is a model array, then pf is an array of the same size, where $\mathrm{pf}(\mathrm{k})$ indicates the passivity of the kth entry in G, G(: , : , k).

## R - Relative passivity index

positive real scalar
Relative passivity index, returned as a positive real scalar. $R$ measures the excess $(R<1)$ or shortage ( $R>1$ ) of passivity in the system.

If you specify $n u \neq 0$ or rho $\neq 0$, then $R$ measures how much the specified passivity properties are satisfied or violated.

For more information about the notion of relative passivity index, see "About Passivity and Passivity Indices".

## Version History

Introduced in R2016a

## See Also

getPassiveIndex| passiveplot|getSectorIndex|getSectorCrossover|getPeakGain| sectorplot

## Topics

"Passivity Indices"
"About Passivity and Passivity Indices"

## isproper

Determine if dynamic system model is proper

## Syntax

B = isproper(sys)
B = isproper(sys,'elem')
[B,sysr] = isproper(sys)

## Description

$B=$ isproper(sys) returns a logical value of 1 (true) if the dynamic system model sys is proper and a logical value of 0 (false) otherwise.

A proper model has relative degree $\leq 0$ and is causal. SISO transfer functions and zero-pole-gain models are proper if the degree of their numerator is less than or equal to the degree of their denominator (in other words, if they have at least as many poles as zeroes). MIMO transfer functions are proper if all their SISO entries are proper. Regular state-space models (state-space models having no E matrix) are always proper. A descriptor state-space model that has an invertible E matrix is always proper. A descriptor state-space model having a singular (non-invertible) E matrix is proper if the model has at least as many poles as zeroes.

If sys is a model array, then $B$ is 1 if all models in the array are proper.
B = isproper(sys,'elem') checks each model in a model array sys and returns a logical array of the same size as sys. The logical array indicates which models in sys are proper.
$[B, s y s r]=$ isproper(sys) also returns an equivalent model sys $r$ with fewer states (reduced order) and a non-singular E matrix, if sys is a proper descriptor state-space model with a noninvertible E matrix. If sys is not proper, sysr = sys.

## Examples

## Examine Whether Models are Proper

Create a SISO continuous-time transfer function, $H_{1}=s$
H1 = tf([10],1);
Check whether H 1 is proper.
B1 = isproper(H1)
B1 = logical
0

SISO transfer functions are proper if the degree of their numerator is less than or equal to the degree of their denominator That is, if the transfer function has at least as many poles as zeroes. Since H1 has one zero and no poles, the isproper command returns 0.

Now create a transfer function with one pole and one zero, $H_{2}=s /(s+1)$
$H 2=t f\left(\left[\begin{array}{ll}1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1\end{array}\right]\right) ;$
Check whether H 2 is proper.

```
B2 = isproper(H2)
B2 = logical
 1
```

Since H2 has equal number of poles and zeros, isproper returns 1.

## Compute Equivalent Lower-Order Model

Combining state-space models sometimes yields results that include more states than necessary. Use isproper to compute an equivalent lower-order model.

```
H1 = ss(tf([1 1],[1 2 5]));
H2 = ss(tf([1 7],[1]));
H = H1*H2;
size(H)
State-space model with 1 outputs, 1 inputs, and 4 states.
```

H is proper and reducible. isproper returns the reduced model.

```
[isprop,Hr] = isproper(H);
size(Hr)
State-space model with 1 outputs, 1 inputs, and 2 states.
H and Hr are equivalent, as a Bode plot demonstrates.
bodeplot (H,Hr,'r--')
legend('original','reduced')
```



## Version History

Introduced before R2006a

## References

[1] Varga, Andràs. "Computation of irreducible generalized state-space realizations." Kybernetika 26.2 (1990): 89-106.

## See Also

ss|dss

## isreal

Determine if model has real-valued coefficients

## Syntax

B = isreal(sys)
B = isreal(sys,'elem')

## Description

$B=$ isreal(sys) returns a logical value of 1 (true) if the model sys has real-valued coefficients, and a logical value of 0 (false) otherwise. If sys is a model array, then $B=1$ if all models in sys have real-valued coefficients.

B = isreal(sys,'elem') checks each model in the model array sys and returns a logical array of the same size as sys. The logical array indicates which models in sys have real coefficients.

## Examples

## Check Model for Real-Valued Coefficients

Create a model and check whether its coefficients are all real-valued.

```
sys = rss(3);
B = isreal(sys)
B = logical
 1
```

The model, sys, has real-valued coefficients.

## Check Model Array for Real-Valued Coefficients

Create a 1-by-5 array of models, and check each model for real-valued coefficients.

```
sys = rss(2,2,2,1,5);
B = isreal(sys,'elem')
B = 1x5 logical array
```

    \(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\)
    is real checks each model in the model array, sys, and returns a logical array indicating which models have all real-valued coefficients.

## Input Arguments

## sys - Model or array to check

input-output model | model array
Model or array to check, specified as an input-output model or model array. Input-output models include dynamic system models such as numeric LTI models and generalized models. Input-output models also include static models such as tunable parameters or generalized matrices.

## Output Arguments

B - Flag indicating whether model has real-valued coefficients
logical | logical array
Flag indicating whether model has real-valued coefficients, returned as a logical value or logical array.

## Version History

Introduced in R2013a

## See Also

isfinite

## isstable

Determine if dynamic system model is stable

## Syntax

B = isstable(sys)
B = isstable(sys,'elem')

## Description

B = isstable(sys) returns a logical value of 1 (true) if the dynamic system model sys has stable dynamics, and a logical value of 0 (false) otherwise. If sys is a model array, then the function returns 1 only if all the models in sys are stable.
isstable returns a logical value of 1 (true) for stability of a dynamic system if:

- In continuous-time systems, all the poles lie in the open left half of the complex plane.
- In discrete-time systems, all the poles lie inside the open unit disk.
isstable is supported only for analytical models with a finite number of poles.
B = isstable(sys,'elem') returns a logical array of the same dimensions as the model array sys. The logical array indicates which models in sys are stable.


## Examples

## Determine Stability of Discrete-Time Transfer Function Model

Determine the stability of this discrete-time SISO transfer function model with a sample time of 0.1 seconds.

$$
\operatorname{sys}(z)=\frac{2 z}{4 z^{3}+3 z-1}
$$

Create the discrete-time transfer function model.
sys = tf([2,0], [4, 0, 3, -1], 0.1);
Examine the poles of the system.
P = abs(pole(sys))
P $=3 \times 1$
0.9159
0.9159
0.2980

All the poles of the transfer function model have a magnitude less than 1 , so all the poles lie within the open unit disk and the system is stable.

Confirm the stability of the model using isstable.

```
B = isstable(sys)
B = logical
 1
```

The system sys is stable.

## Determine Stability of Continuous-Time Zero-Pole-Gain Model

Determine the stability of this continuous-time zero-pole-gain model.

$$
\operatorname{sys}(s)=\frac{2}{(s+2+3 j)(s+2-3 j)(s-0.5)}
$$

Create the model as a zpk model object by specifying the zeros, poles, and gain.
sys $=z p k([],[-2-3 * j,-2+3 * j, 0.5], 2) ;$
Because one pole of the model lies in the right half of the complex plane, the system is unstable.
Confirm the instability of the model using isstable.

```
B = isstable(sys)
B = logical
 0
```

The system sys is unstable.

## Determine Stability of Models in Model Array

Determine the stability of an array of SISO transfer function models with poles varying from -2 to 2 .

$$
\left[\frac{1}{s+2}, \frac{1}{s+1}, \frac{1}{s}, \frac{1}{s-1}, \frac{1}{s-2}\right]
$$

To create the array, first initialize an array of dimension [length (a) , 1] with zero-valued SISO transfer functions.

```
a = [-2:2];
sys = tf(zeros(1,1,length(a)));
```

Populate the array with transfer functions of the form $1 /(s-a)$.

```
for j = 1:length(a)
 sys(1,1,j) = tf(1,[1 -a(j)]);
end
```

isstable can tell you whether all the models in model array are stable or each individual model is stable.

Examine the stability of the model array.

```
B_all = isstable(sys)
B_all = logical
 0
```

By default, isstable returns a single logical value that is 1 (true) only if all models in the array are stable. sys contains some models with nonnegative poles, which are not stable. Therefore, isstable returns 0 (false) for the entire array.

Examine the stability of each model in the array by using 'elem' flag.

```
B_elem = isstable(sys,'elem')
B_elem = 5x1 logical array
```

    1
    1
    0
    0
    0
    The function returns an array of logical values that indicate the stability of the corresponding entry in the model array. For example, B_elem (2) is 1, which indicates that the second model in the array, $\operatorname{sys}(1,1,2)$ is stable. This is because sys $(1,1,2)$ has a pole at -1 .

## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or an array of SISO or MIMO dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as tf, zpk, or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, isstable checks the stability of the current or nominal value of sys.

If sys is an array of models, isstable checks the stability of every model in the array.

- If you use $B=$ isstable(sys), the output is 1 (true) only if all the models in the array are stable.
- If you use $\mathbf{B}=$ isstable(sys,'elem'), the output is a logical array, the entries of which indicate the stability of the corresponding entry in the model array.

For more information on model arrays, see "Model Arrays".

## Output Arguments

## B - True or false result

1|0|logical array
True or false result, returned as 1 for a stable model or 0 for an unstable model.
The 'elem' flag causes isstable to return an array of logical values with same dimensions as the model array. The values in the array indicate the stability of the corresponding entry in the model array.

## Version History

Introduced in R2012a

## See Also

isproper|issiso|pole

## issiso

Determine if dynamic system model is single-input/single-output (SISO)

## Syntax

issiso(sys)

## Description

issiso(sys) returns a logical value of 1 (true) if the dynamic system model sys is SISO and a logical value of 0 (false) otherwise.

## Version History <br> Introduced before R2006a

## See Also

isempty|size

## isstatic

Determine if model is static or dynamic

## Syntax

B = isstatic(sys)
$B=$ isstatic(sys,'elem')

## Description

$B=$ isstatic(sys) returns a logical value of 1 (true) if the model sys is a static model, and a logical value of 0 (false) if sys has dynamics, such as states or delays. If sys is a model array, then $B=1$ if all models in sys are static.

B = isstatic(sys,'elem') checks each model in the model array sys and returns a logical array of the same size as sys. The logical array indicates which models in sys are static.

## Input Arguments

## sys - Model or array to check <br> input-output model | model array

Model or array to check, specified as an input-output model or model array. Input-output models include dynamic system models such as numeric LTI models and generalized models. Input-output models also include static models such as tunable parameters or generalized matrices.

## Output Arguments

## B - Flag indicating whether input model is static

logical | logical array
Flag indicating whether input model is static, returned as a logical value or logical array.

## Version History

Introduced in R2013a

## See Also

pole | zero| hasdelay

## Topics

"Types of Model Objects"

## kalman

Design Kalman filter for state estimation

## Syntax

```
[kalmf,L,P] = kalman(sys, Q,R,N)
[kalmf,L,P] = kalman(sys, Q,R,N, sensors, known)
[kalmf,L,P,Mx,Z,My] = kalman(___)
[kalmf,L,P,Mx,Z,My] = kalman(___,type)
```


## Description

[kalmf, L, P] = kalman(sys, $\mathrm{Q}, \mathrm{R}, \mathrm{N}$ ) creates a Kalman filter given the plant model sys and the noise covariance data $Q, R$, and $N$. The function computes a Kalman filter for use in a Kalman estimator with the configuration shown in the following diagram.


You construct the model sys with known inputs $u$ and white process noise inputs $w$, such that $w$ consists of the last $N_{w}$ inputs to sys. The "true" plant output $y_{t}$ consists of all outputs of sys. You also provide the noise covariance data $Q, R$, and $N$. The returned Kalman filter kalmf is a state-space model that takes the known inputs $u$ and the noisy measurements $y$ and produces an estimate $\widehat{y}$ of the true plant output and an estimate $\widehat{x}$ of the plant states. kalman also returns the Kalman gains L and the steady-state error covariance matrix $P$.
[kalmf, L, P] = kalman(sys, Q,R,N, sensors,known) computes a Kalman filter when one or both of the following conditions exist.

- Not all outputs of sys are measured.
- The disturbance inputs $w$ are not the last inputs of sys.

The index vector sensors specifies which outputs of sys are measured. These outputs make up y. The index vector known specifies which inputs are known (deterministic). The known inputs make up $u$. The kalman command takes the remaining inputs of sys to be the stochastic inputs $w$.
[kalmf, L, P, Mx, Z, My] = kalman (__ ) also returns the innovation gains Mx and My and the steady-state error covariances P and Z for a discrete-time sys. You can use this syntax with any of the previous input argument combinations.
[kalmf, L, P, Mx, Z, My] = kalman(__ , type) specifies the estimator type for a discrete-time sys.

- type $=$ 'current' - Compute output estimates $\widehat{y}[n \mid n]$ and state estimates $\widehat{x}[n \mid n]$ using all available measurements up to $y[n]$.
- type $=$ 'delayed ' - Compute output estimates $\widehat{y}[n \mid n-1]$ and state estimates $\widehat{x}[n \mid n-1]$ using measurements only up to $y[n-1]$. The delayed estimator is easier to implement inside control loops.

You can use the type input argument with any of the previous input argument combinations.

## Examples

## Design Kalman Filter for SISO Plant

Design a Kalman filter for a plant that has additive white noise $w$ on the input and $v$ on the output, as shown in the following diagram.


Assume that the plant has the following state-space matrices and is a discrete-time plant with an unspecified sample time ( $\mathrm{Ts}=-1$ ).

```
A = [ll.1269 -0.4940 0.1129
 1.0000 0 0
 0 1.0000 0];
B = [-0.3832
 0.5919
 0.5191];
C = [llll
D = 0;
Plant = ss(A,B,C,D,-1);
Plant.InputName = 'un';
Plant.OutputName = 'yt';
```

To use kalman, you must provide a model sys that has an input for the noise w. Thus, sys is not the same as Plant, because Plant takes the input un $=\mathbf{u}+\mathrm{w}$. You can construct sys by creating a summing junction for the noise input.

```
Sum = sumblk('un = u + w');
sys = connect(Plant,Sum,{'u','w'},'yt');
```

Equivalently, you can use sys = Plant*[11].
Specify the noise covariances. Because the plant has one noise input and one output, these values are scalar. In practice, these values are properties of the noise sources in your system, which you determine by measurement or other knowledge of your system. For this example, assume both noise sources have unit covariance and are not correlated ( $\mathrm{N}=0$ ).

Q = 1 ;
$\mathrm{R}=1$;
N = 0;
Design the filter.

```
[kalmf,L,P] = kalman(sys,Q,R,N);
size(kalmf)
State-space model with 4 outputs, 2 inputs, and 3 states.
```

The Kalman filter kalmf is a state-space model having two inputs and four outputs. kalmf takes as inputs the plant input signal $u$ and the noisy plant output $y=y_{t}+v$. The first output is the estimated true plant output $\hat{y}$. The remaining three outputs are the state estimates $\hat{x}$. Examine the input and output names of kalmf to see how kalman labels them accordingly.

```
kalmf.InputName
ans = 2x1 cell
 {'u' }
 {'yt'}
kalmf.OutputName
ans = 4xl cell
 {'yt_e'}
 {'x1_e'}
 {'x2-e'}
 {'x3_e'}
```

Examine the Kalman gains L. For a SISO plant with three states, L is a three-element column vector.
L
$L=3 \times 1$
0.3586
0.3798
0.0817

For an example that shows how to use kalmf to reduce measurement error due to noise, see "Kalman Filtering".

## Design Kalman Filter for MIMO Plant

Consider a plant with three inputs, one of which represents process noise $w$, and two measured outputs. The plant has four states.


Assuming the following state-space matrices, create sys.

```
A = [-0.71 0.06 -0.19 -0.17;
 0.06 -0.52 -0.03 0.30;
 -0.19 -0.03 -0.24 -0.02;
 -0.17 0.30 -0.02 -0.41];
B = [1.44 2.91 0;
 -1.97 0.83-0.27;
 -0.20 1.39 1.10;
 -1.2 0 -0.28];
C = [0 0 -0.36 -1.58 0.28;
 -2.05 0 0.51 0.03];
D = zeros(2,3);
sys = ss(A,B,C,D);
sys.InputName = {'u1','u2','w'};
sys.OutputName = {'y1','y2'};
```

Because the plant has only one process noise input, the covariance $Q$ is a scalar. For this example, assume the process noise has unit covariance.

Q = 1 ;
kalman uses the dimensions of $Q$ to determine which inputs are known and which are the noise inputs. For scalar $Q$, kalman assumes one noise input and uses the last input, unless you specify otherwise (see "Plant with Unmeasured Outputs" on page 2-613).

For the measurement noise on the two outputs, specify a 2-by-2 noise covariance matrix. For this example, use a unit variance for the first output, and variance of 1.3 for the second output. Set the off-diagonal values to zero to indicate that the two noise channels are uncorrelated.

```
R = [1 0;
 0 1.3];
```

Design the Kalman filter.
[kalmf,L,P] = kalman(sys, Q,R);

Examine the inputs and outputs. kalman uses the InputName, OutputName, InputGroup, and OutputGroup properties of kalmf to help you keep track of what the inputs and outputs of kalmf represent.

```
kalmf.InputGroup
ans = struct with fields:
 KnownInput: [1 2]
 Measurement: [3 4]
kalmf.InputName
ans = 4x1 cell
 {'u1'}
 {'u2'}
 {'y1'}
 {'y2'}
kalmf.OutputGroup
ans = struct with fields:
 OutputEstimate: [1 2]
 StateEstimate: [\begin{array}{llll}{3}&{4}&{5}&{6}\end{array}]
kalmf.OutputName
ans = 6xl cell
 {'y1_e'}
 {'y2_e'}
 {'x1_e'}
 {'x2_e'}
 {'x3_e'}
 {'x4_e'}
```

Thus the two known inputs $u 1$ and $u 2$ are the first two inputs of kalmf and the two measured outputs y1 and y2 are the last two inputs to kalmf. For the outputs of kalmf, the first two are the estimated outputs, and the remaining four are the state estimates. To use the Kalman filter, connect these inputs to the plant and noise signals in a manner analogous to that shown for a SISO plant in "Kalman Filtering".

## Plant with Unmeasured Outputs

Consider a plant with four inputs and two outputs. The first and third inputs are known, while the second and fourth inputs represent the process noise. The plant also has two outputs, but only the second of them is measured.


Use the following state-space matrices to create sys.

```
A = [-0.37 0.14 -0.01 0.04;
 0.14 -1.89 0.98-0.11;
 -0.01 0.98-0.96 -0.14;
 0.04 -0.11 -0.14 -0.95];
B = [-0.07 -2.32 0.68 0.10;
 -2.49 0.08 0 0.83;
 0 -0.95 0 0.54;
 -2.19 0.41 0.45 0.90];
C = [0 0 0 - 0.50 -0.38;
 -0.15 -2.12 -1.27 0.65];
D = zeros(2,4);
sys = ss(A,B,C,D,-1); % Discrete with unspecified sample time
sys.InputName = {'u1','w1','u2','w2'};
sys.OutputName = {'yun','ym'};
```

To use kalman to design a filter for this system, use the known and sensors input arguments to specify which inputs to the plant are known and which output is measured.

```
known = [1 3];
sensors = [2];
```

Specify the noise covariances and design the filter.

```
Q = eye(2);
R = 1;
N = 0;
[kalmf,L,P] = kalman(sys,Q,R,N,sensors,known);
```

Examining the input and output labels of kalmf shows the inputs that the filter expects and the outputs it returns.

```
kalmf.InputGroup
ans = struct with fields:
 KnownInput: [1 2]
 Measurement: 3
kalmf.InputName
ans = 3xl cell
 {'u1'}
```

\{'u2'\}
\{'ym'\}
kalmf takes as inputs the two known inputs of sys and the noisy measured outputs of sys.

```
kalmf.OutputGroup
```

ans = struct with fields:
OutputEstimate: 1
StateEstimate: [2 34 5]

The first output of kalmf is its estimate of the true value of the measured plant output. The remaining outputs are the state estimates.

## Input Arguments

## sys - Plant model with process noise

ss model
Plant model with process noise, specified as a state-space (ss) model. The plant has known inputs $u$ and white process noise inputs $w$. The plant output $y_{t}$ does not include the measurement noise.


You can write the state-space matrices of such a plant model as:
$A,[B G], C,[D H]$
kalman assumes the Gaussian noise $v$ on the output. Thus, in continuous time, the state-space equations that kalman works with are:

$$
\begin{aligned}
& \dot{x}=A x+B u+G w \\
& y=C x+D u+H w+v
\end{aligned}
$$

In discrete time, the state-space equations are:

$$
\begin{aligned}
& x[n+1]=A x[n]+B u[n]+G w[n] \\
& y[n]=C x[n]+D u[n]+H w[n]+v[n]
\end{aligned}
$$

If you do not use the known input argument, kalman uses the size of Q to determine which inputs of sys are noise inputs. In this case, kalman treats the last $N_{w}=\operatorname{size}(Q, 1)$ inputs as the noise inputs.

When the noise inputs $w$ are not the last inputs of sys, you can use the known input argument to specify which plant inputs are known. kalman treats the remaining inputs as stochastic.

For additional constraints on the properties of the plant matrices, see "Limitations" on page 2-618.

## Q - Process noise covariance

scalar | matrix
Process noise covariance, specified as a scalar or $N_{w}$-by- $N_{w}$ matrix, where $N_{w}$ is the number of noise inputs to the plant. kalman uses the size of $Q$ to determine which inputs of sys are noise inputs, taking the last $N_{w}=\operatorname{size}(Q, 1)$ inputs to be the noise inputs unless you specify otherwise with the known input argument.
kalman assumes that the process noise $w$ is Gaussian noise with covariance $\mathbf{Q}=E\left(w w^{T}\right)$. When the plant has only one process noise input, Q is a scalar equal to the variance of $w$. When the plant has multiple, uncorrelated noise inputs, Q is a diagonal matrix. In practice, you determine the appropriate values for Q by measuring or making educated guesses about the noise properties of your system.

## R - Measurement noise covariance

scalar | matrix
Measurement noise covariance, specified as a scalar or $N_{y}$-by- $N_{y}$ matrix, where $N_{y}$ is the number of plant outputs. kalman assumes that the measurement noise $v$ is white noise with covariance $\mathrm{R}=$ $E\left(\nu v^{T}\right)$. When the plant has only one output channel, R is a scalar equal to the variance of $v$. When the plant has multiple output channels with uncorrelated measurement noise, R is a diagonal matrix. In practice, you determine the appropriate values for R by measuring or making educated guesses about the noise properties of your system.

For additional constraints on the measurement noise covariance, see "Limitations" on page 2-618.

## N - Noise cross covariance

0 (default) | scalar | matrix
Noise cross covariance, specified as a scalar or $N_{y}$-by- $N_{w}$ matrix. kalman assumes that the process noise $w$ and the measurement noise $v$ satisfy $N=E\left(w v^{\mathrm{T}}\right)$. If the two noise sources are not correlated, you can omit $N$, which is equivalent to setting $N=0$. In practice, you determine the appropriate values for N by measuring or making educated guesses about the noise properties of your system.

## sensors - Measured outputs of sys

vector
Measured outputs of sys, specified as a vector of indices identifying which outputs of sys are measured. For instance, suppose that your system has three outputs, but only two of them are measured, corresponding to the first and third outputs of sys. In this case, set sensors = [13].

## known - Known inputs of sys

vector
Known inputs of sys, specified as a vector of indices identifying which inputs are known (deterministic). For instance, suppose that your system has three inputs, but only the first and second inputs are known. In this case, set known = [12]. kalman interprets any remaining inputs of sys to be stochastic.

```
type - Type of discrete-time estimator
'current' (default)|'delayed'
```

Type of discrete-time estimator to compute, specified as either 'current ' or 'delayed '. This input is relevant only for discrete-time sys.

- 'current ' - Compute output estimates $\widehat{y}[n \mid n]$ and state estimates $\widehat{x}[n \mid n]$ using all available measurements up to $y[n]$.
- 'delayed ' - Compute output estimates $\widehat{y}[n \mid n-1]$ and state estimates $\widehat{x}[n \mid n-1]$ using measurements only up to $y[n-1]$. The delayed estimator is easier to implement inside control loops.

For details about how kalman computes the current and delayed estimates, see "Discrete-Time Estimation" on page 2-619.

## Output Arguments

## kalmf - Kalman estimator

ss model
Kalman estimator or kalman filter, returned as a state-space (ss) model. The resulting estimator has inputs $[u ; y]$ and outputs $[\widehat{y} ; \widehat{x}]$. In other words, kalmf takes as inputs the plant input $u$ and the noisy plant output $y$, and produces as outputs the estimated noise-free plant output $\widehat{y}$ and the estimated state values $\widehat{x}$.

kalman automatically sets the InputName, OutputName, InputGroup, and OutputGroup properties of kalmf to help you keep track of which inputs and outputs correspond to which signals.

For the state and output equations of kalmf, see "Continuous-Time Estimation" on page 2-619 and "Discrete-Time Estimation" on page 2-619.

## L - Filter gains

array
Filter gains, returned as an array of size $N_{x}$-by- $N_{y}$, where $N_{x}$ is the number of states in the plant and $N_{y}$ is the number of plant outputs. In continuous time, the state equation of the Kalman filter is:

$$
\dot{\hat{x}}=A \widehat{x}+B u+L(y-C \widehat{x}-D u)
$$

In discrete time, the state equation is:

$$
\widehat{x}[n+1 \mid n]=A \widehat{x}[n \mid n-1]+B u[n]+L(y[n]-C \widehat{x}[n \mid n-1]-D u[n])
$$

For details about these expressions and how L is computed, see "Continuous-Time Estimation" on page 2-619 and "Discrete-Time Estimation" on page 2-619.

## P, Z - Steady-state error covariances

array

Steady-state error covariances, returned as $N_{\chi}$-by- $N_{\chi}$, where $N_{x}$ is the number of states in the plant. The Kalman filter computes state estimates that minimize P. In continuous time, the steady-state error covariance is given by:

$$
P=\lim _{t \rightarrow \infty} E\left(\{x-\widehat{x}\}\{x-\widehat{x}\}^{T}\right) .
$$

In discrete time, the steady-state error covariances are given by:

$$
\begin{aligned}
P & =\lim _{n \rightarrow \infty} E\left(\{x[n]-\widehat{x}[n \mid n-1]\}\{x[n]-\widehat{x}[n \mid n-1]\}^{T}\right), \\
Z & =\lim _{n \rightarrow \infty} E\left(\{x[n]-\widehat{x}[n \mid n]\}\{x[n]-\widehat{x}[n \mid n]\}^{T}\right) .
\end{aligned}
$$

For further details about these quantities and how kalman uses them, see "Continuous-Time Estimation" on page 2-619 and "Discrete-Time Estimation" on page 2-619.

## Mx, My - Innovation gains of state estimators

array
Innovation gains of the state estimators for discrete-time systems, returned as an array.
$M x$ and $M y$ are relevant only when type $=$ 'current', which is the default estimator for discretetime systems. For continuous-time sys or type = 'delayed', then $M x=M y=[]$.

For the ' current ' type estimator, Mx and My are the innovation gains in the update equations:

$$
\begin{aligned}
& \widehat{x}[n \mid n]=\widehat{x}[n \mid n-1]+M_{x}(y[n]-C \widehat{x}[n \mid n-1]-D u[n]) \\
& \widehat{y}[n \mid n]=C \widehat{x}[n \mid n-1]+D u[n]+M_{y}(y[n]-C \widehat{x}[n \mid n-1]-D u[n])
\end{aligned}
$$

When there is no direct feedthrough from the noise input $w$ to the plant output $y$ (that is, when $H=0$, see "Discrete-Time Estimation" on page 2-619), then $M_{y}=C M_{x}$, and the output estimate simplifies to $\widehat{y}[n \mid n]=C \widehat{x}[n \mid n]+D u[n]$.

The dimensions of the arrays $M x$ and My depend on the dimensions of sys as follows.

- $\mathrm{Mx}-N_{x}$-by- $N_{y}$, where $N_{x}$ is the number of states in the plant and $N_{y}$ is the number of outputs.
- $\mathrm{My}-N_{y}$-by- $N_{y}$.

For details about how kalman obtains Mx and My, see "Discrete-Time Estimation" on page 2-619.

## Limitations

The plant and noise data must satisfy:

- $(C, A)$ is detectable, where:
- $\bar{R}>0$ and $\left[\bar{Q} \bar{N} ; \bar{N}^{\prime} \bar{R}\right] \geq 0$, where

$$
\left[\begin{array}{cc}
\bar{Q} & \bar{N} \\
\overline{N^{\prime}} & \bar{R}
\end{array}\right]=\left[\begin{array}{ll}
G & 0 \\
H & I
\end{array}\right]\left[\begin{array}{cc}
Q & N \\
N^{\prime} & R
\end{array}\right]\left[\begin{array}{ll}
G & 0 \\
H & I
\end{array}\right] .
$$

- ( $A-\bar{N} \bar{R}^{-1} C, \bar{Q}-\bar{N} \bar{R}^{-1} \bar{N}^{T}$ ) has no uncontrollable mode on the imaginary axis in continuous time, or on the unit circle in discrete time.


## Algorithms

## Continuous-Time Estimation

Consider a continuous-time plant with known inputs $u$, white process noise $w$, and white measurement noise $v$ :

$$
\begin{aligned}
& \dot{x}=A x+B u+G w \\
& y=C x+D u+H w+v
\end{aligned}
$$

The noise signals $w$ and $v$ satisfy:

$$
E(w)=E(v)=0, \quad E\left(w w^{T}\right)=Q, \quad E\left(v v^{T}\right)=R, \quad E\left(w v^{T}\right)=N
$$

The Kalman filter, or Kalman estimator, computes a state estimate $\widehat{x}(t)$ that minimizes the steadystate error covariance:

$$
P=\lim _{t \rightarrow \infty} E\left(\{x-\widehat{x}\}\{x-\widehat{x}\}^{T}\right) .
$$

The Kalman filter has the following state and output equations:

$$
\begin{aligned}
& \frac{d \widehat{x}}{d t}=A \widehat{x}+B u+L(y-C \widehat{x}-D u) \\
& {\left[\begin{array}{l}
\widehat{y} \\
\widehat{x}
\end{array}\right]=\left[\begin{array}{l}
C \\
I
\end{array}\right] \widehat{x}+\left[\begin{array}{l}
D \\
0
\end{array}\right] u}
\end{aligned}
$$

To obtain the filter gain $L$, kalman solves an algebraic Riccati equation to obtain

$$
L=\left(P C^{T}+\bar{N}\right) \bar{R}^{-1}
$$

where

$$
\begin{aligned}
& \bar{R}=R+H N+N^{T} H^{T}+H Q H^{T} \\
& \bar{N}=G\left(Q H^{T}+N\right)
\end{aligned}
$$

$P$ solves the corresponding algebraic Riccati equation.
The estimator uses the known inputs $u$ and the measurements $y$ to generate the output and state estimates $\widehat{y}$ and $\widehat{x}$.

## Discrete-Time Estimation

The discrete plant is given by:

$$
\begin{aligned}
& x[n+1]=A x[n]+B u[n]+G w[n] \\
& y[n]=C x[n]+D u[n]+H w[n]+v[n]
\end{aligned}
$$

In discrete time, the noise signals $w$ and $v$ satisfy:

$$
E\left(w[n] w[n]^{T}\right)=Q, \quad E\left(v[n] v[n]^{T}\right)=R, \quad E\left(w[n] v[n]^{T}\right)=N
$$

The discrete-time estimator has the following state equation:

$$
\widehat{x}[n+1 \mid n]=A \widehat{x}[n \mid n-1]+B u[n]+L(y[n]-C \widehat{x}[n \mid n-1]-D u[n]) .
$$

kalman solves a discrete Riccati equation to obtain the gain matrix $L$ :

$$
L=\left(A P C^{T}+\bar{N}\right)\left(C P C^{T}+\bar{R}\right)^{-1}
$$

where

$$
\begin{aligned}
& \bar{R}=R+H N+N^{T} H^{T}+H Q H^{T} \\
& \bar{N}=G\left(Q H^{T}+N\right)
\end{aligned}
$$

kalman can compute two variants of the discrete-time Kalman estimator, the current estimator (type = 'current') and the delayed estimator (type = 'delayed').

- Current estimator - Generates output estimates $\widehat{y}[n \mid n]$ and state estimates $\widehat{x}[n \mid n]$ using all available measurements up to $y[n]$. This estimator has the output equation
where the innovation gains $M_{x}$ and $M_{y}$ are defined as:

$$
\begin{gathered}
M_{x}=P C^{T}\left(C P C^{T}+\bar{R}\right)^{-1} \\
M_{y}=\left(C P C^{T}+H Q H^{T}+H N\right)\left(C P C^{T}+\bar{R}\right)^{-1} .
\end{gathered}
$$

Thus, $M_{x}$ updates the state estimate $\widehat{x}[n \mid n-1]$ using the new measurement $y[n]$ :

$$
\widehat{x}[n \mid n]=\widehat{x}[n \mid n-1]+M_{x}(y[n]-C \widehat{x}[n \mid n-1]-D u[n])
$$

Similarly, $M_{y}$ computes the updated output estimate:

$$
\widehat{y}[n \mid n]=C \widehat{x}[n \mid n-1]+D u[n]+M_{y}(y[n]-C \widehat{x}[n \mid n-1]-D u[n])
$$

When $H=0$, then $M_{y}=C M_{x}$, and the output estimate simplifies to $\widehat{y}[n \mid n]=C \widehat{x}[n \mid n]+D u[n]$.

- Delayed estimator - Generates output estimates $\widehat{y}[n \mid n-1]$ and state estimates $\widehat{x}[n \mid n-1]$ using measurements only up to $y_{v}[n-1]$. This estimator has the output equation:

$$
\left[\begin{array}{l}
\widehat{y}[n \mid n-1] \\
\widehat{x}[n \mid n-1]
\end{array}\right]=\left[\begin{array}{l}
C \\
I
\end{array}\right] \widehat{x}[n \mid n-1]+\left[\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
u[n] \\
y[n]
\end{array}\right]
$$

The delayed estimator is easier to deploy inside control loops.

## Version History

## Introduced before R2006a

## See Also

## Blocks

Kalman Filter

## Topics

Kalman Filtering
"LQG Design for the x -Axis"

## kalmd

Design discrete Kalman estimator for continuous plant

## Syntax

[kest,L,P,M,Z] = kalmd(sys,Qn,Rn,Ts)

## Description

kalmd designs a discrete-time Kalman estimator that has response characteristics similar to a continuous-time estimator designed with kalman. This command is useful to derive a discrete estimator for digital implementation after a satisfactory continuous estimator has been designed.
[kest, L, P, M, Z] = kalmd(sys, Qn,Rn,Ts) produces a discrete Kalman estimator kest with sample time Ts for the continuous-time plant

$$
\begin{aligned}
& \dot{x}=A x+B u+G w \quad \text { (state equation) } \\
& y_{v}=C x+D u+v \quad \text { (measurement equation) }
\end{aligned}
$$

with process noise $w$ and measurement noise $v$ satisfying

$$
E(w)=E(v)=0, E\left(w w^{T}\right)=Q_{n}, E\left(v v^{T}\right)=R_{n}, E\left(w v^{T}\right)=0
$$

The estimator kest is derived as follows. The continuous plant sys is first discretized using zeroorder hold with sample time $T$ (see c2d entry), and the continuous noise covariance matrices $Q_{n}$ and $R_{n}$ are replaced by their discrete equivalents

$$
\begin{aligned}
& Q_{d}=\int_{0}^{T_{S}} e^{A \tau} G Q_{n} G^{T} e^{A^{T}} \tau d \tau \\
& R_{d}=R_{n} / T_{S}
\end{aligned}
$$

The integral is computed using the matrix exponential formulas in [2]. A discrete-time estimator is then designed for the discretized plant and noise. See kalman for details on discrete-time Kalman estimation.
kalmd also returns the estimator gains $L$ and $M$, and the discrete error covariance matrices $P$ and $Z$ (see kalman for details).

## Limitations

The discretized problem data should satisfy the requirements for kalman.

## Version History

Introduced before R2006a

## References

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second Edition, Addison-Wesley, 1990.
[2] Van Loan, C.F., "Computing Integrals Involving the Matrix Exponential," IEEE Trans. Automatic Control, AC-15, October 1970.

## See Also

kalman | lqgreg | lqrd

## lft

Generalized feedback interconnection of two models (Redheffer star product)

## Syntax

lft
sys = lft(sys1,sys2,nu,ny)

## Description

lft forms the star product or linear fractional transformation (LFT) of two model objects or model arrays. Such interconnections are widely used in robust control techniques.
sys = lft(sys1,sys2,nu,ny) forms the star product sys of the two models (or arrays) sys1 and sys2. The star product amounts to the following feedback connection for single models (or for each model in an array).


This feedback loop connects the first nu outputs of sys2 to the last nu inputs of sys1 (signals $u$ ), and the last ny outputs of sys1 to the first ny inputs of sys2 (signals $y$ ). The resulting system sys maps the input vector $\left[w_{1} ; w_{2}\right]$ to the output vector $\left[z_{1} ; z_{2}\right]$.

The abbreviated syntax
sys = lft(sys1,sys2)
produces:

- The lower LFT of sys1 and sys2 if sys2 has fewer inputs and outputs than sys1. This amounts to deleting $w_{2}$ and $z_{2}$ in the above diagram.
- The upper LFT of sys1 and sys2 if sys1 has fewer inputs and outputs than sys2. This amounts to deleting $w_{1}$ and $z_{1}$ in the above diagram.


Lower LFT connection
Upper LFT connection

## Limitations

There should be no algebraic loop in the feedback connection.

## Algorithms

The closed-loop model is derived by elementary state-space manipulations.

## Version History

Introduced before R2006a

## See Also

connect | feedback

## Linear System Analyzer

Analyze time and frequency responses of linear time-invariant (LTI) systems

## Description

The Linear System Analyzer app lets you analyze time and frequency responses of LTI systems.
Using this app, you can:

- View and compare the response plots of SISO and MIMO systems, or of several linear models at the same time.
- Generate time response plots such as step, impulse, and time response to arbitrary inputs.
- Generate frequency response plots such as Bode, Nyquist, Nichols, singular-value, and pole-zero plots.
- Inspect key response characteristics, such as rise time, maximum overshoot, and stability margins.


## Available Plots

Linear System Analyzer can generate the following response plots:

- Step response
- Impulse response
- Simulated time response to specified input signal
- Simulated time response from specified initial conditions (state-space models only)
- Bode diagram (magnitude and phase, or magnitude alone)
- Nyquist plot
- Nichols plot
- Singular value plot
- Pole/zero map and I/O pole/zero map


Change the number and type of response plots shown in this Linear System Analyzer.

## Open the Linear System Analyzer App

- MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app icon.
- MATLAB command prompt: Enter linearSystemAnalyzer.


## Examples

- "Linear Analysis Using the Linear System Analyzer"
- "Joint Time-Domain and Frequency-Domain Analysis"


## Programmatic Use

linearSystemAnalyzer opens the Linear System Analyzer app with no LTI systems to analyze. To specify a system to analyze, select File > Import.
linearSystemAnalyzer(sys1,sys2, . . , sysn) opens Linear System Analyzer and displays the step response of one or more dynamic system models, sys1, sys2, ..., sysn. Such models include:

- Numeric LTI models such as tf, zpk, or ss models.
- Identified models such as idtf, idss, or idproc (requires System Identification Toolbox software).
- Generalized LTI models such as genss or uss models. For generalized LTI models without uncertainty, Linear System Analyzer plots the response of the nominal value of the model. For generalized models with uncertainty, the app plots the responses of 20 random samples of the uncertain system. (Uncertain models require Robust Control Toolbox software.)
linearSystemAnalyzer(sys1,LineSpec1,sys2,LineSpec2..., sysn, LineSpecn) specifies the line style, marker, and color of each response plot. Specify plot styles using one, two, or three characters. For example, the following code uses red asterisks for the response of sys1, and a magenta dotted line for the response of sys2.

```
linearSystemAnalyzer(sys1,'r-*',sys2,'m--');
```

For more information about configuring this argument, see the LineSpec input argument of the plot function.
linearSystemAnalyzer (plottype, ___ ) opens Linear System Analyzer and displays the response types specified by plottype. You can use this syntax with any of the previous input argument combinations. The plottype argument can be any one of the following:

- 'step' - Step response.
- 'impulse' - Impulse response.
- 'lsim' - Linear simulation plot. When you use this plot type, the Linear Simulation Tool dialog box prompts you to specify an input signal for the simulation.
- 'initial' - Initial condition plot (state-space models only). You can use the extras argument to specify the initial state. If you do not, the Linear Simulation Tool dialog box opens and prompts you to specify an initial state for the simulation.
- 'bode' - Bode diagram.
- 'bodemag ' - Bode magnitude diagram.
- 'nyquist' - Nyquist plot.
- 'nichols' - Nichols plot.
- 'sigma' - Singular value plot. (See sigma).
- 'pzmap' - Pole/zero map.
- 'iopzmap ' - Pole/zero map of each input/output pair of the LTI system.

To open Linear System Analyzer with multiple response plots, use a cell array of up to six of these plot types for the plottype input argument. For example, the following command opens the app with a step response plot and a Nyquist plot for the system sys.
linearSystemAnalyzer(\{'step';'nyquist'\},sys)
linearSystemAnalyzer(plottype, sys1, sys2, ..., sysn, extras) specifies additional input arguments specific to the type of response plot. extras can be one or more of the input arguments available for the function corresponding to the plot type except the plotoptions and dataoptions
arguments. For example, suppose plottype is 'step'. Then, extras enables you to use the additional arguments that you could use with the step command, such as the desired final time, Tfinal. Thus, the following command opens the app with a step response plot of sys, with a final time of Tfinal.
linearSystemAnalyzer('step',sys,Tfinal)
If plottype is 'initial', you can use extras to supply the initial conditions $x 0$, and other arguments such as Tfinal. For example:
linearSystemAnalyzer('initial',sys,x0,Tfinal)
To determine appropriate arguments for extras, see the reference pages of the functions corresponding to each plot type, such as step, bode, or initial.
$\mathrm{h}=$ linearSystemAnalyzer (__ ) returns a handle to the Linear System Analyzer figure. You can use this syntax with any of the previous combinations of input arguments. Use the handle to modify previously opened Linear System Analyzer instances, as described in the next two syntaxes.
linearSystemAnalyzer('clear', h) clears the plots and data from the Linear System Analyzer corresponding to handle $h$. To clear multiple app instances at once, set $h$ to a vector of handles.
linearSystemAnalyzer('current',sys1,sys2,...,sysn,h) adds the responses of the systems sys1, sys2, ..., sysn to the Linear System Analyzer corresponding to handle h. To update multiple app instances at once, set $h$ to a vector of handles. If the new systems have different I/O dimensions from the currently displayed systems, the app clears the existing responses and displays only the new ones.

## Version History

## Introduced in R2015a

## See Also

## Apps

Control System Designer

## Functions

step|impulse|lsim|initial|iopzmap|pzmap|bode|bodemag|nyquist|nichols| sigma

## Topics

"Linear Analysis Using the Linear System Analyzer"
"Joint Time-Domain and Frequency-Domain Analysis"

## lqg

Linear-Quadratic-Gaussian (LQG) design

## Syntax

```
reg = lqg(sys,QXU,QWV)
reg = lqg(sys,QXU,QWV,QI)
reg = lqg(sys,QXU,QWV,QI,'1dof')
reg = lqg(sys,QXU,QWV,QI,'2dof')
reg = lqg(___,'current')
[reg,info] = lqg(
```

$\qquad$

## Description

reg = lqg(sys, QXU, QWV) computes an optimal linear-quadratic-Gaussian (LQG) regulator reg given a state-space model sys of the plant and weighting matrices QXU and QWV. The dynamic regulator reg uses the measurements $y$ to generate a control signal $u$ that regulates $y$ around the zero value. Use positive feedback to connect this regulator to the plant output $y$.

The LQG regulator minimizes the cost function

$$
J=E\left\{\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau}\left[x^{T}, u^{T}\right] Q_{x u}\left[\begin{array}{l}
x \\
u
\end{array}\right] d t\right\}
$$

subject to the plant equations

$$
\begin{gathered}
d x / d t=A x+B u+w \\
y=C x+D u+v
\end{gathered}
$$

where the process noise $w$ and measurement noise $v$ are Gaussian white noises with covariance:

$$
E\left(\left[\begin{array}{l}
w \\
v
\end{array}\right] \cdot\left[\begin{array}{ll}
w^{\prime} & v^{\prime}
\end{array}\right]\right)=Q W V
$$

$r e g=\operatorname{lqg}(s y s, Q X U, Q W V, Q I)$ uses the setpoint command $r$ and measurements $y$ to generate the control signal $u$. reg has integral action to ensure that $y$ tracks the command $r$.

The LQG servo-controller minimizes the cost function

$$
J=E\left\{\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int^{\tau}\left(\left[x^{T}, u^{T}\right] Q_{x u}\left[\begin{array}{l}
x \\
u
\end{array}\right]+x_{i}^{T} Q_{i} x_{i}\right) d t\right\}
$$

where $x_{i}$ is the integral of the tracking error $r-y$. For MIMO systems, $r, y$, and $x_{i}$ must have the same length.
reg $=\operatorname{lqg}(s y s, Q X U, Q W V, Q I, ' 1 d o f ')$ computes a one-degree-of-freedom servo controller that takes $e=r-y$ rather than $[r ; y]$ as input.
reg = lqg(sys, QXU, QWV, QI,'2dof') is equivalent to LQG(sys, QXU, QWV, QI) and produces the two-degree-of-freedom servo-controller shown previously.
reg = lqg (__, ' current ' ) uses the "current" Kalman estimator, which uses $x[n \mid n]$ as the state estimate when computing an LQG regulator for a discrete-time system.
[reg,info] = lqg(__) returns the controller and estimator gain matrices in the structure info for any of the previous syntaxes. You can use the controller and estimator gains to, for example, implement the controller in observer form. For more information, see "Algorithms" on page 2-634.

## Examples

## Linear-Quadratic-Gaussian (LQG) Regulator and Servo Controller Design

This example shows how to design an linear-quadratic-Gaussian (LQG) regulator, a one-degree-offreedom LQG servo controller, and a two-degree-of-freedom LQG servo controller for the following system.

The plant has three states ( $x$ ), two control inputs ( $u$ ), three random inputs ( $w$ ), one output ( $y$ ), measurement noise for the output ( $v$ ), and the following state and measurement equations.

$$
\begin{aligned}
& \frac{d x}{d t}=A x+B u+w \\
& y=C x+D u+v
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{cc}
0.3 & 1 \\
0 & 1 \\
-0.3 & 0.9
\end{array}\right] \\
& C=\left[\begin{array}{lll}
1.9 & 1.3 & 1
\end{array}\right] \quad D=\left[\begin{array}{ll}
0.53-0.61
\end{array}\right]
\end{aligned}
$$

The system has the following noise covariance data:

$$
\begin{aligned}
& Q_{n}=E\left(w w^{T}\right)=\left[\begin{array}{lll}
4 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R_{n}=E\left(v v^{T}\right)=0.7
\end{aligned}
$$

For the regulator, use the following cost function to define the tradeoff between regulation performance and control effort:

$$
J(u)=\int_{0}^{\infty}\left(0.1 x^{T} x+u^{T}\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] u\right) d t
$$

For the servo controllers, use the following cost function to define the tradeoff between tracker performance and control effort:

$$
J(u)=\int_{0}^{\infty}\left(0.1 x^{T} x+x_{i}^{2}+u^{T}\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] u\right) d t
$$

To design the LQG controllers for this system:
1 Create the state-space system by typing the following in the MATLAB Command Window:

```
A = [0 1 0;0 0 1;1 0 0];
B = [0.3 1;0 1;-0.3 0.9];
C = [1.9 1.3 1];
D = [0.53 -0.61];
sys = ss(A,B,C,D);
```

2 Define the noise covariance data and the weighting matrices by typing the following commands:

```
nx = 3; %Number of states
ny = 1; %Number of outputs
Qn = [4 2 0; 2 1 0; 0 0 1];
Rn = 0.7;
R = [1 0;0 2]
QXU = blkdiag(0.1*eye(nx),R);
QWV = blkdiag(Qn,Rn);
QI = eye(ny);
```

3 Form the LQG regulator by typing the following command:
$K L Q G=\operatorname{lqg}(s y s, Q X U, Q W V)$
This command returns the following LQG regulator:

```
A =
 x1_e x2_e x3_e
 x1_e -6.2\overline{1}2
 x2_e -4.038 -3.196 -1.791
 x3_e -1.418 -1.973 -1.766
B =
 x1_e 2.365
 x2 e 1.432
 x3-e 0.7684
C =
\begin{tabular}{rrrr}
& \(x 1-\mathrm{e}\) & \(x 2 \mathrm{e}\) & \(\times 3 _\mathrm{e}\) \\
u1 & \(-0.029 \overline{0} 4\) & \(0.00082 \overline{7} 2\) & \(0.03 \overline{0} 3\) \\
u2 & -0.7147 & -0.7115 & -0.7132
\end{tabular}
D =
 41 y1
 u2 0
Input groups:
 Name Channels
 Measurement 1
Output groups:
 Name Channels
 Controls 1,2
Continuous-time model.
```

4 Form the one-degree-of-freedom LQG servo controller by typing the following command:

KLQG1 = lqg(sys,QXU,QWV,QI,'1dof')
This command returns the following LQG servo controller:

```
A =
\begin{tabular}{lrrrr}
& \(x 1 _e\) & \(x 2 _e\) & \(x 3 _e\) & \(x i 1\) \\
x1_e & -7.626 & -5.068 & -4.891 & 0.9018 \\
x2_e & -5.108 & -4.146 & -2.362 & 0.6762 \\
x3_e & -2.121 & -2.604 & -2.141 & 0.4088 \\
xi1 & 0 & 0 & 0 & 0
\end{tabular}
B =
 x1_e -2.365
 x2 e -1.432
 x3-e -0.7684
 xi\overline{1}
C =
\begin{tabular}{rrrrr}
& x1 e & \(x 2 \mathrm{e}\) & \(\times 3 \mathrm{e}\) & xi1 \\
u1 & \(-0.53 \overline{8} 8\) & \(-0.41 \overline{7} 3\) & \(-0.24 \overline{8} 1\) & 0.5578 \\
u2 & -1.492 & -1.388 & -1.131 & 0.5869
\end{tabular}
D =
 u1 el
 u2 0
Input groups:
 Name Channels
 Error 1
Output groups:
 Name Channels
Continuous-time model.
```

5 Form the two-degree-of-freedom LQG servo controller by typing the following command:

```
KLQG2 = lqg(sys,QXU,QWV,QI,'2dof')
```

This command returns the following LQG servo controller:
$A=$

	$x 1 \_e$	$x 2$ e	$x 3 \_e$	xi1
x1_e	$-7.6 \overline{2} 6$	-5.068	$-4.8 \overline{9} 1$	0.9018
x2_e	-5.108	-4.146	-2.362	0.6762
x3_e	-2.121	-2.604	-2.141	0.4088
xi	0	0	0	0

$B=$

	$r 1$	$y 1$
$\times 1 \_e$	0	2.365
$\times 2-e$	0	1.432
x3-e	0	0.7684
xi1	1	-1

$C=$


## Tips

- lqg can be used for both continuous- and discrete-time plants. In discrete time, lqg uses $x[n \mid n-1]$ as its state estimate by default. To use $x[n \mid n]$ as the state estimate and compute the optimal LQG controller, use the ' current' input argument. For details on the state estimators, see kalman.
- To compute the LQG regulator, lqg uses the commands lqr and kalman. To compute the servocontroller, lqg uses the commands lqi and kalman.
- When you want more flexibility for designing regulators, you can use the lqr, kalman, and lqgreg commands. When you want more flexibility for designing servo controllers, you can use the lqi, kalman, and lqgtrack commands. For more information on using these commands and how to decide when to use them, see "Linear-Quadratic-Gaussian (LQG) Design for Regulation" and "Linear-Quadratic-Gaussian (LQG) Design of Servo Controller with Integral Action".


## Algorithms

The controller equations are:

- For continuous time:

$$
\begin{gathered}
d x_{e}=A x_{e}+B u+L\left(y-C x_{e}-D u\right) \\
u=-K_{\chi} x_{e}-K_{i} x_{i}
\end{gathered}
$$

- For discrete time:

$$
x[n+1 \mid n]=A x[n \mid n-1]+B u[n]+L(y[n]-C x[n \mid n-1]-D u[n])
$$

- Delayed estimator:

$$
u[n]=-K_{x} x[n \mid n-1]-K_{i} x_{i}[n]
$$

- Current estimator:

$$
\begin{gathered}
u[n]=-K_{\chi} x[n \mid n]-K_{i} x_{i}[n]-K_{w} w[n \mid n] \\
=-K_{\chi} x[n \mid n-1]-K_{i} x_{i}[n]-\left(K_{\chi} M_{\chi}+K_{w} M_{w}\right) y_{i n n}[n]
\end{gathered}
$$

$$
y_{i n n}[n]=y[n]-C x[n \mid n-1]-D u[n]
$$

Here,

- $A, B, C$, and $D$ are the state-space matrices of the LQG regulator, reg.
- $x_{i}$ is the integral of the tracking error $r-y$.
- $K_{x}, K_{w}, K_{i}, L, M_{x}$, and $M_{w}$ are the controller and estimator gain matrices returned in info.


## Version History

Introduced before R2006a

## See Also

lqr|lqi|kalman|lqry|ss|care|dare

## lqgreg

Form linear-quadratic-Gaussian (LQG) regulator

## Syntax

```
rlqg = lqgreg(kest,k)
rlqg = lqgreg(kest,k,controls)
```


## Description

$r l q g=\operatorname{lqgreg}(k e s t, k)$ returns the LQG regulator rlqg (a state-space model) given the Kalman estimator kest and the state-feedback gain matrix $k$. The same function handles both continuousand discrete-time cases. Use consistent tools to design kest and k :

- Continuous regulator for continuous plant: use lqr or lqry and kalman
- Discrete regulator for discrete plant: use dlqr or lqry and kalman
- Discrete regulator for continuous plant: use lqrd and kalmd

In discrete time, lqgreg produces the regulator

- $u[n]=-K \widehat{x}[n \mid n]$ when kest is the "current" Kalman estimator
- $u[n]=-K \widehat{x}[n \mid n-1]$ when kest is the "delayed" Kalman estimator

For more information on Kalman estimators, see the kalman reference page.
$r l q g=$ lqgreg (kest, k , controls) handles estimators that have access to additional deterministic known plant inputs $u_{d}$. The index vector controls then specifies which estimator inputs are the controls $u$, and the resulting LQG regulator rlqg has $u_{d}$ and $y$ as inputs (see the next figure).

Note Always use positive feedback to connect the LQG regulator to the plant.


## Examples

See the example "LQG Regulation: Rolling Mill Case Study".

## Algorithms

lqgreg forms the linear-quadratic-Gaussian (LQG) regulator by connecting the Kalman estimator designed with kalman and the optimal state-feedback gain designed with lqr, dlqr, or lqry. The LQG regulator minimizes some quadratic cost function that trades off regulation performance and control effort. This regulator is dynamic and relies on noisy output measurements to generate the regulating commands.

In continuous time, the LQG regulator generates the commands

$$
u=-K \widehat{x}
$$

where $\widehat{x}$ is the Kalman state estimate. The regulator state-space equations are

$$
\begin{aligned}
& \dot{\hat{x}}=[A-L C-(B-L D) K] \widehat{x}+L y \\
& u=-K \widehat{x}
\end{aligned}
$$

where $y$ is the vector of plant output measurements (see kalman for background and notation). The following diagram shows this dynamic regulator in relation to the plant.


In discrete time, you can form the LQG regulator using either the delayed state estimate $\widehat{x}[n \mid n-1]$ of $x[n]$, based on measurements up to $y[n-1]$, or the current state estimate $\widehat{x}[n \mid n]$, based on all available measurements including $y[n]$. While the regulator

$$
u[n]=-K \widehat{x}[n \mid n-1]
$$

is always well-defined, the current regulator

$$
u[n]=-K \widehat{x}[n \mid n]
$$

is causal only when $I-K M D$ is invertible (see kalman for the notation). In addition, practical implementations of the current regulator should allow for the processing time required to compute $u[n]$ after the measurements $y[n]$ become available (this amounts to a time delay in the feedback loop).

For a discrete-time plant with equations:

$$
\begin{gathered}
x[n+1]=A x[n]+B u[n]+G w[n] \\
y[n]=C x[n]+D u[n]+H w[n]+v[n] \quad\{\text { Measurements }\}
\end{gathered}
$$

connecting the "current" Kalman estimator to the LQR gain is optimal only when $E\left(w[n] v[n]^{\prime}\right)=0$ and $y[n]$ does not depend on $w[n](H=0)$. If these conditions are not satisfied, compute the optimal LQG controller using lqg.

# Version History <br> Introduced before R2006a 

## See Also <br> kalman | kalmd | lqr | dlqr|lqrd|lqry | reg

## lqgtrack

Form Linear-Quadratic-Gaussian (LQG) servo controller

## Syntax

C = lqgtrack(kest, k )
C = lqgtrack(kest,k,'2dof')
C = lqgtrack(kest,k,'1dof')
C = lqgtrack(kest, $\mathrm{k}, \ldots$. . CONTROLS $)$

## Description

lqgtrack forms a Linear-Quadratic-Gaussian (LQG) servo controller with integral action for the loop shown in the following figure. This compensator ensures that the output $y$ tracks the reference command $r$ and rejects process disturbances $w$ and measurement noise $v$. lqgt rack assumes that $r$ and $y$ have the same length.


Note Always use positive feedback to connect the LQG servo controller $C$ to the plant output $y$.

C = lqgtrack(kest, k ) forms a two-degree-offreedom LQG servo controller C by connecting the Kalman estimator kest and the state-feedback gain $k$, as shown in the following figure. C has inputs $[r ; y]$ and generates the command $u=-K\left[\widehat{x} ; x_{i}\right]$, where $\widehat{x}$ is the Kalman estimate of the plant state, and $x_{i}$ is the integrator output.


The size of the gain matrix k determines the length of $x_{i} . x_{i}, y$, and $r$ all have the same length.
The two-degree-of-freedom LQG servo controller state-space equations are

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{\hat{x}} \\
\dot{x}_{i}
\end{array}\right]=\left[\begin{array}{cc}
A-B K_{x}-L C+L D K_{x}-B K_{i}+L D K_{i} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\widehat{x} \\
x_{i}
\end{array}\right]+\left[\begin{array}{cc}
0 & L \\
I & -I
\end{array}\right]\left[\begin{array}{l}
r \\
y
\end{array}\right]} \\
& u=\left[-K_{x}-K_{i}\right]\left[\begin{array}{l}
\widehat{x} \\
x_{i}
\end{array}\right]
\end{aligned}
$$

Note The syntax C = lqgtrack(kest, $\mathrm{k}^{\prime}$ '2dof') is equivalent to $\mathrm{C}=$ lqgtrack(kest,k).

C = lqgtrack(kest, k, ' 1 dof') forms a one-degree-of-freedom LQG servo controller C that takes the tracking error $e=r-y$ as input instead of $[r ; y]$, as shown in the following figure.


The one-degree-of-freedom LQG servo controller state-space equations are

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{\hat{x}} \\
\dot{x}_{i}
\end{array}\right]=\left[\begin{array}{cc}
A-B K_{\chi}-L C+L D K_{\chi}-B K_{i}+L D K_{i} \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\widehat{x} \\
x_{i}
\end{array}\right]+\left[\begin{array}{c}
-L \\
I
\end{array}\right] e} \\
& u=\left[-K_{\chi}-K_{i}\right]\left[\begin{array}{c}
\widehat{x} \\
x_{i}
\end{array}\right]
\end{aligned}
$$

C = lqgtrack(kest, $\mathrm{k}, \ldots$. . CONTROLS) forms an LQG servo controller C when the Kalman estimator kest has access to additional known (deterministic) commands $U_{d}$ of the plant. In the index vector CONTROLS, specify which inputs of kest are the control channels $u$. The resulting compensator $C$ has inputs

- $\left[U_{d} ; r ; y\right]$ in the two-degree-of-freedom case
- $\left[U_{d} ; e\right]$ in the one-degree-of-freedom case

The corresponding compensator structure for the two-degree-of-freedom cases appears in the following figure.


## Examples

See the example "Design an LQG Servo Controller".

## Tips

You can use lqgtrack for both continuous- and discrete-time systems.
In discrete-time systems, integrators are based on forward Euler (see lqi for details). The state estimate $\widehat{x}$ is either $x[n \mid n]$ or $x[n \mid n-1]$, depending on the type of estimator (see kalman for details).

For a discrete-time plant with equations:

$$
\begin{gathered}
x[n+1]=A x[n]+B u[n]+G w[n] \\
y[n]=C x[n]+D u[n]+H w[n]+v[n] \quad\{\text { Measurements }\}
\end{gathered}
$$

connecting the "current" Kalman estimator to the LQR gain is optimal only when $E\left(w[n] v[n]^{\prime}\right)=0$ and $y[n]$ does not depend on $w[n](H=0)$. If these conditions are not satisfied, compute the optimal LQG controller using lqg.

## Version History

## Introduced in R2008b

## See Also

lqg | lqi | kalman | lqgreg | lqr

## lqi

Linear-Quadratic-Integral control

## Syntax

$[K, S, e]=\operatorname{lqi}(S Y S, Q, R, N)$

## Description

lqi computes an optimal state-feedback control law for the tracking loop shown in the following figure.

For a plant sys with the state-space equations (or their discrete counterpart):

$$
\begin{aligned}
& \frac{d x}{d t}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

the state-feedback control is of the form

$$
u=-K\left[x ; x_{i}\right]
$$

where $x_{i}$ is the integrator output. This control law ensures that the output $y$ tracks the reference command $r$. For MIMO systems, the number of integrators equals the dimension of the output $y$.
$[K, S, e]=$ lqi(SYS, Q,R,N) calculates the optimal gain matrix K, given a state-space model SYS for the plant and weighting matrices $\mathbf{Q}, \mathrm{R}, \mathrm{N}$. The control law $u=-K z=-K\left[x ; x_{i}\right]$ minimizes the following cost functions (for $r=0$ )

- $J(u)=\int_{0}^{\infty}\left\{z^{T} Q z+u^{T} R u+2 z^{T} N u\right\} d t$ for continuous time
- $J(u)=\sum_{n=0}^{\infty}\left\{z^{T} Q z+u^{T} R u+2 z^{T} N u\right\}$ for discrete time

In discrete time, lqi computes the integrator output $x_{i}$ using the forward Euler formula

$$
x_{i}[n+1]=x_{i}[n]+T s(r[n]-y[n])
$$

where Ts is the sample time of SYS.
When you omit the matrix $N, N$ is set to 0 . lqi also returns the solution $S$ of the associated algebraic Riccati equation and the closed-loop eigenvalues e.

## Limitations

For the following state-space system with a plant with augmented integrator:

$$
\begin{aligned}
& \frac{\delta z}{\delta t}=A_{a} z+B_{a} u \\
& y=C_{a} z+D_{a} u
\end{aligned}
$$

The problem data must satisfy:

- The pair $\left(A_{a}, B_{a}\right)$ is stabilizable.
- $R>0$ and $Q-N R^{-1} N^{T} \geq 0$.
- $\left(Q-N R^{-1} N^{T}, A_{a}-B_{a} R^{-1} N^{T}\right)$ has no unobservable mode on the imaginary axis (or unit circle in discrete time).


## Tips

lqi supports descriptor models with nonsingular $E$. The output S of lqi is the solution of the Riccati equation for the equivalent explicit state-space model

$$
\frac{d x}{d t}=E^{-1} A x+E^{-1} B u
$$

## Version History <br> Introduced in R2008b

## References

[1] P. C. Young and J. C. Willems, "An approach to the linear multivariable servomechanism problem", International Journal of Control, Volume 15, Issue 5, May 1972, pages 961-979.

## See Also

lqr|lqgreg|lqgtrack|lqg|care|dare

## lqr

Linear-Quadratic Regulator (LQR) design

## Syntax

```
[K,S,P] = lqr(sys,Q,R,N)
[K,S,P] = lqr(A,B,Q,R,N)
```


## Description

$[K, S, P]=\operatorname{lqr}($ sys $, Q, R, N)$ calculates the optimal gain matrix $K$, the solution $S$ of the associated algebraic Riccati equation, and the closed-loop poles P for the continuous-time or discrete-time statespace model sys. $Q$ and $R$ are the weight matrices for states and inputs, respectively. The cross term matrix $N$ is set to zero when omitted.
$[K, S, P]=\operatorname{lqr}(A, B, Q, R, N)$ calculates the optimal gain matrix $K$, the solution $S$ of the associated algebraic Riccati equation and the closed-loop poles P using the continuous-time state-space matrices $A$ and $B$. This syntax is only valid for continuous-time models. For discrete-time models, use dlqr.

## Examples

## LQR Control for Inverted Pendulum Model

pendulumModelCart.mat contains the state-space model of an inverted pendulum on a cart where the outputs are the cart displacement x and the pendulum angle $\theta$. The control input u is the horizontal force on the cart.

$$
\begin{gathered}
{\left[\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\dot{\theta} \\
\ddot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -0.1 & 3 & 0 \\
0 & 0 & 0 & 1 \\
0 & -0.5 & 30 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\theta \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{l}
0 \\
2 \\
0 \\
5
\end{array}\right] u} \\
y=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\theta \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u
\end{gathered}
$$

First, load the state-space model sys to the workspace.

```
load('pendulumCartModel.mat','sys')
```

Since the outputs are $x$ and $\theta$, and there is only one input, use Bryson's rule to determine $\mathbf{Q}$ and R .

```
Q = [1,0,0,0;...
 0,0,0,0;...
 0,0,1,0;...
 0,0,0,0];
R = 1;
```

Find the gain matrix K using lqr. Since N is not specified, lqr sets N to 0 .

```
[K,S,P] = lqr(sys,Q,R)
K = 1\times4
 -1.0000 -1.7559 16.9145 3.2274
S = 4×4
 1.5346 1.2127 -3.2274 -0.6851
 1.2127 1.5321 -4.5626 -0.9640
 -3.2274 -4.5626 26.5487 5.2079
 -0.6851 -0.9640 5.2079 1.0311
P = 4x1 complex
 -0.8684 + 0.8523i
 -0.8684 - 0.8523i
 -5.4941 + 0.4564i
 -5.4941 - 0.4564i
```

Although Bryson's rule usually provides satisfactory results, it is often just the starting point of a trial-and-error iterative design procedure to tune your closed-loop system response based on the design requirements.

## LQR Control using State-Space Matrices

aircraftPitchModel.mat contains the state-space matrices of an aircraft where the input is the elevator deflection angle $\delta$ and the output is the aircraft pitch angle $\theta$.

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q} \\
\dot{\theta}
\end{array}\right] } & =\left[\begin{array}{ccc}
-0.313 & 56.7 & 0 \\
-0.0139 & -0.426 & 0 \\
0 & 56.7 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
0.232 \\
0.0203 \\
0
\end{array}\right][\delta] \\
y & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]+[0][\delta]
\end{aligned}
$$

For a step reference of 0.2 radians, consider the following design criteria:

- Rise time less than 2 seconds
- Settling time less than 10 seconds
- Steady-state error less than $2 \%$

Load the model data to the workspace.
load('aircraftPitchModel.mat')
Define the state-cost weighted matrix $Q$ and the control weighted matrix R. Generally, you can use Bryson's Rule to define your initial weighted matrices $Q$ and $R$. For this example, consider the output
vector $C$ along with a scaling factor of 2 for matrix $Q$ and choose $R$ as 1 . $R$ is a scalar since the system has only one input.
$\mathrm{R}=1$
R $=1$
Q1 $=2 *{ }^{\prime}{ }^{*}$ C
Q1 $=3 \times 3$

0	0	0
0	0	0
0	0	2

Compute the gain matrix using lqr.
$[K 1, S 1, P 1]=\operatorname{lqr}(A, B, Q 1, R)$;
Check the closed-loop step response with the generated gain matrix K1.
sys1 = ss(A-B*K1,B,C,D);
step(sys1)


Since this response does not meet the design goals, increase the scaling factor to 25 , compute the gain matrix K2, and check the closed-loop step response for gain matrix K2.

Q2 $=25^{*} \mathrm{C}^{\prime *} \mathrm{C}$

Q2 $=3 \times 3$

0	0	0
0	0	0
0	0	25

$[K 2, S 2, P 2]=\operatorname{lqr}(A, B, Q 2, R)$;
sys2 = ss(A-B*K2,B,C,D);
step(sys2)

Step Response


In the closed-loop step response plot, the rise time, settling time, and steady-state error meet the design goals.

## Input Arguments

sys - Dynamic system model
ss model object
Dynamic system model, specified as an ss model object.
A - State matrix
n-by-n matrix
State matrix, specified as an $n$-by- n matrix, where n is the number of states.

## B - Input-to-state matrix

n-by-m matrix
Input-to-state matrix, specified as an $n$-by-m input-to-state matrix, where $m$ is the number of inputs.

## Q - State-cost weighted matrix

matrix
State-cost weighted matrix, specified as an $n$-by-n matrix, where $n$ is the number of states. You can use Bryson's rule to set the initial values of Q given by:

$$
\begin{aligned}
& Q_{i, i}=\frac{1}{\text { maximum acceptable value of }\left(\text { error }_{\text {states }}\right)^{2}}, \mathrm{i} \in\{1,2, \ldots, n\} \\
& Q=\left[\begin{array}{ccccc}
Q_{1,1} & 0 & \cdots & 0 \\
0 & Q_{2,2} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \cdots & Q_{n, n}
\end{array}\right]
\end{aligned}
$$

Here, n is the number of states.

## R - Input-cost weighted matrix

scalar | matrix
Input-cost weighted matrix, specified as a scalar or a matrix of the same size as D'D. Here, D is the feed-through state-space matrix. You can use Bryson's rule to set the initial values of R given by:

$$
\begin{aligned}
& R_{j, j}=\frac{1}{\text { maximum acceptable value of }\left(\text { error }_{\text {inputs }}\right)^{2}}, \mathrm{j} \in\{1,2, \ldots, m\} \\
& R=\left[\begin{array}{cccc}
R_{1,1} & 0 & \cdots & 0 \\
0 & R_{2,2} & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \cdots & R_{m, m}
\end{array}\right]
\end{aligned}
$$

Here, $m$ is the number of inputs.

## N - Optional cross term matrix

0 (default) | matrix
Optional cross term matrix, specified as a matrix. If $N$ is not specified, then lqr sets $N$ to 0 by default.

## Output Arguments

## K - Optimal gain

row vector
Optimal gain of the closed-loop system, returned as a row vector of size n , where n is the number of states.

## S - Solution of the associated algebraic Riccati equation

matrix

Solution of the associated algebraic Riccati equation, returned as an $n$-by- n matrix, where n is the number of states. In other words, $S$ is the same dimension as state-space matrix $A$. For more information, see icare and idare.

## P - Poles of the closed-loop system

column vector
Poles of the closed-loop system, returned as a column vector of size $n$, where $n$ is the number of states.

## Limitations

The input data must satisfy the following conditions:

- The pair A and B must be stabilizable.
- $\left[Q, N ; N^{\prime}, R\right]$ must be nonnegative definite.
- $\mathrm{R}>0$ and $Q-N R^{-1} N^{T} \geq 0$.
- $\left(Q-N R^{-1} N^{T}, A-B R^{-1} N^{T}\right.$ ) has no unobservable mode on the imaginary axis (or unit circle in discrete time).


## Tips

- lqr supports descriptor models with nonsingular E. The output S of lqr is the solution of the algebraic Riccati equation for the equivalent explicit state-space model:

$$
\frac{d x}{d t}=E^{-1} A x+E^{-1} B u
$$

## Algorithms

For continuous-time systems, lqr computes the state-feedback control $u=-K x$ that minimizes the quadratic cost function

$$
J(u)=\int_{0}^{\infty}\left(x^{T} Q x+u^{T} R u+2 x^{T} N u\right) d t
$$

subject to the system dynamics $\dot{x}=A x+B u$.
In addition to the state-feedback gain K , lqr returns the solution S of the associated algebraic Riccati equation

$$
A^{T} S+S A-(S B+N) R^{-1}\left(B^{T} S+N^{T}\right)+Q=0
$$

and the closed-loop poles $P=\operatorname{eig}(A-B K)$. The gain matrix K is derived from S using

$$
K=R^{-1}\left(B^{T} S+N^{T}\right)
$$

For discrete-time systems, lqr computes the state-feedback control $u_{n}=-K x_{n}$ that minimizes

$$
J=\sum_{n=0}^{\infty}\left\{x^{T} Q x+u^{T} R u+2 x^{T} N u\right\}
$$

subject to the system dynamics $x_{n+1}=A x_{n}+B u_{n}$.
In all cases, when you omit the cross term matrix N , lqr sets N to 0 .

## Version History <br> Introduced before R2006a

## See Also

icare|idare|dlqr|lqg|lqi|lqrd|lqry|lqgreg|lqgtrack
Topics
"Regulate Pressure in Drum Boiler"

## lqrd

Design discrete linear-quadratic (LQ) regulator for continuous plant

## Syntax

lqrd
$[K d, S, e]=\operatorname{lqrd}(A, B, Q, R, T s)$
$[K d, S, e]=\operatorname{lqrd}(A, B, Q, R, N, T s)$

## Description

lqrd designs a discrete full-state-feedback regulator that has response characteristics similar to a continuous state-feedback regulator designed using lqr. This command is useful to design a gain matrix for digital implementation after a satisfactory continuous state-feedback gain has been designed.
$[K d, S, e]=\operatorname{lqrd}(A, B, Q, R, T s)$ calculates the discrete state-feedback law

$$
u[n]=-K_{d} \chi[n]
$$

that minimizes a discrete cost function equivalent to the continuous cost function

$$
J=\int_{0}^{\infty}\left(x^{T} Q x+u^{T} R u\right) d t
$$

The matrices $A$ and $B$ specify the continuous plant dynamics

$$
\dot{x}=A x+B u
$$

and Ts specifies the sample time of the discrete regulator. Also returned are the solution $S$ of the discrete Riccati equation for the discretized problem and the discrete closed-loop eigenvalues $\mathrm{e}=$ eig(Ad-Bd*Kd).
$[K d, S, e]=\operatorname{lqrd}(A, B, Q, R, N, T s)$ solves the more general problem with a cross-coupling term in the cost function.

$$
J=\int_{0}^{\infty}\left(x^{T} Q x+u^{T} R u+2 x^{T} N u\right) d t
$$

## Limitations

The discretized problem data should meet the requirements for dlqr.

## Algorithms

The equivalent discrete gain matrix Kd is determined by discretizing the continuous plant and weighting matrices using the sample time Ts and the zero-order hold approximation.

With the notation

$$
\begin{aligned}
\Phi(\tau)=e^{A \tau}, \quad A_{d} & =\Phi\left(T_{s}\right) \\
\Gamma(\tau)=\int_{b}^{\tau} e^{A \eta} B d \eta, B_{d} & =\Gamma\left(T_{s}\right)
\end{aligned}
$$

the discretized plant has equations

$$
\chi[n+1]=A_{d} \chi[n]+B_{d} u[n]
$$

and the weighting matrices for the equivalent discrete cost function are

$$
\left[\begin{array}{cc}
Q_{d} & N_{d} \\
N_{d}^{T} & R_{d}
\end{array}\right]=\int_{0}^{T_{S}}\left[\begin{array}{cc}
\Phi^{T}(\tau) & 0 \\
\Gamma^{T}(\tau) & I
\end{array}\right]\left[\begin{array}{cc}
Q & N \\
N^{T} & R
\end{array}\right]\left[\begin{array}{cc}
\Phi(\tau) & \Gamma(\tau) \\
0 & I
\end{array}\right] d \tau
$$

The integrals are computed using matrix exponential formulas due to Van Loan (see [2]). The plant is discretized using c2d and the gain matrix is computed from the discretized data using dlqr.

## Version History

## Introduced before R2006a

## References

[1] Franklin, G.F., J.D. Powell, and M.L. Workman, Digital Control of Dynamic Systems, Second Edition, Addison-Wesley, 1980, pp. 439-440.
[2] Van Loan, C.F., "Computing Integrals Involving the Matrix Exponential," IEEE Trans. Automatic Control, AC-23, June 1978.

## See Also

c2d | dlqr | kalmd | lqr

## lqry

Form linear-quadratic (LQ) state-feedback regulator with output weighting

## Syntax

[K,S,e] = lqry(sys, Q,R,N)

## Description

Given the plant

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

or its discrete-time counterpart, lqry designs a state-feedback control

$$
u=-K x
$$

that minimizes the quadratic cost function with output weighting

$$
J(u)=\int_{0}^{\infty}\left(y^{T} Q y+u^{T} R u+2 y^{T} N u\right) d t
$$

(or its discrete-time counterpart). The function lqry is equivalent to lqr or dlqr with weighting matrices:

$$
\left[\begin{array}{cc}
\bar{Q} & \bar{N} \\
\bar{N}^{T} & \bar{R}
\end{array}\right]=\left[\begin{array}{cc}
C^{T} & 0 \\
D^{T} & I
\end{array}\right]\left[\begin{array}{cc}
Q & N \\
N^{T} & R
\end{array}\right]\left[\begin{array}{cc}
C & D \\
0 & I
\end{array}\right]
$$

$[K, S, e]=\operatorname{lqry}($ sys $, Q, R, N)$ returns the optimal gain matrix $K$, the Riccati solution $S$, and the closed-loop eigenvalues $e=\operatorname{eig}(A-B * K)$. The state-space model sys specifies the continuous- or discrete-time plant data $(A, B, C, D)$. The default value $N=0$ is assumed when $N$ is omitted.

## Examples

See "LQG Design for the x -Axis" for an example.

## Limitations

The data $A, B, \bar{Q}, \bar{R}, \bar{N}$ must satisfy the requirements for lqr or dlqr.

## Version History <br> \section*{Introduced before R2006a}

## See Also

lqr|dlqr|kalman|lqgreg

## Isim

Plot simulated time response of dynamic system to arbitrary inputs; simulated response data

## Syntax

lsim(sys,u,t)
lsim(sys,u,t,x0)
$\operatorname{lsim}(s y s, u, t, x 0, p)$
lsim(sys,u,t,x0,method)
lsim(sys1,sys2,...,sysN,u,t,__)
lsim(sys1,LineSpec1, ...,sysN, LineSpecN, $\qquad$ )
$\mathrm{y}=\operatorname{lsim}(\mathrm{sys}, \mathrm{u}, \mathrm{t})$
$y=\operatorname{lsim}(s y s, u, t, x 0)$
$y=\operatorname{lsim}(s y s, u, t, x 0, p)$
$y=\operatorname{lsim}(s y s, u, t, x 0, m e t h o d)$
[y,t0ut,x] = lsim(__)
[y,t0ut, x, pOut] = $\overline{\operatorname{sim}}($ sys, $u, t, x 0, p)$
lsim(sys)

## Description

## Response Plots

lsim(sys,u,t) plots the simulated time response of the dynamic system model sys to the input history $(\mathrm{t}, \mathrm{u})$. The vector t specifies the time samples for the simulation. For single-input systems, the input signal $u$ is a vector of the same length as $t$. For multi-input systems, $u$ is an array with as many rows as there are time samples (length( $t$ )) and as many columns as there are inputs to sys.
$\operatorname{lsim}(s y s, u, t, x 0)$ further specifies a vector $x 0$ of initial state values, when sys is a state-space model.
$\operatorname{lsim}($ sys , $u, t, x 0, p)$ specifies the parameter trajectory $p$ for LPV models.
$\operatorname{lsim}(s y s, u, t, x 0$, method) specifies how lsim interpolates the input values between samples, when sys is a continuous-time model.
lsim(sys1, sys2, ...,sysN, u,t,_) simulates the responses of several dynamic system models to the same input history and plots these responses on a single figure. All systems must have the same number of inputs and outputs. You can also use the x 0 and method input arguments when computing the responses of multiple models.
lsim(sys1,LineSpec1, ...,sysN, LineSpecN, $\qquad$ ) specifies a color, line style, and marker for each system in the plot. When you need additional plot customization options, use lsimplot instead.

## Response Data

$y=\operatorname{lsim}(s y s, u, t)$ returns the system response $y$, sampled at the same times $t$ as the input. For single-output systems, y is a vector of the same length as t . For multi-output systems, y is an array having as many rows as there are time samples (length( $t$ )) and as many columns as there are outputs in sys. This syntax does not generate a plot.
$y=\operatorname{lsim}(s y s, u, t, x 0)$ further specifies a vector $x 0$ of initial state values, when sys is a statespace model.
$y=\operatorname{lsim}(s y s, u, t, x 0, p)$ specifies the parameter trajectory $p$ for LPV models.
$y=\operatorname{lsim}(s y s, u, t, x 0$, method) specifies how lsim interpolates the input values between samples, when sys is a continuous-time model.
[y,t0ut,x] = lsim( $\qquad$ ) returns the state trajectories $x$, when sys is a state-space model. $x$ is an array with as many rows as there are time samples and as many columns as there are states in sys. This syntax also returns the time samples used for the simulation in t0ut.
[y,tOut, $x, p 0 u t]=\operatorname{lsim}(s y s, u, t, x 0, p)$ also returns the parameter trajectories p0ut, when sys is an LPV model.

## Linear Simulation Tool

lsim(sys) opens the Linear Simulation Tool. For more information about using this tool for linear analysis, see Working with the Linear Simulation Tool.

## Examples

## Simulated Response to Arbitrary Input Signal

Consider the following transfer function.

```
sys = tf(3,[1 2 3])
sys =
 3
 s^2 + 2 s + 3
Continuous-time transfer function.
```

To compute the response of this system to an arbitrary input signal, provide lsim with a vector of the times $t$ at which you want to compute the response and a vector $u$ containing the corresponding signal values. For instance, plot the system response to a ramping step signal that starts at 0 at time $t=0$, ramps from 0 at $t=1$ to 1 at $t=2$, and then holds steady at 1 . Define $t$ and compute the values of $u$.

```
t = 0:0.04:8; % 201 points
u = max(0,min(t-1,1));
```

Use lsim without an output argument to plot the system response to the signal.

```
lsim(sys,u,t)
```

grid on


The plot shows the applied input ( $u, t$ ) in gray and the system response in blue.
Use lsim with an output argument to obtain the simulated response data.
y $=$ lsim(sys,u,t);
size(y)
ans $=1 \times 2$
$201 \quad 1$

The vector y contains the simulated response at the corresponding times in t .

## Response to Periodic Signal

Use gensig to create periodic input signals such as sine waves and square waves for use with lsim. Simulate the response to a square wave of the following SISO state-space model.
$\mathrm{A}=[-3-1.5 ; 50] ;$
B = [1; 0];
C = [0.5 1.5];
D = 0;
sys = ss(A,B,C,D);

For this example, create a square wave with a period of 10 s and a duration of 20 s .
$[u, t]=$ gensig("square", 10, 20);
gensig returns the vector $t$ of time steps and the vector $u$ containing the corresponding values of the input signal. (If you do not specify a sample time for t , then gensig generates 64 samples per period.) Use these with lsim and plot the system response.
lsim(sys,u,t)
grid on

## Linear Simulation Results



The plot shows the applied square wave in gray and the system response in blue. Call lsim with an output argument to obtain the response values at each point in $t$.
$[y, \sim]=\operatorname{lsim}(s y s, u, t) ;$

## Response of Discrete-Time System

When you simulate the response of a discrete-time system, the time vector $t$ must be of the form Ti:dT:Tf, where dT is the sample time of the model. Simulate the response of the following discrete-time transfer function to a ramp step input.
sys $=t f([0.06$ 0.05],[1 -1.56 0.67],0.05);

This transfer function has a sample time of 0.05 s . Use the same sample time to generate the time vector $t$ and a ramped step signal $u$.
$t=0: 0.05: 4 ;$
$\mathrm{u}=\max (0, \min (\mathrm{t}-1,1))$;
Plot the system response.
lsim(sys,u,t)

## Linear Simulation Results



To simulate the response of a discrete-time system to a periodic input signal, use the same sample time with gensig to generate the input. For instance, simulate the system response to a sine wave with period of 1 s and a duration of 4 s .
[u,t] = gensig("sine", 1, 4, 0.05);
Plot the system response.
lsim(sys,u,t)


## Plot Response of Multiple Systems to Same Input

lsim allows you to plot the simulated responses of multiple dynamic systems on the same axis. For instance, compare the closed-loop response of a system with a PI controller and a PID controller. Create a transfer function of the system and tune the controllers.

```
H = tf(4,[1 10 25]);
Cl = pidtune(H,'PI');
C2 = pidtune(H,'PID');
```

Form the closed-loop systems.
sys1 $=$ feedback $\left(H^{*} C 1,1\right) ;$
sys2 $=$ feedback $\left(H^{*} C 2,1\right) ;$
Plot the responses of both systems to a square wave with a period of 4 s .

```
[u,t] = gensig("square",4,12);
lsim(sys1,sys2,u,t)
grid on
legend("PI","PID")
```



By default, lsim chooses distinct colors for each system that you plot. You can specify colors and line styles using the LineSpec input argument.

```
lsim(sys1,"r--",sys2,"b",u,t)
grid on
legend("PI","PID")
```



The first LineSpec "r--" specifies a dashed red line for the response with the PI controller. The second LineSpec "b" specifies a solid blue line for the response with the PID controller. The legend reflects the specified colors and line styles. For more plot customization options, use lsimplot.

## Plot Simulated Response of MIMO System

In a MIMO system, at each time step $t$, the input $u(t)$ is a vector whose length is the number of inputs. To use lsim, you specify $u$ as a matrix with dimensions Nt -by-Nu, where Nu is the number of system inputs and Nt is the length of t . In other words, each column of u is the input signal applied to the corresponding system input. For instance, to simulate a system with four inputs for 201 time steps, provide $u$ as a matrix of four columns and 201 rows, where each row $u(i,:)$ is the vector of input values at the ith time step; each column $u(:, j)$ is the signal applied at the $j$ th input.

Similarly, the output $y(t)$ computed by lsim is a matrix whose columns represent the signal at each system output. When you use lsim to plot the simulated response, lsim provides separate axes for each output, representing the system response in each output channel to the input $u(t)$ applied at all inputs.

Consider the two-input, three-output state-space model with the following state-space matrices.

```
A = [-1.5 -0.2 1.0;
 -0.2 -1.7 0.6;
 1.0 0.6 -1.4];
```

```
B = [1.5 0.6;
 -1.8 1.0;
 0 0];
C = [0 - -0.5 -0.1;
 0.35 -0.1 -0.15
 0.65 0 0.6];
D = [0.5 0;
 0.05 0.75
 0 0];
sys = ss(A,B,C,D);
```

Plot the response of sys to a square wave of period 4 s , applied to the first input sys and a pulse applied to the second input every 3 s . To do so, create column vectors representing the square wave and the pulsed signal using gensig. Then stack the columns into an input matrix. To ensure the two signals have the same number of samples, specify the same end time and sample time.

Tf = 10;
Ts = 0.1;
[uSq, t] = gensig("square", 4,Tf,Ts);
[uP, $\sim$ ] = gensig("pulse", $3, \mathrm{Tf}, \mathrm{Ts})$;
u = [uSq uP];
lsim(sys,u,t)


Each axis shows the response of one of the three system outputs to the signals $u$ applied at all inputs. Each plot also shows all input signals in gray.

## Plot System Evolution from Initial Condition

By default, lsim simulates the model assuming all states are zero at the start of the simulation. When simulating the response of a state-space model, use the optional $x 0$ input argument to specify nonzero initial state values. Consider the following two-state SISO state-space model.

```
A = [-1.5 -3;
 3 -1];
B = [1.3; 0];
C = [1.15 2.3];
D = 0;
sys = ss(A,B,C,D);
```

Suppose that you want to allow the system to evolve from a known set of initial states with no input for 2 s , and then apply a unit step change. Specify the vector $x 0$ of initial state values, and create the input vector.

```
x0 = [-0.2 0.3];
t = 0:0.05:8;
u = zeros(length(t),1);
u(t>=2) = 1;
lsim(sys,u,t,x0)
grid on
```



The first half of the plot shows the free evolution of the system from the initial state values [-0.2 $0.3]$. At $t=2$ there is a step change to the input, and the plot shows the system response to this new signal beginning from the state values at that time.

## Extract Simulated Response Data

When you use lsim with output arguments, it returns the simulated response data in an array. For a SISO system, the response data is returned as a column vector of the same length as $t$. For instance, extract the response of a SISO system to a square wave. Create the square wave using gensig.

```
sys = tf([2 5 1],[1 2 3]);
[u,t] = gensig("square",4,10,0.05);
[y,t] = lsim(sys,u,t);
size(y)
ans = 1\times2
```

    \(201 \quad 1\)
    The vector y contains the simulated response at each time step in t . (l sim returns the time vector t as a convenience.)

For a MIMO system, the response data is returned in an array of dimensions $N$-by- $N y$-by- $N u$, where Ny and Nu are the number of outputs and inputs of the dynamic system. For instance, consider the following state-space model, representing a three-state system with two inputs and three outputs.

```
A = [-1.5 -0.2 1.0;
 -0.2 -1.7 0.6;
 1.0 0.6 -1.4];
B = [1.5 0.6;
 -1.8 1.0;
 0 0];
C = [0 -0.1 -0.2;
 0.7 -0.2 -0.3
 -0.65 0 -0.6];
D = [0.1 0;
 0.1 1.5
 0 0];
sys = ss(A,B,C,D);
```

Extract the responses of the three output channels to the square wave applied at both inputs.

```
uM = [u u];
[y,t] = lsim(sys,uM,t);
size(y)
ans = 1\times2
 201 3
```

$y(:, j)$ is a column vector containing response at the $j$ th output to the square wave applied to both inputs. That is, $\mathrm{y}(\mathrm{i},:)$ is a vector of three values, the output values at the $i$ th time step.

Because sys is a state-space model, you can extract the time evolution of the state values in response to the input signal.

```
[y,t,x] = lsim(sys,uM,t);
size(x)
ans = 1\times2
 201 3
```

Each row of $x$ contains the state values $[x 1, x 2, x 3]$ at the corresponding time in $t$. In other words, $x(i,:)$ is the state vector at the $i$ th time step. Plot the state values.

```
plot(t,x)
```



## Response of Systems in Model Array

The example Plot Response of Multiple Systems to Same Input shows how to plot responses of several individual systems on a single axis. When you have multiple dynamic systems arranged in a model array, lsim plots all their responses at once.

Create a model array. For this example, use a one-dimensional array of second-order transfer functions having different natural frequencies. First, preallocate memory for the model array. The following command creates a 1-by-5 row of zero-gain SISO transfer functions. The first two dimensions represent the model outputs and inputs. The remaining dimensions are the array dimensions. (For more information about model arrays and how to create them, see "Model Arrays".)

```
sys = tf(zeros(1,1,1,5));
```

Populate the array.

```
w0 = 1.5:1:5.5; % natural frequencies
zeta = 0.5; % damping constant
for i = 1:length(w0)
 sys(:,:,1,i) = tf(w0(i)^2,[1 2*zeta*w0(i) w0(i)^2]);
end
```

Plot the responses of all models in the array to a square wave input.

```
[u,t] = gensig("square",5,15);
```

lsim(sys,u,t)

## Linear Simulation Results


lsim uses the same line style for the responses of all entries in the array. One way to distinguish among entries is to use the SamplingGrid property of dynamic system models to associate each entry in the array with the corresponding $w 0$ value.

```
sys.SamplingGrid = struct('frequency',w0);
```

Now, when you plot the responses in a MATLAB figure window, you can click a trace to see which frequency value it corresponds to.

## Simulate Response of Identified Model

Load estimation data to estimate a model.

```
load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor');
```

$z$ is an iddata object that stores the one-input two-output estimation data with a sample time of 0.1 s.

Estimate a state-space model of order 4 using estimation data z.
[sys,x0] = n4sid(z,4);
sys is the estimated model and $x 0$ is the estimated initial states.
Simulate the response of sys using the same input data as the one used for estimation and the initial states returned by the estimation command.
$[y, t, x]=\operatorname{lsim}(s y s, z . I n p u t D a t a,[], x 0)$;
Here, y is the system response, t is the time vector used for simulation, and x is the state trajectory.
Compare the simulated response $y$ to the measured response z. OutputData for both outputs.

```
subplot(211), plot(t,z.OutputData(:,1),'k',t,y(:,1),'r')
legend('Measured','Simulated')
subplot(212), plot(t,z.OutputData(:,2),'k',t,y(:,2),'r')
legend('Measured','Simulated')
```




## Time Response of Linear-Parameter Varying State-Space Model

For this example, fcnMaglev.m defines the matrices and offsets of a magnetic levitation system. The magnetic levitation controls the height of a levitating ball using a coil current that creates a magnetic force on the ball. This example simulates the model in open loop.

Create an LPV model.
lpvSys = lpvss('h',@fcnMaglev)

Continuous-time state-space LPV model with 1 outputs, 1 inputs, 2 states, and 1 parameters. Model Properties

You can set additional properties using the dot notation.

```
lpvSys.StateName = {'h','hdot'};
lpvSys.InputName = 'current';
lpvSys.InputName = 'height';
```

Simulate the response of this model to an arbitrary sinusoidal input current.
h0 = 1;
[~,~,~,~,~,~,x0,u0,~] = fcnMaglev([],h0);
$\mathrm{t}=0: 1 \mathrm{e}-2: 1$;
$u=u 0 *(1+0.1 * \sin (10 * t))$;
$\mathrm{y}=\mathrm{l}$ sim(lpvSys,u,t,x0,@(t,x,u) $\mathrm{x}(1))$;
**iter $=20$, residual: 3.32e-01
**iter = 7, residual: 4.33e-10
Plot the response.
$p l o t(t, y, t, u / u 0)$
legend('height','current')


The ball is attracted to the magnet when the current first increases ( h decreases). The subsequent decrease in current is not enough to bring it back.
$h=0$ is a singularity for this model, that is, the ball hits the magnet. The LPV model ceases to be valid at this point.

## Effect of Sample Time on Simulation

The choice of sample time can drastically affect simulation results. To illustrate why, consider the following second-order model.

$$
\operatorname{sys}(s)=\frac{\omega^{2}}{s^{2}+2 s+\omega^{2}}, \omega=62.83
$$

Simulate the response of this model to a square wave with period 1 s , using a sample time of 0.1 s .

```
w2 = 62.83^2;
sys = tf(w2,[1 2 w2]);
tau = 1;
Tf = 5;
Ts = 0.1;
[u,t] = gensig("square",tau,Tf,Ts);
lsim(sys,u,t)
```

Linear Simulation Tool $-\quad \times$

The input signal is undersampled. Use a sampling period smaller than 0.015625 .

OK

lsim simulates the model using the specified input signal, but it issues a warning that the input signal is undersampled. lsim recommends a sample time that generates at least 64 samples per period of the input $u$. To see why this recommendation matters, simulate sys again using a sample time smaller than the recommended maximum.
figure
Ts2 $=0.01$;
[u2,t2] = gensig("square",tau,Tf,Ts2);
lsim(sys,u2,t2)


This response exhibits strong oscillatory behavior that is hidden in the undersampled version.

## Input Arguments

## sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems whose responses you can simulate include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns response data for the nominal model only.
- Sparse state-space models such as sparss and mechss models.
- Identified LTI models, such as idtf, idss, or idproc models. For identified models, you can also use the sim command, which can compute the standard deviation of the simulated response and state trajectories. sim can also simulate all types of models with nonzero initial conditions, and
can simulate nonlinear identified models.(Using identified models requires System Identification Toolbox software.)
- Linear time-varying (ltvss) and linear parameter-varying (lpvss) models.
lsim does not support frequency-response data models such as $f r d$, genfrd, or idfrd models.
If sys is an array of models, the function plots the responses of all models in the array on the same axes. See "Response of Systems in Model Array" on page 2-666.


## u - Input signal

vector | array
Input signal for simulation, specified as a vector for single-input systems, and an array for multi-input systems.

- For single-input systems, $u$ is a vector of the same length as $t$.
- For multi-input systems, $u$ is an array with as many rows as there are time samples (length( t )) and as many columns as there are inputs to sys. In other words, each row $u(i,:)$ represents the values applied at the inputs of sys at time $t(i)$. Each column $u(:, j)$ is the signal applied to the $j$ th input of sys.


## t - Time samples

vector
Time samples at which to compute the response, specified as a vector of the form T0:dT:Tf. The lsim command interprets $t$ as having the units specified in the TimeUnit property of the model sys.

For continuous-time sys, the lsim command uses the time step dT to discretize the model. If dT is too large relative to the system dynamics (undersampling), lsim issues a warning recommending a faster sampling time. For further discussion of the impact of sampling time on simulation, see "Effect of Sample Time on Simulation" on page 2-670.

For discrete-time sys, the time step dT must equal the sample time of sys. Alternatively, you can omit $t$ or set it to []. In that case, lsim sets $t$ to a vector of the same length as $u$ that begins at 0 with a time step equal to sys.Ts.

## x0 - Initial state values

vector of zeros (default) | vector
Initial state values for simulating a state-space model, specified as a vector having one entry for each state in sys. If you omit this argument, then lsim sets all states to zero at $t=0$.

## p - LPV model parameter trajectory

matrix | function handle
Parameter trajectory of the LPV model, specified as a matrix or a function handle.

- For exogenous or explicit trajectories, specify p as a matrix with dimensions $N$-by- $N p$, where $N$ is the number of time samples and $N p$ is the number of parameters.

Thus, the row vector $\mathrm{p}(\mathrm{i},:$ ) contains the parameter values at the ith time step.

- For endogenous or implicit trajectories, specify p as a function handle of the form $p=F(t, x, u)$ in continuous time and $p=F(k, x, u)$ in discrete time that gives parameters as a function of time $t$ or time sample $k$, state $x$, and input $u$.

This option is useful when you want to simulate quasi-LPV models.

## method - Discretization method <br> 'zoh|'foh'

Discretization method for sampling continuous-time models, specified as one of the following.

- 'zoh' - Zero-order hold
- 'foh' - First-order hold

When sys is a continuous-time model, lsim computes the time response by discretizing the model using a sample time equal to the time step $d T=t(2)-t(1)$ of $t$. If you do not specify a discretization method, then lsim selects the method automatically based on the smoothness of the signal u. For more information about these two discretization methods, see "Continuous-Discrete Conversion Methods".

## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.

Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

## Output Arguments

## y - Simulated response data <br> array

Simulated response data, returned as an array.

- For single-input systems, $y$ is a column vector of the same length as $t$.
- For multi-output systems, $y$ is an array with as many rows as there are time samples (length ( $t$ )) and as many columns as there are outputs in sys. Thus, the jth column of $y$, or $y(:, j)$, contains the response at the $j$ th output to $u$ applied at all inputs.


## tOut - Time vector

vector
Time vector used for simulation, returned as a column vector. When you specify an input time vector $t$ of the form $0: d T: T f$, then tO ut $=\mathrm{t}$. If t is nearly equisampled, lsim adjusts the sample times for simulation and returns the result in tOut. For discrete-time sys, you can omit $t$ or set it to []. In that case, l sim sets to a vector of the same length as $u$ that begins at 0 with a time step equal to sys.Ts, and returns the result in t0ut.

## x - State trajectories

array

State trajectories, returned as an array. When sys is a state-space model, $x$ contains the evolution of the states of sys in response to the input. $x$ is an array with as many rows as there are time samples (length( t )) and as many columns as there are states in sys.

## pOut - Parameter trajectories

array
Parameter trajectories, returned as an array. When sys is a linear-parameter varying (lpvss) model, pOut contains the evolution of the parameters of sys. pOut is an array with as many rows as there are time samples (length(t)) and as many columns as there are parameters in sys.

## Tips

- When you need additional plot customization options, use lsimplot instead.


## Algorithms

For a discrete-time transfer function,

$$
\operatorname{sys}\left(z^{-1}\right)=\frac{a_{0}+a_{1} z^{-1}+\ldots+a_{n} z^{-n}}{1+b_{1} z^{-1}+\ldots+b_{n} z^{-n}}
$$

lsim filters the input based on the recursion associated with this transfer function:

$$
y[k]=a_{0} u[k]+\ldots+a_{n} u[k-n]-b_{1} y[k-1]-\ldots-b_{n}[k-n] .
$$

For discrete-time zpk models, lsim filters the input through a series of first-order or second-order sections. This approach avoids forming the numerator and denominator polynomials, which can cause numerical instability for higher-order models.

For discrete-time state-space models, lsim propagates the discrete-time state-space equations,

$$
\begin{gathered}
x[n+1]=A x[n]+B u[n], \\
y[n]=C x[n]+D u[n] .
\end{gathered}
$$

For continuous-time systems, lsim first discretizes the system using c2d, and then propagates the resulting discrete-time state-space equations. Unless you specify otherwise with the method input argument, lsim uses the first-order-hold discretization method when the input signal is smooth, and zero-order hold when the input signal is discontinuous, such as for pulses or square waves. The sample time for discretization is the spacing dT between the time samples you supply in t .

## Version History

## Introduced before R2006a

## See Also

## Functions

gensig|impulse|initial|step|lsiminfo|lsimplot

## Apps

Linear System Analyzer

## Isiminfo

Compute linear response characteristics

## Syntax

```
S = lsiminfo(y,t)
S = lsiminfo(y,t,yfinal)
S = lsiminfo(y,t,yfinal,yinit)
S = lsiminfo(___,'SettlingTimeThreshold',ST)
```


## Description

lsiminfo lets you compute linear response characteristics from an array of response data [y, t]. For a linear response $y(t)$, lsiminfo computes characteristics relative to $y_{\text {init }}$ and $y_{f \text { final }}$, where $y_{\text {init }}$ is the initial offset, that is, the value before the input is applied, and $y_{\text {final }}$ is the steady-state value of the response.
lsiminfo uses $y_{\text {init }}=0$ and $y_{\text {final }}=$ last sample value of $y(t)$ unless you explicitly specify these values.
The function returns the characteristics in a structure containing the fields:

- TransientTime - The first time $T$ such that the error $\mid y(t)-y_{\text {fnal }} \leq$ SettlingTimeThreshold $\times$ $e_{\max }$ for $t \geq T$, where $e_{\max }$ is the maximum error $\left|y(t)-y_{f n a l}\right|$ for $t \geq 0$.

By default, SettlingTimeThreshold $=0.02$ ( $2 \%$ of the peak error). Transient time measures how quickly the transient dynamics die off.

- SettlingTime - The first time $T$ such that $\left|y(t)-y_{f i n a l}\right| \leq$ SettlingTimeThreshold $\times\left|y_{f n a l}-y_{\text {init }}\right|$ for $t \geq T$.

By default, settling time measures the time it takes for the error to stay below $2 \%$ of $\left|y_{\text {final }}-y_{\text {init }}\right|$.

- Min - Minimum value of $y(t)$.
- MinTime - Time the response takes to reach the minimum value.
- Max - Maximum value of $y(t)$.
- MaxTime - Time the response takes to reach the maximum value.
$\mathrm{S}=$ lsiminfo( $\mathrm{y}, \mathrm{t})$ computes linear response characteristics from an array of response data y and corresponding time vector $t$. This syntax uses $y_{\text {init }}=0$ and the last value in $y$ (or the last value in each channel's corresponding response data) as $y_{\text {fnal }}$ to compute characteristics that depend on these values.

For SISO system responses, y is a vector with the same number of entries as t . For MIMO response data, y is an array containing the responses of each I/O channel.
$\mathrm{S}=\mathrm{lsiminfo}(\mathrm{y}, \mathrm{t}, \mathrm{yfinal})$ computes linear response characteristics relative to the steady-state value yfinal. This syntax is useful when you know that the expected steady-state system response differs from the last value in $y$ for reasons such as measurement noise. This syntax uses $y_{\text {init }}=0$.

For SISO responses, $t$ and $y$ are vectors with the same length NS. For systems with NY outputs, you can specify y as an NS-by-NY array and yfinal as an NY-by-1 array. lsiminfo then returns a NY-by-1 structure array $S$ of response characteristics corresponding to each output channel.

S = lsiminfo(y,t,yfinal,yinit) computes response characteristics relative to the response initial value yinit. This syntax is useful when your y data has an initial offset, that is, y is nonzero before the input is applied.

For SISO responses, $t$ and $y$ are vectors with the same length NS. For systems with NY outputs, you can specify y as an NS-by-NY array and yfinal and yinit as an NY-by-1 arrays. lsiminfo then returns a NY-by-1 structure array S of response characteristics corresponding to each output channel.

S = lsiminfo(__, 'SettlingTimeThreshold',ST) lets you specify the threshold ST used in definition of settling and transient times. The default value is $S T=0.02(2 \%)$. You can use this syntax with any of the previous input-argument combinations.

## Examples

## Compute Response Characteristics of Transfer Function

Create the following continuous-time transfer function:
$H(s)=\frac{s-1}{s^{3}+2 s^{2}+3 s+4}$

Calculate the impulse response.
[y,t] = impulse(sys);
impulse returns the output response $y$ and the time vector $t$ used for simulation.
Compute the response characteristics using a final response value of 0 .

```
s = lsiminfo(y,t,0)
s = struct with fields:
 TransientTime: 22.8700
 SettlingTime: NaN
 Min: -0.4268
 MinTime: 2.0088
 Max: 0.2847
 MaxTime: 4.0733
```

You can plot the impulse response and verify these response characteristics. For example, the time at which the minimum response value (MinTime) is reached is approximately 2 seconds.

```
impulse(sys)
```



## Input Arguments

## y - Response data

vector | array
Response data, specified as one of the following:

- For SISO response data, a vector of length Ns, where Ns is the number of samples in the response data.
- For MIMO response data, an Ns-by-Ny array, where Ny is the number of system outputs.


## t - Time vector

vector
Time vector corresponding to the response data in y , specified as a vector of length Ns .

## yfinal - Steady-state value

```
scalar | array
```

Response steady-state value, specified as a scalar or an array.

- For SISO response data, specify a scalar value.
- For MIMO response data, specify an Ny-by-1 array, where each entry provides the steady-state response value for the corresponding system channel.

If you do not provide yfinal, then lsiminfo uses the last value in the corresponding channel of $y$ as the steady-state response value.

## yinit - Response initial value

scalar | array
Value of $y$ before the input is applied, specified as a scalar or an array.

- For SISO response data, specify a scalar value.
- For MIMO response data, specify an Ny-by-1 array, where each entry provides the response initial value for the corresponding system channel.

If you do not provide yinit, then lsiminfo uses zero as the response initial value.

## ST - Settling time threshold

0.02 (default) | scalar between 0 and 1

Threshold for defining settling and transient times, specified as a scalar value between 0 and 1 . To change the default settling and transient time definitions (see "Description" on page 2-677), set ST to a different value. For instance, to measure when the error falls below $5 \%$, set ST to 0.05 .

## Output Arguments

## S - Response characteristics

structure
Linear response characteristics, returned as a structure containing the fields:

- TransientTime
- SettlingTime
- Min
- MinTime
- Max
- MaxTime

For more information on how lsiminfo defines these characteristics, see "Description" on page 2677.

For MIMO models or responses data, S is a structure array in which each entry contains the stepresponse characteristics of the corresponding I/O channel. For instance, if you provide a 3 -input, 3output model or array of response data, then $S(2,3)$ contains the characteristics of the response from the third input to the second output.

## Version History <br> Introduced in R2006a

## R2021b: Settling time computation changed

Behavior changed in R2021b

The settling time calculation is now based on the time it takes for the error to stay below $2 \%$ of $\left.\right|_{y_{\text {final }}}-$ $y_{\text {init }}$. The following table summarizes the changes to the fields of the structure returned by lsiminfo.

Before R2021b	R2021b
SettlingTime - The first time $T$ such that the error $\left\|y(t)-y_{\text {final }}\right\| \leq$ SettlingTimeThreshold $\times e_{\text {max }}$ for $t \geq T$, where $e_{\max }$ is the maximum error $\mid y(t)$ $y_{\text {final }}$ for $t \geq 0$.   By default, SettlingTimeThreshold $=0.02$ ( $2 \%$ of the peak error). SettlingTime measures the time for the error to fall below $2 \%$ of the peak value of the error.	SettlingTime - The first time $T$ such that the error $\left\|y(t)-y_{\text {fnal }}\right\| \leq$ SettlingTimeThreshold $\times \mid y_{\text {fnal }}$ - $y_{\text {init }} \mid$ for $t \geq T$.   By default, SettlingTime measures the time it takes for the error to stay below $2 \%$ of $\mid y_{\text {final }}-$ $y_{\text {init }}$.

Additionally, the output structure S now contains a TransientTime field. This characteristic contains the peak-error-based settling time calculation used in releases before R2021b. Transient time is used to measure how quickly the transient dynamics die off.

## See Also

impulse|lsim|stepinfo

## Isimplot

Plot simulated time response of dynamic system to arbitrary inputs with additional plot customization options

## Syntax

h = lsimplot(sys)
h = lsimplot(sys,u,t)
h = lsimplot(sys1,sys2,...,sysN,u,t)
h = lsimplot(sys1,LineSpec1,...,sysN,LineSpecN,u,t)
h = lsimplot( ,x0)
h = lsimplot( ,method)
$\mathrm{h}=\mathrm{lsimplot}(\overline{\mathrm{AX}}$, )
h = lsimplot (__, plotoptions)

## Description

lsimplot lets you plot simulated time response of dynamic system to arbitrary inputs with a broader range of plot customization options than lsim. You can use lsimplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use lsimplot to draw a simulated time response plot on an existing set of axes represented by an axes handle. To customize an existing simulated time response plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create simulated time response plots with default options or to extract simulated response data, use lsim.
h = lsimplot(sys) opens the Linear Simulation Tool for the dynamic system model sys, where you can interactively specify the driving input(s), the time vector, and initial state. It also returns the plot handle h . You can use this handle h to customize the plot with the getoptions and setoptions commands.

For more information about using the Linear Simulation Tool for linear analysis, see Working with the Linear Simulation Tool.
$\mathrm{h}=\mathrm{lsimplot}(\mathrm{sys}, \mathrm{u}, \mathrm{t})$ plots the simulated time response of the model sys to the input signal u and the corresponding time vector $t$. For MIMO systems, $u$ is a matrix with as many columns as the number of inputs and whose ith row specifies the input value at time $t$ (i). For SISO systems, the input $u$ can be specified either as a row or column vector.
$\mathrm{h}=$ lsimplot(sys1,sys2,...sysN, $\mathrm{u}, \mathrm{t}$ ) plots the simulated response of multiple dynamic systems sys1, sys $2, \ldots$, , sysN using the input $u$ and time vector $t$ on the same plot. All systems must have the same number of inputs and outputs to use this syntax.
h = lsimplot(sys1,LineSpec1,...,sysN,LineSpecN,u,t) sets the line style, marker type, and color for the simulated time response of each system. All systems must have the same number of inputs and outputs to use this syntax.
$h=1 \operatorname{simplot}(\ldots, x 0)$ further specifies a vector $x 0$ of initial state values, when sys is a statespace model.
h = lsimplot( $\qquad$ , method) specifies how lsimplot interpolates the input values between samples, when sys is a continuous-time model.
$\mathrm{h}=\mathrm{lsimplot}(\mathrm{AX}, \ldots \quad)$ plots the simulated response on the Axes object in the current figure with the handle AX.
h = lsimplot( $\qquad$ , plotoptions) plots the simulated response with the options set specified in plotoptions. You can use these options to customize the plot appearance using the command line. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run lsimplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

## Examples

## Customized Plot of Simulated Response to Arbitrary Input Signal

For this example, change time units to minutes and turn the grid on for the simulated response plot. Consider the following transfer function.

```
sys = tf(3,[1 2 3]);
```

To compute the response of this system to an arbitrary input signal, provide lsimplot with a vector of the times $t$ at which you want to compute the response and a vector $u$ containing the corresponding signal values. For instance, plot the system response to a ramping step signal that starts at 0 at time $t=0$, ramps from 0 at $t=1$ to 1 at $t=2$, and then holds steady at 1 . Define $t$ and compute the values of $u$.
$\mathrm{t}=0: 0.04: 8 ;$
$u=\max (0, \min (t-1,1))$;
Use lsimplot plot the system response to the signal with a plot handle $h$.
h = lsimplot(sys,u,t);


The plot shows the applied input ( $u, t$ ) in gray and the system response in blue.
Use the plot handle to change the time units to minutes and to turn the grid on. To do so, edit properties of the plot handle, h using setoptions.

```
setoptions(h,'TimeUnits','minutes','Grid','on')
```



The plot automatically updates when you call setoptions.
Alternatively, you can also use the timeoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.

```
plotoptions = timeoptions('cstprefs');
```

Change properties of the options set by setting the time units to minutes and enabling the grid.
plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on';
lsimplot(sys,u,t,plotoptions);


## Customized Plot Response of Multiple Systems to Same Input

lsimplot allows you to plot the simulated responses of multiple dynamic systems on the same axis. For instance, compare the closed-loop response of a system with a PI controller and a PID controller. Then, customize the plot by enabling normalization and turning the grid on.

First, create a transfer function of the system and tune the controllers.
H $=$ tf(4,[1 10 25]);
C1 = pidtune(H,'PI');
C2 = pidtune(H,'PID');
Form the closed-loop systems.

```
sys1 = feedback(H*C1,1);
sys2 = feedback(H*C2,1);
```

Plot the responses of both systems to a square wave with a period of 4 s .
[u,t] = gensig("square",4,12);
h1 = lsimplot(sys1,sys2,u,t);
legend("PI","PID")


Use setoptions to enable normalization and to turn on the grid.
setoptions(h1,'Normalize','on','Grid','on')


The plot automatically updates when you call setoptions.
By default, lsimplot chooses distinct colors for each system that you plot. You can specify colors and line styles using the LineSpec input argument.

```
h2 = lsimplot(sys1,"r--",sys2,"b",u,t);
legend("PI","PID")
setoptions(h2,'Normalize','on','Grid','on')
```



The first LineSpec "r--" specifies a dashed red line for the response with the PI controller. The second LineSpec "b" specifies a solid blue line for the response with the PID controller. The legend reflects the specified colors and line styles.

## Custom Plot of System Evolution from Initial Condition

By default, l simplot simulates the model assuming all states are zero at the start of the simulation. When simulating the response of a state-space model, use the optional $x 0$ input argument to specify nonzero initial state values. Consider the following two-state SISO state-space model.

```
A = [-1.5 -3;
 3 -1];
B = [1.3; 0];
C = [1.15 2.3];
D = 0;
sys = ss(A,B,C,D);
```

Suppose that you want to allow the system to evolve from a known set of initial states with no input for 2 s , and then apply a unit step change. Specify the vector x 0 of initial state values, and create the input vector.

```
x0 = [-0.2 0.3];
t = 0:0.05:8;
u = zeros(length(t),1);
u(t>=2) = 1;
```

First, create a default options set using timeoptions.
plotoptions = timeoptions;
Next change the required properties of the options set plotoptions and plot the simulated response with the zero order hold option.

```
plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];
plotoptions.Grid = 'on';
h = lsimplot(sys,u,t,x0,plotoptions,'zoh');
hold on
title('Simulated Time Response with Initial Conditions')
```



The first half of the plot shows the free evolution of the system from the initial state values [-0.2 $0.3]$. At $t=2$ there is a step change to the input, and the plot shows the system response to this new signal beginning from the state values at that time. Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

## Input Arguments

## sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Sparse state-space models, such as sparss or mechss models. Final time tFinal must be specified when using sparse models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to plot the simulated response.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model.
- Identified LTI models, such as idtf, idss, or idproc models. For identified models, you can also use the sim command, which can compute the standard deviation of the simulated response and state trajectories. sim can also simulate all types of models with nonzero initial conditions, and can simulate nonlinear identified models.(Using identified models requires System Identification Toolbox software.)
lsimplot does not support frequency-response data models such as frd, genfrd, or idfrd models.
If sys is an array of models, the function plots the responses of all models in the array on the same axes.


## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - - or' is a red dashed line with circle markers

Line Style	Description
-	Solid line
--	Dashed line
$:$	Dotted line
.-	Dash-dot line


Marker	Description
'0'	Circle
'+'	Plus sign
'* ${ }^{\text {a }}$	Asterisk
'.'	Point
'x'	Cross
'_'	Horizontal line
${ }^{\prime} 1$ '	Vertical line
's'	Square
'd'	Diamond


Marker	Description
'~1	Upward-pointing triangle
'v'	Downward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'p'	Pentagram
'h'	Hexagram


Color	Description
y	yellow
m	magenta
C	cyan
r	red
g	green
b	blue
W	white
k	black

## u - Input signal for simulation

vector | array
Input signal for simulation, specified as a vector for single-input systems, and an array for multi-input systems.

- For single-input systems, $u$ is a vector of the same length as $t$.
- For multi-input systems, $u$ is an array with as many rows as there are time samples (length( $t$ )) and as many columns as there are inputs to sys. In other words, each row $u(i,:)$ represents the values applied at the inputs of sys at time $t(i)$. Each column $u(:, j)$ is the signal applied to the $j$ th input of sys.


## t - Time samples

vector
Time samples at which to compute the response, specified as a vector of the form $0: \mathrm{dT}: T \mathrm{Tf}$. The lsimplot command interprets $t$ as having the units specified in the TimeUnit property of the model sys. The time vector must be real, finite, and must contain monotonically increasing and evenly spaced time samples.

For continuous-time systems, the lsimplot command uses the time step dT to discretize the model. If dT is too large relative to the system dynamics (undersampling), lsimplot issues a warning recommending a faster sampling time.

For discrete-time systems, the time step dT must equal the sample time of sys. Alternatively, you can omit $t$ or set it to [ ]. In that case, lsimplot sets $t$ to a vector of the same length as $u$ that begins at 0 with a time step equal to sys.Ts.

```
method - Discretization method
'zoh|'foh'
```

Discretization method for sampling continuous-time models, specified as one of the following.

- 'zoh' - Zero-order hold
- 'foh' - First-order hold

When sys is a continuous-time model, lsimplot computes the time response by discretizing the model using a sample time equal to the time step $d T=t(2)-t(1)$ of $t$. If you do not specify a discretization method, then lsimplot selects the method automatically based on the smoothness of the signal u. For more information about these two discretization methods, see "Continuous-Discrete Conversion Methods".

## x0 - Initial state values

vector of zeros (default) | vector
Initial state values for simulating a state-space model, specified as a vector having one entry for each state in sys. If you omit this argument, then lsim sets all states to zero at $t=0$.

## AX - Target axes

Axes object
Target axes, specified as an Axes object. If you do not specify the axes and if the current axes are Cartesian axes, then stepplot plots on the current axes. Use AX to plot into specific axes when creating a step plot.

## plotoptions - Step plot options set

TimePlotOptions object
Step plot options set, specified as a TimePlotOptions object. You can use this option set to customize the step plot appearance. Use timeoptions to create the option set. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run stepplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see timeoptions.

## Output Arguments

## h - Plot handle

handle object
Plot handle, returned as a handle object. Use the handle h to get and set the properties of the simulated response plot using getoptions and setoptions. For the list of available options, see the Properties and Values Reference section in "Customizing Response Plots from the Command Line".

## Version History

## Introduced before R2006a

## See Also

getoptions| setoptions|lsim|timeoptions

## Topics

"Customizing Response Plots from the Command Line"
"Working with the Linear Simulation Tool"
"Continuous-Discrete Conversion Methods"

## looptune

Tune fixed-structure feedback loops

## Syntax

[G,C,gam] = looptune(G0,C0,wc)
[G,C,gam] = looptune(G0,C0,wc,Req1,...,ReqN)
[G,C,gam] = looptune(...,options)
[G,C,gam,info] = looptune(...)

## Description

[G,C,gam] = looptune(G0,C0,wC) tunes the feedback loop

to meet the following default requirements:

- Bandwidth - Gain crossover for each loop falls in the frequency interval wc
- Performance - Integral action at frequencies below wc
- Robustness - Adequate stability margins and gain roll-off at frequencies above wc

The tunable genss model C0 specifies the controller structure, parameters, and initial values. The model G0 specifies the plant. G0 can be a Numeric LTI model, or, for co-tuning the plant and controller, a tunable genss model. The sensor signals y (measurements) and actuator signals u (controls) define the boundary between plant and controller.

Note For tuning Simulink models with looptune, use slTuner to create an interface to your Simulink model. You can then tune the control system with looptune for slTuner (requires Simulink Control Design).
[G,C,gam] = looptune(G0,C0,wc,Req1,..., ReqN) tunes the feedback loop to meet additional design requirements specified in one or more tuning goal objects Req1, ... , ReqN. Omit wc to use the requirements specified in Req1, . . . ReqN instead of an explicit target crossover frequency and the default performance and robustness requirements.
[G,C,gam] = looptune(..., options) specifies further options, including target gain margin, target phase margin, and computational options for the tuning algorithm.
[G,C,gam,info] = looptune(...) returns a structure info with additional information about the tuned result. Use info with the loopview command to visualize tuning constraints and validate the tuned design.

## Input Arguments

## G0

Numeric LTI model or tunable genss model representing plant in control system to tune.
The plant is the portion of your control system whose outputs are sensor signals (measurements) and whose inputs are actuator signals (controls). Use connect to build G0 from individual numeric or tunable components.

## C0

Generalized LTI model representing controller. C0 specifies the controller structure, parameters, and initial values.

The controller is the portion of your control system that receives sensor signals (measurements) as inputs and produces actuator signals (controls) as outputs. Use Control Design Blocks and Generalized LTI models to represent tunable components of the controller. Use connect to build C0 from individual numeric or tunable components.
wc
Vector specifying target crossover region [wcmin,wcmax]. The looptune command attempts to tune all loops in the control system so that the open-loop gain crosses 0 dB within the target crossover region.

A scalar wc specifies the target crossover region [wc/2, $2 * \mathrm{wc}$ ].

## Req1, ..., ReqN

One or more TuningGoal objects specifying design requirements, such as TuningGoal.Tracking, TuningGoal.Gain, or TuningGoal.LoopShape.
options
Set of options for looptune algorithm, specified using looptuneOptions. See looptuneOptions for information about the available options, including target gain margin and phase margin.

## Output Arguments

G
Tuned plant.
If G 0 is a Numeric LTI model, G is the same as G 0 .
If G 0 is a tunable genss model, G is a genss model with Control Design Blocks of the same number and types as G 0 . The current value of G is the tuned plant.

## C

Tuned controller. C is a genss model with Control Design Blocks of the same number and types as $C 0$. The current value of $C$ is the tuned controller.
gam
Parameter indicating degree of success at meeting all tuning constraints. A value of gam $<=1$ indicates that all requirements are satisfied. gam >> 1 indicates failure to meet at least one requirement. Use loopview to visualize the tuned result and identify the unsatisfied requirement.

For best results, use the RandomStart option in looptune0ptions to obtain several minimization runs. Setting RandomStart to an integer $N>0$ causes looptune to run the optimization $N$ additional times, beginning from parameter values it chooses randomly. You can examine gam for each run to help identify an optimization result that meets your design requirements.

## info

Data for validating tuning results, returned as a structure. To use the data in info, use the command loopview (G, C , info) to visualize tuning constraints and validate the tuned design.
info contains the following tuning data:

## Di, Do

Optimal input and output scalings, returned as state-space models. The scaled plant is given by Do \G*Di.

## Specs

Design requirements that looptune constructs for its call to systune for tuning (see "Algorithms" on page 2-698), returned as a vector of TuningGoal requirement objects.

## Runs

Detailed information about each optimization run performed by systune when called by looptune for tuning (see "Algorithms" on page 2-698), returned as a data structure.

The contents of Runs are the info output of the call to systune. For information about the fields of Runs, see the info output argument description on the systune reference page.

## Examples

Tune the control system of the following illustration, to achieve crossover between 0.1 and $1 \mathrm{rad} / \mathrm{min}$.


The 2-by-2 plant G is represented by:

$$
G(s)=\frac{1}{75 s+1}\left[\begin{array}{cc}
87.8 & -86.4 \\
108.2 & -109.6
\end{array}\right] .
$$

The fixed-structure controller, C , includes three components: the 2-by-2 decoupling matrix D and two PI controllers PI_L and PI_V. The signals $r, y$, and $e$ are vector-valued signals of dimension 2 .

Build a numeric model that represents the plant and a tunable model that represents the controller. Name all inputs and outputs as in the diagram, so that looptune knows how to interconnect the plant and controller via the control and measurement signals.

```
s = tf('s');
G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
G.InputName = {'qL','qV'};
G.OutputName = 'y';
D = tunableGain('Decoupler',eye(2));
D.InputName = 'e';
D.OutputName = {'pL','pV'};
PI L = tunablePID('PI L','pi');
PI_L.InputName = 'pL';
PI_L.OutputName = 'qL';
PI_V = tunablePID('PI_V','pi');
PI_V.InputName = 'pV';
PI_V.OutputName = 'qV';
sum1 = sumblk('e = r - y',2);
C0 = connect(PI_L,PI_V,D,sum1,{'r','y'},{'qL','qV'});
wc = [0.1,1];
[G,C,gam,info] = looptune(G,C0,wc);
```

C is the tuned controller, in this case a genss model with the same block types as C0.
You can examine the tuned result using loopview.

## Algorithms

looptune automatically converts target bandwidth, performance requirements, and additional design requirements into weighting functions that express the requirements as an $H_{\infty}$ optimization problem. looptune then uses systune to optimize tunable parameters to minimize the $H_{\infty}$ norm. For more information about the optimization algorithms, see [1].
looptune computes the $H_{\infty}$ norm using the algorithm of [2] and structure-preserving eigensolvers from the SLICOT library. For more information about the SLICOT library, see http://slicot.org.

## Alternatives

For tuning Simulink models with looptune, see slTuner and looptune (requires Simulink Control Design).

## Version History

Introduced in R2016a

## R2016a: Functionality moved from Robust Control Toolbox

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

## References

[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis." IEEE Transactions on Automatic Control, Vol. 51, Number 1, 2006, pp. 71-86.
[2] Bruinsma, N.A., and M. Steinbuch. "A Fast Algorithm to Compute the $\mathrm{H}_{\infty}$ Norm of a Transfer Function Matrix." Systems \& Control Letters, 14, no. 4 (April 1990): 287-93.

## Extended Capabilities

## Automatic Parallel Support

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.
To run in parallel, set 'UseParallel' to true using looptune0ptions.
For more information, see "Speed Up Tuning with Parallel Computing Toolbox Software".

## See Also

TuningGoal.Tracking|slTuner| systune|looptune (for slTuner)|TuningGoal. Gain| TuningGoal. LoopShape | hinfstruct| looptune0ptions|loopview|diskmargin|genss| connect

## Topics

"Tune MIMO Control System for Specified Bandwidth"
"Tune Feedback Loops Using looptune"
"Decoupling Controller for a Distillation Column"

## looptuneOptions

Set options for looptune

## Syntax

options = looptuneOptions
options = looptuneOptions(Name,Value)

## Description

options = looptuneOptions returns the default option set for the looptune command.
options = looptuneOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

## Input Arguments

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
looptuneOptions takes the following Name arguments:

## GainMargin

Target gain margin in decibels. GainMargin specifies the required gain margin for the tuned control system. For MIMO control systems, the gain margin is the multiloop disk margin. See "Stability Analysis Using Disk Margins" (Robust Control Toolbox) for the definition of the multiloop disk margin.

Default: 7.6 dB

## PhaseMargin

Target phase margin in degrees. PhaseMargin specifies the required phase margin for the tuned control system. For MIMO control systems, the phase margin is the multiloop disk margin. See "Stability Analysis Using Disk Margins" (Robust Control Toolbox) for the definition of the multiloop disk margin.

Default: 45 degrees

## Display

Amount of information to display during looptune runs, specified as one of the following values.

- 'off' - Run in silent mode, displaying no information during or after the run.
- 'iter' - Display optimization progress after each iteration. The display includes the value of the objective parameter gam after each iteration. The display also includes a Progress value, indicating the percent change in gam from the previous iteration.
- 'final' - Display a one-line summary at the end of each optimization run. The display includes the minimized value of gam and the number of iterations for each run.

Default: 'final'
MaxIter
Maximum number of iterations in each optimization run.
Default: 300

## RandomStart

Number of additional optimizations starting from random values of the free parameters in the controller.

If RandomStart $=0$, looptune performs a single optimization run starting from the initial values of the tunable parameters. Setting RandomStart $=\mathrm{N}>0$ runs $N$ additional optimizations starting from $N$ randomly generated parameter values.
looptune tunes by finding a local minimum of a gain minimization problem. To increase the likelihood of finding parameter values that meet your design requirements, set RandomStart >0.
You can then use the best design that results from the multiple optimization runs.
Use with UseParallel $=$ true to distribute independent optimization runs among MATLAB workers (requires Parallel Computing Toolbox ${ }^{\text {TM }}$ software).

Default: 0
UseParallel
Parallel processing flag.
When you use the RandomStart option to run multiple randomized optimization starts, you can also use parallel computing to speed up tuning by distributing the optimization runs among workers in a parallel pool. Set this flag to true to enable parallel processing. If there is an available parallel pool, then the software performs independent optimization runs concurrently among workers in that pool. If no parallel pool is available, one of the following occurs:

- If Automatically create a parallel pool is selected in your Parallel Computing Toolbox preferences (Parallel Computing Toolbox), then the software starts a parallel pool using the settings in those preferences.
- If Automatically create a parallel pool is not selected in your preferences, then the software performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can manually start a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.
Default: false

## TargetGain

Target value for the objective parameter gam.
The looptune command converts your design requirements into normalized gain constraints. The command then tunes the free parameters of the control system to drive the objective parameter gam below 1 to enforce all requirements.

The default TargetGain = 1 ensures that the optimization stops as soon as gam falls below 1 . Set TargetGain to a smaller or larger value to continue the optimization or start sooner, respectively.

Default: 1

## TolGain

Relative tolerance for termination.
The optimization terminates when the objective parameter gam decreases by less than TolGain over 10 consecutive iterations. Increasing TolGain speeds up termination, and decreasing TolGain yields tighter final values.

Default: 0.001

## MaxFrequency

Maximum closed-loop natural frequency.
Setting MaxFrequency constrains the closed-loop poles to satisfy $|\mathrm{p}|<$ MaxFrequency.
To allow looptune to choose the closed-loop poles automatically, based upon the system's open-loop dynamics, set MaxFrequency = Inf. To prevent unwanted fast dynamics or high-gain control, set MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the system you are tuning.

Default: Inf

## MinDecay

Minimum decay rate for closed-loop poles
Constrains the closed-loop poles to satisfy $\operatorname{Re}(\mathrm{p})$ < -MinDecay. Increase this value to improve the stability of closed-loop poles that do not affect the closed-loop gain due to pole/zero cancellations.

Specify MinDecay in units of $1 /$ TimeUnit, relative to the TimeUnit property of the system you are tuning.

## Default: 1e-7

## Output Arguments

## options

Option set containing the specified options for the looptune command.

## Examples

## Create Options Set for looptune

Create an options set for a looptune run using three random restarts. Also, set the target gain and phase margins to 6 dB and 50 degrees, respectively, and limit the closed-loop pole magnitude to 100 .

```
options = looptuneOptions('RandomStart',3','GainMargin',6,...
 'PhaseMargin',50,'SpecRadius',100);
```

Alternatively, use dot notation to set the values of options.

```
options = looptuneOptions;
options.RandomStart = 3;
options.GainMargin = 6;
options.PhaseMargin = 50;
options.SpecRadius = 100;
```


## Configure Option Set for Parallel Optimization Runs

Configure an option set for a looptune run using 20 random restarts. Execute these independent optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel computing to speed up looptune tuning of fixed-structure control systems. When you run multiple randomized looptune optimization starts, parallel computing speeds up tuning by distributing the optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing Toolbox preferences (Parallel Computing Toolbox), manually start a parallel pool using parpool. For example:
parpool;
If Automatically create a parallel pool is selected in your preferences, you do not need to manually start a pool.

Create a looptuneOptions set that specifies 20 random restarts to run in parallel.
options = looptuneOptions('RandomStart', 20, 'UseParallel',true);
Setting UseParallel to true enables parallel processing by distributing the randomized starts among available workers in the parallel pool.

Use the looptuneOptions set when you call looptune. For example, suppose you have already created a plant model G0 and tunable controller C0. In this case, the following command uses parallel computing to tune the control system of G0 and C0 to the target crossoverwc.

```
[G,C,gamma] = looptune(G0,C0,wc,options);
```


## Version History

Introduced in R2016a

# R2016a: Functionality moved from Robust Control Toolbox 

Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

## See Also

looptune|looptune (for slTuner)|diskmargin
Topics
"Stability Analysis Using Disk Margins" (Robust Control Toolbox)

## looptuneSetup

Convert tuning setup for looptune to tuning setup for systune

## Syntax

[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs)

## Description

[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(looptuneInputs) converts a tuning setup for looptune into an equivalent tuning setup for systune. The argument looptuneInputs is a sequence of input arguments for looptune that specifies the tuning setup. For example,
[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(G0,C0,wc,Req1,Req2, loopopt)
generates a set of arguments such that looptune(G0, C0,wc, Req1,Req2,loopopt) and systune(T0,SoftReqs,HardReqs, sysopt) produce the same results.

Use this command to take advantage of additional flexibility that systune offers relative to looptune. For example, looptune requires that you tune all channels of a MIMO feedback loop to the same target bandwidth. Converting to systune allows you to specify different crossover frequencies and loop shapes for each loop in your control system. Also, looptune treats all tuning requirements as soft requirements, optimizing them but not requiring that any constraint be exactly met. Converting to systune allows you to enforce some tuning requirements as hard constraints, while treating others as soft requirements.

You can also use this command to probe into the tuning requirements used by looptune.

Note When tuning Simulink models through an slTuner interface, use looptuneSetup for slTuner.

## Examples

## Convert looptune Problem into systune Problem

Convert a set of looptune inputs into an equivalent set of inputs for systune.
Suppose you have a numeric plant model, G0, and a tunable controller model, C0. Suppose also that you used looptune to tune the feedback loop between G0 and C0 to within a bandwidth of wc = [wmin, wmax]. Convert these variables into a form that allows you to use systune for further tuning.
[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(C0,G0,wc);
The command returns the closed-loop system and tuning requirements for the equivalent systune command, systune(CL0, SoftReqs, HardReqs, sysopt). The arrays SoftReqs and HardReqs contain the tuning requirements implicitly imposed by looptune. These requirements enforce the target bandwidth and default stability margins of looptune.

If you used additional tuning requirements when tuning the system with looptune, add them to the input list of looptuneSetup. For example, suppose you used a TuningGoal.Tracking requirement, Req1, and a TuningGoal. Rejection requirement, Req2. Suppose also that you set algorithm options for looptune using looptuneOptions. Incorporate these requirements and options into the equivalent systune command.

```
[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(C0,G0,wc,Req1,Req2,loopopt);
```

The resulting arguments allow you to construct an equivalent tuning problem for systune. In particular, $[\sim, C]=$ looptune(C0, G0,wc, Req1,Req2,loopopt) yields the same result as the following commands.

```
T = systune(T0,SoftReqs,HardReqs,sysopt);
C = setBlockValue(C0,T);
```


## Convert Distillation Column Problem for Tuning With systune

Set up the following control system for tuning with looptune. Then convert the setup to a systune problem and examine the results. These results reflect the structure of the control system model that looptune tunes. The results also reflect the tuning requirements implicitly enforced when tuning with looptune.


For this example, the 2 -by- 2 plant G is represented by:

$$
G(s)=\frac{1}{75 s+1}\left[\begin{array}{cc}
87.8 & -86.4 \\
108.2 & -109.6
\end{array}\right] .
$$

The fixed-structure controller, C , includes three components: the 2-by-2 decoupling matrix D and two PI controllers PI_L and PI_V. The signals $r, y$, and e are vector-valued signals of dimension 2.

Build a numeric model that represents the plant and a tunable model that represents the controller. Name all inputs and outputs as in the diagram, so that looptune and looptuneSetup know how to interconnect the plant and controller via the control and measurement signals.

```
s = tf('s');
G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
G.InputName = {'qL','qV'};
G.OutputName = {'y'};
D = tunableGain('Decoupler',eye(2));
D.InputName = 'e';
D.OutputName = {'pL','pV'};
PI_L = tunablePID('PI_L','pi');
PI_L.InputName = 'pL';
PI_L.OutputName = 'qL';
PI_V = tunablePID('PI_V','pi');
PI_V.InputName = 'pV';
PI_V.OutputName = 'qV';
```

```
sum1 = sumblk('e = r - y',2);
C0 = connect(PI_L,PI_V,D,sum1,{'r','y'},{'qL','qV'});
```

This system is now ready for tuning with looptune, using tuning goals that you specify. For example, specify a target bandwidth range. Create a tuning requirement that imposes reference tracking in both channels of the system with a response time of 15 s , and a disturbance rejection requirement.

```
wc = [0.1,0.5];
TR = TuningGoal.Tracking('r','y',15,0.001,1);
DR = TuningGoal.Rejection({'qL','qV'},1/s);
DR.Focus = [0 0.1];
[G,C,gam,info] = looptune(G,C0,wc,TR,DR);
Final: Peak gain = 1, Iterations = 42
Achieved target gain value TargetGain=1.
```

looptune successfully tunes the system to these requirements. However, you might want to switch to systune to take advantage of additional flexibility in configuring your problem. For example, instead of tuning both channels to a loop bandwidth inside wC, you might want to specify different crossover frequencies for each loop. Or, you might want to enforce the tuning requirements TR and DR as hard constraints, and add other requirements as soft requirements.

Convert the looptune input arguments to a set of input arguments for systune.

```
[T0,SoftReqs,HardReqs,sysopt] = looptuneSetup(G,C0,wc,TR,DR);
```

This command returns a set of arguments you can provide to systune for equivalent results to tuning with looptune. In other words, the following command is equivalent to the previous looptune command.

```
[T,fsoft,ghard,info] = systune(T0,SoftReqs,HardReqs,sysopt);
Final: Peak gain = 1, Iterations = 42
Achieved target gain value TargetGain=1.
```

Examine the arguments returned by looptuneSetup.

## T0

```
Generalized continuous-time state-space model with 0 outputs, 2 inputs, 4 states, and the follow.
 APU_: Analysis point, 2 channels, 1 occurrences.
 APY}\mp@subsup{}{}{-}:Analysis point, 2 channels, 1 occurrences.
 Decoupler: Tunable 2x2 gain, 1 occurrences.
 PI_L: Tunable PID controller, 1 occurrences.
 PI_V: Tunable PID controller, 1 occurrences.
Type "ss(T0)" to see the current value and "T0.Blocks" to interact with the blocks.
```

The software constructs the closed-loop control system for systune by connecting the plant and controller at their control and measurement signals, and inserting a two-channel AnalysisPoint block at each of the connection locations, as illustrated in the following diagram.


When tuning the control system of this example with looptune, all requirements are treated as soft requirements. Therefore, HardReqs is empty. SoftReqs is an array of TuningGoal requirements. These requirements together enforce the bandwidth and margins of the looptune command, plus the additional requirements that you specified.

## SoftReqs

```
SoftReqs=5×1 object
 5x1 heterogeneous SystemLevel (LoopShape, Tracking, Rejection, ...) array with properties:
```

        Models
        Openings
        Name
    Examine the first entry in SoftReqs.

```
SoftReqs(1)
```

ans =
LoopShape with properties:
LoopGain: [1x1 zpk]
CrossTol: 0.3495
Focus: [0 Inf]
Stabilize: 1
LoopScaling: 'on'
Location: \{2x1 cell\}
Models: NaN
Openings: \{0x1 cell\}
Name: 'Open loop CG'
looptuneSetup expresses the target crossover frequency range wc as a TuningGoal.LoopShape requirement. This requirement constrains the open-loop gain profile to the loop shape stored in the LoopGain property, with a crossover frequency and crossover tolerance (CrossTol) determined by wc. Examine this loop shape.


The target crossover is expressed as an integrator gain profile with a crossover between 0.1 and 0.5 $\mathrm{rad} / \mathrm{s}$, as specified by wc. If you want to specify a different loop shape, you can alter this TuningGoal.LoopShape requirement before providing it to systune.
looptune also tunes to default stability margins that you can change using looptuneOptions. For systune, stability margins are specified using TuningGoal. Margins requirements. Here, looptuneSetup has expressed the default stability margins of looptune as soft TuningGoal. Margins requirements. For example, examine the fourth entry in SoftReqs.

```
SoftReqs(4)
ans =
 Margins with properties:
 GainMargin: 7.6000
 PhaseMargin: 45
 ScalingOrder: 0
 Focus: [0 Inf]
 Location: {2x1 cell}
 Models: NaN
 Openings: {0x1 cell}
 Name: 'Margins at plant inputs'
```

The last entry in SoftReqs is a similar TuningGoal. Margins requirement constraining the margins at the plant outputs. looptune enforces these margins as soft requirements. If you want to convert
them to hard constraints, pass them to systune in the input vector HardReqs instead of the input vector SoftReqs.

## Input Arguments

looptuneInputs - Plant, controller, and requirement inputs to looptune
valid looptune input sequence
Plant, controller, and requirement inputs to looptune, specified as a valid looptune input sequence. For more information about the arguments in a valid looptune input sequence, see the looptune reference page.

## Output Arguments

## T0 - Closed-loop control system model

generalized state-space model
Closed-loop control system model for tuning with systune, returned as a generalized state-space genss model. To compute T0, the plant, G0, and the controller, C0, are combined in the feedback configuration of the following illustration.


The connections between C0 and G0 are determined by matching signals using the InputName and OutputName properties of the two models. In general, the signal lines in the diagram can represent vector-valued signals. AnalysisPoint blocks, indicated by X in the diagram, are inserted between the controller and the plant. This allows definition of open-loop and closed-loop requirements on signals injected or measured at the plant inputs or outputs. For example, the bandwidth wc is converted into a TuningGoal. LoopShape requirement that imposes the desired crossover on the open-loop signal measured at the plant input.

For more information on the structure of closed-loop control system models for tuning with systune, see the systune reference page.

## SoftReqs - Soft tuning requirements

vector of TuningGoal requirement objects
Soft tuning requirements for tuning with systune, specified as a vector of TuningGoal requirement objects.
looptune expresses most of its implicit tuning requirements as soft tuning requirements. For example, a specified target loop bandwidth is expressed as a TuningGoal. LoopShape requirement
with integral gain profile and crossover at the target frequency. Additionally, looptune treats all of the explicit requirements you specify (Req1, . . .ReqN) as soft requirements. SoftReqs contains all of these tuning requirements.

## HardReqs - Hard tuning requirements <br> vector of TuningGoal requirement objects

Hard tuning requirements (constraints) for tuning with systune, specified as a vector of TuningGoal requirement objects.

Because looptune treats most tuning requirements as soft requirements, HardReqs is usually empty. However, if you change the default MaxFrequency option of the looptuneOptions set, loopopt, then this requirement appears as a hard TuningGoal. Poles constraint.
sysopt - Algorithm options for systune tuning
systuneOptions options set
Algorithm options for systune tuning, specified as a systuneOptions options set.
Some of the options in the looptuneOptions set, loopopt, are expressed as hard or soft requirements that are returned in HardReqs and SoftReqs. Other options correspond to options in the systtuneOptions set.

## Alternatives

When tuning Simulink using an slTuner, interface, convert a looptune problem to systune using looptuneSetup for slTuner.

## Version History

## Introduced in R2013b

## See Also

looptune | systune | looptuneOptions | systuneOptions | genss | slTuner| looptuneSetup (for slTuner)

## loopview

Graphically analyze MIMO feedback loops

## Syntax

loopview(G,C)
loopview(G,C,info)

## Description

loopview(G,C) plots characteristics of the following positive-feedback, multi-input, multi-output (MIMO) feedback loop with plant G and controller C .


Use loopview to analyze the performance of a tuned control system you obtain using looptune.

Note If you are tuning a Simulink model with looptune through an slTuner interface, analyze the performance of your control system using loopview for slTuner (requires Simulink Control Design).
loopview plots the singular values of:

- Open-loop frequency responses $\mathrm{G} * \mathrm{C}$ and $\mathrm{C} * \mathrm{G}$
- Sensitivity function $S=\operatorname{inv}\left(1-G^{*} C\right)$ and complementary sensitivity $T=1-S$
- Maximum (target), actual (tuned), and normalized MIMO stability margins. loopview plots the multi-loop disk margin (see "Stability Analysis Using Disk Margins" (Robust Control Toolbox)). Use this plot to verify that the stability margins of the tuned system do not significantly exceed the target value.

For more information about singular values, see sigma.
loopview (G, C,info) uses the info structure returned by looptune. This syntax also plots the target and tuned values of tuning constraints imposed on the system. Additional plots include:

- Singular values of the maximum allowed $S$ and $T$. The curve marked $S / T$ Max shows the maximum allowed $S$ on the low-frequency side of the plot, and the maximum allowed $T$ on the high-frequency side. These curves are the constraints that looptune imposes on S and T to enforce the target crossover range wc.
- Target and tuned values of constraints imposed by any tuning goal requirements you used with looptune.

Use loopview with the info structure to assist in troubleshooting when tuning fails to meet all requirements.

## Input Arguments

## G

Numeric LTI model or tunable genss model representing the plant in a control system. The plant is the portion of a control system whose outputs are sensor signals (measurements), and whose inputs are actuator signals (controls).

You can obtain $G$ as an output argument from looptune when you tune your control system.

## C

genss model representing the controller in a control system. The controller is the portion of your control system that receives sensor signals (measurements) as inputs and produces actuator signals (controls) as outputs.

You can obtain $C$ as an output argument from looptune when you tune your control system.

## info

info structure returned by looptune during control system tuning.

## Examples

## Examine Performance of Tuned Controller

Tune a control system with looptune and use loopview to examine the performance of the tuned controller.

Create and tune control system.

```
s = tf('s');
G = 1/(75*s+1)*[87.8 -86.4; 108.2 -109.6];
G.InputName = {'qL','qV'};
G.OutputName = 'y';
D = tunableGain('Decoupler',eye(2));
PI_L = tunablePID('PI_L','pi');
PI_L.OutputName = 'qL';
PI_V = tunablePID('PI_V','pi');
PI_V.OutputName = 'qV';
sum = sumblk('e = r - y',2);
C0 = (blkdiag(PI_L,PI_V)*D)*sum;
wc = [0.1,1];
options = looptuneOptions('RandomStart',5);
[G,C,gam,info] = looptune(-G,C0,wc,options);
```

Final: Peak gain = 0.956, Iterations $=28$
Achieved target gain value TargetGain=1.
Examine the controller performance.
figure('Position',[100,100,520,1000])
loopview(G,C,info)



Margins at plant outputs: Disk-based stability margins


The first plot shows that the open-loop gain crossovers fall close to the specified interval [0.1,1]. This plot also includes the tuned values of the sensitivity function $S=\operatorname{inv}\left(1-G^{*} C\right)$ and complementary sensitivity $\mathrm{T}=1-\mathrm{S}$. These curves reflect the constraints that looptune imposes on S and T to enforce the target crossover range wc.

The second and third plots show that the MIMO stability margins of the tuned system fall well within the target range.

## Alternatives

For analyzing Simulink models tuned with looptune through an slTuner interface, use loopview for slTuner (requires Simulink Control Design).

## See Also

looptune|slTuner|looptune (for slTuner)|loopview (for slTuner)

## Topics

"Tune MIMO Control System for Specified Bandwidth"
"Decoupling Controller for a Distillation Column"

## Ipvss

Linear parameter-varying state-space model

## Description

Use lpvss to represent linear state-space models whose dynamics vary as a function of timedependent parameters. Linear parameter-varying (LPV) models are helpful to obtain low-complexity, locally linear approximations of nonlinear systems. They can model a much richer class of behaviors than LTI models, especially when the parameters are allowed to depend on internal states (quasiLPV). Hence, using lpvss models lets you efficiently apply design techniques, such as gain-scheduled control, to nonlinear models.

You can use lpvss to create continuous-time or discrete-time linear parameter-varying state-space models. In continuous time, an lpvss model is described by the following state-space equations.

$$
\begin{gathered}
E(t, p) \dot{x}=\delta_{0}(t, p)+A(t, p)\left(x-x_{0}(t, p)\right)+B(t, p)\left(u-u_{0}(t, p)\right) \\
y(t)=y_{0}(t, p)+C(t, p)\left(x-x_{0}(t, p)\right)+D(t, p)\left(u-u_{0}(t, p)\right)
\end{gathered}
$$

Here, $p$ is a vector of time-dependent exogenous parameters and $\delta_{0}(t), x_{0}(t), u_{0}(t)$, and $y_{0}(t)$ are timevarying derivative, state, input, and output offsets, respectively.

In discrete time, an lpvss model is described by the following state-space equations.

$$
\begin{gathered}
E\left(k, p_{k}\right) x_{k+1}=\delta_{0}\left(k, p_{k}\right)+A\left(k, p_{k}\right)\left(x_{k}-x_{0}\left(k, p_{k}\right)\right)+B\left(k, p_{k}\right)\left(u_{k}-u_{0}\left(k, p_{k}\right)\right) \\
y_{k}=y_{0}\left(k, p_{k}\right)+C\left(k, p_{k}\right)\left(x_{k}-x_{0}\left(k, p_{k}\right)\right)+D\left(k, p_{k}\right)\left(u_{k}-u_{0}\left(k, p_{k}\right)\right)
\end{gathered}
$$

Here, the integer index $k$ counts the number of sampling periods Ts.
You can use an lpvss object to model:

- Linear systems whose coefficients depend on external or environmental parameters. For an example, see "Control Design for Spinning Disks".
- Nonlinear systems operating near steady-state conditions that change in time and depend on a few physical parameters. For example, see "Approximate Nonlinear Aircraft Pitch Dynamics Using LPV Model".

Use lpvss to construct LPV models whose dynamics are described by a MATLAB function (the data function). Use ssInterpolant to construct LPV models that interpolate linearized LTI dynamics over a grid of operating conditions. The lpvss object cannot represent quasi-LPV models consisting of an LPV model with a scheduling map $p(t)=h(t, x, u)$, but you can implicitly specify the parameter trajectory as a function of time $t$, states $x$, and inputs $u$ to simulate quasi-LPV models. See "LPV and LTV Models" for functions and operations applicable to lpvss objects.

## Creation

## Syntax

```
lpvSys = lpvss(ParamNames,DataFcn)
lpvSys = lpvss(ParamNames,DataFcn,ts)
lpvSys = lpvss(ParamNames,DataFcn,ts,tcheck,pcheck)
lpvSys = lpvss(___ ,Name=Value)
```

Description
lpvSys = lpvss(ParamNames, DataFcn) creates a continuous-time LPV model. ParamNames specifies a name for each element of the parameter vector $p$. DataFcn is the name or a handle to the data function, the user-defined MATLAB function that calculates the matrices and offsets for given $(t, p)$ values (or ( $k, p$ ) values in discrete time).
lpvSys $=$ lpvss(ParamNames, DataFcn,ts) creates a discrete-time LPV model with sample time ts.
lpvSys = lpvss(ParamNames, DataFcn,ts,tcheck, pcheck) evaluates DataFcn at (tcheck,pcheck) to determine the number of states, inputs, and outputs. By default, lpvss uses $($ tcheck,pcheck $)=(0,0)$.
lpvSys = lpvss( __ , Name=Value) sets properties of the linear parameter-varying model using one or more name-value arguments. Use this syntax with any of the previous input-argument combinations.

## Input Arguments

## ParamNames - Parameter names

cell array of character vectors
Parameter names, specified as an $N_{p}$-by- 1 cell array of character vectors, where $N_{p}$ is the number of scalar parameters, that is, the number of elements in the parameter vector $p$. This input sets the value of the property ParameterName.

## DataFcn - Data function

function name | function handle
User-defined MATLAB function for calculating matrices and offsets, specified as a function name (character vector or string) or a function handle. The data function must be of the following form.

- Continuous time $-\left[A, B, C, D, E, \delta_{0}, x_{0}, u_{0}, y_{0}\right.$, Delays $]=f(t, p)$.
- Discrete time $-\left[A, B, C, D, E, \delta_{0}, x_{0}, u_{0}, y_{0}\right.$, Delays $]=f(k, p)$

For R2023a, set Delays to [ ]. In future releases, this argument will allow you to specify model delays.
This input sets the value of property DataFunction.

## ts - Sample time

scalar
Sample time, specified as a scalar. For more information, see the Ts property.

## tcheck - Time test value

scalar
Test value for time, specified as a scalar. The object evaluates DataFcn at (tcheck, pcheck) to determine the number of states, inputs, and outputs. By default, lpvss uses (tcheck, pcheck) = $(0,0)$.

## pcheck - Parameter test value

scalar | vector
Test value for parameters, specified as a scalar or vector of length $N_{p}$. The object evaluates DataFcn at (tcheck,pcheck) to determine the number of states, inputs, and outputs. By default, lpvss uses $($ tcheck, pcheck $)=(0,0)$.

## Properties

## ParameterName - Parameter names

' ' (default) | cell array of character vectors
Names of the parameters in the LPV model, specified as a cell array of character vectors. Specify a cell array of length equal to the length of parameter vector $p$.

## DataFunction - Data function

[] (default) | function handle
Data function for calculating the model data, specified as a function handle. The data function must be of the following form.

- Continuous time

$$
[A, B, C, D, E, d x 0, x 0, u 0, y 0, D e l a y]=\operatorname{DataFcn}(t, p)
$$

- Discrete time

$$
[A, B, C, D, E, d x 0, x 0, u 0, y 0, D e l a y]=\operatorname{DataFcn}(k, p)
$$

Here, the input $k$ is an integer index that counts the number of sampling periods Ts. The absolute time is given by $t=k *$ Ts.

To pass additional input arguments, use an anonymous function as follows.

```
DataFcn = @(t) myFunction(t,arg1,arg2,...)
```

You can set all output arguments except A, B, C, D to [] when absent for ( $\mathrm{t}, \mathrm{p}$ ) values.

## StateName - State names

## ' ' (default) | character vector | cell array of character vectors

State names, specified as one of the following:

- Character vector - For first-order models, for example, 'velocity '.
- Cell array of character vectors - For models with two or more states

StateName is empty ' ' for all states by default.

## StatePath - State path

' ' (default) | character vector | cell array of character vectors
State path to facilitate state block path management in linearization, specified as one of the following:

- Character vector - For first-order models
- Cell array of character vectors - For models with two or more states

StatePath is empty ' ' for all states by default.

## StateUnit - State units

' ' (default) | character vector | cell array of character vectors
State units, specified as one of the following:

- Character vector - For first-order models, for example, ' m/s '
- Cell array of character vectors - For models with two or more states

Use StateUnit to keep track of the units of each state. StateUnit has no effect on system behavior. StateUnit is empty ' ' for all states by default.

## Ts - Sample time

0 (default) | positive scalar | - 1
Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.
-     - 1 for a discrete-time system with an unspecified sample time.

Note Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

## TimeUnit - Time variable units

'seconds' (default)|'nanoseconds' | 'microseconds'|'milliseconds'|'minutes'| 'hours'|'days'|'weeks'|'months'|'years'|...

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

## InputName - Input channel names

' ' (default) | character vector | cell array of character vectors
Input channel names, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no names specified, for any input channels.

Alternatively, you can assign input names for multi-input models using automatic vector expansion.
For example, if sys is a two-input model, enter the following:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)';'controls(2)'\}.
You can use the shorthand notation $u$ to refer to the InputName property. For example, sys.u is equivalent to sys. InputName.

Use InputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## InputUnit - Input channel units

' ' (default) | character vector | cell array of character vectors
Input channel units, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no units specified, for any input channels.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.

## InputGroup - Input channel groups

structure
Input channel groups, specified as a structure. Use InputGroup to assign the input channels of MIMO systems into groups and refer to each group by name. The field names of InputGroup are the group names and the field values are the input channels of each group. For example, enter the following to create input groups named controls and noise that include input channels 1 and 2 , and 3 and 5, respectively.
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
You can then extract the subsystem from the controls inputs to all outputs using the following.
sys(:,'controls')
By default, InputGroup is a structure with no fields.

## OutputName - Output channel names

' ' (default) | character vector | cell array of character vectors
Output channel names, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' ', no names specified, for any output channels.

Alternatively, you can assign output names for multi-output models using automatic vector expansion. For example, if sys is a two-output model, enter the following.

```
sys.OutputName = 'measurements';
```

The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can also use the shorthand notation $y$ to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## OutputUnit - Output channel units

' ' (default) | character vector | cell array of character vectors
Output channel units, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no units specified, for any output channels.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.

## OutputGroup - Output channel groups

structure
Output channel groups, specified as a structure. Use OutputGroupto assign the output channels of MIMO systems into groups and refer to each group by name. The field names of OutputGroup are the group names and the field values are the output channels of each group. For example, create output groups named temperature and measurement that include output channels 1 , and 3 and 5, respectively.
sys.OutputGroup.temperature $=$ [1];
sys.OutputGroup.measurement = [3 5];
You can then extract the subsystem from all inputs to the measurement outputs using the following.
sys('measurement',:)
By default, OutputGroup is a structure with no fields.

## Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, ' system_1'.

## Notes - User-specified text

\{\} (default) | character vector | cell array of character vectors
User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

## UserData - User-specified data

[] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

## Object Functions

## Sampling and Interpolation

sample Sample linear parameter-varying or time-varying dynamics
ssInterpolant Build gridded LTV or LPV model from state-space data

## Time Response Simulation

step Step response plot of dynamic system; step response data
impulse Impulse response plot of dynamic system; impulse response data
lsim Plot simulated time response of dynamic system to arbitrary inputs; simulated response data
initial System response to initial states of state-space model

## Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models
lft Generalized feedback interconnection of two models (Redheffer star product)

## Model Transformation

c2d Convert model from continuous to discrete time
d2c Convert model from discrete to continuous time
d2d Resample discrete-time model
xperm Reorder states in state-space models
sminreal Structural pole/zero cancellations

## Examples

## Continuous-Time Linear Parameter-Varying Model

Create a continuous-time SISO linear-parameter varying model.
For this example, consider dataFcnMaglev.m that defines the matrices and offsets of a magnetic levitation system. The magnetic levitation controls the height of a levitating ball using the coil current which creates a magnetic force on the ball.

These matrices and offsets are defined in the dataFcnMaglev.m data function provided with this example.

Create the LPV model.
lpvsys = lpvss('p',@dataFcnMaglev)

```
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 2 states, and 1 parameters.
Model Properties
```

View the data function.

```
type dataFcnMaglev.m
function [A,B,C,D,E,dx0,x0,u0,y0,Delays] = dataFcnMaglev(~,p)
% MAGLEV example:
% x = [h ; dh/dt]
% p=hbar (equilibrium height)
mb = 0.02; % kg
g = 9.81;
alpha = 2.4832e-5;
A = [0 1;2*g/p 0];
B = [0 ; -2*sqrt(g*alpha/mb)/p];
C = [1 0]; % h
D = 0;
E = [];
dx0 = [];
x0 = [p;0];
u0 = sqrt(mb*g/alpha)*p; % ibar
y0 = p; % y = h = hbar + (h-hbar)
Delays = [];
```


## Discrete-Time Linear Parameter-Varying Model

Create a discrete-time linear-parameter varying model.
The matrices and offsets are given by:

$$
\begin{gathered}
A=\sin (0.1 p), B=1, C=1, D=0 \\
y_{0}=0.1 \sin (k)
\end{gathered}
$$

These matrices and offsets are defined in the lpvFcnDiscrete.m data function provided with this example.

Specify the properties and create the LPV model.

```
Ts = 0.01;
ParamNames = 'p';
DataFcn = @lpvFcnDiscrete;
lpvSys = lpvss(ParamNames,DataFcn,Ts)
```

Discrete-time state-space LPV model with 1 outputs, 1 inputs, 1 states, and 1 parameters.

View the data function

```
type lpvFcnDiscrete.m
function [A,B,C,D,E,dx0,x0,u0,y0,Delays] = lpvFcnDiscrete(k,p)
A = sin(0.1*p);
B = 1;
C = 1;
D = 0;
E = [];
dx0 = [];
x0 = [];
u0 = [];
y0 = 0.1*sin(k);
Delays = [];
```


## Time Response of Linear-Parameter Varying State-Space Model

For this example, consider dataFcnMaglev.m that defines the matrices and offsets of a magnetic levitation system. The magnetic levitation controls the height of a levitating ball using the coil current which creates a magnetic force on the ball. This example simulates the model in open loop.

Create the LPV model.

```
lpvSys = lpvss('h',@dataFcnMaglev)
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 2 states, and 1 parameters.
Model Properties
```

You can set additional properties using the dot notation.

```
lpvSys.StateName = {'h','hdot'};
lpvSys.InputName = 'current';
lpvSys.InputName = 'height';
```

Simulate the response of this model to an arbitrary sinusoidal input current.

```
h0 = 1;
[~,~,~,~,~,~,x0,u0,~] = dataFcnMaglev([],h0);
t = 0:1e-2:1;
u = u0*(1+0.1*sin(10*t));
y = lsim(lpvSys,u,t,x0,@(t,x,u) x(1));
**iter = 20, residual: 3.32e-01
**iter = 7, residual: 4.33e-10
```

Plot the response.

```
plot(t,y,t,u/u0)
legend('height','current')
```



The ball is attracted to the magnet when the current first increases (h decreases). The subsequent decrease in current is not enough to bring it back.
$\mathrm{h}=0$ is a singularity for this model, that is, the ball hits the magnet. The LPV model ceases to be valid at this point.

## Sample Dynamics of LPV Models

You can sample the dynamics of an LPV model over a point or a grid of $(t, p)$ values to obtain affine dynamics for a given time or parameter value.

For this example, consider dataFcnMaglev.m that defines the matrices and offsets of a magnetic levitation system. The magnetic levitation controls the height of a levitating ball using the coil current which creates a magnetic force on the ball.

Create an LPV model.
lpvSys = lpvss('h',@dataFcnMaglev)
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 2 states, and 1 parameters.
Sample the LPV dynamics at $\mathrm{h}=1$ to obtain local LTI models.
hmin $=0.05$;
hmax = 0.25;
hcd = linspace(hmin,hmax,3);
[ssArray,offsets] = sample(lpvSys,[],hcd);
size(ssArray)
1x3 array of state-space models.
Each model has 1 outputs, 1 inputs, and 2 states.
Plot the bode response.
bodemag(ssArray)


## Version History

Introduced in R2023a

## See Also

ltvss|getTestValue| setTestValue | sample | ssInterpolant
Topics
"LTV and LPV Modeling"
"Using LTV and LPV Models in MATLAB and Simulink"
"LPV Model of Bouncing Ball"
"LPV Model of Engine Throttle"
"Analysis of Gain-Scheduled PI Controller"
"LPV Model of Magnetic Levitation System"
"Gain-Scheduled LQG Controller"

## Itvss

Linear time-varying state-space model

## Description

Use ltvss to represent linear state-space models whose dynamics vary with time.
You can use ltvss to create continuous-time or discrete-time linear parameter-varying state-space models. In continuous time, an ltvss model is described by the following state-space equations.

$$
\begin{aligned}
& E(t) \dot{x}=\delta_{0}(t)+A(t)\left(x-x_{0}(t)\right)+B(t)\left(u-u_{0}(t)\right) \\
& y(t)=y_{0}(t)+C(t)\left(x-x_{0}(t)\right)+D(t)\left(u-u_{0}(t)\right) .
\end{aligned}
$$

Here, $A(t), B(t), C(t), D(t)$, and $E(t)$ are time-varying state-space matrices and $\delta_{0}(t), x_{0}(t), u_{0}(t)$, and $y_{0}(t)$ are time-dependent derivative, state, input, and output offsets, respectively.

In discrete time, an ltvss model is described by the following state-space equations.

$$
\begin{gathered}
E_{k} x_{k}+1=\delta_{0 k}+A_{k}\left(x_{k}-x_{0 k}\right)+B_{k}\left(u_{k}-u_{0 k}\right) \\
y_{k}=y_{0 k}+C_{k}\left(x_{k}-x_{0 k}\right)+D_{k}\left(u_{k}-u_{0 k}\right)
\end{gathered}
$$

Here, the integer index $k$ counts the number of sampling periods Ts.
You can use an ltvss object to model:

- Linear systems whose coefficients vary in time.
- Nonlinear systems operating along a specific trajectory. For an example, see "LTV Model of TwoLink Robot".
- Nonlinear systems operating near steady-state conditions that change in time.

Use ltvss to construct LTV models whose dynamics are described by a MATLAB function (the data function). Use ssInterpolant to construct LTV models that interpolate LTI snapshots as a function of time. See "LPV and LTV Models" for functions and operations applicable to ltvss objects.

## Creation

## Syntax

ltvSys = ltvss(DataFcn)
ltvSys = ltvss(DataFcn,ts)
ltvSys = ltvss(DataFcn,ts,tcheck)
ltvSys = ltvss( $\qquad$ ,Name=Value)

## Description

ltvSys = ltvss(DataFcn) creates a continuous-time LTV model. DataFcn is the name of or a handle to the data function, the user-defined MATLAB function that calculates the matrices and offsets for given $t$ or $k$ values.
ltvSys $=$ ltvss(DataFcn,ts) creates a discrete-time LTV model with sample time ts.
ltvSys = ltvss(DataFcn,ts,tcheck) evaluates DataFcn at tcheck to determine the number of states, inputs, and outputs. By default, ltvss uses tcheck $=0$.
ltvSys = ltvss( $\qquad$ ,Name=Value) sets properties of the linear time-varying model using one or more name-value pair arguments. Use this syntax with any of the previous input-argument combinations.

## Input Arguments

## DataFcn - Data function

function name | function handle
User-defined MATLAB function for calculating matrices and offsets, specified as a function name (character vector or string) or a function handle. The data function must be of the following form.

- Continuous time $-\left[A, B, C, D, E, \delta_{0}, x_{0}, u_{0}, y_{0}\right.$, Delays $]=f(t)$.
- Discrete time $-\left[A, B, C, D, E, \delta_{0}, x_{0}, u_{0}, y_{0}\right.$, Delays $]=f(k)$

For R2023a, set Delays to [ ] . In future releases, this argument will allow you to specify model delays.
This input sets the value of property DataFunction.

## ts - Sample time

scalar
Sample time, specified as a scalar. For more information, see the Ts property.

## tcheck - Time test value

scalar
Test value for time, specified as a scalar. The object evaluates DataFcn at tcheck to check if it is valid and to obtain the number of states, inputs, and outputs. By default, ltvss uses tcheck $=0$.

## Properties

## DataFunction - Data function

[] (default) | function handle
Data function for calculating the model data, specified as a function handle. The data function must be of the following form.

- Continuous time

```
[A,B,C,D,E,dx0,x0,u0,y0,Delay] = DataFcn(t)
```

- Discrete time

$$
[A, B, C, D, E, d \times 0, x 0, u 0, y 0, \text { Delay }]=\operatorname{DataFcn}(k)
$$

Here, the input k is an integer index that counts the number of sampling periods Ts. The absolute time is given by $\mathrm{t}=\mathrm{k} * \mathrm{~T}$ s.

To pass additional input arguments, use an anonymous function as follows.

```
DataFcn = @(t) myFunction(t,arg1,arg2,...)
```

You can set all output arguments except A, B, C, D to [] when absent for $t$ values.
For more information, see "Data Function".

## StateName - State names

' ' (default) | character vector | cell array of character vectors
State names, specified as one of the following:

- Character vector - For first-order models, for example, 'velocity '.
- Cell array of character vectors - For models with two or more states

StateName is empty ' ' for all states by default.

## StatePath - State path

' ' (default) | character vector | cell array of character vectors
State path to facilitate state block path management in linearization, specified as one of the following:

- Character vector - For first-order models
- Cell array of character vectors - For models with two or more states

StatePath is empty ' ' for all states by default.

## StateUnit - State units

' ' (default) | character vector | cell array of character vectors
State units, specified as one of the following:

- Character vector - For first-order models, for example, ' m/s '
- Cell array of character vectors - For models with two or more states

Use StateUnit to keep track of the units of each state. StateUnit has no effect on system behavior. StateUnit is empty ' ' for all states by default.

## Ts - Sample time

0 (default) | positive scalar |-1
Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.
-     - 1 for a discrete-time system with an unspecified sample time.

Note Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

## TimeUnit - Time variable units

```
'seconds' (default)|'nanoseconds'| 'microseconds'|'milliseconds'|'minutes'|
'hours'|'days'|'weeks'|'months'|'years'|...
```

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

## InputName - Input channel names

(default) | character vector | cell array of character vectors
Input channel names, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no names specified, for any input channels.

Alternatively, you can assign input names for multi-input models using automatic vector expansion. For example, if sys is a two-input model, enter the following:

```
sys.InputName = 'controls';
```

The input names automatically expand to \{'controls(1)';'controls(2)'\}.
You can use the shorthand notation $u$ to refer to the InputName property. For example, sys. $u$ is equivalent to sys.InputName.

Use InputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## InputUnit - Input channel units

' ' (default) | character vector | cell array of character vectors
Input channel units, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no units specified, for any input channels.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.

## InputGroup - Input channel groups

## structure

Input channel groups, specified as a structure. Use InputGroup to assign the input channels of MIMO systems into groups and refer to each group by name. The field names of InputGroup are the group names and the field values are the input channels of each group. For example, enter the following to create input groups named controls and noise that include input channels 1 and 2, and 3 and 5, respectively.

```
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
```

You can then extract the subsystem from the controls inputs to all outputs using the following.

```
sys(:,'controls')
```

By default, InputGroup is a structure with no fields.

## OutputName - Output channel names

' ' (default) | character vector | cell array of character vectors
Output channel names, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' ', no names specified, for any output channels.

Alternatively, you can assign output names for multi-output models using automatic vector expansion. For example, if sys is a two-output model, enter the following.

```
sys.OutputName = 'measurements';
```

The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can also use the shorthand notation $y$ to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## OutputUnit - Output channel units

' ' (default) | character vector | cell array of character vectors
Output channel units, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no units specified, for any output channels.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.

## OutputGroup - Output channel groups

## structure

Output channel groups, specified as a structure. Use OutputGroupto assign the output channels of MIMO systems into groups and refer to each group by name. The field names of OutputGroup are the group names and the field values are the output channels of each group. For example, create output groups named temperature and measurement that include output channels 1 , and 3 and 5, respectively.

```
sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];
```

You can then extract the subsystem from all inputs to the measurement outputs using the following.
sys('measurement',:)
By default, OutputGroup is a structure with no fields.

## Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, 'system_1'.

## Notes - User-specified text

\{\} (default) | character vector | cell array of character vectors
User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

## UserData - User-specified data

[] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

## Object Functions

## Sampling and Interpolation

sample
Sample linear parameter-varying or time-varying dynamics
ssInterpolant Build gridded LTV or LPV model from state-space data

## Time Response Simulation

step Step response plot of dynamic system; step response data impulse Impulse response plot of dynamic system; impulse response data
lsim Plot simulated time response of dynamic system to arbitrary inputs; simulated response data
initial System response to initial states of state-space model

## Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models
lft Generalized feedback interconnection of two models (Redheffer star product)

## Model Transformation

c2d Convert model from continuous to discrete time
d2c Convert model from discrete to continuous time
d2d Resample discrete-time model
xperm Reorder states in state-space models
sminreal Structural pole/zero cancellations

## Examples

## Continuous-Time Linear Time-Varying Model

Create a continuous-time SISO linear-time varying model.
This example uses a first-order model. The matrices and offsets are given by:
$A=-(1+0.5 \sin (t)), B=1, C=1, D=0$,
$y_{0}=0.1 \sin (5 t)$.
These matrices and offsets are defined in the ltvssDataFcn.m data function provided with this example.

Create the LTV model.
ltvSys = ltvss(@ltvssDataFcn)
Continuous-time state-space LTV model with 1 outputs, 1 inputs, and 1 states.
View the data function.

```
type ltvssDataFcn.m
function [A, B,C,D,E,dx0,x0,u0,y0,Delays] = ltvssDataFcn(t)
% SISO, first order
A = - (1+0.5*sin(t));
B = 1;
C = 1;
D = 0;
```

```
E = [];
dx0 = [];
x0 = [];
u0 = [];
y0 = 0.1*sin(5*t);
Delays = [];
```


## Discrete-Time Linear Time-Varying Model

Create a discrete-time linear-parameter varying model.
This example uses a model with the matrices and offsets defined as:

```
\(A=\sin (0.1 k), B=1, C=1, D=0\)
 \(y_{0}=0.1 \sin (k)\)
```

These matrices and offsets are defined in the ltvFcnDiscrete.m data function provided with this example.

Specify the properties and create the LTV model.

```
Ts = 0.01;
DataFcn = @ltvFcnDiscrete;
ltvSys = ltvss(DataFcn,Ts)
Discrete-time state-space LTV model with 1 outputs, 1 inputs, and 1 states.
```

You can set additional properties of the model using the dot notation

```
ltvSys.InputName = 'u';
ltvSys.OutputName = 'y';
```

View the data function.

```
type ltvFcnDiscrete.m
function [A,B,C,D,E,dx0,x0,u0,y0,Delays] = ltvFcnDiscrete(k)
A = sin(0.1*k);
B = 1;
C = 1;
D = 0;
E = [];
dx0 = [];
x0 = [];
u0 = [];
y0 = 0.1*sin(k);
Delays = [];
```


## Time Response of Linear Time-Varying Models

For this example, consider ltvssDataFcn.m that defines the matrices and offsets of a MIMO system.

Create The LTV model.
ltvSys = ltvss(@ltvssDataFcn);
Simulate the response of this model from $t=0$ to $t=10$ seconds to an arbitrary input.
$t=(0: .01: 10) ' ;$
$\mathrm{u}=\sin \left(0.2^{*} \mathrm{t}\right)$;
$x 0=2$;
Simulate and plot the response.
[y,~,x] = lsim(ltvSys,u,t,x0);
plot(t,y)


Now, simulate the model to step and impulse responses.
Create the option set using RespConfig to specify initial offset, and state values.

```
respOpt = RespConfig(InitialState=x0,Delay=1);
```

Compute the step response.
step(ltvSys,t,respOpt)


Compute the impulse response.
impulse(ltvSys,t,resp0pt)


View the data function.

```
type ltvssDataFcn.m
function [A,B,C,D,E,dx0,x0,u0,y0,Delays] = ltvssDataFcn(t)
% SISO, first order
A = -(1+0.5*sin(t));
B = 1;
C = 1;
D = 0;
E = [];
dx0 = [];
x0 = [];
u0 = [];
y0 = 0.1*sin(5*t);
Delays = [];
```


## Version History

Introduced in R2023a

## See Also

lpvss|getTestValue|setTestValue| sample|ssInterpolant

## Topics

"LTV Model of Two-Link Robot"
"LTV and LPV Modeling"
"Using LTV and LPV Models in MATLAB and Simulink"

## lyap

Continuous Lyapunov equation solution

## Syntax

lyap
$X=\operatorname{lyap}(A, Q)$
$X=\operatorname{lyap}(A, B, C)$
$X=\operatorname{lyap}(A, Q,[], E)$

## Description

lyap solves the special and general forms of the Lyapunov equation. Lyapunov equations arise in several areas of control, including stability theory and the study of the RMS behavior of systems.
$X=\operatorname{lyap}(A, Q)$ solves the Lyapunov equation

$$
A X+X A^{T}+Q=0
$$

where $A$ and $Q$ represent square matrices of identical sizes. If $Q$ is a symmetric matrix, the solution $X$ is also a symmetric matrix.
$X=$ lyap(A, B, C) solves the Sylvester equation

$$
A X+X B+C=0
$$

The matrices $A, B$, and $C$ must have compatible dimensions but need not be square.
$X=$ lyap(A, Q, [],E) solves the generalized Lyapunov equation

$$
A X E^{T}+E X A^{T}+Q=0
$$

where $Q$ is a symmetric matrix. You must use empty square brackets [] for this function. If you place any values inside the brackets, the function errors out.

## Limitations

The continuous Lyapunov equation has a unique solution if the eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ of $A$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ of $B$ satisfy

$$
\alpha_{i}+\beta_{j} \neq 0 \quad \text { for all pairs }(i, j)
$$

If this condition is violated, lyap produces the error message:
Solution does not exist or is not unique.

## Examples

## Example 1

## Solve Lyapunov Equation

Solve the Lyapunov equation

$$
A X+X A^{T}+Q=0
$$

where

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-3 & -4
\end{array}\right] \quad Q=\left[\begin{array}{ll}
3 & 1 \\
1 & 1
\end{array}\right]
$$

The $A$ matrix is stable, and the $Q$ matrix is positive definite.

```
A = [1 2; -3 -4];
Q = [3 1; 1 1];
X = lyap(A,Q)
```

These commands return the following $X$ matrix:
$x=$
$\begin{array}{rr}6.1667 & -3.8333 \\ -3.8333 & 3.0000\end{array}$
You can compute the eigenvalues to see that $X$ is positive definite.
eig(X)
The command returns the following result:
ans $=$
0.4359
8.7308

## Example 2

## Solve Sylvester Equation

Solve the Sylvester equation

$$
A X+X B+C=0
$$

where

$$
A=5 \quad B=\left[\begin{array}{ll}
4 & 3 \\
4 & 3
\end{array}\right] \quad C=\left[\begin{array}{ll}
2 & 1
\end{array}\right]
$$

A $=5$;
$B=\left[\begin{array}{ll}4 & 3 ;\end{array} 4\right.$ 3];
C = [2 1];
$X=\operatorname{lyap}(A, B, C)$
These commands return the following $X$ matrix:

```
X =
 -0.2000 -0.0500
```


## Algorithms

lyap uses SLICOT routines SB03MD and SG03AD for Lyapunov equations and SB04MD (SLICOT) and ZTRSYL (LAPACK) for Sylvester equations.

## Version History

## Introduced before R2006a

## References

[1] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB = C," Comm. of the ACM, Vol. 15, No. 9, 1972.
[2] Barraud, A.Y., "A numerical algorithm to solve A XA - X = Q," IEEE Trans. Auto. Contr., AC-22, pp. 883-885, 1977.
[3] Hammarling, S.J., "Numerical solution of the stable, non-negative definite Lyapunov equation," IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.
[4] Penzl, T., "Numerical solution of generalized Lyapunov equations," Advances in Comp. Math., Vol. 8, pp. 33-48, 1998.
[5] Golub, G.H., Nash, S. and Van Loan, C.F., "A Hessenberg-Schur method for the problem AX $+\mathrm{XB}=$ C," IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.

## See Also

covar|dlyap

## lyapchol

Square-root solver for continuous-time Lyapunov equation

## Syntax

$R=$ lyapchol ( $\mathrm{A}, \mathrm{B}$ )
$R=$ lyapchol( $\mathrm{A}, \mathrm{B}, \mathrm{E})$

## Description

$R=$ lyapchol $(A, B)$ computes a Cholesky factorization $X=R^{\prime} * R$ of the solution $X$ to the Lyapunov matrix equation:
$A^{*} X+X A^{\prime}+B^{*} B^{\prime}=0$
All eigenvalues of matrix A must lie in the open left half-plane for R to exist.
$R=$ lyapchol $(A, B, E)$ computes a Cholesky factorization $X=R^{\prime} * R$ of $X$ solving the generalized Lyapunov equation:
$A^{*} X^{*} E^{\prime}+E^{*} X^{*} A^{\prime}+B^{*} B^{\prime}=0$
All generalized eigenvalues of $(A, E)$ must lie in the open left half-plane for $R$ to exist.

## Algorithms

lyapchol uses SLICOT routines SB03OD and SG03BD.

## Version History <br> Introduced before R2006a

## References

[1] Bartels, R.H. and G.W. Stewart, "Solution of the Matrix Equation AX + XB = C," Comm. of the ACM, Vol. 15, No. 9, 1972.
[2] Hammarling, S.J., "Numerical solution of the stable, non-negative definite Lyapunov equation," IMA J. Num. Anal., Vol. 2, pp. 303-325, 1982.
[3] Penzl, T., "Numerical solution of generalized Lyapunov equations," Advances in Comp. Math., Vol. 8, pp. 33-48, 1998.

## See Also

lyap|dlyapchol

## mag2db

Convert magnitude to decibels (dB)

## Syntax

$y d b=m a g 2 d b(y)$

## Description

$y d b=\operatorname{mag2db}(y)$ expresses in decibels ( dB ) the magnitude measurements specified in y . The relationship between magnitude and decibels is $y d b=20 * \log _{10}(y)$

## Examples

## Display Gain Margins in Decibels

For this example, consider the following SISO feedback loop where the system contains multiple gain crossover or phase crossover frequencies, which leads to multiple gain or phase margin values:


Create the transfer function.
$\mathrm{G}=\mathrm{tf}(20,[17]) * \operatorname{tf}([13.27 .2],[1-1.20 .8]) * \operatorname{tf}([1-8400],[133$ 700]);
Use the allmargin command to compute all stability margins.

```
m = allmargin(G)
m = struct with fields:
 GainMargin: [0.3408 3.3920]
 GMFrequency: [1.9421 16.4807]
 PhaseMargin: 68.1140
 PMFrequency: 7.0776
 DelayMargin: 0.1680
 DMFrequency: 7.0776
 Stable: 1
```

Note that gain margins are expressed as gain ratios and not in decibels (dB). Use mag2db to convert the values to dB .

```
GainMargins_dB = mag2db(m.GainMargin)
GainMargins_dB = 1×2
 -9.3510 10.6091
```


## Input Arguments

## y - Input array

scalar | vector | matrix | array
Input array, specified as a scalar, vector, matrix, or an array. When y is nonscalar, mag2db is an element-wise operation.
Data Types: single | double
Complex Number Support: Yes

## Output Arguments

ydb - Magnitude measurements in decibels
scalar | vector | matrix | array
Magnitude measurements in decibels, returned as a scalar, vector, matrix, or an array of the same size as y .

## Version History

Introduced in R2008a

## See Also

db2mag

## make1DOF

Convert 2-DOF PID controller to 1-DOF controller

## Syntax

C1 = make1D0F(C2)

## Description

C1 = make1D0F (C2) converts the two-degree-of-freedom PID controller C2 to one degree of freedom by removing the terms that depend on coefficients $b$ and $c$.

## Examples

## Convert 2-DOF PID controller to 1-DOF

Design a 2-DOF PID controller for a plant.

```
G = tf(1,[1 0.5 0.1]);
C2 = pidtune(G,'pidf2',1.5)
C2 =
```


with $\mathrm{Kp}=1.12, \mathrm{Ki}=0.23, \mathrm{Kd}=1.3, \mathrm{Tf}=0.122, \mathrm{~b}=0.664, \mathrm{c}=0.0136$
Continuous-time 2-DOF PIDF controller in parallel form.

Convert the controller to one degree of freedom.

```
C1 = make1D0F(C2)
C1 =
 1 s
 Kp + Ki * \underset{s}{--- + Kd * }\underset{~}{----\cdots*--}
 with Kp = 1.12, Ki = 0.23, Kd = 1.3, Tf = 0.122
Continuous-time PIDF controller in parallel form.
```

The new controller has the same PID gains and filter constant. However, make1D0F removes the terms involving the setpoint weights b and c. Therefore, in a closed loop with the plant G, the 2-DOF controller C2 yields a different closed-loop response from C1.

CM = tf(C2);
T2 $=\mathrm{CM}(1) *$ feedback(G,-CM(2));

```
T1 = feedback(G*C1,1);
```

stepplot(T2,T1,'r--')


## Input Arguments

## C2 - 2-DOF PID controller

pid2 object | pidstd2 object
2-DOF PID controller, specified as a pid2 object or a pidstd2 object.

## Output Arguments

## C1 - 1-DOF PID controller

pid object | pidstd object
1-DOF PID controller, returned as a pid or pidstd object. C1 is in parallel form if C2 is in parallel form, and standard form if C2 is in standard form.

For example, suppose C2 is a continuous-time, parallel-form 2-DOF pid2 controller. The relationship between the inputs, $r$ and $y$, and the output $u$ of $C 2$ is given by:

$$
u=K_{p}(b r-y)+\frac{K_{i}}{s}(r-y)+\frac{K_{d} S}{T_{f} S+1}(c r-y) .
$$

Then C1 is a parallel-form 1-DOF pid controller of the form:

$$
C_{1}=K_{p}+\frac{K_{i}}{S}+\frac{K_{d} S}{T_{f} S+1} .
$$

The PID gains $K_{p}, K_{i}$, and $K_{d}$, and the filter time constant $T_{f}$ are unchanged. make1D0F removes the terms that depend on the setpoint weights $b$ and $c$. For more information about 2-DOF PID controllers, see "Two-Degree-of-Freedom PID Controllers".

The conversion also preserves the values of the properties Ts, TimeUnit, Sampling Grid, IFormula, and DFormula.

## Version History

## Introduced in R2015b

## See Also

pid2|pidstd2|pid|pidstd|make2DOF | getComponents

## Topics

"Two-Degree-of-Freedom PID Controllers"

## make2DOF

Convert 1-DOF PID controller to 2-DOF controller

## Syntax

C2 = make2D0F(C1)
C2 $=$ make2DOF(C1,b)
C2 $=$ make2DOF(C1,b,c)

## Description

C2 = make2DOF(C1) converts the one-degree-of-freedom PID controller C1 to two degrees of freedom. The setpoint weights $b$ and $c$ of the 2-DOF controller are 1, and the remaining PID coefficients do not change.

C2 $=$ make2DOF $(C 1, b)$ specifies the setpoint weight for the proportional term.
$C 2=$ make2DOF $(C 1, b, c)$ specifies the setpoint weights for both the proportional and derivative terms.

## Examples

## Convert 1-DOF PID controller to 2-DOF

Design a 1-DOF PID controller for a plant.

```
G = tf(1,[1 0.5 0.1]);
C1 = pidtune(G,'pidf',1.5)
C1 =
 Kp + Ki * %-- % Kd * c-------
 with Kp = 1.12, Ki = 0.23, Kd = 1.3, Tf = 0.122
Continuous-time PIDF controller in parallel form.
```

Convert the controller to two degrees of freedom.

```
C2 = make2D0F(C1)
C2 =
```



```
 with Kp = 1.12, Ki = 0.23, Kd = 1.3, Tf = 0.122, b = 1, c = 1
```

```
Continuous-time 2-DOF PIDF controller in parallel form.
```

The new controller has the same PID gains and filter constant. It also contains new terms involving the setpoint weights b and c . By default, $\mathrm{b}=\mathrm{c}=1$. Therefore, in a closed loop with the plant G , the 2-DOF controller C 2 yields the same response as C 1 .

```
T1 = feedback(G*C1,1);
CM = tf(C2);
T2 = CM(1)*feedback(G,-CM(2));
stepplot(T1,T2,'r--')
```

Step Response


Convert C 1 to a 2-DOF controller with different b and c values.
C2_2 = make2DOF(C1, 0.5, 0.75)
C2 2 =

$$
\begin{aligned}
& \text { with } \mathrm{Kp}=1.12 \text {, } \mathrm{Ki}=0.23, \mathrm{Kd}=1.3, \mathrm{Tf}=0.122, \mathrm{~b}=0.5, \mathrm{c}=0.75 \\
& \text { Continuous-time 2-DOF PIDF controller in parallel form. }
\end{aligned}
$$

The PID gains and filter constant are still unchanged, but the setpoint weights now change the closed-loop response.

```
CM_2 = tf(C2_2);
T2_2 = CM 2(\overline{1})*feedback(G,-CM_2(2));
stēpplot(\overline{T1,T2_2,'r--')}
```



## Input Arguments

## C1 - 1-DOF PID controller

pid object | pidstd object
1-DOF PID controller, specified as a pid object or a pidstd object.
b - Setpoint weight on proportional term
1 (default) | real nonnegative scalar
Setpoint weight on proportional term, specified as a real, nonnegative, finite value. If you do not specify $b$, then C 2 has $\mathrm{b}=1$.

## c - Setpoint weight on derivative term

1 (default) | real nonnegative scalar
Setpoint weight on derivative term, specified as a real, nonnegative, finite value. If you do not specify c , then C 2 has $\mathrm{C}=1$.

## Output Arguments

## C2 - 2-DOF PID controller

pid2 object | pidstd2 object
2-DOF PID controller, returned as a pid2 object or pidstd2 object. C2 is in parallel form if C1 is in parallel form, and standard form if C1 is in standard form.

For example, suppose C 1 is a continuous-time, parallel-form pid controller of the form:

$$
C_{1}=K_{p}+\frac{K_{i}}{s}+\frac{K_{d} s}{T_{f} S+1} .
$$

Then C2 is a parallel-form 2-DOF pid2 controller, which has two inputs and one output. The relationship between the inputs, $r$ and $y$, and the output $u$ of C 2 is given by:

$$
u=K_{p}(b r-y)+\frac{K_{i}}{s}(r-y)+\frac{K_{d} s}{T_{f} S+1}(c r-y) .
$$

The PID gains $K_{p}, K_{i}$, and $K_{d}$, and the filter time constant $T_{f}$ are unchanged. The setpoint weights $b$ and $c$ are specified by the input arguments $b$ and $c$, or 1 by default. For more information about 2DOF PID controllers, see "Two-Degree-of-Freedom PID Controllers".

The conversion also preserves the values of the properties Ts, TimeUnit, Sampling Grid, IFormula, and DFormula.

## Version History <br> Introduced in R2015b

## See Also

pid2 | pidstd2 | pid| pidstd|make1D0F | getComponents
Topics
"Two-Degree-of-Freedom PID Controllers"

## margin

Gain margin, phase margin, and crossover frequencies

## Syntax

```
margin(sys)
margin(sys,w)
[Gm,Pm,Wcg,Wcp] = margin(sys)
[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w)
[Gm,Pm] = margin(sys,J1,...,JN)
```


## Description

margin(sys) plots the Bode response of sys on the screen and indicates the gain and phase margins on the plot. Gain margins are expressed in dB on the plot.


Solid vertical lines mark the gain margin and phase margin. The dashed vertical lines indicate the locations of Wcp, the frequency where the phase margin is measured, and Wcg, the frequency where the gain margin is measured. The plot title includes the magnitude and location of the gain and phase margin.

Gm and Pm of a system indicate the relative stability of the closed-loop system formed by applying unit negative feedback to sys, as shown in the following figure.


Gm is the amount of gain variance required to make the loop gain unity at the frequency Wcg where the phase angle is $-180^{\circ}$ (modulo $360^{\circ}$ ). In other words, the gain margin is $1 / g$ if $g$ is the gain at the $180^{\circ}$ phase frequency. Similarly, the phase margin is the difference between the phase of the response and $-180^{\circ}$ when the loop gain is 1.0 . The frequency $W c p$ at which the magnitude is 1.0 is called the unity-gain frequency or gain crossover frequency. When sys has more than one crossover, margin indicates the frequencies with gain margin closest to 0 dB and phase margin closest to $0^{\circ}$.

Usually, gain margins of 3 or more combined with phase margins between $30^{\circ}$ and $60^{\circ}$ result in reasonable tradeoffs between bandwidth and stability. However, in some multivariable systems, stability can be lost at a different frequency for much smaller gain and phase variations. For such systems, the notion of disk margins provides more reliable estimates of the true gain and phase margins. For more information on disk margins, see diskmargin.
margin(sys,w) plots the Bode response of sys using the vector of frequencies $w$ in radian/ TimeUnit. Use this syntax when you have sparse models like sparss or mechss model objects.
[Gm, Pm, Wcg, Wcp] = margin(sys) returns the gain margin Gm in absolute units, the phase margin Pm , and the corresponding frequencies Wcg and Wcp, of sys. Wcg is the frequency where the gain margin is measured, which is a $-180^{\circ}$ phase crossing frequency. Wcp is the frequency where the phase margin is measured, which is a $0-\mathrm{dB}$ gain crossing frequency. These frequencies are expressed in radians/TimeUnit, where TimeUnit is the unit specified in the TimeUnit property of sys. When sys has several crossovers, margin returns the smallest gain and phase margins and corresponding frequencies.
margin returns a warning if your system is not internally stable, that is, if your system is not closedloop stable or contains pole-zero cancellations outside of the open left-half plane.
[Gm,Pm,Wcg,Wcp] = margin(mag,phase,w) derives the gain and phase margins from frequency response data. Provide the gain data mag in absolute units, and phase data phase in degrees. You can provide the frequency vector $w$ in any units and margin returns Wcg and Wcp in the same units.
[Gm, Pm] = margin(sys, J1, .., JN) returns the gain margin Gm and phase margin Pm of the entries in model array sys with subscripts (J1, ..., JN).

## Examples

## Plot Gain and Phase Margins of Transfer Function

For this example, create a continuous transfer function.

```
sys = tf(1,[1 2 1 0])
sys =
```

```
 1
 s^3 + 2 s^2 + s
Continuous-time transfer function.
```

Display the gain and phase margins graphically.

```
margin(sys)
```



The gain margin ( 6.02 dB ) and phase margin ( 21.4 deg ), displayed in the title, are marked with solid vertical lines. The dashed vertical lines indicate the locations of Wcg, the frequency where the gain margin is measured, and Wcp , the frequency where the phase margin is measured.

## Gain and Phase Margins of Transfer Function

For this example, create a discrete-time transfer function.

```
sys = tf([0.04798 0.0464],[1 -1.81 0.9048],0.1)
sys =
 0.04798 z + 0.0464

 z^2 - 1.81 z + 0.9048
```

Sample time: 0.1 seconds
Discrete-time transfer function.
Compute the gain margin, phase margin and frequencies.
[Gm, Pm, Wcg,Wcp] = margin(sys)
$\mathrm{Gm}=2.0518$
Pm = 13.5634
$W c g=5.4375$
$W c p=4.3547$
The results indicate that a gain variation of over 2.05 ( 6.24 dB ) at the phase crossover frequency of $5.43 \mathrm{rad} / \mathrm{s}$ would cause the system to be unstable. Similarly a phase variation of over 13.57 degrees at the gain crossover frequency of $4.35 \mathrm{rad} / \mathrm{s}$ will cause the system to lose stability.

## Gain and Phase Margins using Frequency Response Data

For this example, load the frequency response data of an open loop system, consisting of magnitudes $(\mathrm{m})$ and phase values (p) measured at the frequencies in w .

```
load('openLoopFRD.mat','p','m','w');
```

Compute the gain and phase margins.
[Gm, Pm, Wcg, Wcp] $=\operatorname{margin}(m, p, w)$
$\mathrm{Gm}=0.6249$
$\mathrm{Pm}=48.9853$
$W c g=1.2732$
Wcp $=1.5197$

## Gain and Phase Margins of Models in an Array

For this example, load invertedPendulumArray.mat, which contains a 3-by-3 array of inverted pendulum models. The mass of the pendulum varies as you move from model to model along a single column of sys, and the length of the pendulum varies as you move along a single row. The mass values used are $100 \mathrm{~g}, 200 \mathrm{~g}$ and 300 g , and the pendulum lengths used are $3 \mathrm{~m}, 2 \mathrm{~m}$ and 1 m respectively.

Column 1 Column 2 Column 3
Row $1 \quad 100 \mathrm{~g}, 3 \mathrm{~m} \quad 100 \mathrm{~g}, 2 \mathrm{~m} \quad 100 \mathrm{~g}, 1 \mathrm{~m}$
Row $2200 \mathrm{~g}, 3 \mathrm{~m} 200 \mathrm{~g}, 2 \mathrm{~m} 200 \mathrm{~g}, 1 \mathrm{~m}$
Row 3 300g, $3 \mathrm{~m} 300 \mathrm{~g}, 2 \mathrm{~m} 300 \mathrm{~g}, 1 \mathrm{~m}$

```
load('invertedPendulumArray.mat','sys');
size(sys)
3x3 array of transfer functions.
Each model has 1 outputs and 1 inputs.
```

Find gain and phase margin for all models in the array.

```
[Gm,Pm] = margin(sys)
Gm = 3\times3
\begin{tabular}{lll}
0.9800 & 0.9800 & 0.9800 \\
0.9800 & 0.9800 & 0.9800 \\
0.9800 & 0.9800 & 0.9800
\end{tabular}
Pm = 3\times3
\begin{tabular}{lll}
-11.3798 & -11.4118 & -11.4433 \\
-11.4059 & -11.4296 & -11.4532 \\
-11.4228 & -11.4410 & -11.4592
\end{tabular}
```

margin returns two arrays, Gm and Pm , in which each entry is the gain and phase margin values of the corresponding entry in sys. For instance, the gain and phase margin of the model with 100 g pendulum weight and 2 m length is $\mathrm{Gm}(1,2)$ and $\operatorname{Pm}(1,2)$, respectively.

## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO dynamic system model, or an array of SISO dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as tf, zpk, ss, sparss or mechss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, margin returns the gain margin and phase margin of the current or nominal value of sys. If sys is an array of models, margin returns the Gm and Pm of the model corresponding to its subscript $\mathrm{J1}, \ldots, \mathrm{JN}$ in sys. For more information on model arrays, see "Model Arrays".

## J1, ..., JN - Indices of models in array whose gain and phase margins you want to extract positive integer

Indices of models in array whose gain and phase margins you want to extract, specified as positive integers. You can provide as many indices as there are array dimensions in sys. For example, if sys is a 4-by-5 array of dynamic system models, the following command extracts Gm and Pm for entry $(2,3)$ in the array.
[Gm,Pm] = margin(sys,2,3);

## mag - Magnitude of system response

3-D array

Magnitude of the system response in absolute units, specified as a 3-D array. Since margin only accepts SISO systems, mag is a 1 -by- 1 -by- N array, where N is the number of frequency points. For an example, see "Obtain Magnitude and Phase Data" on page 2-65.

## phase - Phase of system response

3-D array
Phase of the system response in degrees, specified as a 3-D array. Since margin only accepts SISO systems, phase is a 1 -by-1-by-N array, where N is the number of frequency points. For an example, see "Obtain Magnitude and Phase Data" on page 2-65.

## w - Frequencies at which the magnitude and phase values of system response are obtained

column vector
Frequencies at which the magnitude and phase values of system response are obtained, specified as a column vector.

## Output Arguments

Gm - Gain margin
scalar | array
Gain margin, returned as a scalar or an array. If sys is:

- A single model, then Gm is returned as a scalar.
- A model array, then Gm is an array of gain margins of each model in sys.

Gm is the amount of gain variance required to make the loop gain unity at the frequency Wcg where the phase angle is $-180^{\circ}$ (modulo $360^{\circ}$ ). In other words, the gain margin is $1 / g$ if $g$ is the gain at the $180^{\circ}$ phase frequency. When sys has several crossovers, margin returns the gain margin closest to 0 dB. Negative gain margins indicate that stability is lost by decreasing the gain, while positive gain margins indicate that stability is lost by increasing the gain.

The gain margin Gm is computed in absolute units. You can compute the gain margin in dB by,
Gm_dB $=20 * \log 10(\mathrm{Gm})$

## Pm - Phase margin

scalar | array
Phase margin, returned as a scalar or an array. If sys is:

- A single model, then Pm is returned as a scalar.
- A model array, then Pm is an array of phase margins of each model in sys.

The phase margin is the difference between the phase of the response and $-180^{\circ}$ when the loop gain is 1.0 . When sys has several crossovers, margin returns the gain margin closest to $0^{\circ}$.

The phase margin Pm is expressed in degrees.

## Wcg - Phase crossover frequency

scalar

Phase crossover frequency, returned as a scalar. Wcg is the frequency where the gain margin is measured, which is a $-180^{\circ}$ phase crossing frequency.

Wcg is expressed in radians/TimeUnit, where TimeUnit is the unit specified in the TimeUnit property of sys.

## Wcp - Gain crossover frequency

scalar
Gain crossover frequency, returned as a scalar. Wcp is the frequency where the phase margin is measured, which is a $0-\mathrm{dB}$ gain crossing frequency.

Wcp is expressed in radians/TimeUnit, where TimeUnit is the unit specified in the TimeUnit property of sys.

## Tips

- When you use margin(mag, phase,w), margin relies on interpolation to approximate the margins, which generally produce less accurate results. For example, if there is no $0-\mathrm{dB}$ crossing within the w range, margin returns a phase margin of Inf. Therefore, if you have an analytical model sys, using [Gm, Pm, Wcg, Wcp] = margin(sys) is a more robust way to obtain the margins.


## Version History

## Introduced before R2006a

## See Also

bode | allmargin | diskmargin | Linear System Analyzer

## Topics

"Assessing Gain and Phase Margins"

## mechss

Sparse second-order state-space model

## Description

Use mechss to represent second-order sparse models using matrices obtained from your finite element analysis (FEA) package. Such sparse models arise from finite element analysis (FEA) and are useful in fields like structural analysis, fluid flow, heat transfer, and electromagnetics. The resultant matrices from this type of modeling are quite large with a sparse pattern. Hence, using mechss is an efficient way to represent such large sparse state-space models in MATLAB to perform linear analysis. You can also use mechss to convert a first-order sparss model object or other dynamic system models to a mechss object.

You can use mechss model objects to represent SISO or MIMO state-space models in continuous time or discrete time. In continuous time, a second-order sparse mass-spring-damper model is represented in the following form:

$$
\begin{array}{r}
\mathrm{M} \ddot{q}(t)+\mathrm{C} \dot{q}(t)+\mathrm{K} q(t)=\mathrm{B} u(t) \\
y(t)=\mathrm{F} q(t)+\mathrm{G} \dot{q}(t)+\mathrm{D} u(t)
\end{array}
$$

Here, the full state vector is given by $[q, \dot{q}]$ where $q$ and $\dot{q}$ are the displacement and velocity vectors. $u$ and $y$ represent the inputs and outputs, respectively. $\mathrm{M}, \mathrm{C}$ and K represent the mass, damping and stiffness matrices, respectively. B is the input matrix while $F$ and $G$ are the output matrices for displacement and velocity, respectively. $D$ is the input-to-output matrix.

You can use a mechss object to:

- Perform time-domain and frequency-domain response analysis.
- Specify signal-based connections with other LTI models.
- Specify physical interfaces between components using the interface command.

For more information, see "Sparse Model Basics".

## Creation

## Syntax

```
sys = mechss(M,C,K,B,F,G,D)
sys = mechss(M,C,K,B,F,G,D,ts)
sys = mechss(M,C,K)
sys = mechss(D)
sys = mechss(
```

$\qquad$

``` ,Name, Value)
sys = mechss(ltiSys)
```


## Description

sys $=$ mechss ( $M, C, K, B, F, G, D)$ creates a mechss object representing this continuous-time second-order mass-spring-damper model:

$$
\begin{array}{r}
\mathrm{M} \ddot{q}(t)+\mathrm{C} \dot{q}(t)+\mathrm{K} q(t)=\mathrm{B} u(t) \\
y(t)=\mathrm{F} q(t)+\mathrm{G} \dot{q}(t)+\mathrm{D} u(t)
\end{array}
$$

Here, M, C, and K represent the mass, damping, and stiffness matrices, respectively. B is the input-tostate matrix while F and G are the displacement-to-output and velocity-to-output matrices resulting from the two components of the state $x$. D is the input-to-output matrix. You can set $M$ to [ ] when the mass matrix is an identity matrix. Set $G$ and $D$ to [] or omit them when they are empty.
sys $=$ mechss ( $\mathrm{M}, \mathrm{C}, \mathrm{K}, \mathrm{B}, \mathrm{F}, \mathrm{G}, \mathrm{D}, \mathrm{ts}$ ) uses the sample time ts to create a mechss object representing this discrete-time second-order mass-spring-damper model:

$$
\begin{array}{r}
\mathrm{M} q[k+2]+\mathrm{C} q[k+1]+\mathrm{K} q[k]=\mathrm{B} u[k] \\
y[k]=\mathrm{F} q[k]+\mathrm{G} q[k+1]+\mathrm{D} u[k]
\end{array}
$$

To leave the sample time unspecified, set ts to -1 .
sys $=$ mechss $(\mathrm{M}, \mathrm{C}, \mathrm{K})$ creates a mechss model object with the following assumptions:

- Identity matrices for $B$ and $F$ with the same size as mass matrix $M$
- Matrices of zeros for G and D
sys = mechss( D ) creates a mechss model object that represents the static gain D . The output sparse state-space model is equivalent to mechss([], [], [], [], [], [], D).
sys = mechss( $\qquad$ ,Name, Value) sets properties of the second-order sparse state-space model using one or more name-value pair arguments. Use this syntax with any of the previous inputargument combinations.
sys = mechss(ltiSys) converts the dynamic system model ltiSys to a second-order sparse state-space model.

Input Arguments

## M - Mass matrix

Nq-by-Nq sparse matrix
Mass matrix, specified as an Nq-by-Nq sparse matrix, where Nq is the number of degrees of freedom. This input sets the value of property M.

## C - Damping matrix

Nq-by-Nq sparse matrix
Damping matrix, specified as an Nq-by-Nq sparse matrix, where Nq is the number of degrees of freedom. You can also set C=[ ] to specify zero damping. This input sets the value of property C.

## K - Stiffness matrix

Nq -by-Nq sparse matrix
Stiffness matrix, specified as an Nq-by-Nq sparse matrix, where Nq is the number of degrees of freedom. This input sets the value of property K.

## B - Input-to-state matrix <br> Nq-by-Nu sparse matrix

Input-to-state matrix, specified as an Nq-by-Nu sparse matrix, where Nq is the number of degrees of freedom and Nu is the number of inputs. This input sets the value of property B.

## F - Displacement-to-output matrix

Ny -by-Nq sparse matrix
Displacement-to-output matrix, specified as an Ny -by-Nq sparse matrix, where Nq is the number of degrees of freedom and Ny is the number of outputs. This input sets the value of property F .

## G - Velocity-to-output matrix

Ny -by-Nq sparse matrix
Velocity-to-output matrix, specified as an Ny-by-Nq sparse matrix, where Nq is the number of degrees of freedom and Ny is the number of outputs. This input sets the value of property G .

## D - Input-to-output matrix

Ny -by-Nu sparse matrix
Input-to-output matrix, specified as an Ny-by-Nu sparse matrix, where Ny is the number of outputs and Nu is the number of inputs. This input sets the value of property D .

## ts - Sample time

scalar
Sample time, specified as a scalar. For more information see the Ts property.

## ltiSys - Dynamic system to convert to second-order sparse state-space form

dynamic system model \| model array
Dynamic system to convert to second-order sparse state-space form, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can convert include:

- Continuous-time or discrete-time numeric LTI models, such as sparss, tf, zpk, ss, or pid models.


## Output Arguments

## sys - Output system model

mechss model object
Output system model, returned as a mechss model object.

## Properties

## M - Mass matrix

Nq -by-Nq sparse matrix
Mass matrix, specified as an Nq-by-Nq sparse matrix where, Nq is the number of degrees of freedom.

## C - Damping matrix

Nq -by-Nq sparse matrix

Damping matrix, specified as an Nq-by-Nq sparse matrix where, Nq is the number of degrees of freedom.

## K - Stiffness matrix

Nq-by-Nq sparse matrix
Damping matrix, specified as an Nq-by-Nq sparse matrix where, Nq is the number of degrees of freedom.

## B - Input-to-state matrix

Nq-by-Nu sparse matrix
Input-to-state matrix, specified as an Nq-by-Nu sparse matrix where, Nq is the number of degrees of freedom and Nu is the number of inputs.

## F - Displacement-to-output matrix

Ny -by-Nq sparse matrix
Displacement-to-output matrix, specified as an Ny -by-Nq sparse matrix where, Nq is the number of degrees of freedom and Ny is the number of outputs.

## G - Velocity-to-output matrix

Ny -by-Nq sparse matrix
Velocity-to-output matrix, specified as an Ny -by-Nq sparse matrix where, Nq is the number of degrees of freedom and Ny is the number of outputs.

## D - Input-to-output matrix

Ny -by-Nu sparse matrix
Input-to-output matrix, specified as an Ny-by-Nu sparse matrix where, Ny is the number of outputs and Nu is the number of inputs. D is also called the static gain matrix, and represents the ratio of the output to the input in steady state condition.

## StateInfo - State partition information

structure array
State partition information containing state vector components, interfaces between components and internal signal connecting components, specified as a structure array with the following fields:

- Type - Type includes component, signal or physical interface
- Name - Name of the component, signal or physical interface
- Size - Number of states or degrees of freedom in the partition

You can view the partition information of the sparse state-space model using showStateInfo. You can also sort and order the partitions in your sparse model using xsort.

## SolverOptions - Options for model analysis

structure
Options for model analysis, specified as a structure with the following fields:

- UseParallel - Set this option to true to enable parallel computing and false to disable it. Parallel computing is disabled by default. The UseParallel option requires a Parallel Computing Toolbox license.
- DAESolver - Use this option to select the type of differential algebraic equation (DAE) solver. The following DAE solvers are available:
- 'trbdf2' - Fixed-step solver with an accuracy of $o\left(h^{\wedge} 2\right)$, where $h$ is the step size.[2] This is the default solver for the mechss model object.
- 'trbdf3' - Fixed-step solver with an accuracy of $o\left(h^{\wedge} 3\right)$, where $h$ is the step size.
- 'hht' - Fixed-step solver with an accuracy of $o\left(h^{\wedge} 2\right)$, where $h$ is the step size.[1]

Reducing the step size increases accuracy and extends the frequency range where numerical damping is negligible. 'hht ' is the fastest but can run into difficulties with high initial acceleration (for example, an impulse response with initial jerk). 'trbdf2' requires about twice as many computations as 'hht ' and 'trbdf3' requires another $50 \%$ more computations than 'trbdf2'.

For an example, see "Time and Frequency Response of Sparse Second-Order Model" on page 2774.

## InternalDelay - Internal delays in the model

vector
Internal delays in the model, specified as a vector. Internal delays arise, for example, when closing feedback loops on systems with delays, or when connecting delayed systems in series or parallel. For more information about internal delays, see "Closing Feedback Loops with Time Delays".

For continuous-time models, internal delays are expressed in the time unit specified by the TimeUnit property of the model. For discrete-time models, internal delays are expressed as integer multiples of the sample time Ts. For example, InternalDelay $=3$ means a delay of three sampling periods.

You can modify the values of internal delays using the property InternalDelay. However, the number of entries in sys. InternalDelay cannot change, because it is a structural property of the model.

## InputDelay - Input delay

0 (default) | scalar | Nu-by-1 vector
Input delay for each input channel, specified as one of the following:

- Scalar - Specify the input delay for a SISO system or the same delay for all inputs of a multi-input system.
- Nu-by-1 vector - Specify separate input delays for input of a multi-input system, where Nu is the number of inputs.

For continuous-time systems, specify input delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

## OutputDelay - Output delay

0 (default) | scalar | Ny-by-1 vector
Output delay for each output channel, specified as one of the following:

- Scalar - Specify the output delay for a SISO system or the same delay for all outputs of a multioutput system.
- Ny-by-1 vector - Specify separate output delays for output of a multi-output system, where Ny is the number of outputs.

For continuous-time systems, specify output delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify output delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

## Ts - Sample time

0 (default) | positive scalar |-1
Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.
-     - 1 for a discrete-time system with an unspecified sample time.

Note Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

## TimeUnit - Time variable units

```
'seconds' (default)|'nanoseconds'|'microseconds'|'milliseconds'|'minutes'|
'hours'|'days'|'weeks'|'months'|'years'|...
```

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

## InputName - Input channel names

' ' (default) | character vector | cell array of character vectors
Input channel names, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no names specified, for any input channels.

Alternatively, you can assign input names for multi-input models using automatic vector expansion.
For example, if sys is a two-input model, enter the following:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)' ;'controls(2)'\}.
You can use the shorthand notation $u$ to refer to the InputName property. For example, sys. $u$ is equivalent to sys. InputName.

Use InputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## InputUnit - Input channel units

' ' (default) | character vector | cell array of character vectors
Input channel units, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ', no units specified, for any input channels.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.

## InputGroup - Input channel groups

## structure

Input channel groups, specified as a structure. Use InputGroup to assign the input channels of MIMO systems into groups and refer to each group by name. The field names of InputGroup are the group names and the field values are the input channels of each group. For example, enter the following to create input groups named controls and noise that include input channels 1 and 2, and 3 and 5, respectively.
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
You can then extract the subsystem from the controls inputs to all outputs using the following.
sys(:, 'controls')
By default, InputGroup is a structure with no fields.

## OutputName - Output channel names

' ' (default) | character vector | cell array of character vectors
Output channel names, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no names specified, for any output channels.

Alternatively, you can assign output names for multi-output models using automatic vector expansion. For example, if sys is a two-output model, enter the following.
sys.OutputName = 'measurements';
The output names automatically expand to \{'measurements (1)' ; 'measurements (2)' \}.
You can also use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## OutputUnit - Output channel units

' ' (default) | character vector | cell array of character vectors
Output channel units, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no units specified, for any output channels.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.

## OutputGroup - Output channel groups

structure
Output channel groups, specified as a structure. Use OutputGroupto assign the output channels of MIMO systems into groups and refer to each group by name. The field names of OutputGroup are the group names and the field values are the output channels of each group. For example, create output groups named temperature and measurement that include output channels 1, and 3 and 5, respectively.
sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];
You can then extract the subsystem from all inputs to the measurement outputs using the following.
sys('measurement', :)
By default, OutputGroup is a structure with no fields.

## Notes - User-specified text

\{ \} (default) | character vector | cell array of character vectors
User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

## UserData - User-specified data

[ ] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

## Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, ' system_1'.

## SamplingGrid - Sampling grid for model arrays

structure array
Sampling grid for model arrays, specified as a structure array.
Use SamplingGrid to track the variable values associated with each model in a model array.
Set the field names of the structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables must be numeric scalars, and all arrays of sampled values must match the dimensions of the model array.

For example, you can create an 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, you can create a 6 -by- 9 model array, M, by independently sampling two variables, zeta and $w$. The following code maps the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

By default, SamplingGrid is a structure with no fields.

## Object Functions

The following lists show functions you can use with mechss model objects.

## Modeling

sparss	Sparse first-order state-space model
getx0	Map initial conditions from a mechss object to a sparss object
full	Convert sparse models to dense storage
imp2exp	Convert implicit linear relationship to explicit input-output relation
inv	Invert dynamic system models
getDelayModel	State-space representation of internal delays

## Data Access

sparssdata Access first-order sparse state-space model data
mechssdata Access second-order sparse state-space model data
showStateInfo State vector map for sparse model
spy
Visualize sparsity pattern of a sparse model

## Time and Frequency Response

step	Step response plot of dynamic system; step response data
impulse	Impulse response plot of dynamic system; impulse response data
initial	System response to initial states of state-space model
lsim	Plot simulated time response of dynamic system to arbitrary inputs; simulated response
	data
bode	Bode plot of frequency response, or magnitude and phase data
nyquist	Nyquist plot of frequency response
nichols	Nichols chart of frequency response
sigma	Singular value plot of dynamic system
passiveplot	Compute or plot passivity index as function of frequency
dcgain	Low-frequency (DC) gain of LTI system
evalfr	Evaluate system response at specific frequency
freqresp	Evaluate system response over a grid of frequencies

## Model Interconnection

interface Specify physical connections between components of mechss model
xsort Sort states based on state partition
feedback Feedback connection of multiple models
parallel Parallel connection of two models
append Group models by appending their inputs and outputs
connect Block diagram interconnections of dynamic systems
lft Generalized feedback interconnection of two models (Redheffer star product)
series Series connection of two models

## Examples

## Continuous-Time Sparse Second-Order Model

For this example, consider the sparse matrices for the 3-D beam model subjected to an impulsive point load at its tip in the file sparseBeam. mat.

Extract the sparse matrices from sparseBeam.mat.
load('sparseBeam.mat','M','K','B','F','G','D');
Create the mechss model object by specifying [ ] for matrix $C$, since there is no damping.
sys $=\operatorname{mechss}(M,[], K, B, F, G, D)$
Sparse continuous-time second-order model with 3 outputs, 1 inputs, and 3408 degrees of freedom.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help mechssOptions" for available solver options for this model.
The output sys is a mechss model object containing a 3-by-1 array of sparse models with 3408 degrees of freedom, 1 input, and 3 outputs.

You can use the spy command to visualize the sparsity of the mechss model object.

```
spy(sys)
```



## Discrete-Time Sparse Second-Order Model

For this example, consider the sparse matrices of the discrete system in the file discreteSOSparse.mat.

Load the sparse matrices from discreteSOSparse.mat.
load('discreteS0Sparse.mat','M','C','K','B','F','G','D','ts');
Create the discrete-time mechss model object by specifying the sample time ts .
sys $=$ mechss ( $M, C, K, B, F, G, D, t s)$
Sparse discrete-time second-order model with 1 outputs, 1 inputs, and 28408 degrees of freedom.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help mechssOptions" for available solver options for this model.
The output sys is a discrete-time mechss model object with 28408 degrees of freedom, 1 input, and 1 output.

You can use the spy command to visualize the sparsity pattern of the mechss model object. You can right-click on the plot to select matrices to be displayed.
spy(sys)


## Array of Sparse Second-Order Models

For this example, consider sparseSOArray.mat which contains three sets of sparse matrices that define multiple sparse second-order state-space models.

Extract the data from sparseSOArray.mat.
load('sparseSOArray.mat');
Preallocate a 3-by-1 array of mechss models.
sys = mechss(zeros(1,1,3));
Next, use indexed assignment to populate the 3-by-1 array with sparse second-order models.
sys(:,:,1) = mechss(M1,[],K1,B1,F1,G1,[]);
sys(:,:,2) $=$ mechss(M2,[],K2,B2,F2,G2,[]);
sys(:,:,3) $=$ mechss(M3,[],K3,B3,F3,G3,[]);
size(sys)
$3 \times 1$ array of sparse second-order models.
Each model has 1 outputs, 1 inputs, and between 385 and 738 degrees of freedom.
Alternatively, you can also create an array of sparse second-order models using the stack command when you have models with the same I/O sizes.

Copyright 2020 The MathWorks, Inc

## MIMO Static Gain Sparse Second-Order Model

Create a static gain MIMO sparse second-order state-space model.
Consider the following two-input, three-output static gain matrix:

$$
D=\left[\begin{array}{ll}
1 & 5 \\
2 & 3 \\
5 & 9
\end{array}\right]
$$

Specify the gain matrix and create the static gain sparse second-order state-space model.

```
D = [1,5;2,3;5,9];
sys = mechss(D);
size(sys)
Sparse second-order model with 3 outputs, 2 inputs, and 0 degrees of freedom.
```


## Mass-Spring-Damper Sparse Second-Order Model

For this example, consider sparseSOSignal.mat which contains the mass, stiffness, and damping sparse matrices.

Load the sparse matrices from sparseSOSignal.mat and create the sparse second-order model object.

```
load('sparseSOModel.mat','M','C','K');
sys = mechss(M,C,K);
```

mechss creates the model object sys with the following assumptions:

- Identity matrices for $B$ and $F$ with the same size as mass matrix $M$.
- Zero matrices for G and D.


## Convert First-Order Sparse Model to Second-Order Sparse Model Representation

For this example, consider sparssModel.mat that contains a sparss model object ltiSys.
Load the sparss model object from sparssModel.mat.

```
load('sparssModel.mat','ltiSys');
ltiSys
Sparse continuous-time state-space model with 1 outputs, 1 inputs, and 354 states.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help sparssOptions" for available solver options for this model.
```

Use the mechss command to convert to mechss model object representation.

```
sys = mechss(ltiSys)
Sparse continuous-time second-order model with 1 outputs, 1 inputs, and 354 degrees of freedom.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help mechssOptions" for available solver options for this model.
```


## Time and Frequency Response of Sparse Second-Order Model

For this example, consider tuningForkData.mat that contains the sparse second-order model of a tuning fork being struck gently but quickly on one of its tines. The system has one input, the pressure applied on one of its tines, which results in two outputs - the displacements at the tip and base of the tuning fork.

Load the sparse matrices from tuningForkData.mat into the workspace and create the mechss model object.

```
load('tuningForkData.mat','M','K','B','F');
sys = mechss(M,[],K,B,F,'InputName','pressure','Outputname',{'y tip','x base'})
```

Next, set solver options for the model by setting the UseParallel parameter to true and the DAESolver to use trbdf3. Use spy to inspect the model structure. Enabling parallel computing requires a Parallel Computing Toolbox ${ }^{\mathrm{TM}}$ license.

```
sys.SolverOptions.UseParallel = true;
sys.SolverOptions.DAESolver = 'trbdf3';
spy(sys)
```



You can also use showStateInfo to examine the components.
showStateInfo(sys)
Use step to obtain the step response plot of the system. You need to provide the time vector or final time for sparse models.

```
t = linspace(0,0.5,1000);
```

step(sys,t)


Next, obtain the Bode plot to examine the frequency response. You need to provide the frequency vector for sparse models.

```
w = logspace(1,5,1000);
bode(sys,w), grid
```


## Bode Diagram



## Sparse Second-Order Model in a Feedback Loop

For this example, consider sparseS0Signal .mat that contains a sparse second-order model. Define an actuator, sensor, and controller and connect them together with the plant in a feedback loop.

Load the sparse matrices and create the mechss object.
load sparseSOSignal.mat
plant = mechss(M,C,K,B,F,[],[],'Name','Plant');
Next, create an actuator and sensor using transfer functions.

```
act = tf(1,[1 0.5 3],'Name','Actuator');
sen = tf(1,[0.02 7],'Name','Sensor');
```

Create a PID controller object for the plant.
con $=$ pid(1,1,0.1,0.01,'Name','Controller');
Use the feedback command to connect the plant, sensor, actuator, and controller in a feedback loop.
sys $=$ feedback(sen*plant*act*con,1)
Sparse continuous-time second-order model with 1 outputs, 1 inputs, and 7111 degrees of freedom.

```
Use "spy" and "showStateInfo" to inspect model structure.
Type "help mechssOptions" for available solver options for this model.
```

The resultant system sys is a mechss object since mechss objects take precedence over all other model object types.

Use showStateInfo to view the component and signal groups.
showStateInfo(sys)
The state groups are:

Type	Name	Size
Component	Sensor	1
Component	Plant	7102
Signal		1
Component	Actuator	2
Signal		1
Component	Controller	2
Signal		1
Signal		1

Use xsort to sort the components and signals, and then view the component and signal groups.

```
sysSort = xsort(sys);
showStateInfo(sysSort)
The state groups are:
\begin{tabular}{|c|c|c|}
\hline Type & Name & Size \\
\hline Component & Sensor & 1 \\
\hline Component & Plant & 7102 \\
\hline Component & Actuator & 2 \\
\hline Component & Controller & 2 \\
\hline Signal & & 4 \\
\hline
\end{tabular}
```

Observe that the components are now ordered before the signal partition. The signals are now sorted and grouped together in a single partition.

You can also visualize the sparsity pattern of the resultant system using spy.

```
spy(sysSort)
```



## Physical Connections Between Components in Sparse Second-Order Model

For this example, consider a structural model that consists of two square plates connected with pillars at each vertex as depicted in the figure below. The lower plate is attached rigidly to the ground while the pillars are attached rigidly to each vertex of the square plate.


Load the finite element model matrices contained in platePillarModel.mat and create the sparse second-order model representing the above system.

```
load('platePillarModel.mat')
model = ...
 mechss(M1,[],K1,B1,F1,'Name','Plate1') + ...
 mechss(M2,[],K2,B2,F2,'Name','Plate2') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar3') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar4') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar5') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar6');
sys = model;
```

Use showStateInfo to examine the components of the mechss model object.

```
showStateInfo(sys)
```

The state groups are:

Type	Name	Size
Component	Plate1	2646
Component	Plate2	2646
Component	Pillar3	132
Component	Pillar4	132
Component	Pillar5	132
Component	Pillar6	132

Now, load the interfaced degree of freedom (DOF) index data from dofData.mat and use interface to create the physical connections between the two plates and the four pillars. dofs is a $6 \times 7$ cell array where the first two rows contain DOF index data for the first and second plates while the remaining four rows contain index data for the four pillars. By default, the function uses dualassembly method of physical coupling.

```
load('dofData.mat','dofs')
for i=3:6
 sys = interface(sys,"Plate1",dofs{1,i},"Pillar"+i,dofs{i,1});
 sys = interface(sys,"Plate2",dofs{2,i},"Pillar"+i,dofs{i,2});
end
```

Specify connection between the bottom plate and the ground.

```
sysConDual = interface(sys,"Plate2",dofs{2,7});
```

Use showStateInfo to confirm the physical interfaces.

showStateInfo(sysConDual)		
The state groups are:		
Type	Name	Size
Component	Plate1	2646
Component	Plate2	2646
Component	Pillar3	132
Component	Pillar4	132
Component	Pillar5	132
Component	Pillar6	132
Interface	Plate1-Pillar3	12
Interface	Plate2-Pillar3	12
Interface	Plate1-Pillar4	12
Interface	Plate2-Pillar4	12
Interface	Plate1-Pillar5	12
Interface	Plate2-Pillar5	12
Interface	Plate1-Pillar6	12
Interface	Plate2-Pillar6	12
Interface	Plate2-Ground	6

You can use spy to visualize the sparse matrices in the final model.

```
spy(sysConDual)
```



Now, specify physical connections using the primal-assembly method.

```
sys = model;
for i=3:6
 sys = interface(sys,"Plate1",dofs{1,i},"Pillar"+i,dofs{i,1},'primal');
 sys = interface(sys,"Plate2",dofs{2,i},"Pillar"+i,dofs{i,2},'primal');
end
sysConPrimal = interface(sys,"Plate2",dofs{2,7},'primal');
```

Use showStateInfo to confirm the physical interfaces.

```
showStateInfo(sysConPrimal)
```

The state groups are:

Type	Name	Size
Component	Platel	2646
Component	Plate2	2640
Component	Pillar3	108
Component	Pillar4	108
Component	Pillar5	108
Component	Pillar6	108

Primal assembly eliminates half of the redundant DOFs associated with the shared set of DOFs in the global finite element mesh.

You can use spy to visualize the sparse matrices in the final model.
spy(sysConPrimal)


The data set for this example was provided by Victor Dolk from ASML.

## Version History

Introduced in R2020b

## References

[1] H. Hilber, T. Hughes \& R. Taylor. " Improved numerical dissipation for time integration algorithms in structural dynamics." Earthquake Engineering and Structural Dynamics, vol. 5, no. 3, pp. 283-292, 1977.
[2] M. Hosea and L. Shampine. "Analysis and implementation of TR-BDF2." Applied Numerical Mathematics, vol. 20, no. 1-2, pp. 21-37, 1996.

## See Also

sparss|mechssdata|showStateInfo|interface|xsort|full|spy| Sparse Second Order

## Topics

"Rigid Assembly of Model Components"
"Linear Analysis of Cantilever Beam"
"Sparse Model Basics"

## mechssdata

Access second-order sparse state-space model data

## Syntax

```
[M,C,K,B,F,G,D] = mechssdata(sys)
[M,C,K,B,F,G,D,ts] = mechssdata(sys)
___ = mechssdata(sys,J1,...,JN)
```


## Description

$[M, C, K, B, F, G, D]=$ mechssdata(sys) returns the $M, C, K, B, F, G$ and $D$ matrices of the sparse state-space model sys. If sys is not a mechss model, it is first converted to mechss model form.

When your system has internal delays, mechssdata returns the matrices for pade(sys,0), which involves feedback loops around the internal delays and the model is retained in differential algebraic equation (DAE). As a result, the size of matrices M, C, and $K$ are typically larger than the order of sys since they are augmented by the feedback signals to preserve sparsity.
[M,C,K,B,F,G,D,ts] = mechssdata(sys) also returns the sample time ts.
$=$ mechssdata (sys $, \mathrm{J} 1, \ldots, \mathrm{JN}$ ) extracts the data for the $\mathrm{J} 1, \ldots, \mathrm{JN}$ entry in the model array sys.

## Examples

## Extract Continuous-Time Sparse Second-Order State-Space Model Data

For this example, consider sparseSOModels.mat which contains a continuous-time mechss model sys1.

Load the model sys1 to the workspace and use mechssdata to extract the sparse matrices.

```
load('sparseSOModels.mat','sys1');
size(sysl)
Sparse second-order model with 2 outputs, 2 inputs, and 299 degrees of freedom.
[M,C,K,B,F,G,D] = mechssdata(sys1);
```

The matrices are returned as arrays of sparse doubles.

## Extract Discrete-Time Sparse Second-Order State-Space Model Data

For this example, consider sparseSOModels.mat which contains a discrete-time mechss model sys2.

Load the model sys 2 to the workspace and use mechssdata to extract the sparse matrices.

```
load('sparseS0Models.mat','sys2');
size(sys2)
Sparse second-order model with 3 outputs, 3 inputs, and 108 degrees of freedom.
[M,C,K,B,F,G,D,ts] = mechssdata(sys2);
```

The matrices are returned as arrays of sparse doubles.

## Extract Data from Specific Model in Sparse Second-Order Model Array

For this example, extract sparse matrices for a specific sparse second-order state-space model contained in the $3 \times 1$ array of sparse second-order models sys.

Load the data and extract the sparse matrices of the second model in the array.

```
load('sparseSOModelArray.mat','sys');
size(sys)
1x3 array of sparse second-order models.
Each model has 1 outputs, 3 inputs, and 1174 degrees of freedom.
[M,C,K,B,F,G,D] = mechssdata(sys,1,2);
```


## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as mechss, sparss, tf, ss and zpk models.

If sys is not a mechss model object, it is first converted to a second-order sparse state-space model using mechss. For more information on the format of the second-order sparse state-space model data, see the mechss reference page.

## J1, . . . JN - Indices of models in array whose data you want to access positive integer

Indices of models in array whose data you want to access, specified as a positive integer. You can provide as many indices as there are array dimensions in sys. For example, if sys is a 4-by-5 array of sparse models, the following command accesses the data for entry $(2,3)$ in the array.

```
[M,C,K,B,F,G,D] = mechssdata(sys,2,3);
```


## Output Arguments

M - Mass matrix
Nq-by-Nq sparse matrix
Mass matrix, returned as an Nq -by- Nq sparse matrix where, Nq is the number of nodes.

## C - Damping matrix

Nq-by-Nq sparse matrix
Damping matrix, returned as an Nq-by-Nq sparse matrix where, Nq is the number of nodes.

## K - Stiffness matrix

Nq-by-Nq sparse matrix
Stiffness matrix, returned as an Nq-by-Nq sparse matrix where, Nq is the number of nodes.

## B - Input-to-state matrix

Nq-by-Nu sparse matrix
Input-to-state matrix, returned as an Nq-by-Nu sparse matrix where, Nq is the number of nodes and Nu is the number of inputs.

## F - Displacement-to-output matrix

Ny-by-Nq sparse matrix
Displacement-to-output matrix, returned as an Ny -by- Nq sparse matrix where, Nq is the number of nodes and Ny is the number of outputs.

## G - Velocity-to-output matrix

Ny-by-Nq sparse matrix
Velocity-to-output matrix, returned as an Ny-by-Nq sparse matrix where, Nq is the number of nodes and Ny is the number of outputs.

## D - Input-to-output matrix

Ny-by-Nu sparse matrix
Input-to-output matrix, returned as an Ny-by-Nu sparse matrix where, Ny is the number of outputs and Nu is the number of inputs. D is also called as the static gain matrix which represents the ratio of the output to the input under steady state condition.
ts - Sample time
scalar

Sample time, returned as a scalar.

## Version History

Introduced in R2020b

## See Also

mechss
Topics
"Sparse Model Basics"

## minreal

Minimal realization or pole-zero cancellation

## Syntax

```
sysr = minreal(sys)
sysr = minreal(sys,tol)
[sysr,u] = minreal(sys,tol)
... = minreal(sys,tol,false)
... = minreal(sys,[],false)
```


## Description

sysr $=$ minreal (sys) eliminates uncontrollable or unobservable state in state-space models, or cancels pole-zero pairs in transfer functions or zero-pole-gain models. The output sys $r$ has minimal order and the same response characteristics as the original model sys.
sysr $=$ minreal (sys,tol) specifies the tolerance used for state elimination or pole-zero cancellation. The default value is $\mathrm{tol}=\mathrm{sqrt}(\mathrm{eps})$ and increasing this tolerance forces additional cancellations.
[sysr,u] = minreal(sys,tol) returns, for state-space model sys, an orthogonal matrix $U$ such that ( $U^{*} A^{*} U^{\prime}, U * B, C * U^{\prime}$ ) is a Kalman decomposition of ( $\mathrm{A}, \mathrm{B}, \mathrm{C}$ )
... = minreal(sys,tol,false) and ... = minreal(sys,[],false) disable the verbose output of the function. By default, minreal displays a message indicating the number of states removed from a state-space model sys.

## Examples

The commands

```
g = zpk([],1,1);
h = tf([2 1],[1 0]);
cloop = inv(1+g*h) * g
```

produce the nonminimal zero-pole-gain model cloop.

```
cloop =
 s (s-1)
 -(-.-.-----.-.-.-.
 (s-1) (s^2 + s + 1)
Continuous-time zero/pole/gain model.
```

To cancel the pole-zero pair at $s=1$, type

```
cloopmin = minreal(cloop)
```

This command produces the following result.

```
cloopmin =
 s
 (s^2 + s + 1)
Continuous-time zero/pole/gain model.
```


## Algorithms

Pole-zero cancellation is a straightforward search through the poles and zeros looking for matches that are within tolerance. Transfer functions are first converted to zero-pole-gain form.

## Alternative Functionality

## App

Model Reducer
Live Editor Task
Reduce Model Order

## Version History <br> Introduced before R2006a

## See Also

Model Reducer | bal real | modred | sminreal
Topics
"Pole-Zero Simplification"
"Model Reduction Basics"

## modred

Eliminate states from state-space models

## Syntax

```
rsys = modred(sys,elim)
rsys = modred(sys,elim,'method')
```


## Description

rsys = modred(sys,elim) reduces the order of a continuous or discrete state-space model sys by eliminating the states found in the vector elim. The full state vector $X$ is partitioned as $X=$ [ $X 1 ; X 2$ ] where $X 1$ is the reduced state vector and $X 2$ is discarded.
elim can be a vector of indices or a logical vector commensurate with $X$ where true values mark states to be discarded. This function is usually used in conjunction with balreal. Use balreal to first isolate states with negligible contribution to the I/O response. If sys has been balanced with balreal and the vector g of Hankel singular values has M small entries, you can use modred to eliminate the corresponding M states. For example:

```
[sys,g] = balreal(sys) % Compute balanced realization
elim = (g<le-8) % Small entries of g are negligible states
rsys = modred(sys,elim) % Remove negligible states
rsys \(=\) modred(sys,elim,'method') also specifies the state elimination method. Choices for 'method ' include
```

- 'MatchDC' (default): Enforce matching DC gains. The state-space matrices are recomputed as described in "Algorithms" on page 2-792.
- 'Truncate': Simply delete X2.

The 'Truncate' option tends to produces a better approximation in the frequency domain, but the DC gains are not guaranteed to match.

If the state-space model sys has been balanced with balreal and the grammians have $m$ small diagonal entries, you can reduce the model order by eliminating the last $m$ states with modred.

## Examples

## Order Reduction by Matched-DC-Gain and Direct-Deletion Methods

Consider the following continuous fourth-order model.

$$
h(s)=\frac{s^{3}+11 s^{2}+36 s+26}{s^{4}+14.6 s^{3}+74.96 s^{2}+153.7 s+99.65} .
$$

To reduce its order, first compute a balanced state-space realization with bal real.

```
h = tf([1 11 36 26],[1 14.6 74.96 153.7 99.65]);
[hb,g] = balreal(h);
```

Examine the gramians.
g'
ans $=1 \times 4$
0.1394
0.0095
0.0006
0.0000

The last three diagonal entries of the balanced gramians are relatively small. Eliminate these three least-contributing states with modred, using both matched-DC-gain and direct-deletion methods.
hmdc $=\operatorname{modred}\left(h b, 2: 4,{ }^{\prime}\right.$ MatchDC');
hdel $=$ modred(hb, 2:4,'Truncate');
Both hmdc and hdel are first-order models. Compare their Bode responses against that of the original model.
bodeplot(h,'-',hmdc,'x',hdel,'*')


The reduced-order model hdel is clearly a better frequency-domain approximation of $h$. Now compare the step responses.

```
stepplot(h,'-',hmdc,'-.',hdel,' -- ')
```



While hdel accurately reflects the transient behavior, only hmdc gives the true steady-state response.

## Algorithms

The algorithm for the matched DC gain method is as follows. For continuous-time models

$$
\begin{aligned}
& \dot{x}=A x+B y \\
& y=C x+D u
\end{aligned}
$$

the state vector is partitioned into $x_{1}$, to be kept, and $x_{2}$, to be eliminated.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right] u} \\
& y=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right] x+D u
\end{aligned}
$$

Next, the derivative of $x_{2}$ is set to zero and the resulting equation is solved for $x_{1}$. The reduced-order model is given by

$$
\begin{aligned}
& \dot{x}_{1}=\left[A_{11}-A_{12} A_{22}-1 A_{21}\right] x_{1}+\left[B_{1}-A_{12} A_{22}-1 B_{2}\right] u \\
& y=\left[C_{1}-C_{2} A_{22}-1 A_{21}\right] x+\left[D-C_{2} A_{22}-1 B_{2}\right] u
\end{aligned}
$$

The discrete-time case is treated similarly by setting

$$
x_{2}[n+1]=x_{2}[n]
$$

## Version History

Introduced before R2006a

See Also<br>balreal|minreal|balred

## Model Reducer

Reduce complexity of linear time-invariant (LTI) models

## Description

The Model Reducer app lets you compute reduced-order approximations of high-order models. Working with lower-order models can simplify analysis and control design. Simpler models are also easier to understand and manipulate. You can reduce a plant model to focus on relevant dynamics before designing a controller for the plant. Or, you can use model reduction to simplify a full-order controller.

Using any of the following methods, Model Reducer helps you reduce model order while preserving model characteristics that are important to your application:

- Balanced Truncation - Remove states with relatively small energy contributions.
- Mode Selection - Select modes by specifying a frequency range of interest.
- Pole-Zero Simplification - Eliminate canceling or near-canceling pole-zero pairs.

Model Reducer provides response plots and error plots to help ensure that the reduced-order model preserves important dynamics. For more information on model reduction and why it is useful, see "Model Reduction Basics".

For an alternative to the Model Reducer app that lets you interactively perform model reduction and generate code for a live script, see the Reduce Model Order task in the Live Editor.


## Open the Model Reducer App

- MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app icon.
- MATLAB command prompt: Enter modelReducer.


## Examples

- "Model Reduction Basics"
- "Reduce Model Order Using the Model Reducer App"
- "Balanced Truncation Model Reduction"
- "Pole-Zero Simplification"
- "Mode-Selection Model Reduction"


## Parameters

## Balanced Truncation Tab

Model - Currently selected model for reduction model name

Specify the model you want to reduce by selecting from the Model drop-down list. The list includes all models currently in the data browser. To get a model from the MATLAB workspace into the data browser, on the Model Reducer tab, click ${ }^{\text {VIn }}$ Import Model. You can import any:

- $t f, s s$, or zpk model that is proper. The model can be SISO or MIMO, and continuous or discrete.
- Continuous-time models must not have time delays. To reduce a continuous-time model with time delays, first use pade to approximate the time delays as model dynamics.
- Discrete-time models can have time delays. For the Balanced Truncation reduction method, the app uses absorbDelay to convert the delay into poles at $z=0$ before reducing the model. The additional states are reflected in the response plot and Hankel singular-value plot.
- Generalized model such as a genss model. The Model Reducer app uses the current or nominal value of all control design blocks in model (see getValue).

Note Model Reducer assumes that the model time unit (specified in the TimeUnit property of the model) is seconds. If your model does not have TimeUnit = 'seconds', use chgTimeUnit to convert the model to seconds.

## Reduced orders - Number of states in reduced model

integer | integer array
Specify the number of states in the reduced-order model. Any value is permitted that falls between the number of unstable states in the model and the number of states in the original model. If you specify a single value, Model Reducer computes and displays the responses of a model of that order. If you specify multiple values, Model Reducer computes models of all specified orders and displays their responses on the same plot. To store reduced models in the data browser, click $D$.

For more information, see "Balanced Truncation Model Reduction".

## Example: 5

Example: 4:7
Example: [3, 7, 10]
Error Bound - Type of error bound
absolute (default) | relative
You can choose between absolute and relative errors by selecting the appropriate option in Error Bound. Setting it to absolute controls the absolute error $\left\|G-G_{r}\right\|_{\infty}$ while setting it to relative controls the relative error $\left\|G^{-1}\left(G-G_{r}\right)\right\|_{\infty}$. Relative error gives a better match across frequency while absolute error emphasizes areas with most gain.

For more information, see "Balanced Truncation Model Reduction".

Preserve DC Gain - Match DC gain of reduced model to original model checked (default) | unchecked

When Preserve DC Gain is checked, the DC gain of the reduced model equals the DC gain of the original model. When the DC behavior of the model is important in your application, leave this option checked. Uncheck the option to get better matching of higher-frequency behavior.

For more information, see "Balanced Truncation Model Reduction".
Focus on range - Limit analysis to specified frequencies
unchecked (default) | checked
By default, Model Reducer analyzes Hankel singular values across all frequencies. Restricting this analysis to a particular frequency range is useful when you know the model has modes outside the region of interest to your particular application. When you apply a frequency limit, Model Reducer determines which states are the low-energy states to truncate based on their energy contribution within the specified frequency range only. Focus on range is only available when Error Bound is set to absolute.

To limit the analysis of state contributions to a particular frequency range, check Focus on range. Then, drag the vertical cursors on the response plot to specify the frequency range of interest. Alternatively, enter a frequency range in the text box as a vector of the form [fmin,fmax]. Units are rad/TimeUnit, where TimeUnit is the TimeUnit property of the model you are reducing.

Mode Selection Tab
Model - Currently selected model for reduction
model name
Specify the model you want to reduce by selecting from the Model drop-down list. The list includes all models currently in the data browser. To get a model from the MATLAB workspace into the data browser, on the Model Reducer tab, click $\begin{aligned} & \text { §Import Model. You can import any: }\end{aligned}$

- tf, ss, or zpk model that is proper. The model can be SISO or MIMO, and continuous or discrete.
- Continuous-time models must not have time delays. To reduce a continuous-time model with time delays, first use pade to approximate the time delays as model dynamics.
- Discrete-time models can have time delays. For the Balanced Truncation reduction method, the app uses absorbDelay to convert the delay into poles at $z=0$ before reducing the model. The additional states are reflected in the response plot and Hankel singular-value plot.
- Generalized model such as a genss model. The Model Reducer app uses the current or nominal value of all control design blocks in model (see getValue).

For more information, see "Mode-Selection Model Reduction".

Note Reduce Model Order assumes that the model time unit (specified in the TimeUnit property of the model) is seconds. If your model does not have TimeUnit = 'seconds', use chgTimeUnit to convert the model to seconds.

Lower Cutoff - Lowest mode frequency
positive scalar

Enter the frequency of the slowest dynamics to preserve in the reduced model. Poles with natural frequency below this cutoff are eliminated from the reduced model.

Upper Cutoff - Highest mode frequency
positive scalar
Enter the frequency of the fastest dynamics to preserve in the reduced model. Poles with natural frequency above this cutoff are eliminated from the reduced model.

## Pole/Zero Simplification Tab

Model - Currently selected model for reduction
model name
Specify the model you want to reduce by selecting from the Model drop-down list. The list includes all models currently in the data browser. To get a model from the MATLAB workspace into the data browser, on the Model Reducer tab, click $\begin{aligned} & \text { § } \\ & \text { Import Model. You can import any: }\end{aligned}$

- tf, ss, or zpk model that is proper. The model can be SISO or MIMO, and continuous or discrete.
- Continuous-time models must not have time delays. To reduce a continuous-time model with time delays, first use pade to approximate the time delays as model dynamics.
- Discrete-time models can have time delays. For the Balanced Truncation reduction method, the app uses absorbDelay to convert the delay into poles at $z=0$ before reducing the model. The additional states are reflected in the response plot and Hankel singular-value plot.
- Generalized model such as a genss model. The Model Reducer app uses the current or nominal value of all control design blocks in model (see getValue).

Simplification of Pole-Zero Pairs - Tolerance for pole-zero cancellation positive scalar

Set the tolerance for pole-zero cancellation by using the slider or entering a value in the text box. The value determines how close together a pole and zero must be for Model Reducer to eliminate them from the reduced model. Moving the slider to the left or entering a smaller value in the text box simplifies the model less, by cancelling fewer poles and zeros. Moving the slider to the right, or entering a larger value, simplifies the model more by cancelling poles and zeros that are further apart.

For more information, see "Pole-Zero Simplification".

## Programmatic Use

modelReducer opens the Model Reducer app with no models in the data browser. To import a model from the MATLAB workspace, click Import Model.
modelReducer (model) opens app and imports the specified LTI model. model can be a:

- tf, ss, or zpk model that is proper. The model can be SISO or MIMO, and continuous or discrete.
- Continuous-time models must not have time delays. To reduce a continuous-time model with time delays, first use pade to approximate the time delays as model dynamics.
- Discrete-time models can have time delays. For the Balanced Truncation reduction method, the app uses absorbDelay to convert the delay into poles at $z=0$ before reducing the model. The additional states are reflected in the response plot and Hankel singular-value plot.
- Generalized model such as a genss model. The Model Reducer app uses the current or nominal value of all control design blocks in model (see getValue).
modelReducer(model1, ..., modelN) opens the app and imports the specified models.
modelReducer(sessionFile) opens the app and loads a previously saved session. sessionFile is the name of a session data file in the current working directory or on the MATLAB path.

To save session data to disk, in the Model Reducer app, on the Model Reducer tab, click 司 Save Session. The saved session data includes the current plot configuration and all models in the data browser.

## Version History

Introduced in R2016a

## See Also

## Functions

balred | minreal | freqsep

## Live Editor Tasks

Reduce Model Order

## Topics

"Model Reduction Basics"
"Reduce Model Order Using the Model Reducer App"
"Balanced Truncation Model Reduction"
"Pole-Zero Simplification"
"Mode-Selection Model Reduction"

## modsep

Region-based modal decomposition

## Syntax

[H,H0] $=\operatorname{modsep}(G, N, R E G I O N F C N)$
MODSEP(G,N,REGIONFCN, PARAM1, . . .)

## Description

[ $\mathrm{H}, \mathrm{H} 0$ ] $=\operatorname{modsep}(\mathrm{G}, \mathrm{N}, \mathrm{REGIONFCN})$ decomposes the LTI model G into a sum of n simpler models Hj with their poles in disjoint regions Rj of the complex plane:

$$
G(s)=H 0+\sum_{j=1}^{N} H j(s)
$$

G can be any LTI model created with ss, tf , or zpk, and $N$ is the number of regions used in the decomposition. modsep packs the submodels Hj into an LTI array H and returns the static gain H 0 separately. Use $\mathrm{H}(:,:, j)$ to retrieve the submodel $\mathrm{Hj}(\mathrm{s})$.

To specify the regions of interest, use a function of the form
$I R=\operatorname{REGIONFCN}(\mathrm{p})$
that assigns a region index IR between 1 and $N$ to a given pole $p$. You can specify this function by its name or as a function handle, and use the syntax $\operatorname{MODSEP}(G, N, R E G I O N F C N, P A R A M 1, \ldots)$ to pass extra input arguments:

IR $=$ REGIONFCN( $p$, PARAM1,...$)$

## Examples

To decompose G into $\mathrm{G}(\mathrm{z})=\mathrm{H} 0+\mathrm{H} 1(z)+\mathrm{H} 2(z)$ where H 1 and H 2 have their poles inside and outside the unit disk respectively, use
[H,H0] $=\operatorname{modsep}(G, 2, @ u d s e p)$
where the function udsep is defined by

```
function r = udsep(p)
if abs(p)<1, r = 1; % assign r=1 to poles inside unit disk
else r=2; % assign r=2 to poles outside unit disk
end
```

To extract $\mathrm{H} 1(z)$ and $\mathrm{H} 2(z)$ from the LTI array H , use
H1 = $\mathrm{H}(:,:, 1) ; \quad \mathrm{H} 2=\mathrm{H}(:,:, 2)$;

## Version History

## Introduced before R2006a

## See Also

stabsep

## nblocks

Number of blocks in Generalized matrix or Generalized LTI model

## Syntax

$\mathrm{N}=$ nblocks(M)

## Description

$\mathrm{N}=\mathrm{nblocks}(\mathrm{M})$ returns the number of "Control Design Blocks" in the Generalized LTI model or Generalized matrix M.

## Input Arguments

M
A Generalized LTI model (genss or genfrd model), a Generalized matrix (genmat), or an array of such models.

## Output Arguments

## N

The number of "Control Design Blocks" in M. If a block appears multiple times in $M, N$ reflects the total number of occurrences.

If M is a model array, N is an array with the same dimensions as M . Each entry of N is the number of Control Design Blocks in the corresponding entry of M.

## Examples

## Number of Control Design Blocks in a Second-Order Filter Model

This example shows how to use nblocks to examine two different ways of parameterizing a model of a second-order filter.

1 Create a tunable (parametric) model of the second-order filter:

$$
F(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n}+\omega_{n}^{2}},
$$

where the damping $\zeta$ and the natural frequency $\omega_{n}$ are tunable parameters.

```
wn = realp('wn',3);
zeta = realp('zeta',0.8);
F = tf(wn^2,[1 2*zeta*wn wn^2]);
```

F is a genss model with two tunable Control Design Blocks, the realp blocks wn and zeta. The blocks wn and zeta have initial values of 3 and 0.8 , respectively.

2 Examine the number of tunable blocks in the model using nblocks.
nblocks(F)
This command returns the result:
ans =
6

F has two tunable parameters, but the parameter wn appears five times - twice in the numerator and three times in the denominator.
3 Rewrite F for fewer occurrences of wn.
The second-order filter transfer function can be expressed as follows:
$F(s)=\frac{1}{\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)+1}$.
Use this expression to create the tunable filter:
$F=t f(1,[(1 / w n) \wedge 2$ 2*zeta*(1/wn) 1])
4 Examine the number of tunable blocks in the new filter model.
nblocks(F)
This command returns the result:
ans =
4
In the new formulation, there are only three occurrences of the tunable parameter wn. Reducing the number of occurrences of a block in a model can improve performance time of calculations involving the model. However, the number of occurrences does not affect the results of tuning the model or sampling the model for parameter studies.

## Version History

Introduced in R2011a

## See Also

genss | genfrd|genmat | getValue

## Topics

"Control Design Blocks"
"Generalized Matrices"
"Generalized and Uncertain LTI Models"

## ndBasis

Basis functions for tunable gain surface

## Syntax

```
shapefcn = ndBasis(F1,F2)
shapefcn = ndBasis(F1,F2,...,FN)
```


## Description

You use basis function expansions to parameterize gain surfaces for tuning gain-scheduled controllers, with the tunableSurface command. The complexity of such expansions grows quickly when you have multiple scheduling variables. Use ndBasis to build N -dimensional expansions from low-dimensional expansions. ndBasis is analogous to ndgrid in the way it spatially replicates the expansions along each dimension.
shapefcn = ndBasis (F1,F2) forms the outer (tensor) product of two basis function expansions. Each basis function expansion is a function that returns a vector of expansion terms, such as returned by polyBasis. If $F_{1}\left(x_{1}\right)=\left[F_{1,1}\left(x_{1}\right), F_{1,2}\left(x_{1}\right), \ldots, F_{1, i}\left(x_{1}\right)\right]$ and $F_{2}\left(x_{2}\right)=\left[F_{2,1}\left(x_{2}\right), F_{2,2}\left(x_{2}\right), \ldots, F_{2, i}\left(x_{2}\right)\right]$, then shapefon is a vector of terms of the form:

$$
F_{i j}=F_{1, i}\left(x_{1}\right) F_{2, j}\left(x_{2}\right) .
$$

The terms are listed in a column-oriented fashion, with $i$ varying first, then $j$.
shapefcn $=$ ndBasis (F1,F2, ... FN $)$ forms the outer product of three or more basis function expansions. The terms in the vector returned by shapefcn are of the form:

$$
F_{i_{1} \ldots i_{N}}=F_{1, i_{i}}\left(x_{1}\right) F_{2, i_{2}}\left(x_{2}\right) \ldots F_{N, i_{N}}\left(x_{N}\right) .
$$

These terms are listed in sort order that of an N -dimensional array, with $i_{1}$ varying first, then $i_{2}$, and so on. Each Fj can itself be a multi-dimensional basis function expansion.

## Examples

## Polynomial Basis Functions of Two Variables

Create a two-dimensional basis of polynomial functions to second-order in both variables.
Define a one-dimensional set of basis functions.
$F=@(x)\left[x, x^{\wedge} 2\right] ;$
Equivalently, you can use polyBasis to create F.
F = polyBasis('canonical',2);
Generate a two-dimensional expansion from $F$.
F2D $=$ ndBasis ( $F, F$ );

F2D is a function of two variables. The function returns a vector containing the evaluated basis functions of those two variables:

$$
F 2 D(x, y)=\left[x, x^{2}, y, y x, y x^{2}, y^{2}, x y^{2}, x^{2} y^{2}\right]
$$

To confirm this, evaluate F2D for $x=0.2, y=-0.3$.

```
F2D(0.2,-0.3)
ans = 1\times8
 0.2000 0.0400 -0.3000 -0.0600 -0.0120 0.0900 0.0180 0.0036
```

The expansion you combine with ndBasis need not have the same order. For instance, combine F with first-order expansion in one variable.
$\mathrm{G}=\mathrm{Q}(\mathrm{y})[\mathrm{y}]$;
F2D2 = ndBasis(F,G);
The array returned by F2D2 is similar to that returned by F2D, without the terms that are quadratic in the second variable.

$$
F 2 D 2(x, y)=\left[x, x^{2}, y, y x, y x^{2}\right]
$$

Evaluate F2D2 for $x=0.2, y=-0.3$ to confirm the order of terms.

```
F2D2(0.2,-0.3)
ans = 1\times5
 0.2000 0.0400 -0.3000 -0.0600 -0.0120
```


## Mixed Multi-Dimensional Basis Functions

Create a set of two-dimensional basis functions where the expansion is quadratic in one variable and periodic in the other variable.

First generate the one-dimensional expansions. Name the variables for improved readability.

```
F1 = polyBasis('canonical',2,'x');
F2 = fourierBasis(1,1,'y');
```

For simplicity, this example takes only the first harmonic of the periodic variation. These expansions have basis functions given by:

$$
F 1(x)=\left[x, x^{2}\right], \quad F 2(y)=[\cos (\Pi y), \sin (\Pi y)]
$$

Create the two-dimensional basis function expansion. Note that ndBasis preserves the variable names you assigned to one-dimensional expansions.

```
F = ndBasis(F1,F2)
```

```
F = function_handle with value:
 @(x,y)utFcnBasisOuterProduct(FDATA_,x,y)
```

The array returned by F includes all multiplicative combinations of the basis functions:

$$
F(x, y)=\left[x, x^{2}, \cos (\Pi y), \cos (\Pi y) x, \cos (\Pi y) x^{2}, \sin (\Pi y), x \sin (\Pi y), x^{2} \sin (\Pi y)\right] .
$$

To confirm this, evaluate F for $x=0.2, y=-0.3$.

```
F(0.2,-0.3)
ans = 1\times8
```

0.2000	0.0400	0.5878	0.1176	0.0235	-0.8090	-0.1618	-0.0324

## Input Arguments

## F-Basis function expansion

function handle

Basis function expansion, specified as a function handle. The function must return a vector of basis functions of one or more scheduling variables. You can define these basis functions explicitly, or using polyBasis or fourierBasis.

Example: $F=@(x)\left[x, x^{\wedge} 2, x^{\wedge} 3\right]$
Example: F = polyBasis(3,2)

## Output Arguments

## shapefcn - Basis function expansion

function handle
Basis function expansion, specified as a function handle. shapefen takes as input arguments the total number of variables in $\mathrm{F} 1, \mathrm{~F} 2, \ldots, \mathrm{FN}$. It returns a vector of functions of those variables, defined on the interval $[-1,1]$ for each input variable. When you use shapefon to create a gain surface, tunableSurface automatically generates tunable coefficients for each term in the vector.

## Tips

- The ndBasis operation is associative:

```
ndBasis(F1,ndBasis(F2,F3)) = ndBasis(ndBasis(F1,F2),F3) = ndBasis(F1,F2,F3)
```


## Version History

Introduced in R2015b

## See Also

tunableSurface|fourierBasis|polyBasis

## ndims

Query number of dimensions of dynamic system model or model array

## Syntax

n = ndims(sys)

## Description

$\mathrm{n}=$ ndims(sys) is the number of dimensions of a dynamic system model or a model array sys. A single model has two dimensions (one for outputs, and one for inputs). A model array has $2+p$ dimensions, where $p \geq 2$ is the number of array dimensions. For example, a 2-by-3-by-4 array of models has $2+3=5$ dimensions.

```
ndims(sys) = length(size(sys))
```


## Examples

## Determine Dimensions of Model Array

Create a 3-by-1 array of random state-space models, each with 4 states, 1 input, and 1 output.
sys $=$ rss (4,1,1,3);
Compute the number of dimensions of the model array.

```
ndims(sys)
ans = 4
```

The number of dimensions is $2+p$, where $p$ is the number of array dimensions. In this example, $p$ is 2 because sys is 3 -by- 1 .

## Version History

## Introduced before R2006a

## See Also

size

## ngrid

Superimpose Nichols chart on Nichols plot

## Syntax

ngrid
ngrid('new')
ngrid(AX, $\qquad$ )

## Description

ngrid superimposes Nichols chart grid lines over the Nichols frequency response of a SISO LTI system. The range of the Nichols grid lines is set to encompass the entire Nichols frequency response.

The chart relates the complex number $H /(1+H)$ to $H$, where $H$ is any complex number. For SISO systems, when $H$ is a point on the open-loop frequency response, then the corresponding value of the closed-loop frequency response assuming unit negative feedback is

$$
\frac{H}{1+H}
$$

If the current axis is empty, ngrid generates a new Nichols chart grid in the region -40 dB to 40 dB in magnitude and -360 degrees to 0 degrees in phase. ngrid returns a warning if the current axis does not contain a SISO Nichols frequency response.
ngrid('new') clears the current axes first and sets hold on.
ngrid(AX, $\qquad$ ) plots the grid on the Axes or UIAxes object in the current figure with the handle AX. Use this syntax when creating apps with ngrid in the App Designer.

## Examples

## Nichols Response with Nichols Grid Lines

Plot the Nichols response with Nichols grid lines for the following system:

$$
H(s)=\frac{-4 s^{4}+48 s^{3}-18 s^{2}+250 s+600}{s^{4}+30 s^{3}+282 s^{2}+525 s+60} .
$$

$$
H=t f([-448-18250600],[130282525 \text { 60]); }
$$

nichols(H)
ngrid


## Input Arguments

AX - Object handle
Axes object | UIAxes object
Object handle, specified as an Axes or UIAxes object. Use AX to create apps with ngrid in the App Designer.

## Version History <br> Introduced before R2006a

## See Also

nichols

## nichols

Nichols chart of frequency response

## Syntax

```
nichols(sys)
nichols(sys1,sys2,...,sysN)
nichols(sys1,LineSpec1,...,sysN,LineSpecN)
nichols(
```

$\qquad$

``` ,w)
[mag, phase,wout] = nichols(sys)
[mag, phase,wout] = nichols(sys,w)
```


## Description

nichols(sys) creates a Nichols chart of the frequency response of a dynamic system model sys. The plot displays the magnitude (in dB ) and phase (in degrees) of the system response as a function of frequency. nichols automatically determines frequencies to plot based on system dynamics. Use ngrid to superimpose Nichols chart grid lines on an existing SISO Nichols chart.

If sys is a multi-input, multi-output (MIMO) model, then nichols produces an array of Nichols charts, each plot showing the frequency response of one I/O pair.

If sys is a model with complex coefficients, then nichols plot shows a contour comprised of both positive and negative frequencies. For models with real coefficients, nichols only shows positive frequencies.
nichols(sys1,sys2,...,sysN) plots the Nichols plot of the frequency response of multiple dynamic systems on the same plot. All systems must have the same number of inputs and outputs.
nichols(sys1,LineSpec1, . . .,sysN, LineSpecN) specifies a color, line style, and marker for each system in the plot.
nichols (__ , w) plots the response for frequencies specified by w.

- If $w$ is a cell array of the form \{wmin, wmax\}, then nichols plots the chart at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then nichols plots the chart at each specified frequency. The vector $w$ can contain both negative and positive frequencies.

You can use w with any of the input-argument combinations in previous syntaxes.
[mag, phase, wout] = nichols(sys) returns the magnitude and phase of the response at each frequency in the vector wout. The function automatically determines frequencies in wout based on system dynamics. This syntax does not draw a plot.
[mag, phase,wout] = nichols(sys,w) returns the response data at the frequencies specified by w.

- If $w$ is a cell array of the form $\{w m i n, w m a x\}$, then wout contains frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then wout $=w$.


## Examples

## Nichols Response with Nichols Grid Lines

Plot the Nichols response with Nichols grid lines for the following system:

$$
H(s)=\frac{-4 s^{4}+48 s^{3}-18 s^{2}+250 s+600}{s^{4}+30 s^{3}+282 s^{2}+525 s+60}
$$

$H=t f\left(\left[\begin{array}{lllll}-4 & 48 & -18 & 250 & 600\end{array}\right],\left[\begin{array}{llll}1 & 30 & 282 & 525 \\ 60\end{array}\right]\right) ;$ nichols(H) ngrid


## Nichols Plot at Specified Frequencies

Create a Nichols plot over a specified frequency range. Use this approach when you want to focus on the dynamics in a particular range of frequencies.
$H=\operatorname{tf}([-0.1,-2.4,-181,-1950],[1,3.3,990,2600])$;
nichols(H, $\{1,100\})$


The cell array $\{1,100\}$ specifies the minimum and maximum frequency values in the Nichols plot. When you provide frequency bounds in this way, the function selects intermediate points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency response.

```
w = 1:0.5:100;
nichols(H,w,'.-')
```


nichols plots the frequency response at the specified frequencies only.

## Nichols Plot of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an equivalent discretized system on the same Nichols plot.

Create continuous-time and discrete-time dynamic systems.
$H=t f([10.17 .5],[10.12900]) ;$
Hd = c2d(H, 0.5,'zoh');
Create a Nichols plot that displays both systems.
nichols(H,Hd)


Nichols Plot with Specified Line Attributes
Specify the line style, color, or marker for each system in a Nichols plot using the LineSpec input argument.
$H=t f\left(\left[\begin{array}{lll}1 & 0.1 & 7.5\end{array}\right],\left[\begin{array}{llll}1 & 0.12 & 9 & 0\end{array}\right]\right) ;$
Hd = c2d(H, 0.5,'zoh');
nichols(H,'r',Hd,'b--')


The first LineSpec, ' $r$ ', specifies a solid red line for the response of $H$. The second LineSpec, 'b--' , specifies a dashed blue line for the response of Hd .

## Nichols Response Magnitude and Phase Data

Compute the magnitude and phase of the frequency response of a SISO system.
If you do not specify frequencies, nichols chooses frequencies based on the system dynamics and returns them in the third output argument.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
[mag,phase,wout] = nichols(H);
```

Because H is a SISO model, the first two dimensions of mag and phase are both 1 . The third dimension is the number of frequencies in wout.

```
size(mag)
ans = 1\times3
 1 1
 110
length(wout)
```

```
ans = 110
```

Thus, each entry along the third dimension of mag gives the magnitude of the response at the corresponding frequency in wout.

## Nichols Plot of MIMO System

For this example, create a 2-output, 3-input system.

```
rng(0,'twister');
H = rss(4,2,3);
```

For this system, nichols plots the frequency responses of each I/O channel in a separate plot in a single figure.
nichols(H)


Compute the magnitude and phase of these responses at 20 frequencies between 1 and 10 radians.
$\mathrm{w}=$ logspace $(0,1,20)$;
[mag,phase] = nichols(H,w);
mag and phase are three-dimensional arrays, in which the first two dimensions correspond to the output and input dimensions of H , and the third dimension is the number of frequencies. For instance, examine the dimensions of mag.

```
size(mag)
ans = 1\times3
```

    230
    Thus, for example, mag ( $1,3,10$ ) is the magnitude of the response from the third input to the first output, computed at the 10 th frequency in $w$. Similarly, phase $(1,3,10)$ contains the phase of the same response.

## Nichols Plot of Model with Complex Coefficients

Create a Nichols plot of a model with complex coefficients and a model with real coefficients on the same plot.

```
rng(0)
A = [-3.50,-1.25-0.25i;2,0];
B = [1;0];
C = [-0.75-0.5i,0.625-0.125i];
D = 0.5;
Gc = ss(A,B,C,D);
Gr = rss(7);
nichols(Gc,Gr)
legend('Complex-coefficient model','Real-coefficient model','Location','southwest')
```



For models with complex coefficients, nichols shows a contour comprised of both positive and negative frequencies. For models with real coefficients, the plot shows only positive frequencies, even when complex-coefficient models are present. You can click the curve to further examine which section and values correspond to positive and negative frequencies.

## Input Arguments

## sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning frequency response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns frequency response data for the nominal model only.
- Frequency-response data models such as frd models. For such models, the function plots the response at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. Using identified models requires System Identification Toolbox software.

If sys is an array of models, the function plots the frequency responses of all models in the array on the same axes.

## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: ' $*$ b' specifies blue asterisk markers
Example: ' $y$ ' specifies a yellow line
w- Frequencies
\{wmin, wmax\} | vector
Frequencies at which to compute and plot frequency response, specified as the cell array \{wmin, wmax\} or as a vector of frequency values.

- If $w$ is a cell array of the form $\{w m i n, w m a x\}$, then the function computes the response at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then the function computes the response at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values. The vector w can contain both positive and negative frequencies.

For models with complex coefficients, if you specify a frequency range of [ $w_{\min }, w_{\max }$ ] for your plot, then the plot shows a contour comprised of both positive frequencies [ $w_{\min }, w_{\max }$ ] and negative frequencies $\left[-w_{\max },-w_{\min }\right]$.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

## Output Arguments

## mag - Magnitude of system response

3-D array
Magnitude of the system response in absolute units, returned as a 3-D array. The dimensions of this array are (number of system outputs) $\times$ (number of system inputs) $\times$ (number of frequency points).

- For SISO systems, mag ( $1,1, k$ ) gives the magnitude of the response at the $k$ th frequency in $w$ or wout. For an example, see "Nichols Response Magnitude and Phase Data" on page 2-815.
- For MIMO systems, mag ( $i, j, k$ ) gives the magnitude of the response at the kth frequency from the jth input to the ith output. For an example, see "Nichols Plot of MIMO System" on page 2816.

To convert the magnitude from absolute units to decibels, use:
$\operatorname{magdb}=20 * \log 10(\mathrm{mag})$
phase - Phase of system response
3-D array
Phase of the system response in degrees, returned as a 3-D array. The dimensions of this array are (number of outputs)-by-(number of inputs)-by-(number of frequency points).

- For SISO systems, phase $(1,1, k)$ gives the phase of the response at the kth frequency in w or wout. For an example, see "Nichols Response Magnitude and Phase Data" on page 2-815.
- For MIMO systems, phase ( $i, j, k$ ) gives the phase of the response at the kth frequency from the $j$ th input to the ith output. For an example, see "Nichols Plot of MIMO System" on page 2-816.


## wout - Frequencies

vector
Frequencies at which the function returns the system response, returned as a column vector. The function chooses the frequency values based on the model dynamics, unless you specify frequencies using the input argument w.
wout also contains negative frequency values for models with complex coefficients.
Frequency values are in radians/TimeUnit, where TimeUnit is the value of the TimeUnit property of sys.

## Tips

- When you need additional plot customization options, use nicholsplot instead.


## Version History

Introduced before R2006a

## See Also

nyquist | bode | nicholsplot | ngrid

## Topics

"Frequency-Domain Responses"
"Dynamic System Models"

## nicholsoptions

Create list of Nichols plot options

## Description

Use the nicholsoptions command to create a NicholsOptions object to customize your Nichols plot appearance. You can also use the command to override the plot preference settings in the MATLAB session in which you create the Nichols plots.

## Creation

## Syntax

plotoptions = nicholsoptions
plotoptions = nicholsoptions('cstprefs')

## Description

plotoptions = nicholsoptions returns a default set of plot options for use with the nicholsplot command. You can use these options to customize the Nichols plot appearance using the command line. This syntax is useful when you want to write a script to generate plots that look the same regardless of the preference settings of the MATLAB session in which you run the script.
plotoptions = nicholsoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor". This syntax is useful when you want to change a few plot options but otherwise use your default preferences. A script that uses this syntax may generate results that look different when run in a session with different preferences.

## Properties

## FreqUnits - Frequency units <br> 'rad/s' (default)

Frequency units, specified as one of the following values:

- 'Hz'
- 'rad/s'
- 'rpm'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rad/nanosecond'
- 'rad/microsecond'
- 'rad/millisecond'
- 'rad/minute'
- 'rad/hour'
- 'rad/day'
- 'rad/week'
- 'rad/month'
- 'rad/year'
- 'cycles/nanosecond'
- 'cycles/microsecond'
- 'cycles/millisecond'
- 'cycles/hour'
- 'cycles/day'
- 'cycles/week'
- 'cycles/month'
- 'cycles/year'


## MagLowerLimMode - Lower magnitude limit mode

 'auto' (default)|'manual'Lower magnitude limit mode, specified as either 'auto' or 'manual'.

## MagLowerLim - Lower magnitude limit value

'-inf' (default) | scalar
Lower magnitude limit value, specified as a scalar.

## PhaseUnits - Phase units

'deg' (default) | 'rad'
Phase units, specified as either 'deg' or 'rad' to change to degrees or radians, respectively.

## PhaseWrapping - Enable phase wrapping 'off' (default) | 'on'

Enable phase wrapping, specified as either 'on' or 'off'. When you set PhaseWrapping to ' on ', the plot wraps accumulated phase at the value specified by the PhaseWrappingBranch property.

## PhaseWrappingBranch - Phase wrapping value <br> - 180 (default) | integer

Phase wrapping value at which the plot wraps accumulated phase when PhaseWrapping is set to ' on '. By default, phase wraps into the interval [ $-180^{\circ}, 180^{\circ}$ ].

## PhaseMatching - Enable phase matching

'off' (default) | 'on'
Enable phase matching, specified as either 'on' or 'off'. Turning PhaseMatching 'on' matches the phase to the value specified in PhaseMatchingValue at the frequency specified in PhaseMatchingFreq

## PhaseMatchingFreq - Phase matching frequency <br> 0 (default) | scalar

Phase matching frequency, specified as a scalar.

## PhaseMatchingValue - Phase matching response value <br> 0 (default) | scalar

Phase matching response value, specified as a scalar.

## IOGrouping - Grouping of input-output pairs

'none' (default)|'inputs'|'outputs'| 'all'
Grouping of input-output (I/O) pairs, specified as one of the following:

- 'none' - No input-output grouping.
- 'inputs' - Group only the inputs.
- 'outputs' - Group only the outputs.
- 'all' - Group all the I/O pairs.


## InputLabels - Input label style

structure (default)
Input label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## OutputLabels - Output label style

structure (default)
Output label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4, 0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## InputVisible - Toggle display of inputs

\{'on'\} (default)|\{'off'\}|cell array
Toggle display of inputs, specified as either \{'on'\}, \{'off'\} or a cell array with multiple elements .

## OutputVisible - Toggle display of outputs

\{'on'\} (default)|\{'off'\}|cell array
Toggle display of outputs, specified as either \{'on'\}, \{'off'\} or a cell array with multiple elements.

## Title - Title text and style

structure (default)
Title text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the plot is titled 'Nichols Chart'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## XLabel - X-axis label text and style

structure (default)
X -axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the axis is titled based on the frequency units FreqUnits.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0, 0, 0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## YLabel - Y-axis label text and style

structure (default)
Y-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a cell array of character vectors. By default, the axis is titled 'Open-Loop Gain (dB)'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## TickLabel - Tick label style <br> structure (default)

Tick label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0, 0, 0].


## Grid - Toggle grid display

'off' (default) |'on'
Toggle grid display on the plot, specified as either 'off' or 'on'.

## GridColor - Color of the grid lines

[0.15,0.15,0.15] (default) |RGB triplet
Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB triplet [0.15, 0.15, 0.15].

## XLimMode - X-axis limit selection mode

'auto' (default) | 'manual' | cell array
Selection mode for the x -axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the XLim property.


## YLimMode - Y-axis limit selection mode

'auto' (default) | 'manual' | cell array
Selection mode for the y-axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the YLim property.


## XLim - X-axis limits

' $\{[1,10]\}$ ' (default) |cell array of two-element vector of the form [min, max] |cell array
X-axis limits, specified as a cell array of two-element vector of the form [min, max].

## YLim - Y-axis limits

' $\{[1,10]\}$ ' (default) | cell array of two-element vector of the form [min, max] |cell array
Y-axis limits, specified as a cell array of two-element vector of the form [min,max].

## Object Functions

nicholsplot Plot Nichols frequency responses with additional plot customization options

## Examples

## Customize Nichols Plot using Plot Handle

For this example, use the plot handle to change the title, turn on the grid, and set axis limits. Generate a random state-space model with 5 states and create the Nichols plot with plot handle h.
rng("default")
sys = rss(5);
h = nicholsplot(sys);


Change the title, enable the grid, and set axis limits. To do so, edit properties of the plot handle, h using setoptions.

Title.String = 'Nichols Frequency Response';
setoptions(h,'Title', Title,'Grid','on', 'XLim',\{[-2,4]\},'YLim',\{[3.3,4.3]\});


The Nichols plot automatically updates when you call setoptions.
Alternatively, you can also use the nicholsoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.

```
plotoptions = nicholsoptions('cstprefs');
```

Change the desired properties of the options set.

```
plotoptions.Title.String = 'Nichols Frequency Response';
```

plotoptions.Grid = 'on';
plotoptions.XLim = \{[-2,4]\};
plotoptions.YLim = \{[3.3,4.3]\};
nicholsplot(sys,plotoptions);


You can use the same option set to create multiple Nichols plots with the same customization. Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example Title, Grid, XLim and YLim, override the toolbox preferences.

## Custom Nichols Plot Settings Independent of Preferences

For this example, create a Nichols plot that uses 15-point red text for the title. This plot should look the same, regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set using nichol soptions.

```
plotoptions = nicholsoptions;
```

Next, change the required properties of the options set plotoptions.

```
plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [1 0 0];
plotoptions.FreqUnits = 'Hz';
plotoptions.Grid = 'on';
```

Now, create a Nichols plot using the options set plotoptions.

```
nicholsplot(tf(1,[1,1]),{0,15},plotoptions);
```

Nichols Chart


Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

## Customized Nichols Plot of Transfer Function

For this example, create a Nichols plot of the following continuous-time SISO dynamic system. Then, turn the grid on and rename the plot.

$$
\operatorname{sys}(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}} .
$$

Create the transfer function sys.

```
sys = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

Next, create the options set using nicholsoptions and change the required plot properties.

```
plotoptions = nicholsoptions;
plotoptions.Grid = 'on';
plotoptions.Title.String = 'Nichols Plot of Transfer Function';
```

Now, create the Nichols plot with the custom option set plotoptions.
nicholsplot(sys,plotoptions)

nicholsplot automatically selects the plot range based on the system dynamics.

## Nichols Response of Identified Parametric and Nonparametric Models

For this example, compare the Nichols response of a parametric model, identified from input/output data, to a non-parametric model identified using the same data. Identify parametric and nonparametric models based on the data.

Load the data and create the parametric and non-parametric models using tfest and spa, respectively.

```
load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
```

spa and tfest require System Identification Toolbox ${ }^{\mathrm{TM}}$ software. The model sys_np is a nonparametric identified model while, sys_p is a parametric identified model.

Create an options set to turn phase matching and the grid on. Then, create a Nichols plot that includes both systems using this options set.

```
plotoptions = nicholsoptions;
plotoptions.PhaseMatching = 'on';
```

plotoptions.Grid = 'on';
plotoptions.XLim = \{[-240,0]\};
h = nicholsplot(sys_p,'r.-.',sys_np,'b.-.',w,plotoptions);
legend('Parametric Model','Non-Pārametric model');


## Set Options for Nichols Plot

Create an options set, and set the phase units and grid option.
P = nicholsoptions;
P.PhaseUnits = 'rad';
P.Grid = 'on';

Use the options set to generate a Nichols plot. Not the phase units and grid in the plot.
h = nicholsplot(tf(1,[1,.2,1,0]),P);


## Version History

Introduced in R2008a
See Also
getoptions|nicholsplot| setoptions
Topics
"Toolbox Preferences Editor"

## nicholsplot

Plot Nichols frequency responses with additional plot customization options

## Syntax

h = nicholsplot(sys)
h = nicholsplot(sys1,sys2,...,sysN)
h = nicholsplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = nicholsplot ,w)
$\mathrm{h}=$ nicholsplot( $\overline{\mathrm{AX}}$, )
h = nicholsplot( ,plotoptions)

## Description

nicholsplot lets you plot the Nichols frequency response of a dynamic system model with a broader range of plot customization options than nichols. You can use nicholsplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use nicholsplot to draw a Nichols plot on an existing set of axes represented by an axes handle. To customize an existing Nichols plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create Nichols plots with default options or to extract the Nichols frequency response data, use nichols.
$\mathrm{h}=$ nicholsplot(sys) plots the frequency Nichols response of the dynamic system model sys and returns the plot handle $h$ to the plot. You can use this handle $h$ to customize the plot with the getoptions and setoptions commands. If sys is a multi-input, multi-output (MIMO) model, then nicholsplot produces a grid of Nichols plots, each plot displaying the frequency response of one I/O pair.
h = nicholsplot(sys1,sys2,...,sysN) plots the Nichols frequency response of multiple dynamic systems sys1, sys2,..., sysN on the same plot. All systems must have the same number of inputs and outputs to use this syntax.
h = nicholsplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and color for the Nichols response of each system. All systems must have the same number of inputs and outputs to use this syntax.
h = nicholsplot( $\qquad$ ,w) plots Nichols responses for frequencies specified by the frequencies in w.

- If $w$ is a cell array of the form $\{w m i n, w m a x\}$, then nicholsplot plots the response at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then nicholsplot plots the response at each specified frequency.

You can use w with any of the input-argument combinations in previous syntaxes.

See logspace to generate logarithmically spaced frequency vectors.
h = nicholsplot(AX, $\qquad$ ) plots the Nichols response on the Axes object in the current figure with the handle AX.
h = nicholsplot(__, plotoptions) plots the Nichols frequency response with the options set specified in plotoptions. You can use these options to customize the Nichols plot appearance using the command line. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run nicholsplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

## Examples

## Customize Nichols Plot using Plot Handle

For this example, use the plot handle to change the title, turn on the grid, and set axis limits.
Generate a random state-space model with 5 states and create the Nichols plot with plot handle h.

```
rng("default")
sys = rss(5);
h = nicholsplot(sys);
```



Change the title, enable the grid, and set axis limits. To do so, edit properties of the plot handle, h using setoptions.

Title.String = 'Nichols Frequency Response';
setoptions(h,'Title',Title,'Grid','on', 'XLim', $\{[-2,4]\}, ' Y L i m ',\{[3.3,4.3]\})$;


The Nichols plot automatically updates when you call setoptions.
Alternatively, you can also use the nichol soptions command to specify the required plot options. First, create an options set based on the toolbox preferences.

```
plotoptions = nicholsoptions('cstprefs');
```

Change the desired properties of the options set.
plotoptions.Title.String = 'Nichols Frequency Response'; plotoptions.Grid = 'on'; plotoptions. XLim $=\{[-2,4]\}$; plotoptions.YLim = \{[3.3,4.3]\}; nicholsplot(sys,plotoptions);


You can use the same option set to create multiple Nichols plots with the same customization. Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example Title, Grid, XLim and YLim, override the toolbox preferences.

## Custom Nichols Plot Settings Independent of Preferences

For this example, create a Nichols plot that uses 15 -point red text for the title. This plot should look the same, regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set using nichol soptions.

```
plotoptions = nicholsoptions;
```

Next, change the required properties of the options set plotoptions.

```
plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [1 0 0];
plotoptions.FreqUnits = 'Hz';
plotoptions.Grid = 'on';
```

Now, create a Nichols plot using the options set plotoptions.

```
nicholsplot(tf(1,[1,1]),{0,15},plotoptions);
```

Nichols Chart


Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

## Customized Nichols Plot of Transfer Function

For this example, create a Nichols plot of the following continuous-time SISO dynamic system. Then, turn the grid on and rename the plot.

$$
\operatorname{sys}(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}} .
$$

Create the transfer function sys.

```
sys = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

Next, create the options set using nicholsoptions and change the required plot properties.

```
plotoptions = nicholsoptions;
plotoptions.Grid = 'on';
plotoptions.Title.String = 'Nichols Plot of Transfer Function';
```

Now, create the Nichols plot with the custom option set plotoptions.
nicholsplot(sys,plotoptions)

nicholsplot automatically selects the plot range based on the system dynamics.

## Customized Nichols Plot of MIMO System

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a Nichols plot with frequency units in Hz and turn the grid on.

Create the MIMO state-space model sys_mimo.
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
$\mathrm{A}=-\mathrm{J} \backslash \mathrm{F}$;
$\mathrm{B}=\operatorname{inv}(\mathrm{J})$;
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)
State-space model with 3 outputs, 3 inputs, and 3 states.
Create a Nichols plot with plot handle h and use getoptions for a list of the options available.
h = nicholsplot(sys_mimo);


```
p = getoptions(h)
```

p $=$

```
 FreqUnits: 'rad/s'
 MagLowerLimMode: 'auto'
 MagLowerLim: 0
 PhaseUnits: 'deg'
 PhaseWrapping: 'off'
 PhaseMatching: 'off'
 PhaseMatchingFreq: 0
 PhaseMatchingValue: 0
 PhaseWrappingBranch: -180
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3\times1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {3x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {3x1 cell}
```

Use setoptions to update the plot with the requires customization.

```
setoptions(h,'FreqUnits','Hz','Grid','on');
```



The Nichols plot automatically updates when you call setoptions. For MIMO models, nicholsplot produces an array of Nichols plots, each plot displaying the frequency response of one I/O pair.

## Nichols Response of Identified Parametric and Nonparametric Models

For this example, compare the Nichols response of a parametric model, identified from input/output data, to a non-parametric model identified using the same data. Identify parametric and nonparametric models based on the data.

Load the data and create the parametric and non-parametric models using tfest and spa, respectively.

```
load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
```

spa and tfest require System Identification Toolbox ${ }^{\text {TM }}$ software. The model sys_np is a nonparametric identified model while, sys_p is a parametric identified model.

Create an options set to turn phase matching and the grid on. Then, create a Nichols plot that includes both systems using this options set.

```
plotoptions = nicholsoptions;
plotoptions.PhaseMatching = 'on';
plotoptions.Grid = 'on';
plotoptions.XLim = {[-240,0]};
h = nicholsplot(sys_p,'r.-.',sys_np,'b.-.',w,plotoptions);
legend('Parametric Model','Non-Parametric model');
```



## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Sparse state-space models, such as sparss or mechss models. Frequency grid w must be specified for sparse models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to plot the frequency response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model.
- Frequency-response data models such as frd models. For such models, the function plots the response at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can also plot confidence intervals and return standard deviations of the frequency response. (Using identified models requires System Identification Toolbox software.)

If sys is an array of models, the function plots the frequency responses of all models in the array on the same axes.

## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - - or' is a red dashed line with circle markers

Line Style	Description
-	Solid line
--	Dashed line
$:$	Dotted line
.-	Dash-dot line


Marker	Description
'0'	Circle
'+'	Plus sign
'*'	Asterisk
'.'	Point
'x'	Cross
'_'	Horizontal line
'\|'	Vertical line
's'	Square
'd'	Diamond
'^1	Upward-pointing triangle
'v'	Downward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'p'	Pentagram


Marker	Description
' h '	Hexagram
Color	Description
y	yellow
m	magenta
C	cyan
r	red
g	green
b	blue
W	white
k	black

## AX - Target axes

Axes object
Target axes, specified as an Axes object. If you do not specify the axes and if the current axes are Cartesian axes, then nicholsplot plots on the current axes. Use AX to plot into specific axes.

## plotoptions - Nichols plot options set

NicholsPlotOptions object
Nichols plot options set, specified as a NicholsPlotOptions object. You can use this option set to customize the Nichols plot appearance. Use nicholsoptions to create the option set. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run nicholsplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see nicholsoptions.

## w- Frequencies

\{wmin,wmax\} | vector
Frequencies at which to compute and plot frequency response, specified as the cell array \{wmin,wmax\} or as a vector of frequency values.

- If $w$ is a cell array of the form \{wmin, wmax\}, then the function computes the response at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then the function computes the response at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

## Output Arguments

## h - Plot handle

handle object

Plot handle, returned as a handle object. Use the handle $h$ to get and set the properties of the Nichols plot using getoptions and setoptions. For the list of available options, see the Properties and Values Reference section in "Customizing Response Plots from the Command Line".

## Version History

Introduced before R2006a

## See Also

getoptions|nichols|nicholsoptions| setoptions

## Topics

"Customizing Response Plots from the Command Line"

## nmodels

Number of models in model array

## Syntax

$\mathrm{N}=$ nmodels(sysarray)

## Description

$\mathrm{N}=$ nmodels(sysarray) returns the number of models in an array of dynamic system models or static models.

## Examples

## Confirm Number of Models in Array

Create a 2-by-3-by-4 array of state-space models.
sysarr $=$ rss(2,2,2,2,3,4);
Confirm the number of models in the array.
N = nmodels(sysarr)
$N=24$

## Input Arguments

sysarray - Input model array
model array
Input model array, specified as an array of input-output models such as numeric LTI models, generalized models, or identified LTI models.

## Output Arguments

N - Number of models in array
positive integer
Number of models in the input model array, returned as a positive integer.

## Version History

Introduced in R2013a

## See Also

ndims|size

## norm

Norm of linear model

## Syntax

```
n = norm(sys)
n = norm(sys,2)
n = norm(sys,Inf)
[n,fpeak] = norm(sys,Inf)
[n,fpeak] = norm(sys,Inf,tol)
```


## Description

$\mathrm{n}=$ norm(sys) or $\mathrm{n}=$ norm(sys,2) returns the root-mean-squares of the impulse response of the linear dynamic system model sys. This value is equivalent to the $\mathrm{H}_{2}$ norm on page 2-850 of sys.
$\mathrm{n}=\mathrm{norm}(\mathrm{sys}, \mathrm{Inf})$ returns the $L_{\infty}$ norm on page 2-850 of sys, which is the peak gain of the frequency response of sys across frequencies. For MIMO systems, this quantity is the peak gain over all frequencies and all input directions, which corresponds to the peak value of the largest singular value of sys. For stable systems, the $L_{\infty}$ norm is equivalent to the $H_{\infty}$ norm. For more information, see hinfnorm.
[n,fpeak] = norm(sys,Inf) also returns the frequency fpeak at which the gain reaches its peak value.
[ $\mathrm{n}, \mathrm{fpeak}$ ] $=$ norm(sys, Inf,tol) sets the relative accuracy of the $L_{\infty}$ norm to tol.

## Examples

## Compute Norm of Discrete-Time Linear System

Compute the $H_{2}$ and $L_{\infty}$ norms of the following discrete-time transfer function, with sample time 0.1 second.

$$
\operatorname{sys}(z)=\frac{z^{3}-2.841 z^{2}+2.875 z-1.004}{z^{3}-2.417 z^{2}+2.003 z-0.5488}
$$

Compute the $\mathrm{H}_{2}$ norm of the transfer function. The $\mathrm{H}_{2}$ norm is the root-mean-square of the impulse response of sys.

```
sys = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1);
n2 = norm(sys)
n2 = 1.2438
```

Compute the $L_{\infty}$ norm of the transfer function.

```
[ninf,fpeak] = norm(sys,Inf)
```

ninf $=2.5721$
fpeak $=3.0178$
Because sys is a stable system, ninf is the peak gain of the frequency response of sys, and fpeak is the frequency at which the peak gain occurs. Confirm these values using getPeakGain.
[gpeak,fpeak] = getPeakGain(sys)
gpeak $=2.5721$
fpeak $=3.0178$

## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Input dynamic system, specified as any SISO or MIMO linear dynamic system model or model array. sys can be continuous-time or discrete-time.

## tol - Relative accuracy

0.01 (default) | positive real scalar

Relative accuracy of the $H_{\infty}$ norm, specified as a positive real scalar value.

## Output Arguments

## n $-H_{2}$ or $\boldsymbol{L}_{\infty}$ norm

scalar | array
$H_{2}$ norm or $L_{\infty}$ norm of sys, returned as a scalar or an array.

- If sys is a single model, then n is a scalar value.
- If sys is a model array, then $n$ is an array of the same size as sys, where $n(k)=$ norm(sys (: , : k) ).
fpeak - Frequency of peak gain
real scalar | array of real values
Frequency at which the gain achieves the peak value gpeak, returned as a real scalar value or an array of real values. The frequency is expressed in units of rad/TimeUnit, relative to the TimeUnit property of sys.
- If sys is a single model, then fpeak is a scalar.
- If sys is a model array, then fpeak is an array of the same size as sys, where fpeak(k) is the peak gain frequency of sys (: , : ,k).
fpeak can be negative for systems with complex coefficients.


## More About

## H2 norm

The $H_{2}$ norm of a stable system $H$ is the root-mean-square of the impulse response of the system. The $H_{2}$ norm measures the steady-state covariance (or power) of the output response $y=H w$ to unit white noise inputs $w$ :

$$
\|H\|_{2}^{2}=\lim _{t \rightarrow \infty} E\left\{y(t)^{T} y(t)\right\}, \quad E\left(w(t) w(\tau)^{T}\right)=\delta(t-\tau) I .
$$

The $H_{2}$ norm of a continuous-time system with transfer function $H(s)$ is given by:

$$
\|H\|_{2}=\sqrt{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \operatorname{Trace}\left[H(j \omega)^{H} H(j \omega)\right] d \omega} .
$$

For a discrete-time system with transfer function $H(z)$, the $H_{2}$ norm is given by:

$$
\|H\|_{2}=\sqrt{\frac{1}{2 \Pi} \int_{-\Pi}^{\Pi} \operatorname{Trace}\left[H\left(e^{j \omega}\right)^{H} H\left(e^{j \omega}\right)\right] d \omega} .
$$

The $\mathrm{H}_{2}$ norm is infinite in the following cases:

- sys is unstable.
- sys is continuous and has a nonzero feedthrough (that is, nonzero gain at the frequency $\omega=\infty$ ).

Using norm(sys) produces the same result as sqrt(trace(covar(sys,1))).

## L-infinity norm

The $L_{\infty}$ norm of a SISO linear system is the peak gain of the frequency response. For a MIMO system, the $L_{\infty}$ norm is the peak gain across all input/output channels.

For a continuous-time system $H(s)$, this definition means:

$$
\begin{aligned}
& \|H(s)\|_{L_{\infty}}=\max _{\omega \in R}|H(j \omega)| \\
& \|H(s)\|_{L_{\infty}}=\max _{\omega \in R} \sigma_{\max }(H(j \omega))
\end{aligned}
$$

where $\sigma_{\max }(\cdot)$ denotes the largest singular value of a matrix.
For a discrete-time system $H(z)$, the definition means:

$$
\begin{aligned}
& \|H(z)\|_{L_{\infty}}=\max _{\theta \in[0,2 \pi]}\left|H\left(e^{j \theta}\right)\right| \\
& \|H(z)\|_{L_{\infty}}=\max _{\theta \in[0,2 \pi]} \sigma_{\max }\left(H\left(e^{j \theta}\right)\right)
\end{aligned}
$$

For stable systems, the $L_{\infty}$ norm is equivalent to the $H_{\infty}$ norm. For more information, see hinfnorm. For a system with unstable poles, the $H_{\infty}$ norm is infinite. For all systems, norm returns the $L_{\infty}$ norm, which is the peak gain without regard to system stability.

## Algorithms

After converting sys to a state space model, norm uses the same algorithm as covar for the $\mathrm{H}_{2}$ norm. For the $L_{\infty}$ norm, norm uses the algorithm of [1]. norm computes the peak gain using the SLICOT library. For more information about the SLICOT library, see http://slicot.org.

## Version History

## Introduced before R2006a

## References

[1] Bruinsma, N.A., and M. Steinbuch. "A Fast Algorithm to Compute the $\mathrm{H}_{\infty}$ Norm of a Transfer Function Matrix." Systems \& Control Letters, 14, no. 4 (April 1990): 287-93.

## See Also

freqresp|sigma|getPeakGain| hinfnorm

## nyquist

Nyquist plot of frequency response

## Syntax

```
nyquist(sys)
nyquist(sys1,sys2,...,sysN)
nyquist(sys1,LineSpec1,...,sysN,LineSpecN)
nyquist(___,w)
[re,im,wout] = nyquist(sys)
[re,im,wout] = nyquist(sys,w)
[re,im,wout,sdre,sdim] = nyquist(sys,w)
```


## Description

nyquist (sys) creates a Nyquist plot of the frequency response of a dynamic system model sys. The plot displays real and imaginary parts of the system response as a function of frequency.
nyquist plots a contour comprised of both positive and negative frequencies. The plot also shows arrows to indicate the direction of increasing frequency for each branch. nyquist automatically determines frequencies to plot based on system dynamics.

If sys is a multi-input, multi-output (MIMO) model, then nyquist produces an array of Nyquist plots, each plot showing the frequency response of one I/O pair.

If sys is a model with complex coefficients, then the positive and negative branches are not symmetric.
nyquist (sys1, sys2,...,sysN) plots the frequency response of multiple dynamic systems on the same plot. All systems must have the same number of inputs and outputs.
nyquist(sys1,LineSpec1, . . .,sysN, LineSpecN) specifies a color, line style, and marker for each system in the plot.
nyquist ( __,$w)$ plots system responses for frequencies specified by $w$.

- If $w$ is a cell array of the form $\{w m i n$, wmax \}, then nyquist plots the response at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then nyquist plots the response at each specified frequency. The vector $w$ can contain both negative and positive frequencies.

You can use w with any of the input-argument combinations in previous syntaxes.
[re,im, wout] = nyquist(sys) returns the real and imaginary parts of the frequency response at each frequency in the vector wout. The function automatically determines frequencies in wout based on system dynamics. This syntax does not draw a plot.
[re,im,wout] = nyquist(sys,w) returns the response data at the frequencies specified by w .

- If $w$ is a cell array of the form \{wmin,wmax\}, then wout contains frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then wout $=w$.
[re,im, wout, sdre, sdim] = nyquist(sys,w) also returns the estimated standard deviation of the real and imaginary parts of the frequency response for the identified model sys. If you omit $w$, then the function automatically determines frequencies in wout based on system dynamics.


## Examples

## Nyquist Plot of Dynamic System

Create the following transfer function and plot its Nyquist response.
$H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}$.
$H=t f\left(\left[\begin{array}{lll}2 & 5 & 1\end{array}\right],\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)$;
nyquist(H)


The nyquist function can display a grid of $M$-circles, which are the contours of constant closed-loop magnitude. $M$-circles are defined as the locus of complex numbers where the following quantity is a constant value across frequency.
$T(j \omega)=\left|\frac{G(j \omega)}{1+G(j \omega)}\right|$.
Here, $\omega$ is the frequency in radians/TimeUnit, where TimeUnit is the system time units, and $G$ is the collection of complex numbers that satisfy the constant magnitude requirement.

To display the grid of $M$-circles, right-click in the plot and select Grid. Alternatively, use the grid command.
grid on


## Nyquist Plot at Specified Frequencies

Create a Nyquist plot over a specified frequency range. Use this approach when you want to focus on the dynamics in a particular range of frequencies.

H = tf([-0.1,-2.4,-181,-1950],[1,3.3,990,2600]);
nyquist(H, $\{1,100\}$ )


The cell array $\{1,100\}$ specifies a frequency range $[1,100]$ for the positive frequency branch and [-$100,-1]$ for the negative frequency branch in the Nyquist plot. The negative frequency branch is obtained by symmetry for models with real coefficients. When you provide frequency bounds in this way, the function selects intermediate points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency response.
$w=1: 0.1: 30 ;$
nyquist(H,w,'-')

Nyquist Diagram

nyquist plots the frequency response at the specified frequencies.

## Nyquist Plot of Several Dynamic Systems

Compare the frequency response of several systems on the same Nyquist plot.
Create the dynamic systems.

```
rng(0)
sys1 = tf(3,[1,2,1]);
sys2 = tf([2 5 1],[1 2 3]);
sys3 = rss(4);
```

Create a Nyquist plot that displays all systems.
nyquist(sys1,sys2,sys3)
legend('Location','southwest')


## Nyquist Plot with Specified Line Attributes

Specify the line style, color, or marker for each system in a Nyquist plot using the LineSpec input argument.
sys1 = tf(3,[1,2,1]);
sys2 = tf([2 5 1],[1 2 3]);
nyquist(sys1,'o:',sys2,'g')


The first LineSpec, ' o : ' , specifies a dotted line with circle markers for the response of sys1. The second LineSpec, 'g' , specifies a solid green line for the response of sys2.

## Obtain Real and Imaginary Parts of Frequency Response

Compute the real and imaginary parts of the frequency response of a SISO system.
If you do not specify frequencies, nyquist chooses frequencies based on the system dynamics and returns them in the third output argument.

[re,im,wout] = nyquist(H);
Because H is a SISO model, the first two dimensions of re and im are both 1 . The third dimension is the number of frequencies in wout.

```
size(re)
ans = 1\times3
```

$1 \quad 1$ 141 length(wout)

```
ans = 141
```

Thus, each entry along the third dimension of re gives the real part of the response at the corresponding frequency in wout.

## Nyquist Plot of MIMO System

For this example, create a 2-output, 3-input system.
rng(0,'twister');
$H=r s s(4,2,3)$;
For this system, nyquist plots the frequency responses of each I/O channel in a separate plot in a single figure.
nyquist(H)

Nyquist Diagram


Compute the real and imaginary parts of these responses at 20 frequencies between 1 and 10 radians.

```
w = logspace(0,1,20);
[re,im] = nyquist(H,w);
```

re and im are three-dimensional arrays, in which the first two dimensions correspond to the output and input dimensions of H , and the third dimension is the number of frequencies. For instance, examine the dimensions of re.

```
size(re)
ans = 1\times3
```

230

Thus, for example, $\mathrm{re}(1,3,10)$ is the real part of the response from the third input to the first output, computed at the 10th frequency in w. Similarly, im $(1,3,10)$ contains the imaginary part of the same response.

## Create Nyquist Plot of Identified Model With Response Uncertainty

Compute the standard deviations of the real and imaginary parts of the frequency response of an identified model. Use this data to create a $3 \sigma$ plot of the response uncertainty.

Load the estimation data $z 2$.
load iddata2 z2;
Identify a transfer function model using the data. Using the tfest command requires System Identification Toolbox ${ }^{\mathrm{TM}}$ software.
sys_p = tfest(z2,2);
Obtain the standard deviations for the real and imaginary parts of the frequency response for a set of 512 frequencies, $w$.

```
w = linspace(-10*pi,10*pi,512);
[re,im,wout,sdre,sdim] = nyquist(sys_p,w);
```

re and im are the real and imaginary parts of the frequency response, and sdre and sdim are their standard deviations, respectively. The frequencies in wout are the same as the frequencies you specified in $w$.

Use the standard deviation data to create a $3 \sigma$ plot corresponding to the confidence region.

```
re = squeeze(re);
im = squeeze(im);
sdre = squeeze(sdre);
sdim = squeeze(sdim);
plot(re,im,'b',re+3*sdre,im+3*sdim,'k:',re-3*sdre,im-3*sdim,'k:')
xlabel('Real Axis');
ylabel('Imaginary Axis');
```



## Nyquist Plot of Model with Complex Coefficients

Create a Nyquist plot of a model with complex coefficients and a model with real coefficients on the same plot.
rng (0)
$A=[-3.50,-1.25-0.25 i ; 2,0] ;$
$B=[1 ; 0] ;$
$C=[-0.75-0.5 i, 0.625-0.125 i] ;$
D = 0.5;
$\mathrm{Gc}=\mathrm{ss}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$;
$G r=r s s(4) ;$
nyquist(Gc,Gr)
legend('Complex-coefficient model','Real-coefficient model')

Nyquist Diagram


The Nyquist plot always shows two branches, one for positive frequencies and one for negative frequencies. The arrows indicate the direction of increasing frequency for each branch. For models with complex coefficients, the two branches are not symmetric. For models with real coefficients, the negative branch is obtained by symmetry.

## Input Arguments

## sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning frequency response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns frequency response data for the nominal model only.
- Frequency-response data models such as frd models. For such models, the function plots the response at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can also plot confidence intervals and return standard deviations of the frequency response. See "Create Nyquist Plot of Identified Model With Response Uncertainty" on page 2-860. (Using identified models requires System Identification Toolbox software.)

If sys is an array of models, the function plots the frequency responses of all models in the array on the same axes.

## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.

## Example: 'r--' specifies a red dashed line

Example: '*b' specifies blue asterisk markers
Example: ' $y$ ' specifies a yellow line

## w- Frequencies

\{wmin,wmax\} | vector
Frequencies at which to compute and plot frequency response, specified as the cell array \{wmin,wmax\} or as a vector of frequency values.

- If $w$ is a cell array of the form $\{w m i n, w m a x\}$, then the function computes the response at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then the function computes the response at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values. The vector $w$ can contain both positive and negative frequencies.

If you specify a frequency range of $\left[w_{\min }, w_{\max }\right]$ for your plot, then the plot shows a contour comprised of both positive frequencies [ $w_{\min }, w_{\max }$ ] and negative frequencies [ $-w_{\max },-w_{\min }$ ].

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

## Output Arguments

## re - Real part of system response

3-D array

Real part of the system response, returned as a 3-D array. The dimensions of this array are (number of system outputs)-by-(number of system inputs)-by-(number of frequency points).

- For SISO systems, re $(1,1, k)$ gives the real part of the response at the kth frequency in $w$ or wout. For an example, see "Obtain Real and Imaginary Parts of Frequency Response" on page 2858.
- For MIMO systems, re ( $\mathrm{i}, \mathrm{j}, \mathrm{k}$ ) gives the real part of the response at the kth frequency from the $j$ th input to the ith output. For an example, see "Nyquist Plot of MIMO System" on page 2-859.


## im - Imaginary part of system response

3-D array
Imaginary part of the system response, returned as a 3-D array. The dimensions of this array are (number of system outputs)-by(number of system inputs)-by-(number of frequency points).

- For SISO systems, im $(1,1, k)$ gives the imaginary part of the response at the kth frequency in $w$ or wout. For an example, see "Obtain Real and Imaginary Parts of Frequency Response" on page 2-858.
- For MIMO systems, im(i,j,k) gives the imaginary part of the response at the kth frequency from the $j$ th input to the ith output. For an example, see "Nyquist Plot of MIMO System" on page 2-859.


## wout - Frequencies

vector
Frequencies at which the function returns the system response, returned as a column vector. The function chooses the frequency values based on the model dynamics, unless you specify frequencies using the input argument $w$.
wout also contains negative frequency values for models with complex coefficients.
Frequency values are in radians per TimeUnit, where TimeUnit is the value of the TimeUnit property of sys.

## sdre - Standard deviation of real part

3-D array | [ ]
Estimated standard deviation of the real part of the response at each frequency point, returned as a 3-D array. sdre has the same dimensions as re.

If sys is not an identified LTI model, sdre is [].

## sdim - Standard deviation of imaginary part

3-D array | [ ]
Estimated standard deviation of the imaginary part of the response at each frequency point, returned as a 3-D array. sdim has the same dimensions as im.

If sys is not an identified LTI model, sdim is [].

## Tips

- When you need additional plot customization options, use nyquistplot instead.
- Two zoom options that apply specifically to Nyquist plots are available from the right-click menu :
- Full View - Clips unbounded branches of the Nyquist plot, but still includes the critical point $(-1,0)$.
- Zoom on (-1,0) - Zooms around the critical point ( $-1,0$ ). To access critical-point zoom programmatically, use the zoomcp command. For more information, see nyquistplot.
- To activate data markers that display the real and imaginary values at a given frequency, click anywhere on the curve. The following figure shows a nyquist plot with a data marker.



## Version History

Introduced before R2006a

## See Also

nichols|sigma| bode| nyquistplot

## Topics

"Frequency-Domain Responses"
"Dynamic System Models"

## nyquistoptions

Create list of Nyquist plot options

## Description

Use the nyquistoptions command to create a NyquistPlotOptions object to customize your Nyquist plot appearance. You can also use the command to override the plot preference settings in the MATLAB session in which you create the Nyquist plots.

## Creation

## Syntax

plotoptions = nyquistoptions
plotoptions = nyquistoptions('cstprefs')

## Description

plotoptions = nyquistoptions returns a default set of plot options for use with the nyquistplot command. You can use these options to customize the Nyquist plot appearance using the command line. This syntax is useful when you want to write a script to generate plots that look the same regardless of the preference settings of the MATLAB session in which you run the script.
plotoptions = nyquistoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox and System Identification Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor". This syntax is useful when you want to change a few plot options but otherwise use your default preferences. A script that uses this syntax may generate results that look different when run in a session with different preferences.

## Properties

## FreqUnits - Frequency units <br> 'rad/s' (default)

Frequency units, specified as one of the following values:

- 'Hz'
- 'rad/second'
- 'rpm'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rad/nanosecond'
- 'rad/microsecond'
- 'rad/millisecond'
- 'rad/minute'
- 'rad/hour'
- 'rad/day'
- 'rad/week'
- 'rad/month'
- 'rad/year'
- 'cycles/nanosecond '
- 'cycles/microsecond'
- 'cycles/millisecond'
- 'cycles/hour'
- 'cycles/day'
- 'cycles/week'
- 'cycles/month'
- 'cycles/year'


## MagUnits - Magnitude units

'dB' (default) | 'abs'
Magnitude units, specified as either 'dB' or absolute value 'abs'.

## PhaseUnits - Phase units

'deg' (default) | 'rad'
Phase units, specified as either 'deg' or 'rad' to change to degrees or radians, respectively.

## ShowFullContour - Toggle display of the response for negative frequencies

## 'on' (default) |'off'

Toggle display of the response for negative frequencies, specified as either 'on' or 'off'.

## ConfidenceRegionNumberSD - Number of standard deviations to use to plot the confidence region

1 (default) | scalar
Number of standard deviations to use to plot the confidence region, specified as a scalar. This is applicable to identified models only.

## ConfidenceRegionDisplaySpacing - Frequency spacing of the confidence ellipses <br> 5 (default) | scalar

Frequency spacing of the confidence ellipses to use to plot the confidence region, specified as a scalar. This is applicable to identified models only. The default value is 5 , which means the confidence ellipses are shown at every 5th frequency sample

## IOGrouping - Grouping of input-output pairs

'none' (default)|'inputs'| 'outputs'| 'all'
Grouping of input-output (I/O) pairs, specified as one of the following:

- 'none' - No input-output grouping.
- 'inputs' - Group only the inputs.
- 'outputs' - Group only the outputs.
- 'all' - Group all the I/O pairs.


## InputLabels - Input label style

structure (default)
Input label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## OutputLabels - Output label style

structure (default)
Output label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## InputVisible - Toggle display of inputs

\{'on'\} (default) | \{'off'\} | cell array

Toggle display of inputs, specified as either \{'on'\}, \{'off'\} or a cell array with multiple elements .

## OutputVisible - Toggle display of outputs

\{'on'\} (default) |\{'off'\}|cell array
Toggle display of outputs, specified as either \{'on'\}, \{'off'\} or a cell array with multiple elements.

## Title - Title text and style

## structure (default)

Title text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the plot is titled 'Nyquist Diagram'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals 1/72 inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0, 0, 0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## XLabel - X-axis label text and style

structure (default)
X-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the axis is titled 'Real Axis'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0, 0, 0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## YLabel - Y-axis label text and style

## structure (default)

Y-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a cell array of character vectors. By default, the axis is titled 'Imaginary Axis'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0, 0, 0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## TickLabel - Tick label style

## structure (default)

Tick label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].


## Grid - Toggle grid display

'off' (default) | 'on'
Toggle grid display on the plot, specified as either 'off' or 'on'.

## GridColor - Color of the grid lines

[0.15,0.15, 0.15] (default)| RGB triplet
Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB triplet [0.15, 0.15, 0.15].

## XLimMode - X-axis limit selection mode

'auto' (default) | 'manual' | cell array
Selection mode for the x -axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the XLim property.

YLimMode - Y-axis limit selection mode
'auto' (default) | 'manual' | cell array
Selection mode for the y-axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the YLim property.


## XLim - X-axis limits

' $\{[1,10]\}$ ' (default) | cell array of two-element vector of the form [min, max] |cell array
X -axis limits, specified as a cell array of two-element vector of the form [min, max].

## YLim - Y-axis limits

' $\{[1,10]\}$ ' (default) | cell array of two-element vector of the form [min, max] |cell array
Y-axis limits, specified as a cell array of two-element vector of the form [min , max].

## Object Functions

nyquistplot Nyquist plot with additional plot customization options

## Examples

## Customize Nyquist Plot using Plot Handle

For this example, use the plot handle to change the phase units to radians and to turn the grid on.
Generate a random state-space model with 5 states and create the Nyquist diagram with plot handle h.

```
rng("default")
sys = rss(5);
h = nyquistplot(sys);
```



Change the phase units to radians and turn on the grid. To do so, edit properties of the plot handle, h using setoptions.
setoptions(h,'PhaseUnits','rad','Grid','on');


The Nyquist plot automatically updates when you call setoptions.
Alternatively, you can also use the nyquistoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.

```
plotoptions = nyquistoptions('cstprefs');
```

Change properties of the options set by setting the phase units to radians and enabling the grid.

```
plotoptions.PhaseUnits = 'rad';
```

plotoptions.Grid = 'on';
nyquistplot(sys,plotoptions);


You can use the same option set to create multiple Nyquist plots with the same customization.
Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example PhaseUnits and Grid, override the toolbox preferences.

## Nyquist Plot of Identified Models with Confidence Regions at Selected Points

Compare the frequency responses of identified state-space models of order 2 and 6 along with their 1 -std confidence regions rendered at every 50th frequency sample.

Load the identified model data and estimate the state-space models using n4sid. Then, plot the Nyquist diagram.

```
load iddatal
sys1 = n4sid(z1,2);
sys2 = n4sid(z1,6);
w = linspace(10,10*pi,256);
h = nyquistplot(sys1,sys2,w);
```


## Nyquist Diagram



Both models produce about 76\% fit to data. However, sys2 shows higher uncertainty in its frequency response, especially close to Nyquist frequency as shown by the plot. To see this, show the confidence region at a subset of the points at which the Nyquist response is displayed.

```
setoptions(h,'ConfidenceRegionDisplaySpacing',50,...
 'ShowFullContour','off');
```


## Nyquist Diagram



To turn on the confidence region display, right-click the plot and select Characteristics > Confidence Region.

## Nyquist Diagram



## Nyquist Plot with Specific Customization

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a Nyquist plot, display only the partial contour and turn the grid on.

Create the MIMO state-space model sys_mimo.
$\mathrm{J}=\left[\begin{array}{cccccccc}8 & -3 & -3 ;-3 & -3 & -3 & -3 & 8\end{array}\right]$;
$F=0.2 * e y e(3) ;$
$\mathrm{A}=-\mathrm{J} \backslash \mathrm{F}$;
$B=\operatorname{inv}(J) ;$
$C=$ eye(3);
D = 0;
sys_mimo $=$ ss (A, B, C, D) ;
size(sys_mimo)
State-space model with 3 outputs, 3 inputs, and 3 states.
Create a Nyquist plot with plot handle $h$ and use getoptions for a list of the options available.
h = nyquistplot(sys_mimo);

## Nyquist Diagram










p = getoptions(h)
p = getoptions(h)
p =
p =
FreqUnits: 'rad/s'
FreqUnits: 'rad/s'
MagUnits: 'dB'
MagUnits: 'dB'
PhaseUnits: 'deg'
PhaseUnits: 'deg'
ShowFullContour: 'on'
ShowFullContour: 'on'
ConfidenceRegionNumberSD: 1
ConfidenceRegionNumberSD: 1
ConfidenceRegionDisplaySpacing: 5
ConfidenceRegionDisplaySpacing: 5
IOGrouping: 'none'
IOGrouping: 'none'
InputLabels: [1x1 struct]
InputLabels: [1x1 struct]
OutputLabels: [1x1 struct]
OutputLabels: [1x1 struct]
InputVisible: {3x1 cell}
InputVisible: {3x1 cell}
OutputVisible: {3x1 cell}
OutputVisible: {3x1 cell}
Title: [1x1 struct]
Title: [1x1 struct]
XLabel: [1x1 struct]
XLabel: [1x1 struct]
YLabel: [1x1 struct]
YLabel: [1x1 struct]
TickLabel: [1x1 struct]
TickLabel: [1x1 struct]
Grid: 'off
Grid: 'off
GridColor: [0.1500 0.1500 0.1500]
GridColor: [0.1500 0.1500 0.1500]
XLim: {3x1 cell}
XLim: {3x1 cell}
YLim: {3x1 cell}
YLim: {3x1 cell}
XLimMode: {3x1 cell}
XLimMode: {3x1 cell}
YLimMode: {3x1 cell}
YLimMode: {3x1 cell}

Use setoptions to update the plot with the requires customization.

```
setoptions(h,'ShowFullContour','off','Grid','on');
```


## Nyquist Diagram



The Nyquist plot automatically updates when you call setoptions. For MIMO models, nyquistplot produces an array of Nyquist diagrams, each plot displaying the frequency response of one I/O pair.

## Version History

## Introduced in R2011a

## See Also

nyquist | nyquistplot| getoptions| setoptions

## Topics

"Toolbox Preferences Editor"

## nyquistplot

Nyquist plot with additional plot customization options

## Syntax

h = nyquistplot(sys)
h = nyquistplot(sys1,sys2,...,sysN)
h = nyquistplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = nyquistplot ,w)
$\mathrm{h}=$ nyquistplot( $\overline{\mathrm{AX}}$, $\qquad$
h = nyquistplot( ,plotoptions)

## Description

nyquistplot lets you plot the Nyquist diagram of a dynamic system model with a broader range of plot customization options than nyquist. You can use nyquistplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use nyquistplot to draw a Nyquist diagram on an existing set of axes represented by an axes handle. To customize an existing Nyquist plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create Nyquist plots with default options or to extract the standard deviation, real and imaginary parts of the frequency response data, use nyquist.
h = nyquistplot(sys) plots the Nyquist plot of the dynamic system model sys and returns the plot handle $h$ to the plot. You can use this handle $h$ to customize the plot with the getoptions and setoptions commands. If sys is a multi-input, multi-output (MIMO) model, then nyquistplot produces a grid of Nyquist plots, each plot displaying the frequency response of one I/O pair.
h = nyquistplot(sys1,sys2,...,sysN) plots the Nyquist plot of multiple dynamic systems sys 1, sys $2, \ldots$, sysN on the same plot. All systems must have the same number of inputs and outputs to use this syntax.
h = nyquistplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and color for the Nyquist plot of each system. All systems must have the same number of inputs and outputs to use this syntax.
h = nyquistplot( $\qquad$ ,w) plots Nyquist diagram for frequencies specified by the frequencies in w .

- If $w$ is a cell array of the form \{wmin, wmax\}, then nyquistplot plots the Nyquist diagram at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then nyquistplot plots the Nyquist diagram at each specified frequency.

You can use w with any of the input-argument combinations in previous syntaxes.

See logspace to generate logarithmically spaced frequency vectors.
h = nyquistplot(AX, $\qquad$ ) plots the Nyquist plot on the Axes object in the current figure with the handle AX.
h = nyquistplot $($ $\qquad$ , plotoptions) plots the Nyquist plot with the options set specified in plotoptions. You can use these options to customize the Nyquist plot appearance using the command line. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run nyquistplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

## Examples

## Customize Nyquist Plot using Plot Handle

For this example, use the plot handle to change the phase units to radians and to turn the grid on.
Generate a random state-space model with 5 states and create the Nyquist diagram with plot handle h.

```
rng("default")
sys = rss(5);
h = nyquistplot(sys);
```

Nyquist Diagram


Change the phase units to radians and turn on the grid. To do so, edit properties of the plot handle, h using setoptions.

```
setoptions(h,'PhaseUnits','rad','Grid','on');
```

Nyquist Diagram


The Nyquist plot automatically updates when you call setoptions.
Alternatively, you can also use the nyquistoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.
plotoptions = nyquistoptions('cstprefs');
Change properties of the options set by setting the phase units to radians and enabling the grid.

```
plotoptions.PhaseUnits = 'rad';
```

plotoptions.Grid = 'on';
nyquistplot(sys,plotoptions);


You can use the same option set to create multiple Nyquist plots with the same customization.
Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example PhaseUnits and Grid, override the toolbox preferences.

## Customize Nyquist Plot Title

Create a Nyquist plot of a dynamic system model and store a handle to the plot.

```
sys = tf(100,[1,2,1]);
```

h = nyquistplot(sys);


Change the plot title to read "Nyquist Plot of sys." To do so, use getoptions to extract the existing plot options from the plot handle $h$.

```
opt = getoptions(h)
opt =
```

```
 FreqUnits: 'rad/s'
```

            FreqUnits: 'rad/s'
                            MagUnits: 'dB'
                            MagUnits: 'dB'
                PhaseUnits: 'deg'
                PhaseUnits: 'deg'
                ShowFullContour: 'on'
                ShowFullContour: 'on'
        ConfidenceRegionNumberSD: 1
        ConfidenceRegionNumberSD: 1
    ConfidenceRegionDisplaySpacing: 5
ConfidenceRegionDisplaySpacing: 5
IOGrouping: 'none'
IOGrouping: 'none'
InputLabels: [1x1 struct]
InputLabels: [1x1 struct]
OutputLabels: [1x1 struct]
OutputLabels: [1x1 struct]
InputVisible: {'on'}
InputVisible: {'on'}
OutputVisible: {'on'}
OutputVisible: {'on'}
Title: [1x1 struct]
Title: [1x1 struct]
XLabel: [1x1 struct]
XLabel: [1x1 struct]
YLabel: [1x1 struct]
YLabel: [1x1 struct]
TickLabel: [1x1 struct]
TickLabel: [1x1 struct]
Grid: 'off'
Grid: 'off'
GridColor: [0.1500 0.1500 0.1500]
GridColor: [0.1500 0.1500 0.1500]
XLim: {[-20 100]}
XLim: {[-20 100]}
YLim: {[-80 80]}
YLim: {[-80 80]}
XLimMode: {'auto'}
XLimMode: {'auto'}
YLimMode: {'auto'}

```
 YLimMode: {'auto'}
```

The Title option is a structure with several fields.

```
opt.Title
ans = struct with fields:
 String: 'Nyquist Diagram'
 FontSize: 11
 FontWeight: 'bold'
 FontAngle: 'normal'
 Color: [0 0 0]
 Interpreter: 'tex'
```

Change the String field of the Title structure, and use setoptions to apply the change to the plot.

```
opt.Title.String = 'Nyquist Plot of sys';
setoptions(h,opt)
```



## Zoom on Critical Point

Plot the Nyquist frequency response of a dynamic system. Assign a variable name to the plot handle so that you can access it for further manipulation.

```
sys = tf(100,[1,2,1]);
h = nyquistplot(sys);
```



Zoom in on the critical point, ( $-1,0$ ). You can do so interactively by right-clicking on the plot and selecting Zoom on (-1,0). Alternatively, use the zoomcp command on the plot handle $h$.
zoomcp(h)


## Nyquist Plot of Identified Models with Confidence Regions at Selected Points

Compare the frequency responses of identified state-space models of order 2 and 6 along with their 1 -std confidence regions rendered at every 50th frequency sample.

Load the identified model data and estimate the state-space models using n4sid. Then, plot the Nyquist diagram.

```
load iddata1
sys1 = n4sid(z1,2);
sys2 = n4sid(z1,6);
w = linspace(10,10*pi,256);
h = nyquistplot(sys1,sys2,w);
```


## Nyquist Diagram



Both models produce about 76\% fit to data. However, sys2 shows higher uncertainty in its frequency response, especially close to Nyquist frequency as shown by the plot. To see this, show the confidence region at a subset of the points at which the Nyquist response is displayed.

```
setoptions(h,'ConfidenceRegionDisplaySpacing',50,...
 'ShowFullContour','off');
```


## Nyquist Diagram



To turn on the confidence region display, right-click the plot and select Characteristics > Confidence Region.

## Nyquist Diagram



## Nyquist Plot with Specific Customization

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a Nyquist plot, display only the partial contour and turn the grid on.

Create the MIMO state-space model sys_mimo.
$\mathrm{J}=[8-3-3 ;-38-3 ;-3-38] ;$
F = 0.2*eye(3);
$A=-J \backslash F$;
$B=\operatorname{inv}(J) ;$
$C=$ eye(3);
D = 0;
sys_mimo $=$ ss $(A, B, C, D)$;
size(sys_mimo)
State-space model with 3 outputs, 3 inputs, and 3 states.
Create a Nyquist plot with plot handle h and use getoptions for a list of the options available.
h = nyquistplot(sys_mimo);
Nyquist Diagram

p = getoptions(h)
p = getoptions(h)
p =
p =
FreqUnits: 'rad/s'
FreqUnits: 'rad/s'
MagUnits: 'dB'
MagUnits: 'dB'
PhaseUnits: 'deg'
PhaseUnits: 'deg'
ShowFullContour: 'on'
ShowFullContour: 'on'
ConfidenceRegionNumberSD: 1
ConfidenceRegionNumberSD: 1
ConfidenceRegionDisplaySpacing: 5
ConfidenceRegionDisplaySpacing: 5
IOGrouping: 'none'
IOGrouping: 'none'
InputLabels: [1x1 struct]
InputLabels: [1x1 struct]
OutputLabels: [1x1 struct]
OutputLabels: [1x1 struct]
InputVisible: {3x1 cell}
InputVisible: {3x1 cell}
OutputVisible: {3x1 cell}
OutputVisible: {3x1 cell}
Title: [1x1 struct]
Title: [1x1 struct]
XLabel: [1x1 struct]
XLabel: [1x1 struct]
YLabel: [1x1 struct]
YLabel: [1x1 struct]
TickLabel: [1x1 struct]
TickLabel: [1x1 struct]
Grid: 'off
Grid: 'off
GridColor: [0.1500 0.1500 0.1500]
GridColor: [0.1500 0.1500 0.1500]
XLim: {3x1 cell}
XLim: {3x1 cell}
YLim: {3x1 cell}
YLim: {3x1 cell}
XLimMode: {3x1 cell}
XLimMode: {3x1 cell}
YLimMode: {3x1 cell}
YLimMode: {3x1 cell}

Use setoptions to update the plot with the requires customization.

```
setoptions(h,'ShowFullContour','off','Grid','on');
```


## Nyquist Diagram



The Nyquist plot automatically updates when you call setoptions. For MIMO models, nyquistplot produces an array of Nyquist diagrams, each plot displaying the frequency response of one I/O pair.

## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Sparse state-space models, such as sparss or mechss models. Frequency grid w must be specified for sparse models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to plot the frequency response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model.
- Frequency-response data models such as frd models. For such models, the function plots the Nyquist plot at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. (Using identified models requires System Identification Toolbox software.)

If sys is an array of models, the function plots the Nyquist responses of all models in the array on the same axes.

## LineSpec - Line style, marker, and color

character vector $\mid$ string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - - or' is a red dashed line with circle markers

Line Style	Description
-	Solid line
--	Dashed line
$:$	Dotted line
.-	Dash-dot line


Marker	Description
' 0 '	Circle
' + '	Plus sign
'*	Asterisk
'.'	Point
' x '	Cross
' $\quad$ '	Horizontal line
' \| '	Vertical line
's'	Square
'd'	Diamond
' ^'	Upward-pointing triangle
'v'	Downward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'p'	Pentagram
'h'	Hexagram


Color	Description
y	yellow
m	magenta


Color	Description
C	cyan
r	red
g	green
b	blue
W	white
K	black

## AX - Target axes

Axes object | UIAxes object
Target axes, specified as an Axes or UIAxes object. If you do not specify the axes and if the current axes are Cartesian axes, then nyquistplot plots on the current axes.

## plotoptions - Nyquist plot options set

NyquistPlotOptions object
Nyquist plot options set, specified as a NyquistPlotOptions object. You can use this option set to customize the Nyquist plot appearance. Use nyquistoptions to create the option set. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run nyquistplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see nyquistoptions.

## w - Frequencies

\{wmin, wmax\} | vector
Frequencies at which to compute and plot Nyquist response, specified as the cell array \{wmin,wmax\} or as a vector of frequency values.

- If $w$ is a cell array of the form $\{w m i n, w m a x\}$, then the function computes the response at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then the function computes the response at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

## Output Arguments

## h - Plot handle

handle object
Plot handle, returned as a handle object. Use the handle $h$ to get and set the properties of the Nyquist plot using getoptions and setoptions. For the list of available options, see the Properties and Values Reference section in "Customizing Response Plots from the Command Line".

## Tips

- There are two zoom options available from the right-click menu that apply specifically to Nyquist plots:
- Full View - Clips unbounded branches of the Nyquist plot, but still includes the critical point $(-1,0)$.
- Zoom on (-1,0) - Zooms around the critical point (-1,0). To access critical-point zoom programmatically, use the zoomcp command. See "Zoom on Critical Point" on page 2-885.
- To activate data markers that display the real and imaginary values at a given frequency, click anywhere on the curve. The following figure shows a Nyquist plot with a data marker.



## Version History

Introduced before R2006a

## See Also

getoptions|nyquist|setoptions| nyquistoptions
Topics
"Customizing Response Plots from the Command Line"

## obsv

Observability of state-space model

## Syntax

$0 \mathrm{~b}=\operatorname{obsv}(\mathrm{A}, \mathrm{C})$
$0 b=o b s v(s y s)$

## Description

A dynamic system is said to be observable if all its states can be known from the output of the system. obsv computes an observability matrix from state matrices or from a state-space model. You can use this matrix to determine observability.

For instance, consider a continuous-time state-space model with Nx states, Ny outputs, and Nu inputs:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

Here, $x, u$ and $y$ represent the states, inputs and outputs respectively, while $A, B, C$ and $D$ are the state-space matrices with the following sizes:

- A is an Nx -by-Nx real-valued or complex-valued matrix.
- B is an Nx -by-Nu real-valued or complex-valued matrix.
- C is an Ny -by-Nx real-valued or complex-valued matrix.
- D is an Ny-by-Nu real-valued or complex-valued matrix.

The system is observable if the observability matrix generated by obsv $O b=\left[\begin{array}{c}C \\ C A \\ C A^{2} \\ : \\ C A^{n-1}\end{array}\right]$ has full rank,
that is, the rank is equal to the number of states in the state-space model. The observability matrix 0 b has Nx rows and Nxy columns. For an example, see "Observability of SISO State-Space Model" on page 2-897.
$\mathrm{Ob}=\mathrm{obsv}(\mathrm{A}, \mathrm{C})$ returns the observability matrix Ob using the state matrix A and state-to-output matrix C . The system is observable if Ob has full rank, that is, the rank of 0 b is equal to the number of states.
$\mathrm{Ob}=\mathrm{obsv}($ sys ) returns the observability matrix of the state space model sys. This syntax is equivalent to:

```
Ob = obsv(sys.A,sys.C);
```


## Examples

## Check System Observability

Define $A$ and $C$ matrices.

```
A = [l 1 1;
```

4-2];
$C=[-11 ;$
1-1];
Compute observability matrix.
Ob $=\operatorname{obsv}(A, C)$;
Determine the number of unobservable states.

```
unobsv = length(A) - rank(Ob)
```

unobsv = 1

The unobservable state indicates that Ob does not have full rank 2. Therefore, the system is not observable.

## Observability of SISO State-Space Model

For this example, consider the following SISO state-space model with 2 states:

$$
A=\left[\begin{array}{cc}
-1.5 & -2 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D=1
$$

Create the SISO state-space model defined by the following state-space matrices:
$A=[-1.5,-2 ; 1,0]$;
$B=[0.5 ; 0] ;$
C = [0,1];
D = 1;
sys $=s s(A, B, C, D)$;
Compute the observability matrix and find the rank.

```
Ob = obsv(sys)
Ob}=2\times
 0
```

The size of the observability matrix depends on the size of the $A$ and $C$ matrices. For instance, if matrix A is an Nx -by-Nx matrix and matrix C is an Nx -by-Ny matrix, then the resultant matrix Ob has $N x$ rows and $N x y$ columns. Here, $N x$ is the number of states and $N y$ is the number of outputs.

```
rank(0b)
```

ans $=2$

Since the rank of the observability matrix $0 b$ is equal to the number of states, the system sys is observable.

Alternatively, you can also use just the A and C matrices to find the observability matrix.

```
Ob = obsv(sys.A,sys.C);
rank(0b)
ans = 2
```


## Input Arguments

## A - State matrix

Nx-by-Nx matrix
State matrix, specified as an Nx-by-Nx matrix where, $N x$ is the number of states.

## C - State-to-output matrix

Ny-by-Nx matrix
State-to-output matrix, specified as an Ny -by-Nx matrix where, Nx is the number of states and Ny is the number of outputs.

## sys - State-space model or model array

ss model object | genss model object | uss model object
State-space model or model array, specified as:

- A state-space (ss) model object, when the inputs A, B, C and D are numeric matrices or when converting from another model object type.
- A generalized state-space model (genss) object, when one or more of the matrices A, B, C and D includes tunable parameters, such as realp parameters or generalized matrices (genmat). The function uses the current values for tunable parameters.
- An uncertain state-space model (uss) object, when one or more of the inputs A, B, C and D includes uncertain matrices. The function uses the nominal values for uncertain parameters. Using uncertain models requires Robust Control Toolbox software.


## Output Arguments

## Ob - Observability matrix

array
Observability matrix, returned as an array. When sys is:

- A single state-space model with $N x$ states and $N y$ outputs, then the resultant array $0 b$ has $N x$ rows and Nxy columns.
- An array of state-space models sys (: : : , $\mathrm{j} 1, \ldots, \mathrm{jN}$ ), then Ob is an array with $\mathrm{N}+2$ dimensions, that is, $\mathrm{Ob}(:,:, \mathrm{j} 1, \ldots, \mathrm{jN})$.


## Limitations

- obsv is not recommended for control design as computing the rank of the observability matrix is not recommended for observability testing. Ob will be numerically singular for most systems with more than a handful of states. This fact is well-documented under section III in [1].


## Version History

## Introduced before R2006a

## References

[1] Paige, C. C. "Properties of Numerical Algorithms Related to Computing Controllability." IEEE Transactions on Automatic Control. Vol. 26, Number 1, 1981, pp. 130-138.

See Also<br>obsvf|ctrb

## External Websites

Video - A Conceptual Approach to Controllability and Observability

## obsvf

Compute observability staircase form

## Syntax

[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C) obsvf(A,B,C,tol)

## Description

If the observability matrix of $(A, C)$ has rank $r \leq n$, where $n$ is the size of $A$, then there exists a similarity transformation such that

$$
\bar{A}=T A T^{T}, \quad \bar{B}=T B, \quad \bar{C}=C T^{T}
$$

where $T$ is unitary and the transformed system has a staircase form with the unobservable modes, if any, in the upper left corner.

$$
\bar{A}=\left[\begin{array}{cc}
A_{n o} & A_{12} \\
0 & A_{o}
\end{array}\right], \bar{B}=\left[\begin{array}{c}
B_{n o} \\
B_{o}
\end{array}\right], \bar{C}=\left[\begin{array}{ll}
0 & C_{o}
\end{array}\right]
$$

where $\left(C_{0}, A_{o}\right)$ is observable, and the eigenvalues of $A_{n o}$ are the unobservable modes.
[Abar, Bbar, Cbar, T, k] = obsvf(A, B, C) decomposes the state-space system with matrices $A$, $B$, and $C$ into the observability staircase form Abar, Bbar, and Cbar, as described above. $T$ is the similarity transformation matrix and k is a vector of length $n$, where $n$ is the number of states in A . Each entry of $k$ represents the number of observable states factored out during each step of the transformation matrix calculation [1]. The number of nonzero elements in k indicates how many iterations were necessary to calculate T , and sum( k ) is the number of states in $A_{o}$, the observable portion of Abar.
obsvf( $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{tol}$ ) uses the tolerance tol when calculating the observable/unobservable subspaces. When the tolerance is not specified, it defaults to $10 * n *$ norm $(a, 1) * e p s$.

## Examples

Form the observability staircase form of

```
A =
 1 rr
B =
 1 -1
C =
 1 0
```

by typing

```
[Abar,Bbar,Cbar,T,k] = obsvf(A,B,C)
Abar =
 1 1
 4 -2
Bbar =
 1
 1 -1
Cbar =
 1 0
 0 1
T =
 0
 0 1
k =
 2 0
```


## Algorithms

obsvf implements the Staircase Algorithm of [1] by calling ctrbf and using duality.

## Version History

Introduced before R2006a

## References

[1] Rosenbrock, M.M., State-Space and Multivariable Theory, John Wiley, 1970.

## See Also <br> ctrbf|obsv

## ord2

Generate continuous second-order systems

## Syntax

[A,B,C,D] = ord2(wn,z)
[num,den] $=\operatorname{ord2}(w n, z)$

## Description

$[A, B, C, D]=\operatorname{ord} 2(w n, z)$ generates the state-space description (A, B, C, D) of the second-order system

$$
h(s)=\frac{1}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

given the natural frequency wn $\left(\omega_{n}\right)$ and damping factor $z(\zeta)$. Use ss to turn this description into a state-space object.
[num, den] $=\operatorname{ord} 2(w n, z)$ returns the numerator and denominator of the second-order transfer function. Use $t f$ to form the corresponding transfer function object.

## Examples

To generate an LTI model of the second-order transfer function with damping factor $\zeta=0.4$ and natural frequency $\omega_{n}=2.4 \mathrm{rad} / \mathrm{sec}$., type

```
[num,den] = ord2(2.4,0.4)
num =
 1
den =
 1.0000 1.9200 5.7600
sys = tf(num,den)
Transfer function:
 1

s^2 + 1.92 s + 5.76
```


## Version History

## Introduced before R2006a

## See Also

rss|ss|tf

## order

Query model order

## Syntax

NS = order(sys)

## Description

NS = order(sys) returns the model order NS. The order of a dynamic system model is the number of poles (for proper transfer functions) or the number of states (for state-space models). For improper transfer functions, the order is defined as the minimum number of states needed to build an equivalent state-space model (ignoring pole/zero cancellations).
order(sys) is an overloaded method that accepts SS, TF, and ZPK models. For LTI arrays, NS is an array of the same size listing the orders of each model in sys.

## Caveat

order does not attempt to find minimal realizations of MIMO systems. For example, consider this 2-by-2 MIMO system:
s=tf('s');
$\mathrm{h}=\left[1,1 /\left(\mathrm{s}^{*}(\mathrm{~s}+1)\right) ; 1 /(\mathrm{s}+2), 1 /\left(\mathrm{s}^{*}(\mathrm{~s}+1) *(\mathrm{~s}+2)\right)\right]$;
order(h)
ans $=$
6
Although h has a 3rd order realization, order returns 6. Use
order(ss(h, min'))
to find the minimal realization order.

## Version History <br> Introduced in R2012a

See Also
pole | bal red

## pade

Padé approximation of models with time delay

## Syntax

[num,den] = pade(T,N)
pade(T,N)
sysx = pade(sys,N)
sysx = pade(sys,NU,NY,NINT)

## Description

pade approximates time delays for continuous-time LTI models. Such approximations are useful to model time delay effects such as transport and computation delays within the context of continuoustime systems. The Laplace transform of a time delay of $T$ seconds is $\exp (-s T)$. This exponential transfer function is approximated by a rational transfer function using the Padé approximation formulas from [1].

To approximate discrete-time models, use absorbDelay.
See "Time Delays in Linear Systems" for more information about models with time delays.
[num, den] = pade( $\mathrm{T}, \mathrm{N}$ ) returns the Pade approximation of order N of the time delay T in transfer function form. The output row vectors num and den contain the numerator and denominator coefficients in descending powers of $s$. num and den are Nth-order polynomials.
pade ( $T, N$ ) plots the step and phase responses of the Nth-order Pade approximation and compares them with the exact responses of the model with time delay T. The resultant Padé approximation has unit gain at all frequencies.
sysx = pade(sys,N) produces a delay-free approximation sysx of the continuous-time delay system sys. All delays are replaced by their Nth-order Padé approximation.
sysx = pade(sys,NU,NY,NINT) specifies independent approximation orders for each input, output, and I/O or internal delay using vectors NU, NY, and NINT, respectively. You can use scalar values for NU, NY, or NINT to specify a uniform approximation order. You can also set some entries of NU, NY, or NINT to Inf to prevent approximation of the corresponding delays.

## Examples

## Second-Order Padé Approximation

For this example, compute the delay-free numerator and denominator coefficients for a time delay of 1.8 seconds for a second-order system.

```
T = 1.8;
N = 2;
[num,den] = pade(T,N)
```

```
num = 1\times3
 1.0000 -3.3333 3.7037
den = 1\times3
 1.0000 3.3333 3.7037
```

You can also plot the step and phase response of the delay-free approximation and the original system with time delay. Use the pade command without output arguments to generate the comparison plots.
pade(T,N)


## Padé Approximation of Continuous-Time Open-Loop Model

For this example, find the Padé approximation of the following continuous-time open loop system.


Create the open-loop system with an output delay.

```
s = tf('s');
T = 2.6;
sys = exp(-T*s)/(s^2+0.9*s+1)
sys =
 1
 exp(-2.6*s) * ---------------
 s^2 + 0.9 s + 1
Continuous-time transfer function.
```

sys is a second-order transfer function ( tf ) object with a time delay.
Next, compute the first-order Padé approximation of sys.

```
sysx = pade(sys,1)
sysx =
 -s + 0.7692
 s^3 + 1.669 s^2 + 1.692 s + 0.7692
Continuous-time transfer function.
```

pade replaces all time delays in sys with a first-order approximation. Therefore, sysx is a thirdorder transfer function with no delays.

You can also plot and compare the step and phase response of the delay-free approximated model and the model with time-delay. Use the time delay and order values to create the plot.

```
pade(T,1)
```



## Third-Order Padé Approximation

Compute a third-order Padé approximation of a 0.1 -second I/O delay.

```
s = tf('s');
sys = exp(-0.1*s);
sysx = pade(sys,3)
sysx =
 -s^3 + 120 s^2 - 6000 s + 1.2e05
 s^3 + 120 s^2 + 6000 s + 1.2e05
Continuous-time transfer function.
```

Here, sys is a dynamic system representation of the exact time delay of 0.1 s . sysx is a transfer function that approximates that delay.

Compare the time and frequency responses of the true delay and its approximation. Calling the pade command without output arguments generates the comparison plots. In this case the first argument to pade is just the magnitude of the exact time delay, rather than a dynamic system representing the time delay.

```
pade(0.1,3)
```



## Padé Approximation of MIMO State-Space Model

For this example, consider the MIMO state-space model sys contained in ssModel.mat. sys has two inputs and three outputs, and contains input, output and internal delays.

Load the data and examine sys.
load('ssModel.mat','sys')
sys
sys $=$
$A=$

	x1	$\times 2$
$\times 1$	2.893	1.497
$\times 2$	-0.1138	-0.5279

B =

	u1	u2
x1	-1.334	-4.155
x2	1.127	-0.06161

$C=$

	x1	x2
y1	-2.416	-0.6317

```
y2 1.688 1.063
y3 3.509 1.84
```

D =

	$u 1$	$u 2$
y1	1.019	1.999
y2	0	-3.658
y3	0	-5.885

(values computed with all internal delays set to zero)
Input delays (seconds): 1.50 .3
Output delays (seconds): 0.2 0.8 1.3
Internal delays (seconds): 2.11 .3
Continuous-time state-space model.
Specify the approximation orders for the input, output, and internal delays, and compute the Padé approximation. Set approximation orders to Inf to prevent approximation of the corresponding delays.

```
NU = [3 Inf];
NY = [1 Inf 2];
NINT = [Inf 2];
sysx = pade(sys,NU,NY,NINT)
sysx =
 A =
\begin{tabular}{lrrrrrrrrr}
& \(x 1\) & \(x 2\) & \(x 3\) & \(x 4\) & \(x 5\) & \(x 6\) & \(x 7\) & \(x 8\) & \(x 9\) \\
\(\times 1\) & -10 & 0 & 0 & -9.665 & -2.527 & -7.305 & 0 & 16.3 & 0 \\
\(\times 2\) & 0 & -4.615 & -3.55 & 14.04 & 7.358 & 21.51 & 0 & 0 & 0 \\
\(\times 3\) & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
x4 & 0 & 0 & 0 & 2.893 & 1.497 & 4.115 & 0 & -5.335 & 0 \\
x5 & 0 & 0 & 0 & -0.1138 & -0.5279 & -0.2169 & 0 & 4.51 & 0 \\
x6 & 0 & 0 & 0 & -8.011 & -3.193 & -4.615 & -3.55 & 0 & 0 \\
x7 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
x8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -8 & -6.667 \\
x9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 \\
x10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4
\end{tabular}
 B =
\begin{tabular}{lrr}
& & ul \\
x1 & -4.075 & 7.996 \\
x2 & 0 & -23.54 \\
x3 & 0 & 0 \\
x4 & 1.334 & -4.155 \\
x5 & -1.127 & -0.06161 \\
x6 & 0 & 10.1 \\
x7 & 0 & 0 \\
x8 & 4 & 0 \\
x9 & 0 & 0 \\
x10 & 0 & 0
\end{tabular}
 C =
```



```
 y3 0-2.308 0
 D =
```



```
 y2 0 -3.658
 y3 0 -5.885
(values computed with all internal delays set to zero)
Input delays (seconds): 0 0.3
Output delays (seconds): 0 0.8 0
Internal delays (seconds): 2.1
Continuous-time state-space model.
```

The resultant approximation sysx still has specific input, output, and internal delays where the corresponding approximation orders are Inf.

## Input Arguments

## T - Time delay

positive scalar
Time delay value, specified as a positive scalar. The Padé approximation of a zero delay $(T=0)$ is always unit gain.

## N - Desired order of continuous-time approximation model positive integer

Desired order of the continuous-time approximation model, specified as a positive integer.

## sys - Dynamic system with time delay

dynamic system model
Dynamic system with time delay, specified as a SISO or MIMO dynamic system model. Dynamic systems that you can use include:

- Continuous-time LTI models, such as tf, zpk, and ss models.
- Sparse models, such as sparss and mechss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires a Robust Control Toolbox license.)

The resulting model assumes

- Current values of the tunable components for tunable control design blocks
- Nominal model values for uncertain control design blocks
- Frequency response frd models. For frequency response models, use the delay2z command to absorb delays into the frequency response without approximation.

For discrete-time models, use absorbDelay.

## NU - Approximation orders for the input channel

scalar | vector | Inf

Approximation orders for the input channel, specified as

- A scalar, to use the same approximation order across all the inputs.
- A vector, to specify individual approximation order values per input. You can use Inf for specific inputs to prevent approximation of corresponding delays.


## NY - Approximation orders for the output channel

scalar | vector | Inf
Approximation orders for the output channel, specified as

- A scalar, to use the same approximation order across all the outputs.
- A vector, to specify individual approximation order values per output. You can use Inf for specific outputs to prevent approximation of corresponding delays.


## NINT - Approximation orders for I/O delay or output delay

scalar | vector | Inf
Approximation orders for I/O delay (transfer functions or zero-pole-gain models) or internal delay (state-space models), specified as

- A scalar, to use the same approximation order across all the I/O or internal delays.
- A vector, to specify individual approximation order values per I/O or internal delay. You can use Inf for specific I/Os to prevent approximation of corresponding delays.


## Output Arguments

## num - Numerator coefficients of delay-free transfer function

row vector
Numerator coefficients of delay-free transfer function, returned as a row vector.
den - Denominator coefficients of delay-free transfer function
row vector
Denominator coefficients of delay-free transfer function, returned as a row vector.

## sysx - Padé approximated system

model object
Padé approximated system, returned as a model object of the same type as sys.

## Limitations

- Padé approximation is valid only at low frequencies and provides better frequency-domain approximation than time-domain approximation. Therefore, compare the true and approximate responses to choose the right approximation order and check the approximation validity.
- High-order Padé approximations produce transfer functions with clustered poles. Because such pole configurations tend to be very sensitive to perturbations, avoid Padé approximations with order $\mathrm{N}>10$.


## Version History

Introduced before R2006a

## References

[1] Golub, Gene H., and Charles F. Van Loan. Matrix Computations. 2nd ed. Johns Hopkins Series in the Mathematical Sciences 3. Baltimore, Md: Johns Hopkins University Press, 1989. pp. 557-558.

## See Also

c2d | absorbDelay | thiran|delay2z

## Topics

"Time-Delay Approximation"
"Time Delays in Linear Systems"

## parallel

Parallel connection of two models

## Syntax

```
parallel
sys = parallel(sys1,sys2)
sys = parallel(sys1,sys2,inp1,inp2,out1,out2)
sys = parallel(sys1,sys2,'name')
```


## Description

parallel connects two model objects in parallel. This function accepts any type of model. The two systems must be either both continuous or both discrete with identical sample time. Static gains are neutral and can be specified as regular matrices.
sys = parallel(sys1,sys2) forms the basic parallel connection shown in the following figure.


This command equals the direct addition
sys = sys1 + sys2
sys = parallel(sys1,sys2,inp1,inp2,out1,out2) forms the more general parallel connection shown in the following figure.


The vectors inp1 and inp2 contain indexes into the input channels of sys1 and sys2, respectively, and define the input channels $u_{1}$ and $u_{2}$ in the diagram. Similarly, the vectors out1 and out2 contain indexes into the outputs of these two systems and define the output channels $y_{1}$ and $y_{2}$ in the diagram. The resulting model sys has $\left[v_{1} ; u ; v_{2}\right]$ as inputs and $\left[z_{1} ; y ; z_{2}\right]$ as outputs.
sys = parallel(sys1,sys2,'name') connects sys1 and sys2 by matching I/O names. You must specify all I/O names of sys1 and sys2. The matching names appear in sys in the same order as in sys1. For example, the following specification:

```
sys1 = ss(eye(3),'InputName',{'C','B','A'},'OutputName',{'Z','Y','X'});
sys2 = ss(eye(3),'InputName',{'A','C','B'},'OutputName',{'X',''Y','Z'});
parallel(sys1,sys2,'name')
returns this result:
d =
\begin{tabular}{llll}
& \(C\) & \(B\) & \(A\) \\
\(Z\) & 1 & 1 & 0 \\
\(Y\) & 1 & 1 & 0 \\
\(X\) & 0 & 0 & 2
\end{tabular}
```

Static gain.

Note If sys1 and sys2 are model arrays, parallel returns model array sys of the same size, where sys(:,:,k)=parallel(sys1(:,:,k), sys2(:,:,k),inp1,...).

## Examples

See Kalman Filtering for an example.

## Version History

Introduced before R2006a

## See Also

append | feedback | series

## particleFilter

Particle filter object for online state estimation

## Description

A particle filter is a recursive, Bayesian state estimator that uses discrete particles to approximate the posterior distribution of an estimated state. It is useful for online state estimation when measurements and a system model, that relates model states to the measurements, are available. The particle filter algorithm computes the state estimates recursively and involves initialization, prediction, and correction steps.
particleFilter creates an object for online state estimation of a discrete-time nonlinear system using the discrete-time particle filter algorithm.

Consider a plant with states $x$, input $u$, output $m$, process noise $w$, and measurement $y$. Assume that you can represent the plant as a nonlinear system.


The algorithm computes the state estimates $\widehat{x}$ of the nonlinear system using the state transition and measurement likelihood functions you specify.

The software supports arbitrary nonlinear state transition and measurement models, with arbitrary process and measurement noise distributions.

To perform online state estimation, create the nonlinear state transition function and measurement likelihood function. Then construct the particleFilter object using these nonlinear functions. After you create the object:

1 Initialize the particles using the initialize command.
2 Predict state estimates at the next step using the predict command.
3 Correct the state estimates using the correct command.
The prediction step uses the latest state to predict the next state based on the state transition model you provide. The correction step uses the current sensor measurement to correct the state estimate. The algorithm optionally redistributes, or resamples, the particles in the state space to match the posterior distribution of the estimated state. Each particle represents a discrete state hypothesis of these state variables. The set of all particles is used to help determine the state estimate.

## Creation

## Syntax

```
pf = particleFilter(StateTransitionFcn,MeasurementLikelihoodFcn)
```


## Object Description

pf = particleFilter(StateTransitionFcn, MeasurementLikelihoodFcn) creates a particle filter object for online state estimation of a discrete-time nonlinear system. StateTransitionFcn is a function that calculates the particles (state hypotheses) at the next time step, given the state vector at a time step. MeasurementLikelihoodFcn is a function that calculates the likelihood of each particle based on sensor measurements.

After creating the object, use the initialize command to initialize the particles with a known mean and covariance or uniformly distributed particles within defined bounds. Then, use the correct and predict commands to update particles (and hence the state estimate) using sensor measurements.

## Input Arguments

## StateTransitionFcn - State transition function

function handle

State transition function, specified as a function handle, determines the transition of particles (state hypotheses) between time steps. Also a property of the particleFilter object. For more information, see "Properties" on page 2-916.

## MeasurementLikelihoodFcn - Measurement likelihood function

function handle
Measurement likelihood function, specified as a function handle, is used to calculate the likelihood of particles (state hypotheses) from sensor measurements. Also a property of the particleFilter object. For more information, see "Properties" on page 2-916.

## Properties

## NumStateVariables - Number of state variables

[ ] (default) | scalar
Number of state variables, specified as a scalar. This property is read-only and is set using initialize. The number of states is implicit based on the specified matrices for the initial mean of particles, or the state bounds.

## NumParticles - Number of particles used in the filter

[ ] (default) | scalar
Number of particles used in the filter, specified as a scalar. Each particle represents a state hypothesis. You specify this property only by using initialize.

## StateTransitionFcn - State transition function

function handle

State transition function, specified as a function handle, determines the transition of particles (state hypotheses) between time steps. This function calculates the particles at the next time step, including the process noise, given particles at a time step.

In contrast, the state transition function for the extendedKalmanFilter and unscentedKalmanFilter generates a single state estimate at a given time step.

You write and save the state transition function for your nonlinear system, and specify it as a function handle when constructing the particleFilter object. For example, if
vdpParticleFilterStateFcn.m is the state transition function, specify StateTransitionFcn as @vdpParticleFilterStateFcn. You can also specify StateTransitionFcn as a function handle to an anonymous function.

The function signature is as follows:
function predictedParticles $=$ myStateTransitionFcn(previousParticles, varargin)
The StateTransitionFcn function accepts at least one input argument. The first argument is the set of particles previousParticles that represents the state hypotheses at the previous time step. The optional use of varargin in the function enables you to input any extra parameters that are relevant for predicting the next state, using predict, as follows:
predict(pf,arg1,arg2)
If StateOrientation is 'column', then previousParticles is a NumStateVariables-byNumParticles array. If StateOrientation is 'row', then previousParticles is a NumParticles-by-NumStateVariables array.

StateTransitionFcn must return exactly one output, predictedParticles, which is the set of predicted particle locations for the current time step (array with same dimensions as previousParticles).

StateTransitionFcn must include the random process noise (from any distribution suitable for your application) in the predictedParticles.

To see an example of a state transition function with the StateOrientation property set to 'column', type edit vdpParticleFilterStateFcn at the command line.

## MeasurementLikelihoodFcn - Measurement likelihood function

function handle
Measurement likelihood function, specified as a function handle, is used to calculate the likelihood of particles (state hypotheses) using the sensor measurements. For each state hypothesis (particle), the function first calculates an N-element measurement hypothesis vector. Then the likelihood of each measurement hypothesis is calculated based on the sensor measurement and the measurement noise probability distribution.

In contrast, the measurement function for extendedKalmanFilter and unscentedKalmanFilter takes a single state hypothesis and returns a single measurement estimate.

You write and save the measurement likelihood function based on your measurement model, and use it to construct the object. For example, if vdpMeasurementLikelihoodFcn.m is the measurement likelihood function, specify MeasurementLikelihoodFcn as @vdpMeasurementLikelihoodFcn. You can also specify MeasurementLikelihoodFcn as a function handle to an anonymous function.

The function signature is as follows:
function likelihood = myMeasurementLikelihoodFcn(predictedParticles,measurement,varargin)
The MeasurementLikelihoodFcn function accepts at least two input arguments. The first argument is the set of particles predictedParticles that represents the predicted state hypothesis. If StateOrientation is 'column', then predictedParticles is a NumStateVariables-by-NumParticles array. If StateOrientation is 'row', then predictedParticles is a NumParticles-by-NumStateVariables array. The second argument, measurement, is the N -element sensor measurement at the current time step. You can provide additional input arguments using varargin.

The MeasurementLikelihoodFcn must return exactly one output, likelihood, a vector with NumParticles length, which is the likelihood of the given measurement for each particle (state hypothesis).

To see an example of a measurement likelihood function, type edit vdpMeasurementLikelihoodFcn at the command line.

## IsStateVariableCircular - Whether the state variables have a circular distribution [ ] (default) | logical array

Whether the state variables have a circular distribution, specified as a logical array.
This is a read-only property and is set using initialize.
Circular (or angular) distributions use a probability density function with a range of [-pi, pi]. IsStateVariableCircular is a row-vector with NumStateVariables elements. Each vector element indicates whether the associated state variable is circular.

## ResamplingPolicy - Policy settings that determine when to trigger resampling

particleResamplingPolicy object
Policy settings that determine when to trigger resampling, specified as a particleResamplingPolicy object.

The resampling of particles is a vital step in estimating states using a particle filter. It enables you to select particles based on the current state, instead of using the particle distribution given at initialization. By continuously resampling the particles around the current estimate, you can get more accurate tracking and improve long-term performance.

You can trigger resampling either at fixed intervals or dynamically, based on the number of effective particles. The minimum effective particle ratio is a measure of how well the current set of particles approximates the posterior distribution. The number of effective particles is calculated by:

$$
N_{e f f}=\frac{1}{\sum_{i=1}^{N}\left(w^{i}\right)^{2}}
$$

In this equation, N is the number of particles, and w is the normalized weight of each particle. The effective particle ratio is then $N_{\text {eff }}$ / NumParticles. Therefore, the effective particle ratio is a function of the weights of all the particles. After the weights of the particles reach a low enough value, they are not contributing to the state estimation. This low value triggers resampling, so the particles are closer to the current state estimation and have higher weights.

The following properties of the particleResamplingPolicy object can be modified to control when resampling is triggered:



## ResamplingMethod - Method used for particle resampling

'multinomial' (default)|'residual'|'stratified'|'systematic'
Method used for particle resampling, specified as one of the following:

- 'multinomial ' - Multinomial resampling, also called simplified random sampling, generates N random numbers independently from the uniform distribution in the open interval $(0,1)$ and uses them to select particles proportional to their weight.
- 'residual ' - Residual resampling consists of two stages. The first stage is a deterministic replication of each particle that have weights larger than $1 / \mathrm{N}$. The second stage consists of random sampling using the remainder of the weights (labelled as residuals).
- 'stratified ' - Stratified resampling divides the whole population of particles into subsets called strata. It pre-partitions the $(0,1)$ interval into $N$ disjoint sub-intervals of size $1 / N$. The random numbers are drawn independently in each of these sub-intervals and the sample indices chosen in the strata.
- 'systematic' - Systematic resampling is similar to stratified resampling as it also makes use of strata. One distinction is that it only draws one random number from the open interval ( $0,1 / \mathrm{N}$ ) and the remaining sample points are calculated deterministically at a fixed $1 / \mathrm{N}$ step size.


## StateEstimationMethod - Method used for extracting a state estimate from particles <br> 'mean' (default)|'maxweight'

Method used for extracting a state estimate from particles, specified as one of the following:

- 'mean' - The object outputs the weighted mean of the particles, depending on the properties Weights and Particles, as the state estimate.
- 'maxweight ' - The object outputs the particle with the highest weight as the state estimate.


## Particles - Array of particle values

[ ] (default) | array
Array of particle values, specified as an array based on the StateOrientation property:

- If StateOrientation is 'row' then Particles is an NumParticles-by-NumStateVariables array.
- If StateOrientation is 'column' then Particles is an NumStateVariables-byNumParticles array.

Each row or column corresponds to a state hypothesis (a single particle).

## Weights - Particle weights

[ ] (default) | vector
Particle weights, defined as a vector based on the value of the StateOrientation property:

- If StateOrientation is 'row' then Weights is a NumParticles-by-1 vector, where each weight is associated with the particle in the same row in the Particles property.
- If StateOrientation is 'column' then Weights is a 1 -by-NumParticles vector, where each weight is associated with the particle in the same column in the Particles property.


## State - Current state estimate

## [ ] (default) | vector

Current state estimate, defined as a vector based on the value of the StateOrientation property:

- If StateOrientation is 'row' then State is a 1-by-NumStateVariables vector
- If StateOrientation is 'column' then State is a NumStateVariables-by-1 vector

State is a read-only property, and is derived from Particles based on the
StateEstimationMethod property. Refer to "StateEstimationMethod" on page 2-0 for details on how the value of State is determined.

State along with StateCovariance can also be determined using getStateEstimate.

## StateCovariance - Current estimate of state estimation error covariance

NumStateVariables-by-NumStateVariables array (default)|[ ]| array
Current estimate of state estimation error covariance, defined as an NumStateVariables-byNumStateVariables array. StateCovariance is a read-only property and is calculated based on the StateEstimationMethod. If you specify a state estimation method that does not support covariance, then the function returns StateCovariance as [ ].

StateCovariance and State can be determined together using getStateEstimate.

## Object Functions

initialize predict
correct
getStateEstimate Extract best state estimate and covariance from particles
clone Copy online state estimation object

## Examples

## Create Particle Filter Object for Online State Estimation

To create a particle filter object for estimating the states of your system, create appropriate state transition function and measurement likelihood function for the system.

In this example, the function vdpParticleFilterStateFcn describes a discrete-time approximation to van der Pol oscillator with nonlinearity parameter, mu, equal to 1. In addition, it models Gaussian process noise. vdpMeasurementLikelihood function calculates the likelihood of particles from the noisy measurements of the first state, assuming a Gaussian measurement noise distribution.

Create the particle filter object. Use function handles to provide the state transition and measurement likelihood functions to the object.
myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);
To initialize and estimate the states and state estimation error covariance from the constructed object, use the initialize, predict, and correct commands.

Copyright 2012 The MathWorks, Inc..

## Estimate States Online Using Particle Filter

Load the van der Pol ODE data, and specify the sample time.
vdpODEdata.mat contains a simulation of the van der Pol ODE with nonlinearity parameter mu=1, using ode45, with initial conditions [2;0]. The true state was extracted with sample time $\mathrm{dt}=$ 0.05 .

```
load ('vdpODEdata.mat','xTrue','dt')
```

tSpan = 0:dt:5;

Get the measurements. For this example, a sensor measures the first state with a Gaussian noise with standard deviation 0.04.

```
sqrtR = 0.04;
yMeas = xTrue(:,1) + sqrtR*randn(numel(tSpan),1);
```

Create a particle filter, and set the state transition and measurement likelihood functions.

```
myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);
```

Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.
initialize(myPF,1000,[2;0],eye(2));
Pick the mean state estimation and systematic resampling methods.

```
myPF.StateEstimationMethod = 'mean';
```

myPF.ResamplingMethod = 'systematic';

Estimate the states using the correct and predict commands, and store the estimated states.

```
xEst = zeros(size(xTrue));
for k=1:size(xTrue,1)
 xEst(k,:) = correct(myPF,yMeas(k));
 predict(myPF);
end
```

Plot the results, and compare the estimated and true states.
figure(1)
plot(xTrue(:,1),xTrue(:,2),'x',xEst(:,1),xEst(:,2), ro')
legend('True','Estimated')


## Version History <br> Introduced in R2017b

## References

[1] T. Li, M. Bolic, P.M. Djuric, "Resampling Methods for Particle Filtering: Classification, implementation, and strategies," IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 70-86, May 2015.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using MATLAB® ${ }^{\circledR}$ Coder $^{\text {TM }}$.
Usage notes and limitations:
For more information, see "Generate Code for Online State Estimation in MATLAB".
Supports MATLAB Function block: No

## See Also

## Functions

initialize | predict | correct |clone | unscentedKalmanFilter|extendedKalmanFilter

## Topics

"Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter"
"Generate Code for Online State Estimation in MATLAB"
"Validate Online State Estimation at the Command Line"
"Troubleshoot Online State Estimation"
External Websites
Understanding Kalman Filters: Nonlinear State Estimators - MATLAB Video Series

## passiveplot

Compute or plot passivity index as function of frequency

## Syntax

```
passiveplot(G)
passiveplot(G,type)
passiveplot(__,w)
passiveplot(\overline{G1,G2,...,GN,__)}
passiveplot(G1,LineSpec1,...,GN,LineSpecN,___)
passiveplot(
```

$\qquad$

``` ,plotoptions)
[index,wout] = passiveplot(G)
[index,wout] = passiveplot(G,type)
index = passiveplot(G,w)
index = passiveplot(G,type,w)
```


## Description

passiveplot ( $G$ ) plots the relative passivity indices of the dynamic system $G$ as a function of frequency. When $I+G$ is minimum phase, the relative passivity indices are the singular values of ( $I$ - G) $(I+G)^{\wedge}-1$. The largest singular value measures the relative excess ( $R<1$ ) or shortage ( $R$ $>1$ ) at each frequency. See getPassiveIndex for more information about the meaning of the passivity index.
passiveplot automatically chooses the frequency range and number of points for the plot based on the dynamics of $G$.

If G is a model with complex coefficients, then in:

- Log frequency scale, the plot shows two branches, one for positive frequencies and one for negative frequencies. The arrows indicate the direction of increasing frequency values for each branch.
- Linear frequency scale, the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero.
passiveplot (G, type) plots the input, output, or I/O passivity index, depending on the value of type: 'input', 'output', or 'io', respectively.
passiveplot( $\qquad$ ,w) plots the passivity index for frequencies specified by w.
- If $w$ is a cell array of the form \{wmin, wmax\}, then passiveplot plots the passivity index at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then passiveplot plots the passivity index at each specified frequency. The vector $w$ can contain both negative and positive frequencies.

You can use this syntax with any of the previous input-argument combinations.
passiveplot (G1, G2, ..., GN, ___) plots the passivity index for multiple dynamic systems $\mathrm{G} 1, \mathrm{G} 2, \ldots, \mathrm{GN}$ on the same plot. You can also use this syntax with the type input argument, with w to specify frequencies to plot, or both.
passiveplot(G1,LineSpec1,..., GN, LineSpecN, $\qquad$ ) specifies a color, linestyle, and marker for each system in the plot.
passiveplot( $\qquad$ , plotoptions) plots the passivity index with the options set specified in plotoptions. You can use these options to customize the plot appearance using the command line. Settings you specify in plotoptions override the preference settings in the MATLAB session in which you run passiveplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.
[index,wout] = passiveplot(G) and [index, wout] = passiveplot(G,type) return the passivity index at each frequency in the vector wout. The output index is a matrix, and the value index (: , k) gives the passivity indices in descending order at the frequency $w(k)$. This syntax does not draw a plot.
index $=$ passiveplot $(G, W)$ and index $=$ passiveplot( $G$, type, w ) return the passivity indices at the frequencies specified by $w$.

## Examples

## Plot Passivity Versus Frequency

Plot the relative passivity index as a function of frequency of the system $G=(s+2) /(s+1)$.

```
G = tf([1 2],[1 1]);
passiveplot(G)
```



The plot shows that the relative passivity index is less than 1 at all frequencies. Therefore, the system G is passive.

Plot the input passivity index of the same system.
passiveplot(G,'input')


The input passivity index is positive at all frequencies. Therefore, the system is input strictly passive.

## Plot Passivity of Multiple Systems

Plot the input passivity index of two dynamic systems and their series interconnection.

```
G1 = tf([\begin{array}{lll}{5}&{1}\end{array}],[\begin{array}{lll}{1}&{2}&{1]);}\end{array}]
G2 = tf([1 1 5 0.1],[1 2 3 4]);
H = G2*G1;
passiveplot(G1,'r',G2,'b--',H,'gx','input')
legend('G1','G2','G2*G1')
```

Input passivity index


The input passivity index of the interconnected system dips below 0 around $1 \mathrm{rad} / \mathrm{s}$. This plot shows that the series interconnection of two passive systems is not necessarily passive. However, passivity is preserved for parallel or feedback interconnections of passive systems.

## Plot Passivity of Models with Complex Coefficients

Plot the relative passivity indices of a complex-coefficient model and a real-coefficient model on the same plot.

```
A = [-3.50,-1.25-0.25i;2,0];
B = [1;0];
C = [-0.75-0.5i,0.625-0.125i];
D = 0.5;
Gc = ss(A,B,C,D);
Gr = tf([1 5 10],[1 10 5]);
passiveplot(Gc,Gr)
legend('Complex-coefficient model','Real-coefficient model','Location','southeast')
```



In log frequency scale, the plot shows two branches for models with complex coefficients, one for positive frequencies, with a right-pointing arrow, and one for negative frequencies, with a leftpointing arrow. In both branches, the arrows indicate the direction of increasing frequencies. The plots for models with real coefficients always contain a single branch with no arrows.

Set the plotting frequency scale to linear.

```
opt = sectorplotoptions;
opt.FreqScale = 'Linear';
```

Plot the indices.


In linear frequency scale, the plots show a single branch with a symmetric frequency range centered at a frequency value of zero. The plot also shows the negative-frequency response of a real-coefficient model when you plot the response along with a complex-coefficient model.

## Input Arguments

## G - Model to analyze

dynamic system model | model array
Model to analyze for passivity, specified as a dynamic system model such as a tf, ss, or genss model. G can be MIMO, if the number of inputs equals the number of outputs. G can be continuous or discrete. If G is a generalized model with tunable or uncertain blocks, passiveplot evaluates passivity of the current, nominal value of $G$.

If G is a model array, then passiveplot plots the passivity index of all models in the array on the same plot. When you use output arguments to get passivity data, G must be a single model.

## type - Type of passivity index

'input'|'output'|'io'
Type of passivity index, specified as one of the following:

- 'input ' - Input passivity index (input feedforward passivity). This value is the smallest eigenvalue of $\left(G(s)+G(s)^{H}\right) / 2$, for $s=j \omega$ in continuous time, and $s=e_{j \omega}$ in discrete time.
- 'output ' - Output passivity index (output feedback passivity). When G is minimum phase, this value is the smallest eigenvalue of $\left(G(s)^{-1}+G(s)^{-H}\right) / 2$, for $s=j \omega$ in continuous time, and $s=e_{j \omega}$ in discrete time.
- 'io' - Combined I/O passivity index. When I + G is minimum phase, this value is the largest $\tau(\omega)$ such that:

$$
\mathrm{G}(s)+\mathrm{G}(s)^{H}>2 \tau(\omega)\left(I+\mathrm{G}(s)^{H} \mathrm{G}(s)\right)
$$

for $s=j \omega$ in continuous time, and $s=e_{j \omega}$ in discrete time.
See "About Passivity and Passivity Indices" for details about these indices.

## w - Frequencies

\{wmin, wmax\} | vector
Frequencies at which to compute and plot indices, specified as the cell array \{wmin,wmax\} or as a vector of frequency values.

- If $w$ is a cell array of the form $\{w m i n, w m a x\}$, then the function computes the index at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then the function computes the index at each specified frequency. For example, use logspace to generate a row vector with logarithmically-spaced frequency values.

For models with complex coefficients, if you specify a frequency range of $\left[w_{\min }, w_{\max }\right]$ for your plot, then in:

- Log frequency scale, the plot frequency limits are set to $\left[w_{\min }, w_{\max }\right]$ and the plot shows two branches, one for positive frequencies [ $w_{\min }, w_{\max }$ ] and one for negative frequencies [ $-w_{\max }-w_{\min }$ ].
- Linear frequency scale, the plot frequency limits are set to [ $-w_{\max }, w_{\max }$ ] and the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.
Example: 'r-- ' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: ' $y$ ' specifies a yellow line

## plotoptions - Passivity index plot options set

SectorPlotOptions object
Passivity index plot options set, specified as a SectorPlotOptions object. You can use this option set to customize the plot appearance. Use sectorplotoptions to create the option set. Settings
you specify in plotoptions overrides the preference settings in the MATLAB session in which you run passiveplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see sectorplotoptions.

## Output Arguments

## index - Passivity indices

matrix
Passivity indices as a function of frequency, returned as a matrix. index contains whichever type of passivity index you specify, computed at the frequencies w if you supplied them, or wout if you did not. index has as many columns as there are values in w or wout, and

- One row, for the input, output, or combined i/o passivity indices.
- As many rows as G has inputs or outputs, for the relative passivity index.

For example, suppose that G is a 3 -input, 3 -output system, and w is a 1 -by- 30 vector of frequencies. Then the following syntax returns a 3-by-30 matrix index.

```
index = passiveplot(G,w);
```

The entry index $(:, k)$ contains the relative passivity indices of $G$, in descending order, at the frequency $w(k)$.

## wout - Frequencies

vector
Frequencies at which the indices are calculated, returned as a vector. The function automatically chooses the frequency range and number of points based on the dynamics of the model.
wout also contains negative frequency values for models with complex coefficients.

## Version History

Introduced in R2016a

See Also<br>isPassive|getPassiveIndex|getSectorIndex| sectorplot| sectorplotoptions<br>Topics<br>"About Passivity and Passivity Indices"

## permute

Rearrange array dimensions in model arrays

## Syntax

newarray = permute(sysarray,order)

## Description

newarray = permute(sysarray, order) rearranges the array dimensions of a model array so that the dimensions are in the specified order. The input and output dimensions of the model array are not counted as array dimensions for this operation.

## Examples

## Permute Model Array Dimensions

Create a 1-by-2-by-3 array of state-space models.
sysarr $=$ rss(2,2,2,1,2,3);
Rearrange the model array so that the dimensions are 3-by-2-by-1.

```
newarr = permute(sysarr,[3 2 1]);
size(newarr)
3x2 array of state-space models.
Each model has 2 outputs, 2 inputs, and 2 states.
```

The input and output dimensions of the model array remain unchanged.

## Input Arguments

## sysarray - Model array to rearrange

model array
Model array to rearrange, specified as an array of input-output models such as numeric LTI models, generalized models, or identified LTI models.

## order - Dimensions of rearranged model array

vector
Dimensions of rearranged model array, specified as a vector of positive integers. For example, to rearrange a model array into a 3-by-2 array, order is [32].
Data Types: double

## Output Arguments

newarray - Rearranged model array
model array
Rearranged model array, returned as an array of input-output models with the new dimensions as specified in order.

## Version History

Introduced in R2013a

## See Also

ndims | size | reshape

## pid

PID controller in parallel form

## Description

Use pid to create parallel-form proportional-integral-derivative (PID) controller model objects, or to convert dynamic system models to parallel PID controller form.

The pid controller model object can represent parallel-form PID controllers in continuous time or discrete time.

- Continuous time $-C=K_{p}+\frac{K_{i}}{S}+\frac{K_{d} S}{T_{f} S+1}$
- Discrete time $-C=K_{p}+K_{i} I F(z)+\frac{K_{d}}{T_{f}+D F(z)}$

Here:

- $K_{p}$ is the proportional gain.
- $K_{i}$ is the integral gain.
- $K_{d}$ is the derivative gain.
- $T_{f}$ is the first-order derivative filter time constant.
- $I F(z)$ is the integrator method for computing integral in discrete-time controller.
- $D F(z)$ is the integrator method for computing derivative filter in discrete-time controller.

You can then combine this object with other components of a control architecture, such as the plant, actuators, and sensors to represent your control system. For more information, see "Control System Modeling with Model Objects".

You can create a PID controller model object by either specifying the controller parameters directly, or by converting a model of another type (such as a transfer function model tf) to PID controller form.

You can also use pid to create generalized state-space (genss) models or uncertain state-space (uss) models.

## Creation

You can obtain pid controller models in one of the following ways.

- Create a model using the pid function.
- Use pidtune function to tune PID controllers for a plant model. Specify a 1-DOF PID controller type in the type argument of the pidtune function to obtain a parallel-form PID controller. For example:

```
sys = zpk([],[-1 -1 -1],1);
```

C = pidtune(sys,'PID');

- Interactively tune PID controller for a plant model using:
- The Tune PID Controller Live Editor task.
- The PID Tuner app.


## Syntax

$C=\operatorname{pid}(K p, K i, K d, T f)$
C $=\operatorname{pid}(K p, K i, K d, T f, T s)$
$C=\operatorname{pid}(K p)$
$C=\operatorname{pid}(K p, K i)$
C $=\operatorname{pid}(K p, K i, K d)$
$C=\operatorname{pid}(\ldots$, , Name, Value)
C = pid
C = pid(sys)
Description
$\mathrm{C}=\operatorname{pid}(\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}, \mathrm{Tf})$ creates a continuous-time parallel-form PID controller model and sets the properties $K p, K i, K d$, and $T f$. The remaining properties have default values.
$C=\operatorname{pid}(K p, K i, K d, T f, T s)$ creates a discrete-time PID controller model with sample time Ts.
C $=\operatorname{pid}(\mathrm{Kp})$ creates a continuous-time proportional ( P ) controller.
$\mathrm{C}=\operatorname{pid}(\mathrm{Kp}, \mathrm{Ki})$ creates a proportional and integral (PI) controller.
$\mathrm{C}=\operatorname{pid}(\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd})$ creates a proportional, integral, and derivative (PID) controller.
$C=\operatorname{pid}(\ldots$, Name, Value) sets properties of the pid controller object specified using one or more Name, Value arguments for any of the previous input-argument combinations.
$C=$ pid creates a controller object with default property values. To modify the property of the controller model, use dot notation.
$C=$ pid(sys) converts the dynamic system model sys to a parallel-form pid controller object.

## Input Arguments

## sys - Proportional gain

dynamic system model | model array
Dynamic system, specified as a SISO dynamic system model or array of SISO dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pidstd models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)

The resulting PID controller assumes

- current values of the tunable components for tunable control design blocks.
- nominal model values for uncertain control design blocks.
- Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models. (Using identified models requires System Identification Toolbox software.)


## Output Arguments

## C - Parallel-form PID controller model

pid model object | genss model object | uss model object
PID controller model, returned as:

- A parallel-form PID controller (pid) model object, when all the gains have numeric values. When the gains are numeric arrays, C is an array of pid controller objects.
- A generalized state-space model (genss) object, when the numerator or denominator input arguments includes tunable parameters, such as realp parameters or generalized matrices (genmat).
- An uncertain state-space model (uss) object, when the numerator or denominator input arguments includes uncertain parameters. Using uncertain models requires Robust Control Toolbox software.


## Properties

## Kp - Proportional gain

1 (default) | scalar | vector | matrix | realp object
Proportional gain, specified as a real and finite value or a tunable object.

- To create a pid controller object, use a real and finite scalar value.
- To create an array of pid controller objects, use an array of real and finite values.
- To create a tunable controller model, use a tunable parameter (realp) or generalized matrix (genmat).
- To create a tunable gain-scheduled controller model, use a tunable surface created using tunableSurface.


## Ki - Integral gain

0 (default) | scalar | vector | matrix | realp object
Integral gain, specified as a real and finite value or a tunable object.

- To create a pid controller object, use a real and finite scalar value.
- To create an array of pid controller objects, use an array of real and finite values.
- To create a tunable controller model, use a tunable parameter (realp) or generalized matrix (genmat).
- To create a tunable gain-scheduled controller model, use a tunable surface created using tunableSurface.


## Kd - Derivative gain

0 (default) | scalar | vector | matrix | realp object
Derivative gain, specified as a real and finite value or a tunable object.

- To create a pid controller object, use a real and finite scalar value.
- To create an array of pid controller objects, use an array of real and finite values.
- To create a tunable controller model, use a tunable parameter (realp) or generalized matrix (genmat).
- To create a tunable gain-scheduled controller model, use a tunable surface created using tunableSurface.


## Tf - Derivative filter time constant

0 (default) | scalar | vector | matrix | realp object
Time constant of the first-order derivative filter, specified as a real and finite value or a tunable object.

- To create a pid controller object, use a real and finite scalar value.
- To create an array of pid controller objects, use an array of real and finite values.
- To create a tunable controller model, use a tunable parameter (realp) or generalized matrix (genmat).
- To create a tunable gain-scheduled controller model, use a tunable surface created using tunableSurface.


## IFormula - Method for computing integral in discrete-time controller

'ForwardEuler' (default) | 'BackwardEuler'|'Trapezoidal'
Discrete integrator formula $\operatorname{IF}(z)$ for the integrator of the discrete-time pid controller:

$$
C=K_{p}+K_{i} I F(z)+\frac{K_{d}}{T_{f}+D F(z)} .
$$

Specify IFormula as one of the following:

- 'ForwardEuler' $-\operatorname{IF}(z)=\frac{T_{S}}{z-1}$.

This formula is best for small sample time, where the Nyquist limit is large compared to the bandwidth of the controller. For larger sample time, the ForwardEuler formula can result in instability, even when discretizing a system that is stable in continuous time.

- 'BackwardEuler' $-\operatorname{IF}(z)=\frac{T_{s} z}{z-1}$.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result.

- 'Trapezoidal' $-I F(z)=\frac{T_{s}}{2} \frac{z+1}{z-1}$.

An advantage of the Trapezoidal formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result. Of all available integration formulas, the Trapezoidal formula yields the closest match between frequency-domain properties of the discretized system and the corresponding continuous-time system.

When $C$ is a continuous-time controller, IFormula is ' $'$.

## DFormula - Method for computing derivative in discrete-time controller <br> 'ForwardEuler' (default)|'BackwardEuler' | 'Trapezoidal'

Discrete integrator formula $D F(z)$ for the derivative filter of the discrete-time pid controller:

$$
C=K_{p}+K_{i} I F(z)+\frac{K_{d}}{T_{f}+D F(z)} .
$$

Specify DFormula as one of the following:

- 'ForwardEuler' $-D F(z)=\frac{T_{s}}{z-1}$.

This formula is best for small sample time, where the Nyquist limit is large compared to the bandwidth of the controller. For larger sample time, the ForwardEuler formula can result in instability, even when discretizing a system that is stable in continuous time.

- 'BackwardEuler' $-D F(z)=\frac{T_{s} z}{z-1}$.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result.
-
'Trapezoidal ' $-D F(z)=\frac{T_{s}}{2} \frac{z+1}{z-1}$.
An advantage of the Trapezoidal formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result. Of all available integration formulas, the Trapezoidal formula yields the closest match between frequency-domain properties of the discretized system and the corresponding continuous-time system.

The Trapezoidal value for DFormula is not available for a pid controller with no derivative filter ( $\mathrm{Tf}=0$ ).

When C is a continuous-time controller, DFormula is ' ' .

## InputDelay - Input delay

0 (default)
This property is read-only.
Time delay on the system input. InputDelay is always 0 for a pid controller object.

## OutputDelay - Output delay

0 (default)
This property is read-only.
Time delay on the system output. OutputDelay is always 0 for a pid controller object.

## Ts - Sample time

0 (default) | positive scalar
Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.

PID controller models do not support unspecified sample time (Ts = -1 ).

Note Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

The discrete integrator formulas of the discretized controller depend upon the c2d discretization method you use, as shown in this table.

c2d Discretization Method	IFormula	DFormula
'zoh'	ForwardEuler	ForwardEuler
'foh'	Trapezoidal	Trapezoidal
'tustin'	Trapezoidal	Trapezoidal
'impulse'	ForwardEuler	ForwardEuler
'matched'	ForwardEuler	ForwardEuler

For more information about c2d discretization methods, see c2d.
If you require different discrete integrator formulas, you can discretize the controller by directly setting Ts, IFormula, and DFormula to the desired values. However, this method does not compute new gain and filter-constant values for the discretized controller. Therefore, this method might yield a poorer match between the continuous-time and discrete-time PID controllers than using c2d.

## TimeUnit - Time variable units

```
'seconds' (default)|'nanoseconds'|'microseconds' | 'milliseconds' |'minutes'|
'hours' | 'days' | 'weeks' | 'months'| 'years' | ...
```

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

## InputName - Input channel names

" (default) | character vector

Input channel name, specified as one of the following:

- A character vector.
- ' ' ', no name specified.

Alternatively, assign the name error to the input of a controller model C as follows.
C.InputName = 'error';

You can use the shorthand notation $u$ to refer to the InputName property. For example, C. $\mathbf{u}$ is equivalent to C.InputName.

Use InputName to:

- Identify channels on model display and plots.
- Specify connection points when interconnecting models.


## InputUnit - Input channel units

' ' (default) | character vector
Input channel units, specified as one of the following:

- A character vector.
- ' ' , no units specified.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.
For example, assign the concentration units ' $\mathrm{mol} / \mathrm{m}^{\wedge} 3^{\prime}$ ' to the input of a controller model C as follows.
C.InputUnit = 'mol/m^3';

## InputGroup - Input channel groups

structure
Input channel groups. This property is not needed for PID controller models.
By default, InputGroup is a structure with no fields.

## OutputName - Output channel names

' ' (default) | character vector
Output channel name, specified as one of the following:

- A character vector.
- ' ' , no name specified.

For example, assign the name ' control' to the output of a controller model C as follows.
C.OutputName = 'control';

You can also use the shorthand notation $y$ to refer to the OutputName property. For example, C.y is equivalent to C.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Specify connection points when interconnecting models.


## OutputUnit - Output channel units

' ' (default) | character vector
Output channel units, specified as one of the following:

- A character vector.
- ' ' , no units specified.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.
For example, assign the unit 'volts' to the output of a controller model C as follows.
C.OutputUnit = 'volts';

## OutputGroup - Output channel groups

structure
Output channel groups. This property is not needed for PID controller models.
By default, OutputGroup is a structure with no fields.

## Notes - User-specified text

\{ \} (default) | character vector | cell array of character vectors
User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

## UserData - User-specified data

[ ] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

## Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, 'system_1'.

## SamplingGrid - Sampling grid for model arrays <br> structure array

Sampling grid for model arrays, specified as a structure array.
Use SamplingGrid to track the variable values associated with each model in a model array, including identified linear time-invariant (IDLTI) model arrays.

Set the field names of the structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables must be numeric scalars, and all arrays of sampled values must match the dimensions of the model array.

For example, you can create an 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, you can create a 6-by-9 model array, M, by independently sampling two variables, zeta and w. The following code maps the (zeta, w) values to M.

```
M. SamplingGrid = struct('zeta',zeta,'w',w)
M
M(:,:,1,1) [zeta=0.3, w=5] =
 25
 \(s^{\wedge} 2+3 s+25\)
M(:,:,2,1) [zeta=0.35, w=5] =
 25
 \(\mathrm{s}^{\wedge} 2+3.5 \mathrm{~s}+25\)
```

[zeta,w] = ndgrid(<6 values of zeta>, <9 values of w>)
When you display M, each entry in the array includes the corresponding zeta and $w$ values.

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For instance, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid automatically.

By default, SamplingGrid is a structure with no fields.

## Object Functions

The following lists contain a representative subset of the functions you can use with pid models. In general, any function applicable to "Dynamic System Models" is applicable to a pid object.

## Linear Analysis

step Step response plot of dynamic system; step response data impulse Impulse response plot of dynamic system; impulse response data
lsim Plot simulated time response of dynamic system to arbitrary inputs; simulated response data
bode Bode plot of frequency response, or magnitude and phase data
nyquist Nyquist plot of frequency response
nichols Nichols chart of frequency response
bandwidth Frequency response bandwidth

## Stability Analysis

pole Poles of dynamic system
zero Zeros and gain of SISO dynamic system
pzplot Pole-zero plot of dynamic system model with additional plot customization options
margin Gain margin, phase margin, and crossover frequencies

## Model Transformation

zpk Zero-pole-gain model
ss State-space model
c2d Convert model from continuous to discrete time
d2c Convert model from discrete to continuous time
d2d Resample discrete-time model

## Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

## Controller Design

pidtune PID tuning algorithm for linear plant model
rlocus Root locus plot of dynamic system
piddata Access coefficients of parallel-form PID controller
make2DOF Convert 1-DOF PID controller to 2-DOF controller
pidTuner Open PID Tuner for PID tuning
tunablePID Tunable PID controller

## Examples

## PDF Controller

Create a continuous-time controller with proportional and derivative gains and a filter on the derivative term. To do so, set the integral gain to zero. Set the other gains and the filter time constant to the desired values.

```
Kp = 1;
Ki = 0; % No integrator
Kd = 3;
Tf = 0.5;
C = pid(Kp,Ki,Kd,Tf)
C =
 Kp + Kd* % S-----
 Tf*s+1
 with Kp = 1, Kd = 3, Tf = 0.5
Continuous-time PDF controller in parallel form.
```

The display shows the controller type, formula, and parameter values, and verifies that the controller has no integrator term.

## Discrete-Time PI Controller

Create a discrete-time PI controller with trapezoidal discretization formula.
To create a discrete-time PI controller, set the value of Ts and the discretization formula using Name, Value syntax.

```
C1 = pid(5,2.4,'Ts',0.1,'IFormula','Trapezoidal') % Ts = 0.1s
C1 =
 s*(z+1)
 Kp + Ki * --------
 2*(z-1)
 with Kp = 5, Ki = 2.4, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PI controller in parallel form.
```

Alternatively, you can create the same discrete-time controller by supplying Ts as the fifth input argument after all four PID parameters, Kp, Ki, Kd, and Tf. Since you only want a PI controller, set Kd and Tf to zero.

```
C2 = pid(5,2.4,0,0,0.1,'IFormula','Trapezoidal')
C2 =
 Ts*(z+1)
 Kp + Ki * --------
 with Kp = 5, Ki = 2.4, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PI controller in parallel form.
```

The display shows that C1 and C2 are the same.

## PID Controller with Named Input and Output

When you create a PID controller, set the dynamic system properties InputName and OutputName. This is useful, for example, when you interconnect the PID controller with other dynamic system models using the connect command.

```
C \(=\) pid(1,2,3,'InputName','e','OutputName','u')
C =
 1
 \(\mathrm{Kp}+\mathrm{Ki} *--+\mathrm{Kd} * \mathrm{~s}\)
 S
 with \(\mathrm{Kp}=1, \mathrm{Ki}=2, \mathrm{Kd}=3\)
Continuous-time PID controller in parallel form.
```

The display does not show the input and output names for the PID controller, but you can examine the property values. For instance, verify the input name of the controller.

```
C.InputName
ans = lx1 cell array
 {'e'}
```


## Array of PID Controllers

Create a 2-by-3 grid of PI controllers with proportional gain ranging from 1-2 across the array rows and integral gain ranging from 5-9 across columns.

To build the array of PID controllers, start with arrays representing the gains.

```
Kp = [1 1 1;2 2 2];
Ki = [5:2:9;5:2:9];
```

When you pass these arrays to the pid command, the command returns the array.

```
pi_array = pid(Kp,Ki,'Ts',0.1,'IFormula','BackwardEuler');
size(pi_array)
2x3 array of PID controller.
Each PID has 1 output and 1 input.
```

Alternatively, use the stack command to build an array of PID controllers.

```
C = pid(1,5,0.1) % PID controller
C =
 Kp + Ki * % -- + Kd * s
 S
 with Kp = 1, Ki = 5, Kd = 0.1
Continuous-time PID controller in parallel form.
Cf = pid(1,5,0.1,0.5) % PID controller with filter
Cf =
 Kp + Ki * % =- % Kd * % c-------
 with Kp = 1, Ki = 5, Kd = 0.1, Tf = 0.5
Continuous-time PIDF controller in parallel form.
pid_array = stack(2,C,Cf); % stack along 2nd array dimension
These commands return a 1-by-2 array of controllers.
```

```
size(pid_array)
1x2 array of PID controller.
Each PID has 1 output and 1 input.
```

All PID controllers in an array must have the same sample time, discrete integrator formulas, and dynamic system properties such as InputName and OutputName.

## Convert PID Controller from Standard to Parallel Form

Convert a standard form pidstd controller to parallel form.
Standard PID form expresses the controller actions in terms of an overall proportional gain Kp, integral and derivative time constants Ti and Td, and filter divisor N. You can convert any standardform controller to parallel form using the pid command. For example, consider the following standard-form controller.

```
\(K p=2 ;\)
Ti = 3;
\(\mathrm{Td}=4\);
\(\mathrm{N}=50\);
C_std = pidstd(Kp,Ti,Td,N)
C_std =
```



```
 with \(\mathrm{Kp}=2, \mathrm{Ti}=3, \mathrm{Td}=4, \mathrm{~N}=50\)
Continuous-time PIDF controller in standard form
```

Convert this controller to parallel form using pid.
C_par = pid(C_std)
C_par =

with $\mathrm{Kp}=2, \mathrm{Ki}=0.667, \mathrm{Kd}=8, \mathrm{Tf}=0.08$
Continuous-time PIDF controller in parallel form.

## Convert Dynamic System to Parallel-Form PID Controller

Convert a continuous-time dynamic system that represents a PID controller to parallel pid form.
The following dynamic system, with an integrator and two zeros, is equivalent to a PID controller.

$$
H(s)=\frac{3(s+1)(s+2)}{s} .
$$

Create a zpk model of $H$. Then use the pid command to obtain $H$ in terms of the PID gains $\mathrm{Kp}, \mathrm{Ki}$, and Kd.

```
H = zpk([-1,-2],0,3);
C = pid(H)
C =
 Kp + Ki * l -- + Kd * s
 S
 with Kp = 9, Ki = 6, Kd = 3
Continuous-time PID controller in parallel form.
```


## Convert Discrete-Time Dynamic System to Parallel-Form PID Controller

Convert a discrete-time dynamic system that represents a PID controller with derivative filter to parallel pid form.

Create a discrete-time zpk model that represents a PIDF controller (two zeros and two poles, including the integrator pole at $z=1$ ).

```
sys = zpk([-0.5,-0.6],[1 -0.2],3,'Ts',0.1);
```

When you convert sys to PID form, the result depends on which discrete integrator formulas you specify for the conversion. For instance, use the default, ForwardEuler, for both the integrator and the derivative.

```
Cfe = pid(sys)
Cfe =
 Kp + Ki * Ts ---- Kd * %----------
 with Kp = 2.75, Ki = 60, Kd = 0.0208, Tf = 0.0833, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PIDF controller in parallel form.
```

Now convert using the Trapezoidal formula.

```
Ctrap = pid(sys,'IFormula','Trapezoidal','DFormula','Trapezoidal')
Ctrap =
 Kp + Ki * Ts*(z+1) (----- Kd * %------------------
```

```
with Kp = -0.25, Ki = 60, Kd = 0.0208, Tf = 0.0333, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PIDF controller in parallel form.
```

The displays show the difference in resulting coefficient values and functional form.
For this particular dynamic system, you cannot write sys in parallel PID form using the BackwardEuler formula for the derivative filter. Doing so would result in Tf $<0$, which is not permitted. In that case, pid returns an error.

## Discretize Continuous-Time PID Controller

Discretize a continuous-time PID controller and set integral and derivative filter formulas.
Create a continuous-time controller and discretize it using the zero-order-hold method of the c2d command.

```
Ccon = pid(1,2,3,4); % continuous-time PIDF controller
Cdis1 = c2d(Ccon,0.1,'zoh')
Cdis1 =
 Kp + Ki * Ts ---- Kd * % %----------
 with Kp = 1, Ki = 2, Kd = 3.04, Tf = 4.05, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PIDF controller in parallel form.
```

The display shows that c2d computes new PID gains for the discrete-time controller.
The discrete integrator formulas of the discretized controller depend on the c2d discretization method. For the zoh method, both IFormula and DFormula are ForwardEuler.

```
Cdis1.IFormula
```

ans =
' ForwardEuler'
Cdis1.DFormula
ans =
'ForwardEuler'

If you want to use different formulas from the ones returned by c2d, then you can directly set the Ts, IFormula, and DFormula properties of the controller to the desired values.

```
Cdis2 = Ccon;
Cdis2.Ts = 0.1;
Cdis2.IFormula = 'BackwardEuler';
Cdis2.DFormula = 'BackwardEuler';
```

However, these commands do not compute new PID gains for the discretized controller. To see this, examine Cdis2 and compare the coefficients to Ccon and Cdis1.

```
Cdis2
```

Cdis2 =

$$
\begin{aligned}
& \text { Ts*z } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { z-1 Tf+Ts*z/(z-1) } \\
& \text { with } \mathrm{Kp}=1, \mathrm{Ki}=2, \mathrm{Kd}=3, \mathrm{Tf}=4, \mathrm{Ts}=0.1
\end{aligned}
$$

Sample time: 0.1 seconds
Discrete-time PIDF controller in parallel form.

## Version History

Introduced in R2010b

## See Also

pidstd|pid2|piddata|make2DOF | pidtune | pidTuner | tunablePID | genss | realp
Topics
"Proportional-Integral-Derivative (PID) Controllers"
"Discrete-Time Proportional-Integral-Derivative (PID) Controllers"
"What Are Model Objects?"

## pid2

Create 2-DOF PID controller in parallel form, convert to parallel-form 2-DOF PID controller

## Syntax

C2 $=\operatorname{pid} 2(K p, K i, K d, T f, b, c)$
C2 $=$ pid2(Kp,Ki,Kd,Tf,b,c,Ts)
C2 = pid2(sys)
C2 = pid2(
,Name, Value)

## Description

pid2 controller objects represent two-degree-of-freedom (2-DOF) PID controllers in parallel form. Use pid2 either to create a pid2 controller object from known coefficients or to convert a dynamic system model to a pid2 object.

Two-degree-of-freedom (2-DOF) PID controllers include setpoint weighting on the proportional and derivative terms. A 2-DOF PID controller can achieve fast disturbance rejection without significant increase of overshoot in setpoint tracking. 2-DOF PID controllers are also useful to mitigate the influence of changes in the reference signal on the control signal. The following illustration shows a typical control architecture using a 2-DOF PID controller.


C2 $=$ pid2 $(\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}, \mathrm{Tf}, \mathrm{b}, \mathrm{c})$ creates a continuous-time 2-DOF PID controller with proportional, integral, and derivative gains $K p, K i$, and $K d$ and first-order derivative filter time constant Tf. The controller also has setpoint weighting $b$ on the proportional term, and setpoint weighting $c$ on the derivative term. The relationship between the 2-DOF controller output ( $u$ ) and its two inputs ( $r$ and $y$ ) is given by:

$$
u=K_{p}(b r-y)+\frac{K_{i}}{s}(r-y)+\frac{K_{d} s}{T_{f} s+1}(c r-y) .
$$

This representation is in parallel form. If all coefficients are real-valued, then the resulting C2 is a pid2 controller object. If one or more of these coefficients is tunable (realp or genmat), then C2 is a tunable generalized state-space (genss) model object.

C2 = pid2 (Kp, Ki, Kd, Tf, b, c, Ts) creates a discrete-time 2-DOF PID controller with sample time Ts. The relationship between the controller output and inputs is given by:

$$
u=K_{p}(b r-y)+K_{i} I F(z)(r-y)+\frac{K_{d}}{T_{f}+D F(z)}(c r-y) .
$$

$I F(z)$ and $D F(z)$ are the discrete integrator formulas for the integrator and derivative filter. By default,

$$
I F(z)=D F(z)=\frac{T_{S}}{z-1} .
$$

To choose different discrete integrator formulas, use the IFormula and DFormula properties. (See "Properties" on page 2-955 for more information). If DFormula = 'ForwardEuler' (the default value) and $\mathrm{Tf} \neq 0$, then Ts and Tf must satisfy Tf > Ts/2. This requirement ensures a stable derivative filter pole.
$C 2=$ pid2(sys) converts the dynamic system sys to a parallel form pid2 controller object.
C2 = pid2 (__ , Name, Value) specifies additional properties as comma-separated pairs of Name, Value arguments.

## Input Arguments

## Kp

Proportional gain.
Kp can be:

- A real and finite value.
- An array of real and finite values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When $\mathrm{Kp}=0$, the controller has no proportional action.

## Default: 1

## Ki

Integral gain.
Ki can be:

- A real and finite value.
- An array of real and finite values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When $\mathrm{Ki}=0$, the controller has no integral action.
Default: 0
Kd
Derivative gain.
Kd can be:

- A real and finite value.
- An array of real and finite values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When $\mathrm{Kd}=0$, the controller has no derivative action.

## Default: 0

## Tf

Time constant of the first-order derivative filter.
Tf can be:

- A real, finite, and nonnegative value.
- An array of real, finite, and nonnegative values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When Tf $=0$, the controller has no filter on the derivative action.

## Default: 0

## b

Setpoint weighting on proportional term.
b can be:

- A real, nonnegative, and finite value.
- An array of real, nonnegative, finite values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When $b=0$, changes in setpoint do not feed directly into the proportional term.

## Default: 1

## C

Setpoint weighting on derivative term.
c can be:

- A real, nonnegative, and finite value.
- An array of real, nonnegative, finite values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When $\mathrm{c}=0$, changes in setpoint do not feed directly into the derivative term.

## Default: 1

## Ts

Sample time.
To create a discrete-time pid2 controller, provide a positive real value (Ts > 0). pid2 does not support discrete-time controllers with unspecified sample time (Ts = -1).

Ts must be a scalar value. In an array of pid2 controllers, each controller must have the same Ts.
Default: 0 (continuous time)
sys
SISO dynamic system to convert to parallel pid2 form.
sys must be a two-input, one-output system. sys must represent a valid 2-DOF PID controller that can be written in parallel form with $\mathrm{Tf} \geq 0$.
sys can also be an array of SISO dynamic systems.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Use Name, Value syntax to set the numerical integration formulas IFormula and DFormula of a discrete-time pid2 controller, or to set other object properties such as InputName and OutputName. For information about available properties of pid2 controller objects, see "Properties" on page 2955.

## Output Arguments

## C2

2-DOF PID controller, returned as a pid2 controller object, an array of pid2 controller objects, a genss object, or a genss array.

- If all the coefficients have scalar numeric values, then C2 is a pid2 controller object.
- If one or more coefficients is a numeric array, C2 is an array of pid2 controller objects. The controller type (such as PI, PID, or PDF) depends upon the values of the gains. For example, when $\mathrm{Kd}=0$, but Kp and Ki are nonzero, C 2 is a PI controller.
- If one or more coefficients is a tunable parameter (realp), generalized matrix (genmat), or tunable gain surface (tunableSurface), then C2 is a generalized state-space model (genss).


## Properties

## b, c

Setpoint weights on the proportional and derivative terms, respectively. $b$ and $c$ values are real, finite, and positive. When you use the pid2 command to create a 2-DOF PID controller, the b, and c input arguments, respectively, set the initial values of these properties.
$\mathbf{K p}, \mathrm{Ki}, \mathrm{Kd}$
PID controller gains.
Proportional, integral, and derivative gains, respectively. $K p, K i$, and $K d$ values are real and finite. When you use the pid2 command to create a 2-DOF PID controller, the Kp, Ki, and Kd input arguments, respectively, set the initial values of these properties.

## Tf

Derivative filter time constant.
The Tf property stores the derivative filter time constant of the pid2 controller object. Tf is real, finite, and greater than or equal to zero. When you create a 2-DOF PID controller using the pid2 command, the Tf input argument sets the initial value of this property.

## IFormula

Discrete integrator formula $\operatorname{IF}(z)$ for the integrator of the discrete-time pid2 controller C2. The relationship between the inputs and output of C2 is given by:

$$
u=K_{p}(b r-y)+K_{i} I F(z)(r-y)+\frac{K_{d}}{T_{f}+D F(z)}(c r-y) .
$$

IFormula can take the following values:

- 'ForwardEuler' $-I F(z)=\frac{T_{s}}{z-1}$.

This formula is best for small sample time, where the Nyquist limit is large compared to the bandwidth of the controller. For larger sample time, the ForwardEuler formula can result in instability, even when discretizing a system that is stable in continuous time.

- 'BackwardEuler' $-I F(z)=\frac{T_{s} z}{z-1}$.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result.
-
'Trapezoidal' $-I F(z)=\frac{T_{s}}{2} \frac{z+1}{z-1}$.
An advantage of the Trapezoidal formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result. Of all available integration formulas, the Trapezoidal formula yields the closest match between frequency-domain properties of the discretized system and the corresponding continuous-time system.

When C2 is a continuous-time controller, IFormula is ' ' .

## Default: 'ForwardEuler'

## DFormula

Discrete integrator formula $D F(z)$ for the derivative filter of the discrete-time pid2 controller C2. The relationship between the inputs and output of C2 is given by:

$$
u=K_{p}(b r-y)+K_{i} I F(z)(r-y)+\frac{K_{d}}{T_{f}+D F(z)}(c r-y) .
$$

DFormula can take the following values:

- 'ForwardEuler' $-D F(z)=\frac{T_{S}}{z-1}$.

This formula is best for small sample time, where the Nyquist limit is large compared to the bandwidth of the controller. For larger sample time, the ForwardEuler formula can result in instability, even when discretizing a system that is stable in continuous time.
-
'BackwardEuler' $-D F(z)=\frac{T_{s} z}{z-1}$.
An advantage of the BackwardEuler formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result.

- 'Trapezoidal' $-D F(z)=\frac{T_{s}}{2} \frac{z+1}{z-1}$.

An advantage of the Trapezoidal formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result. Of all available integration formulas, the Trapezoidal formula yields the closest match between frequency-domain properties of the discretized system and the corresponding continuous-time system.

The Trapezoidal value for DFormula is not available for a pid2 controller with no derivative filter ( $\mathrm{Tf}=0$ ).

When C2 is a continuous-time controller, DFormula is ' ' .
Default: 'ForwardEuler'

## InputDelay

Time delay on the system input. InputDelay is always 0 for a pid2 controller object.

## OutputDelay

Time delay on the system Output. OutputDelay is always 0 for a pid2 controller object.

## Ts

Sample time. For continuous-time models, Ts $=0$. For discrete-time models, T is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. PID controller models do not support unspecified sample time (Ts = -1 ).

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sample time of a discrete-time system.

Default: 0 (continuous time)

## TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

## InputName

Input channel name, specified as a character vector or a 2-by-1 cell array of character vectors. Use this property to name the input channels of the controller model. For example, assign the names setpoint and measurement to the inputs of a 2-DOF PID controller model C as follows.
C.InputName = \{'setpoint';'measurement'\};

Alternatively, use automatic vector expansion to assign both input names. For example:
C. InputName = 'C-input';

The input names automatically expand to \{'C-input(1)' ; 'C-input(2)' $\}$.
You can use the shorthand notation $u$ to refer to the InputName property. For example, C. u is equivalent to C. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Specifying connection points when interconnecting models

Default: \{' ' ; ' $\}$

## InputUnit

Input channel units, specified as a 2-by-1 cell array of character vectors. Use this property to track input signal units. For example, assign the units Volts to the reference input and the concentration units $\mathrm{mol} / \mathrm{m}^{\wedge} 3$ to the measurement input of a 2-DOF PID controller model C as follows.

```
C. InputUnit = \{'Volts';'mol/m^3'\};
```

InputUnit has no effect on system behavior.
Default: \{' ' ;' $\}$

## InputGroup

Input channel groups. This property is not needed for PID controller models.
Default: struct with no fields

## OutputName

Output channel name, specified as a character vector. Use this property to name the output channel of the controller model. For example, assign the name control to the output of a controller model C as follows.

```
C.OutputName = 'control';
```

You can use the shorthand notation $y$ to refer to the OutputName property. For example, C.y is equivalent to C.OutputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Specifying connection points when interconnecting models

Default: Empty character vector, ' '

## OutputUnit

Output channel units, specified as a character vector. Use this property to track output signal units. For example, assign the unit Volts to the output of a controller model C as follows.
C.OutputUnit = 'Volts';

OutputUnit has no effect on system behavior.
Default: Empty character vector, ' '

## OutputGroup

Output channel groups. This property is not needed for PID controller models.
Default: struct with no fields

## Name

System name, specified as a character vector. For example, ' system_1'.

## Default: ' '

## Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
```

```
ans =
 "sys1 has a string."
ans =
 'sys2 has a character vector.'
```

Default: [0×1 string]

## UserData

Any type of data you want to associate with system, specified as any MATLAB data type.
Default: []

## SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For model arrays that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model in the array. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, suppose you create a 6 -by- 9 model array, $M$, by independently sampling two variables, zeta and w . The following code attaches the (zeta, w ) values to M .

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display $M$, each entry in the array includes the corresponding zeta and $w$ values.
M

```
M(:,:,1,1) [zeta=0.3, w=5] =
 2 5

 s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
```

```
 25
s^2 + 3.5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For example, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid in this way.

## Default: []

## Examples

## 2-DOF PDF Controller

Create a continuous-time 2-DOF controller with proportional and derivative gains and a filter on the derivative term. To do so, set the integral gain to zero. Set the other gains and the filter time constant to the desired values.

```
Kp = 1;
Ki = 0; % No integrator
Kd = 3;
Tf = 0.1;
b = 0.5; % setpoint weight on proportional term
c = 0.5; % setpoint weight on derivative term
C2 = pid2(Kp,Ki,Kd,Tf,b,c)
C2 =
 u = Kp (b*r-y) + Kd ------- (c*r-y)
 Tf*s+1
 with Kp = 1, Kd = 3, Tf = 0.1, b = 0.5, c = 0.5
Continuous-time 2-DOF PDF controller in parallel form.
```

The display shows the controller type, formula, and parameter values, and verifies that the controller has no integrator term.

## Discrete-Time 2-DOF PI Controller

Create a discrete-time 2-DOF PI controller using the trapezoidal discretization formula. Specify the formula using Name, Value syntax.

```
Kp = 5;
Ki = 2.4;
Kd = 0;
Tf = 0;
b = 0.5;
```

```
c = 0;
Ts = 0.1;
C2 = pid2(Kp,Ki,Kd,Tf,b,c,Ts,'IFormula','Trapezoidal')
C2 =
 u=Kp (b*r-y) +Ki Ts*(z+1)
 with Kp = 5, Ki = 2.4, b = 0.5, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time 2-DOF PI controller in parallel form.
```

Setting Kd $=0$ specifies a PI controller with no derivative term. As the display shows, the values of Tf and $c$ are not used in this controller. The display also shows that the trapezoidal formula is used for the integrator.

## 2-DOF PID Controller with Named Inputs and Output

Create a 2-DOF PID controller, and set the dynamic system properties InputName and OutputName. Naming the inputs and the output is useful, for example, when you interconnect the PID controller with other dynamic system models using the connect command.

```
C2 = pid2(1,2,3,0,1,1,'InputName',{'r','y'},'OutputName','u')
C2 =
 u=Kp}(b*r-y)+Ki ¢ - - - (r-y) + Kd*s (c*r-y)
 with Kp = 1, Ki = 2, Kd = 3, b = 1, c = 1
Continuous-time 2-DOF PID controller in parallel form.
```

A 2-DOF PID controller has two inputs and one output. Therefore, the 'InputName ' property is an array containing two names, one for each input. The model display does not show the input and output names for the PID controller, but you can examine the property values to see them. For instance, verify the input name of the controller.

## C2. InputName

```
ans = 2x1 cell
 {'r'}
 {'y'}
```


## Array of 2-DOF PID Controllers

Create a 2-by-3 grid of 2-DOF PI controllers with proportional gain ranging from 1-2 across the array rows and integral gain ranging from 5-9 across columns.

To build the array of PID controllers, start with arrays representing the gains.

```
Kp = [1 1 1;2 2 2];
Ki = [5:2:9;5:2:9];
```

When you pass these arrays to the pid2 command, the command returns the array of controllers.

```
pi_array = pid2(Kp,Ki,0,0,0.5,0,'Ts',0.1,'IFormula','BackwardEuler');
size(pi_array)
2x3 array of 2-DOF PID controller.
Each PID has 1 output and 2 inputs.
```

If you provide scalar values for some coefficients, pid2 automatically expands them and assigns the same value to all entries in the array. For instance, in this example, $\mathrm{Kd}=\mathrm{Tf}=0$, so that all entries in the array are PI controllers. Also, all entries in the array have $b=0.5$.

Access entries in the array using array indexing. For dynamic system arrays, the first two dimensions are the I/O dimensions of the model, and the remaining dimensions are the array dimensions. Therefore, the following command extracts the $(2,3)$ entry in the array.

```
pi23 = pi_array(:,:,2,3)
pi23 =
 u = Kp (b*r-y) + Ki %---- (r-y)
 with Kp = 2, Ki = 9, b = 0.5, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time 2-DOF PI controller in parallel form.
```

You can also build an array of PID controllers using the stack command.

```
C2 = pid2(1,5,0.1,0,0.5,0.5); % PID controller
C2f = pid2(1,5,0.1,0.5,0.5,0.5); % PID controller with filter
pid_array = stack(2,C2,C2f); % stack along 2nd array dimension
```

These commands return a 1-by-2 array of controllers.

```
size(pid_array)
1x2 array of 2-DOF PID controller.
Each PID has 1 output and 2 inputs.
```

All PID controllers in an array must have the same sample time, discrete integrator formulas, and dynamic system properties such as InputName and OutputName.

## Convert 2-DOF PID Controller from Standard to Parallel Form

Convert a standard-form pidstd2 controller to parallel form.
Standard PID form expresses the controller actions in terms of an overall proportional gain Kp, integrator and derivative time constants Ti and Td , and filter divisor N . You can convert any 2-DOF
standard-form controller to parallel form using the pid2 command. For example, consider the following standard-form controller.

```
Kp = 2;
Ti = 3;
Td = 4;
N = 50;
b = 0.1;
c = 0.5;
C2_std = pidstd2(Kp,Ti,Td,N,b,c)
C2_std =
```



```
 with Kp = 2, Ti = 3, Td = 4, N = 50, b = 0.1, c = 0.5
Continuous-time 2-DOF PIDF controller in standard form
```

Convert this controller to parallel form using pid2.
C2_par = pid2(C2_std)
C2_par =

```
 1
 u = Kp (b*r-y) + Ki _-- (r-y) + Kd _--.-.- (c*r-y)
 with Kp = 2, Ki = 0.667, Kd = 8, Tf = 0.08, b = 0.1, c = 0.5
Continuous-time 2-DOF PIDF controller in parallel form.
```

A response plot confirms that the two forms are equivalent.

```
bodeplot(C2_par,'b-',C2_std,'r--')
legend('Parallel','Standard','Location','Southeast')
```



## Convert Dynamic System to Parallel-Form PID Controller

Convert a continuous-time dynamic system that represents a PID controller to parallel pid form.
The following dynamic system, with an integrator and two zeros, is equivalent to a PID controller.

$$
H(s)=\frac{3(s+1)(s+2)}{s}
$$

Create a zpk model of $H$. Then use the pid command to obtain $H$ in terms of the PID gains $\mathrm{Kp}, \mathrm{Ki}$, and Kd.

```
H = zpk([-1,-2],0,3);
C = pid(H)
C =
 Kp + Ki *
 with Kp = 9, Ki = 6, Kd = 3
Continuous-time PID controller in parallel form.
```


## Convert Dynamic System to 2-DOF Parallel-Form PID Controller

Convert a discrete-time dynamic system that represents a 2-DOF PID controller with derivative filter to parallel pid2 form.

The following state-space matrices represent a discrete-time 2-DOF PID controller with a sample time of 0.1 s .

```
A = [1,0;0,0.99];
B = [0.1,-0.1; -0.005,0.01];
C = [3,0.2];
D = [2.6,-5.2];
Ts = 0.1;
sys = ss(A,B,C,D,Ts);
```

When you convert sys to 2-DOF PID form, the result depends on which discrete integrator formulas you specify for the conversion. For instance, use the default, ForwardEuler, for both the integrator and the derivative.

```
C2fe = pid2(sys)
C2fe =
 u=Kp (b*r-y)+Ki #----- Ts (r-y) + Kd
 with Kp = 5, Ki = 3, Kd = 2, Tf = 10, b = 0.5, c = 0.5, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time 2-DOF PIDF controller in parallel form.
```

Now convert using the Trapezoidal formula.

```
C2trap = pid2(sys,'IFormula','Trapezoidal','DFormula','Trapezoidal')
C2trap =
 Ts*(z+1) 1
 u = Kp (b*r-y) + Ki ------- (r-y) + Kd ------------------- (c*r-y)
 with Kp = 4.85, Ki = 3, Kd = 2, Tf = 9.95, b = 0.485, c = 0.5, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time 2-DOF PIDF controller in parallel form.
```

The displays show the difference in resulting coefficient values and functional form.

## Discretize a Continuous-Time 2-DOF PID Controller

Discretize a continuous-time 2-DOF PID controller and specify the integral and derivative filter formulas.

Create a continuous-time controller and discretize it using the zero-order-hold method of the c2d command.

```
C2con = pid2(10,5,3,0.5,1,1); % continuous-time 2-D0F PIDF controller
C2dis1 = c2d(C2con,0.1,'zoh')
C2dis1 =
 Ts 1
```



```
 with Kp = 10, Ki = 5, Kd = 3.31, Tf = 0.552, b = 1, c = 1, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time 2-DOF PIDF controller in parallel form.
```

The display shows that c2d computes new PID coefficients for the discrete-time controller.
The discrete integrator formulas of the discretized controller depend on the c2d discretization method, as described in "Tips" on page 2-968. For the zoh method, both IFormula and DFormula are ForwardEuler.

C2dis1.IFormula
ans =
'ForwardEuler'
C2dis1.DFormula
ans =
' ForwardEuler'
If you want to use different formulas from the ones returned by c2d, then you can directly set the Ts, IFormula, and DFormula properties of the controller to the desired values.

```
C2dis2 = C2con;
C2dis2.Ts = 0.1;
C2dis2.IFormula = 'BackwardEuler';
C2dis2.DFormula = 'BackwardEuler';
```

However, these commands do not compute new PID gains for the discretized controller. To see this, examine C2dis2 and compare the coefficients to C2con and C2dis1.

```
C2dis2
C2dis2 =
```



```
 with Kp = 10, Ki = 5, Kd = 3, Tf = 0.5, b = 1, c = 1, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time 2-DOF PIDF controller in parallel form.
```


## Tips

- To design a PID controller for a particular plant, use pidtune or pidTuner. To create a tunable 2-DOF PID controller as a control design block, use tunablePID2.
- To break a 2-DOF controller into two SISO control components, such as a feedback controller and a feedforward controller, use getComponents.
- Create arrays of pid2 controller objects by:
- Specifying array values for one or more of the coefficients Kp, Ki, Kd, Tf, b, and c.
- Specifying an array of dynamic systems sys to convert to pid2 controller objects.
- Using stack to build arrays from individual controllers or smaller arrays.
- Passing an array of plant models to pidtune.

In an array of pid2 controllers, each controller must have the same sample time Ts and discrete integrator formulas IFormula and DFormula.

- To create or convert to a standard-form controller, use pidstd2. Standard form expresses the controller actions in terms of an overall proportional gain $K_{p}$, integral and derivative times $T_{i}$ and $T_{d}$, and filter divisor $N$. For example, the relationship between the inputs and output of a continuous-time standard-form 2-DOF PID controller is given by:

$$
u=K_{p}\left[(b r-y)+\frac{1}{T_{i} S}(r-y)+\frac{T_{d} S}{\frac{T_{d}}{N} s+1}(c r-y)\right] .
$$

- There are two ways to discretize a continuous-time pid2 controller:
- Use the c2d command. c2d computes new parameter values for the discretized controller. The discrete integrator formulas of the discretized controller depend upon the c2d discretization method you use, as shown in the following table.

c2d Discretization   Method	IFormula	DFormula
'zoh'	ForwardEuler	ForwardEuler
'foh'	Trapezoidal	Trapezoidal
'tustin'	Trapezoidal	Trapezoidal
'impulse'	ForwardEuler	ForwardEuler
'matched '	ForwardEuler	ForwardEuler

For more information about c2d discretization methods, See the c2d reference page. For more information about IFormula and DFormula, see "Properties" on page 2-955.

- If you require different discrete integrator formulas, you can discretize the controller by directly setting Ts, IFormula, and DFormula to the desired values. (See "Discretize a Continuous-Time 2-DOF PID Controller" on page 2-966.) However, this method does not compute new gain and filter-constant values for the discretized controller. Therefore, this method might yield a poorer match between the continuous- and discrete-time pid2 controllers than using c2d.


## Version History

Introduced in R2015b

See Also<br>pidstd2| pid| piddata2 | getComponents | make1D0F | pidtune | pidTuner|tunablePID2 | genss|realp<br>\section*{Topics}<br>"Two-Degree-of-Freedom PID Controllers"<br>"Discrete-Time Proportional-Integral-Derivative (PID) Controllers"<br>"What Are Model Objects?"

## piddata

Access coefficients of parallel-form PID controller

## Syntax

[Kp,Ki,Kd,Tf] = piddata(sys)
[Kp,Ki,Kd,Tf,Ts] = piddata(sys)
$[\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}, \mathrm{Tf}, \mathrm{Ts}]=\operatorname{piddata}(\mathrm{sys}, \mathrm{Jl}, \ldots, \mathrm{JN})$

## Description

[Kp,Ki,Kd,Tf] = piddata(sys) returns the PID gains Kp,Ki, Kd and the filter time constant Tf of the parallel-form controller represented by the dynamic system sys.
[Kp,Ki,Kd,Tf,Ts] = piddata(sys) also returns the sample time Ts.
[Kp,Ki,Kd,Tf,Ts] = piddata(sys,J1,..., JN) extracts the data for a subset of entries in sys, where sys is an N -dimensional array of dynamic systems. The indices J specify the array entry to extract.

## Input Arguments

## sys

SISO dynamic system or array of SISO dynamic systems. If sys is not a pid object, it must represent a valid PID controller that can be written in parallel PID form.

## J

Integer indices of $N$ entries in the array sys of dynamic systems. For example, suppose sys is a 4 -by-5 (two-dimensional) array of pid controllers or dynamic system models that represent PID controllers. The following command extracts the data for entry $(2,3)$ in the array.
[Kp,Ki,Kd,Tf,Ts] = piddata(sys,2,3);

## Output Arguments

## Kp

Proportional gain of the parallel-form PID controller represented by dynamic system sys.
If sys is a pid controller object, the output $K p$ is equal to the $K p$ value of sys.
If sys is not a pid object, Kp is the proportional gain of a parallel PID controller equivalent to sys.
If sys is an array of dynamic systems, Kp is an array of the same dimensions as sys.
Ki
Integral gain of the parallel-form PID controller represented by dynamic system sys.

If sys is a pid controller object, then the output Ki is equal to the Ki value of sys.
If sys is not a pid object, then Ki is the integral gain of a parallel PID controller equivalent to sys.
If sys is an array of dynamic systems, then Ki is an array of the same dimensions as sys.
Kd
Derivative gain of the parallel-form PID controller represented by dynamic system sys.
If sys is a pid controller object, then the output Kd is equal to the Kd value of sys.
If sys is not a pid object, then $K d$ is the derivative gain of a parallel PID controller equivalent to sys.
If sys is an array of dynamic systems, then Kd is an array of the same dimensions as sys.
Tf
Filter time constant of the parallel-form PID controller represented by dynamic system sys.
If sys is a pid controller object, the output Tf is equal to the Tf value of sys.
If sys is not a pid object, Tf is the filter time constant of a parallel PID controller equivalent to sys.
If sys is an array of dynamic systems, Tf is an array of the same dimensions as sys.
Ts
Sample time of the dynamic system sys. Ts is always a scalar value.

## Examples

## Extract Coefficients From Parallel-Form PID Controller

Typically, you extract coefficients from a controller obtained from another function, such as pidtune or getBlockValue. For this example, create a PID controller that has random coefficients.
rng('default'); \% for reproducibility $C=\operatorname{pid}(r a n d, r a n d, r a n d, r a n d) ;$

Extract the PID gains and filter time constant.

```
[Kp,Ki,Kd,Tf] = piddata(C)
Kp = 0.8147
Ki = 0.9058
Kd = 0.1270
Tf = 0.9134
```


## Extract Parallel-Form Gains from Standard-Form PI Controller

Create a PI controller in standard form.
$\mathrm{C}=\operatorname{pidstd}(2,3)$
C =

with $\mathrm{Kp}=2, \mathrm{Ti}=3$
Continuous-time PI controller in standard form
Compute the gains of an equivalent parallel-form PID controller.
[Kp,Ki] = piddata(C)
$K p=2$
Ki = 0.6667

## Extract PID Coefficients from Equivalent System

Extract coefficients from dynamic system that represents a valid discrete-time parallel-form PID controller with a derivate filter.

$$
H(z)=\frac{(z-0.5)(z-0.6)}{(z-1)(z+0.8)}
$$

H = zpk([0.5 0.6],[1,-0.8],1,0.1);
Extract the PID gains and filter time constant.
[Kp,Ki,Kd,Tf,Ts] = piddata(H)
$\mathrm{Kp}=0.4383$
$\mathrm{Ki}=1.1111$
$K d=0.0312$
Tf $=0.0556$
$T s=0.1000$
For a discrete-time system, piddata calculates the coefficient values using the default ForwardEuler discrete integrator formula for both IFormula and DFormula.

## Extract Coefficients from PI Controller Array

Typically, you obtain an array of controllers by using pidtune on an array of plant models. For this example, create a 2 -by- 3 array of PI controllers with random values of $\mathrm{Kp}, \mathrm{Ki}$.
rng('default');
$C=\operatorname{pid}(\operatorname{rand}(2,3), \operatorname{rand}(2,3))$;
Extract all the coefficients from the array.
[Kp,Ki] = piddata(C);
Each of the outputs is itself a 2-by-3 array. For example, examine Ki.
Ki
$\mathrm{Ki}=2 \times 3$

0.2785	0.9575	0.1576
0.5469	0.9649	0.9706

Extract only the coefficients of entry $(2,1)$ in the array.
[Kp,Ki] = piddata(C,2,1)
$K p=0.9058$
Ki $=0.5469$

## Tips

If sys is not a pid controller object, piddata returns the PID gains Kp, Ki, Kd and the filter time constant Tf of a parallel-form controller equivalent to sys.

For discrete-time sys, piddata returns the parameters of an equivalent parallel-form controller. This controller has discrete integrator formulas IFormula and DFormula set to ForwardEuler. See the pid reference page for more information about discrete integrator formulas.

## Version History <br> Introduced in R2010b

## See Also

pid|pidstd|get

## piddata2

Access coefficients of parallel-form 2-DOF PID controller

## Syntax

[Kp,Ki,Kd,Tf,b,c] = piddata2(sys)
[Kp,Ki,Kd,Tf,b,c,Ts] = piddata2(sys)
[Kp,Ki,Kd,Tf,b,c,Ts] = piddata2(sys,J1,..., JN)

## Description

[Kp, Ki, Kd, Tf, b, c] = piddata2(sys) returns the PID gains Kp,Ki, Kd, the filter time constant Tf , and the setpoint weights b and c of the parallel-form 2-DOF PID controller represented by the dynamic system sys.

If sys is a pid2 controller object, then each output argument is the corresponding coefficient in sys.
If sys is not a pid2 object, then each output argument is the corresponding coefficient of the parallel-form 2-DOF PID controller that is equivalent to sys.

If sys is an array of dynamic systems, then each output argument is an array of the same dimensions as sys.
[Kp, Ki, Kd,Tf, b, c, Ts] = piddata2(sys) also returns the sample time Ts. For discrete-time sys that is not a pid2 object, piddata2 calculates the coefficient values using the default ForwardEuler discrete integrator formula for both IFormula and DFormula. See the pid2 reference page for more information about discrete integrator formulas.
[Kp,Ki,Kd,Tf,b,c,Ts] = piddata2(sys,J1,..., JN) extracts the data for a subset of entries in sys, where sys is an N-dimensional array of dynamic systems. The indices J specify the array entry to extract.

## Examples

## Extract Coefficients from Parallel-Form 2-DOF PID Controller

Typically, you extract coefficients from a controller obtained from another function, such as pidtune or getBlockValue. For this example, create a 2-DOF PID controller that has random coefficients.

```
rng('default'); % for reproducibility
C2 = pid2(rand,rand,rand,rand,rand,rand);
```

Extract the PID coefficients, filter time constant, and setpoint weights.
$[\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}, \mathrm{Tf}, \mathrm{b}, \mathrm{c}]=\mathrm{piddata2}(\mathrm{C} 2)$;

## Extract Parallel-Form Gains from Standard-Form Controller

Create a 2-DOF PID controller in standard form.
$C 2=$ pidstd2(2,3,4,10, 0.5,0.5)
C2 =
with $\mathrm{Kp}=2, \mathrm{Ti}=3, \mathrm{Td}=4, \mathrm{~N}=10, \mathrm{~b}=0.5, \mathrm{c}=0.5$

Continuous-time 2-DOF PIDF controller in standard form
Compute the coefficients of an equivalent parallel-form PID controller.
[Kp,Ki,Kd,Tf,b, c] = piddata2(C2);
Check some of the coefficients to confirm that they are different from the standard-form coefficients.
Ki
$\mathrm{Ki}=0.6667$
Kd
$K d=8$

## Extract 2-DOF PID Coefficients from Equivalent System

Extract coefficients from a two-input, one-output dynamic system that represents a valid 2-DOF parallel-form PID controller.

The following A, B, C, and D matrices form a discrete-time state-space model that represents a 2-DOF PID controller.

```
A = [1,0;0.09975,0.995];
B = [0.00625,-0.00625;0.1245,-0.1241];
C = [0,4];
D = [2.875,-5.75];
sys = ss(A,B,C,D,0.1)
sys =
 A =
```



```
 B =
 Mrral
 x2 0.1245 -0.1241
```

```
C =
 y }\begin{array}{lrr}{\times1}&{x2}\\{y1}&{0}&{4}
D =
 u1 u2
 y1 2.875 -5.75
Sample time: 0.1 seconds
Discrete-time state-space model.
```

Extract the PID gains, filter time constant, and setpoint weights of the model.
[Kp,Ki,Kd,Tf,b, c,Ts] = piddata2(sys);
For a discrete-time system, piddata2 calculates the coefficient values using the default ForwardEuler discrete integrator formula for both IFormula and DFormula.

## Extract Coefficients from 2-DOF PI Controller Array

Typically, you obtain an array of controllers by using pidtune on an array of plant models. For this example, create an 2-by-3 array of 2-DOF PI controllers with random values of $\mathrm{Kp}, \mathrm{Ki}$, and b .
rng('default');
$C 2=\operatorname{pid} 2(\operatorname{rand}(2,3), \operatorname{rand}(2,3), 0,0, \operatorname{rand}(2,3), 0) ;$
Extract all the coefficients from the array.
[Kp,Ki,Kd,Tf,b,c] = piddata2(C2);
Each of the outputs is itself a 2-by-3 array. For example, examine Ki.
Ki
$\mathrm{Ki}=2 \times 3$

0.2785	0.9575	0.1576
0.5469	0.9649	0.9706

Extract only the coefficients of entry $(2,1)$ in the array.
[Kp21,Ki21,Kd21,Tf21,b21, c21] = piddata2(C2,2,1);
Each of these outputs is a scalar.
Ki21
$K$ i21 $=0.5469$

## Input Arguments

2-DOF PID controller in parallel form, specified as a pid2 controller object, a dynamic system model, or a dynamic system array. If sys is not a pid2 controller object, it must be a two-input, one-output model that represents a valid 2-DOF PID controller that can be written in parallel form.

## J - Indices <br> positive integers

Indices of entry to extract from a model array sys, specified as positive integers. Provide as many indices as there are array dimensions in sys. For example, suppose sys is a 4-by-5 (two-dimensional) array of pid2 controllers or dynamic system models that represent 2-DOF PID controllers. The following command extracts the data for entry $(2,3)$ in the array.
[Kp,Ki,Kd,Tf,b, c,Ts] = piddata2(sys,2,3);

## Output Arguments

## Kp - Proportional gain

scalar | array
Proportional gain of the parallel-form 2-DOF PID controller represented by sys, returned as a scalar or array.

If sys is a pid2 controller object, then $K p$ is the $K p$ value of sys.
If sys is not a pid2 object, then Kp is the proportional gain of the parallel-form 2-DOF PID controller that is equivalent to sys.

If sys is an array of dynamic systems, then $K p$ is an array of the same dimensions as sys.

## Ki - Integral gain

scalar | array
Integral gain of the parallel-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## Kd - Derivative gain

scalar | array
Derivative gain of the parallel-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## Tf - Filter time constant

scalar | array
Filter time constant of the parallel-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## b - Setpoint weight on proportional term

scalar | array
Setpoint weight on the proportional term of the parallel-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## c - Setpoint weight on derivative term

scalar | array

Setpoint weight on the derivative term of the parallel-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## Ts - Sample time

scalar
Sample time of the pid2 controller, dynamic system sys, or dynamic system array, returned as a scalar.

## Version History <br> Introduced in R2015b

## See Also

pid2 | pidstddata2 | piddata

## pidstd

PID controller in standard form

## Description

Use pidstd to create standard-form PID controller objects, or to convert dynamic system models to standard PID controller form.

The pidstd controller model object can represent standard-form PID controllers in continuous time or discrete time.

- Continuous time $-C=K_{p}\left(1+\frac{1}{T_{i}} \frac{1}{S}+\frac{T_{d} S}{\frac{T_{d}}{N} S+1}\right)$
- Discrete time $-C=K_{p}\left(1+\frac{1}{T_{i}} I F(z)+\frac{T_{d}}{\frac{T_{d}}{N}+D F(z)}\right)$

Here:

- $K_{p}$ is the proportional gain.
- $T_{i}$ is the integral time.
- $T_{d}$ is the derivative time.
- $N$ is the first-order derivative filter divisor.
- $I F(z)$ is the integrator method for computing integral in discrete-time controller.
- $D F(z)$ is the integrator method for computing derivative filter in discrete-time controller.

You can then combine this object with other components of a control architecture, such as the plant, actuators, and sensors to represent your control system. For more information, see "Control System Modeling with Model Objects".

You can create a PID controller model object by either specifying the controller parameters directly, or by converting a model of another type (such as a transfer function model tf) to PID controller form.

You can also use pidstd to create generalized state-space (genss) models or uncertain state-space (uss) models.

## Creation

You can obtain pidstd controller models in one of the following ways.

- Create a model using the pidstd function.
- Use pidtune function to tune PID controller for a plant model. Specify a baseline standard-form PID controller type using the C0 argument of the pidtune function. For example:

```
sys = zpk([],[-1 -1 -1],1);
```

C0 $=\operatorname{pidstd}(1,1,1)$;
$C=$ pidtune(sys,C0)

- Interactively tune PID controller for a plant model using:
- The Tune PID Controller Live Editor task.
- The PID Tuner app.


## Syntax

$C=$ pidstd(Kp,Ti,Td,N)
$C=$ pidstd $(\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N}, \mathrm{Ts})$
$C=$ pidstd(Kp)
C = pidstd(Kp,Ti)
$C=$ pidstd(Kp,Ti,Td)
$C=$ pidstd (__ , Name, Value)
$C=$ pidstd
$C=$ pidstd(sys)

## Description

$C=p i d s t d(\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N})$ creates a continuous-time standard-form PID controller model and sets the properties $\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}$, and N . The remaining properties have default values.
$C=p i d s t d(\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N}, \mathrm{Ts})$ creates a discrete-time PID controller model with sample time Ts.
$C=$ pidstd $(K p)$ creates a continuous-time proportional (P) controller.
$C=$ pidstd $(\mathrm{Kp}, \mathrm{Ti})$ creates a proportional and integral (PI) controller.
$C=p i d s t d(\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td})$ creates a proportional, integral, and derivative (PID) controller.
$C=$ pidstd (__, Name, Value) sets properties of the pidstd controller object specified using one or more Name, Value arguments for any of the previous input-argument combinations.
$C=$ pidstd creates a controller object with default property values. To modify the property of the controller model, use dot notation.
$C=$ pidstd(sys) converts the dynamic system model sys to a standard-form pidstd controller object.

## Input Arguments

## sys - Proportional gain

dynamic system model | model array
Dynamic system, specified as a SISO dynamic system model or array of SISO dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pid models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)

The resulting PID controller assumes

- current values of the tunable components for tunable control design blocks.
- nominal model values for uncertain control design blocks.
- Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models. (Using identified models requires System Identification Toolbox software.)


## Output Arguments

## C - Standard-form PID controller model

pidstd model object | genss model object | uss model object
PID controller model, returned as:

- A standard-form PID controller (pidstd) model object, when all the gains have numeric values. When the gains are numeric arrays, C is an array of pidstd controller objects.
- A generalized state-space model (genss) object, when the numerator or denominator input arguments includes tunable parameters, such as realp parameters or generalized matrices (genmat).
- An uncertain state-space model (uss) object, when the numerator or denominator input arguments includes uncertain parameters. Using uncertain models requires Robust Control Toolbox software.


## Properties

## Kp - Proportional gain

1 (default) | scalar | vector | matrix | realp object
Proportional gain, specified as a real and finite value or a tunable object.

- To create a pidstd controller object, use a real and finite scalar value.
- To create an array of pidstd controller objects, use an array of real and finite values.
- To create a tunable controller model, use a tunable parameter (realp) or generalized matrix (genmat).
- To create a tunable gain-scheduled controller model, use a tunable surface created using tunableSurface.


## Ti - Integral time

Inf (default) | scalar | vector | matrix | realp object
Integral time, specified as a real and positive value or a tunable object.

- To create a pidstd controller object, use a real and positive scalar value.
- To create an array of pidstd controller objects, use an array of real and positive values.
- To create a tunable controller model, use a tunable parameter (realp) or generalized matrix (genmat).
- To create a tunable gain-scheduled controller model, use a tunable surface created using tunableSurface.


## Td - Derivative time

0 (default) | scalar | vector | matrix | realp object
Derivative time, specified as a real, finite, and nonnegative value or a tunable object.

- To create a pidstd controller object, use a real, finite, and nonnegative scalar value.
- To create an array of pidstd controller objects, use an array of real, finite, and nonnegative values.
- To create a tunable controller model, use a tunable parameter (realp) or generalized matrix (genmat).
- To create a tunable gain-scheduled controller model, use a tunable surface created using tunableSurface.


## N - Derivative filter divisor

Inf (default) | scalar | vector | matrix | realp object
First-order derivative filter divisor, specified as a real and positive value or a tunable object.

- To create a pidstd controller object, use a real and positive scalar value.
- To create an array of pidstd controller objects, use an array io real and positive values.
- To create a tunable controller model, use a tunable parameter (realp) or generalized matrix (genmat).
- To create a tunable gain-scheduled controller model, use a tunable surface created using tunableSurface.

When $\mathrm{N}=$ Inf, the controller has no filter on the derivative action.

## IFormula - Method for computing integral in discrete-time controller <br> 'ForwardEuler' (default)|'BackwardEuler' | 'Trapezoidal'

Discrete integrator formula $\operatorname{IF}(z)$ for the integrator of the discrete-time pidstd controller:

$$
C=K_{p}\left(1+\frac{1}{T_{i}} I F(z)+\frac{T_{d}}{\frac{T_{d}}{N}+D F(z)}\right) .
$$

Specify IFormula as one of the following:

- 'ForwardEuler' $-I F(z)=\frac{T_{s}}{z-1}$.

This formula is best for small sample time, where the Nyquist limit is large compared to the bandwidth of the controller. For larger sample time, the ForwardEuler formula can result in instability, even when discretizing a system that is stable in continuous time.

- 'BackwardEuler' $-I F(z)=\frac{T_{s} z}{z-1}$.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result.
-

$$
\text { 'Trapezoidal' }-I F(z)=\frac{T_{s}}{2} \frac{z+1}{z-1} .
$$

An advantage of the Trapezoidal formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result. Of all available integration formulas, the Trapezoidal formula yields the closest match between frequency-domain properties of the discretized system and the corresponding continuous-time system.

When C is a continuous-time controller, IFormula is ' ' .

## DFormula - Method for computing derivative in discrete-time controller

'ForwardEuler' (default)|'BackwardEuler' | 'Trapezoidal'
Discrete integrator formula $D F(z)$ for the derivative filter of the discrete-time pidstd controller:

$$
C=K_{p}\left(1+\frac{1}{T_{i}} I F(z)+\frac{T_{d}}{\frac{T_{d}}{N}+D F(z)}\right) .
$$

Specify DFormula as one of the following:

- 'ForwardEuler' $-D F(z)=\frac{T_{s}}{z-1}$.

This formula is best for small sample time, where the Nyquist limit is large compared to the bandwidth of the controller. For larger sample time, the ForwardEuler formula can result in instability, even when discretizing a system that is stable in continuous time.

- 'BackwardEuler' $-D F(z)=\frac{T_{s} z}{z-1}$.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result.

- 'Trapezoidal' $-D F(z)=\frac{T_{s}}{2} \frac{z+1}{z-1}$.

An advantage of the Trapezoidal formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result. Of all available integration formulas, the Trapezoidal formula yields the closest match between frequency-domain properties of the discretized system and the corresponding continuous-time system.

The Trapezoidal value for DFormula is not available for a pidstd controller with no derivative filter ( $\mathrm{N}=\mathrm{Inf}$ ).

When C is a continuous-time controller, DFormula is ' ' .

## InputDelay - Input delay <br> 0 (default)

This property is read-only.
Time delay on the system input. InputDelay is always 0 for a pidstd controller object.

## OutputDelay - Output delay

0 (default)
This property is read-only.

Time delay on the system output. OutputDelay is always 0 for a pidstd controller object.

## Ts - Sample time

0 (default) | positive scalar
Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.

PID controller models do not support unspecified sample time (Ts = -1 ).

Note Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

The discrete integrator formulas of the discretized controller depend upon the c2d discretization method you use, as shown in this table.

c2d Discretization Method	IFormula	DFormula
'zoh'	ForwardEuler	ForwardEuler
'foh'	Trapezoidal	Trapezoidal
'tustin'	Trapezoidal	Trapezoidal
'impulse'	ForwardEuler	ForwardEuler
'matched'	ForwardEuler	ForwardEuler

For more information about c2d discretization methods, see c2d.
If you require different discrete integrator formulas, you can discretize the controller by directly setting Ts, IFormula, and DFormula to the desired values. However, this method does not compute new gain and filter-constant values for the discretized controller. Therefore, this method might yield a poorer match between the continuous-time and discrete-time PID controllers than using c2d.

## TimeUnit - Time variable units

```
'seconds' (default)|'nanoseconds'| 'microseconds' | 'milliseconds' |'minutes'|
'hours'|'days'| 'weeks'|'months'|'years'|...
```

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

## InputName - Input channel names

" (default) | character vector
Input channel name, specified as one of the following:

- A character vector.
- ' ' , no name specified.

Alternatively, assign the name error to the input of a controller model C as follows.
C.InputName = 'error';

You can use the shorthand notation $u$ to refer to the InputName property. For example, C. u is equivalent to C. InputName.

Use InputName to:

- Identify channels on model display and plots.
- Specify connection points when interconnecting models.


## InputUnit - Input channel units

' ' (default) | character vector
Input channel units, specified as one of the following:

- A character vector.
- ' ' , no units specified.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.
For example, assign the concentration units ' $\mathrm{mol} / \mathrm{m}^{\wedge} 3^{\prime}$ ' to the input of a controller model C as follows.
C. InputUnit = 'mol/m^3';

InputGroup - Input channel groups
structure
Input channel groups. This property is not needed for PID controller models.
By default, InputGroup is a structure with no fields.

## OutputName - Output channel names

' ' (default) | character vector
Output channel name, specified as one of the following:

- A character vector.
- ' ' ' , no name specified.

For example, assign the name ' control' to the output of a controller model C as follows.
C.OutputName = 'control';

You can also use the shorthand notation $y$ to refer to the OutputName property. For example, C. y is equivalent to C.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Specify connection points when interconnecting models.


## OutputUnit - Output channel units

' ' (default) | character vector
Output channel units, specified as one of the following:

- A character vector.
- ' ' , no units specified.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.
For example, assign the unit 'volts ' to the output of a controller model C as follows.
C.OutputUnit = 'volts';

OutputGroup - Output channel groups
structure
Output channel groups. This property is not needed for PID controller models.
By default, OutputGroup is a structure with no fields.

## Notes - User-specified text

\{\} (default) | character vector | cell array of character vectors
User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

## UserData - User-specified data

[ ] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

## Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, 'system_1'.

## SamplingGrid - Sampling grid for model arrays

structure array
Sampling grid for model arrays, specified as a structure array.

Use SamplingGrid to track the variable values associated with each model in a model array, including identified linear time-invariant (IDLTI) model arrays.

Set the field names of the structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables must be numeric scalars, and all arrays of sampled values must match the dimensions of the model array.

For example, you can create an 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, you can create a 6-by-9 model array, M, by independently sampling two variables, zeta and $w$. The following code maps the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display $M$, each entry in the array includes the corresponding zeta and $w$ values.

```
M
M(:,:,1,1) [zeta=0.3, w=5] =
 2 5
 s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, W=5] =
 2 5
 s^2 + 3.5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For instance, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid automatically.

By default, SamplingGrid is a structure with no fields.

## Object Functions

The following lists contain a representative subset of the functions you can use with pidstd models. In general, any function applicable to "Dynamic System Models" is applicable to a pidstd object.

## Linear Analysis

step $\quad$ Step response plot of dynamic system; step response data impulse Impulse response plot of dynamic system; impulse response data
lsim Plot simulated time response of dynamic system to arbitrary inputs; simulated response data
bode Bode plot of frequency response, or magnitude and phase data
nyquist Nyquist plot of frequency response
nichols Nichols chart of frequency response
bandwidth Frequency response bandwidth

## Stability Analysis

pole Poles of dynamic system
zero Zeros and gain of SISO dynamic system
pzplot Pole-zero plot of dynamic system model with additional plot customization options
margin Gain margin, phase margin, and crossover frequencies

## Model Transformation

zpk Zero-pole-gain model
ss State-space model
c2d Convert model from continuous to discrete time
d2c Convert model from discrete to continuous time
d2d Resample discrete-time model

## Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

## Controller Design

pidtune PID tuning algorithm for linear plant model
rlocus Root locus plot of dynamic system
pidstddata Access coefficients of standard-form PID controller
make2DOF Convert 1-DOF PID controller to 2-DOF controller
pidTuner Open PID Tuner for PID tuning
tunablePID Tunable PID controller

## Examples

## Create Continuous-Time Standard-Form PDF Controller

Create a continuous-time standard-form PDF controller with proportional and derivative terms, and a filter divisor. To do so, set the integral time to infinite. Set the other gains and the filter divisor constant to the desired values.

```
Kp = 1;
Ti = Inf;
Td = 3;
N = 6;
C = pidstd(Kp,Ti,Td,N)
C =
```

```
 Kp * (1 + Td * -----------)
 (Td/N)*s+1
 with Kp = 1, Td = 3, N = 6
Continuous-time PDF controller in standard form
```

The display shows the controller type, formula, and parameter values, and verifies that the controller has no integrator term.

## Discrete-Time Standard-Form PI Controller

Create a discrete-time standard-form PI controller with trapezoidal discretization formula.
To create a discrete-time PI controller, set the value of Ts and the discretization formula using Name, Value syntax.

```
C2 = pidstd(1,0.5,'Ts',0.1,'IFormula','Trapezoidal') % Ts = 0.1s
C2 =
 Kp * (1 + ----** *-------)
 with Kp = 1, Ti = 0.5, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PI controller in standard form
```

Alternatively, you can create the same discrete-time controller by supplying Ts as the fifth input argument after all four PID parameters, Kp, Ti, Td, and N. Since you only want a PI controller, set Td to zero and $N$ to infinite.

```
C2 = pidstd(5,2.4,0,Inf,0.1,'IFormula','Trapezoidal')
C2 =
 Kp * (1 + ----** *s*(z+1)
 with Kp = 5, Ti = 2.4, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PI controller in standard form
```

The display shows that C1 and C2 are the same.

## Standard-Form PID Controller with Named Input and Output

When you create a PID controller, set the dynamic system properties InputName and OutputName. This is useful, for example, when you interconnect the PID controller with other dynamic system models using the connect command.

```
C = pidstd(1,2,3,'InputName','e','OutputName','u')
C =
 Kp * (1 + 1 - - * % - - + Td * s)
 Ti S
 with Kp = 1, Ti = 2, Td = 3
Continuous-time PID controller in standard form
```

The display does not show the input and output names for the PID controller, but you can examine the property values. For instance, verify the input name of the controller.

```
C.InputName
ans = 1x1 cell array
 {'e'}
```


## Array of Standard-Form PID Controllers

Create a 2-by-3 grid of PI controllers with proportional gain ranging from 1-2 across the array rows and integral gain ranging from 5-9 across columns.

To build the array of PID controllers, start with arrays representing the gains.

```
Kp = [1 1 1;2 2 2];
Ti = [5:2:9;5:2:9];
```

When you pass these arrays to the pidstd command, the command returns an array of controllers.

```
pi_array = pidstd(Kp,Ti,'Ts',0.1,'IFormula','BackwardEuler');
size(pi_array)
2x3 array of PID controller.
Each PID has 1 output and 1 input.
```

Alternatively, use the stack command to build an array of PID controllers.
Create a PID controller.

```
C = pidstd(1,5,0.1)
C =
 Kp * (1 + - --- * * - -- % + Td * s)
```

```
 with Kp = 1, Ti = 5, Td = 0.1
Continuous-time PID controller in standard form
```

Create a PIDF controller.

```
Cf = pidstd(1,5,0.1,0.5)
Cf =
```



```
 with Kp = 1, Ti = 5, Td = 0.1, N = 0.5
Continuous-time PIDF controller in standard form
```

Stack the controllers along the second array dimension.

```
pid_array = stack(2,C,Cf);
```

This command returns a 1-by-2 array of controllers.

```
size(pid_array)
1x2 array of PID controller.
Each PID has 1 output and 1 input.
```

All PID controllers in an array must have the same sample time, discrete integrator formulas, and dynamic system properties such as InputName and OutputName.

## Convert PID Controller from Parallel to Standard Form

Convert a parallel-form pid controller to standard form.
Parallel PID form expresses the controller actions in terms of an overall proportional, integral, and derivative gains Kp, Ki and Kd, and a filter time constant Tf. You can convert any parallel-form controller to standard form using the pidstd command, provided that:

- The parallel-form controller is not a pure integrator.
- The gains Kp, Ki and Kd all have the same sign.

For example, consider the following parallel-form controller.

```
Kp = 2;
Ki = 3;
Kd = 4;
Tf = 5;
C_par = pid(Kp,Ki,Kd,Tf)
C_par =
```

```
 Kp + Ki * --- + Kd * --------
 s Tf*s+1
with Kp = 2, Ki = 3, Kd = 4, Tf = 5
Continuous-time PIDF controller in parallel form.
```

Convert this controller to standard form using pidstd.

```
C_std = pidstd(C_par)
C_std =
 Kp * (1 + <-- * * --- l + Td * %---------)
 with Kp = 2, Ti = 0.667, Td = 2, N = 0.4
Continuous-time PIDF controller in standard form
```


## Convert Dynamic System to Standard-Form PID Controller

Convert a continuous-time dynamic system that represents a PID controller to standard pidstd form.
The following dynamic system, with an integrator and two zeros, is equivalent to a PID controller.

$$
H(s)=\frac{3(s+1)(s+2)}{s}
$$

Create a zpk model of $H$. Then use the pidstd command to obtain $H$ in terms of the PID gains Kp, Ti, and Td.

```
H = zpk([-1,-2],0,3);
C = pidstd(H)
C =
```



```
 Ti s
 with \(\mathrm{Kp}=9, \mathrm{Ti}=1.5, \mathrm{Td}=0.333\)
Continuous-time PID controller in standard form
```


## Convert Discrete-Time Dynamic System to Standard-Form PID Controller

Convert a discrete-time dynamic system that represents a PID controller with derivative filter to standard pidstd form.

Create a discrete-time zpk model that represents a PIDF controller (two zeros and two poles, including the integrator pole at $z=1$ ).

```
sys = zpk([-0.5,-0.6],[1 -0.2],3,'Ts',0.1);
```

When you convert sys to PID form, the result depends on which discrete integrator formulas you specify for the conversion. For instance, use the default, ForwardEuler, for both the integrator and the derivative.

```
C = pidstd(sys)
C =
```



```
 with Kp = 2.75, Ti = 0.0458, Td = 0.00758, N = 0.0909, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PIDF controller in standard form
```

For this particular dynamic system, you cannot write sys in standard PID form using the BackwardEuler formula for the derivative filter. Doing so would result in $\mathrm{N}<0$, which is not permitted. In that case, pidstd returns an error.

Similarly, you cannot write sys in standard PID form using the Trapezoidal formula. Doing so would result in negative Ti and Td , which is also not permitted.

## Discretize Continuous-Time Standard-Form PID Controller

Discretize a continuous-time PID controller and set integral and derivative filter formulas.
Create a continuous-time PIDF controller and discretize it using the zero-order-hold method of the c2d command.

```
Ccon = pidstd(1,2,3,4);
Cdis1 = c2d(Ccon,0.1,'zoh')
Cdis1 =
```



```
 with Kp = 1, Ti = 2, Td = 3.2, N = 4, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PIDF controller in standard form
```

The display shows that c2d computes new PID gains for the discrete-time controller.
The discrete integrator formulas of the discretized controller depend on the c2d discretization method. For the zoh method, both IFormula and DFormula are ForwardEuler.

Cdis1.IFormula
ans =
'ForwardEuler'

```
Cdis1.DFormula
ans =
'ForwardEuler'
```

If you want to use different formulas from the ones returned by c2d, then you can directly set the Ts, IFormula, and DFormula properties of the controller to the desired values.

```
Cdis2 = Ccon;
Cdis2.Ts = 0.1;
Cdis2.IFormula = 'BackwardEuler';
Cdis2.DFormula = 'BackwardEuler';
```

However, these commands do not compute new PID gains for the discretized controller. To see this, examine Cdis2 and compare the coefficients to Ccon and Cdis1.

Cdis2
Cdis2 =

```
 1 Ts*z 1
 Kp * (1 + ----* *---- + Td * ------------------
 Ti z-1 (Td/N)+Ts*z/(z-1)
 with Kp = 1, Ti = 2, Td = 3, N = 4, Ts = 0.1
```

Sample time: 0.1 seconds
Discrete-time PIDF controller in standard form

## Version History

Introduced in R2010b

## See Also

pid | pidstd2 | pidstddata|pidtune | pidTuner

## Topics

"Proportional-Integral-Derivative (PID) Controllers"
"Discrete-Time Proportional-Integral-Derivative (PID) Controllers"
"What Are Model Objects?"

## pidstd2

Create 2-DOF PID controller in standard form, convert to standard-form 2-DOF PID controller

## Syntax

C2 $=$ pidstd2 $(\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N}, \mathrm{b}, \mathrm{c})$
C2 $=$ pidstd2(Kp,Ti,Td,N, $\mathrm{b}, \mathrm{c}, \mathrm{Ts})$
C2 = pidstd2(sys)
C2 = pid2( $\qquad$ ,Name, Value)

## Description

pid2 controller objects represent two-degree-of-freedom (2-DOF) PID controllers in parallel form. Use pid2 either to create a pid2 controller object from known coefficients or to convert a dynamic system model to a pid2 object.

Two-degree-of-freedom (2-DOF) PID controllers include setpoint weighting on the proportional and derivative terms. A 2-DOF PID controller is capable of fast disturbance rejection without significant increase of overshoot in setpoint tracking. 2-DOF PID controllers are also useful to mitigate the influence of changes in the reference signal on the control signal. The following illustration shows a typical control architecture using a 2-DOF PID controller.


C2 = pidstd2 (Kp,Ti,Td, $\mathrm{N}, \mathrm{b}, \mathrm{c}$ ) creates a continuous-time 2-DOF PID controller with proportional gain Kp , integrator and derivative time constants Ti , and Td , and derivative filter divisor $N$. The controller also has setpoint weighting $b$ on the proportional term, and setpoint weighting $c$ on the derivative term. The relationship between the 2-DOF controller's output ( $u$ ) and its two inputs ( $r$ and $y$ ) is given by:

$$
u=K_{p}\left[(b r-y)+\frac{1}{T_{i} S}(r-y)+\frac{T_{d} S}{\frac{T_{d}}{N} S+1}(c r-y)\right] .
$$

This representation is in standard form. If all of the coefficients are real-valued, then the resulting C2 is a pidstd2 controller object. If one or more of these coefficients is tunable (realp or genmat), then C 2 is a tunable generalized state-space (genss) model object.
$\mathrm{C} 2=$ pidstd2 $(\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N}, \mathrm{b}, \mathrm{c}, \mathrm{Ts})$ creates a discrete-time 2-DOF PID controller with sample time Ts. The relationship between the controller's output and inputs is given by:

$$
u=K_{p}\left[(b r-y)+\frac{1}{T_{i}} I F(z)(r-y)+\frac{T_{d}}{\frac{T_{d}}{N}+D F(z)}(c r-y)\right] .
$$

$I F(z)$ and $D F(z)$ are the discrete integrator formulas for the integrator and derivative filter. By default,

$$
I F(z)=D F(z)=\frac{T_{S}}{z-1} .
$$

To choose different discrete integrator formulas, use the IFormula and DFormula properties. (See "Properties" on page 2-999 for more information). If DFormula = 'ForwardEuler' (the default value) and $N \neq \operatorname{Inf}$, then Ts, Td, and $N$ must satisfy $\mathrm{Td} / \mathrm{N}>\mathrm{Ts} / 2$. This requirement ensures a stable derivative filter pole.

C2 = pidstd2(sys) converts the dynamic system sys to a standard form pidstd2 controller object.

C2 = pid2 (__ , Name, Value) specifies additional properties as comma-separated pairs of Name, Value arguments.

## Input Arguments

## Kp

Proportional gain.
Kp can be:

- A real and finite value.
- An array of real and finite values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.


## Default: 1

## Ti

Integrator time.
Ti can be:

- A real and positive value.
- An array of real and positive values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When Ti = Inf, the controller has no integral action.
Default: Inf

## Td

Derivative time.

Td can be:

- A real, finite, and nonnegative value.
- An array of real, finite, and nonnegative values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When $\mathrm{Td}=0$, the controller has no derivative action.

## Default: 0

## N

Derivative filter divisor.
$N$ can be:

- A real and positive value.
- An array of real and positive values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When $\mathrm{N}=\mathrm{Inf}$, the controller has no filter on the derivative action.

## Default: Inf

b
Setpoint weighting on proportional term.
b can be:

- A real, nonnegative, and finite value.
- An array of real, nonnegative, finite values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When $b=0$, changes in setpoint do not feed directly into the proportional term.

## Default: 1

## c

Setpoint weighting on derivative term.
c can be:

- A real, nonnegative, and finite value.
- An array of real, nonnegative, finite values.
- A tunable parameter (realp) or generalized matrix (genmat).
- A tunable surface for gain-scheduled tuning, created using tunableSurface.

When $\mathrm{c}=0$, changes in setpoint do not feed directly into the derivative term.

## Default: 1

## Ts

Sample time.
To create a discrete-time pidstd2 controller, provide a positive real value (Ts > 0).pidstd2 does not support discrete-time controller with undetermined sample time ( $\mathrm{Ts}=-1$ ).

Ts must be a scalar value. In an array of pidstd2 controllers, each controller must have the same Ts.

Default: 0 (continuous time)
sys
SISO dynamic system to convert to standard pidstd2 form.
sys be a two-input, one-output system. sys must represent a valid 2-DOF controller that can be written in standard form with $\mathrm{Ti}>0, \mathrm{Td} \geq 0$, and $\mathrm{N}>0$.
sys can also be an array of SISO dynamic systems.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside quotes. You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Use Name, Value syntax to set the numerical integration formulas IFormula and DFormula of a discrete-time pidstd2 controller, or to set other object properties such as InputName and OutputName. For information about available properties of pidstd2 controller objects, see "Properties" on page 2-999.

## Output Arguments

## C2

2-DOF PID controller, returned as a pidstd2 controller object, an array of pidstd2 controller objects, a genss object, or a genss array.

- If all the coefficients have scalar numeric values, then C2 is a pidstd2 controller object.
- If one or more coefficients is a numeric array, C2 is an array of pidstd2 controller objects. The controller type (such as PI, PID, or PDF) depends upon the values of the gains. For example, when $\mathrm{Td}=0$, but Kp and Ti are nonzero and finite, C2 is a PI controller.
- If one or more coefficients is a tunable parameter (realp), generalized matrix (genmat), or tunable gain surface (tunableSurface), then C2 is a generalized state-space model (genss).


## Properties

## b, c

Setpoint weights on the proportional and derivative terms, respectively. b and c values are real, finite, and positive. When you create a 2-DOF PID controller using the pidstd2 command, the initial values of these properties are set by the $b$, and $c$ input arguments, respectively.

## Kp

Proportional gain.
The value of Kp is real and finite. When you create a 2-DOF PID controller using the pidstd2 command, the initial value of this property is set by the Kp input argument.

## Ti

Integrator time. Ti is real and positive. When you create a 2-DOF PID controller using the pidstd2 command, the initial value of this property is set by the Ti input argument. When Ti = Inf, the controller has no integral action.

## Td

Derivative time. Td is real, finite, and nonnegative. When you create a 2-DOF PID controller using the pidstd2 command, the initial value of this property is set by the Td input argument. When $\mathrm{Td}=0$, the controller has no derivative action.

## N

Derivative filter divisor. N must be real and positive. When you create a 2-DOF PID controller using the pidstd2 command, the initial value of this property is set by the $N$ input argument.

## IFormula

Discrete integrator formula $I F(z)$ for the integrator of the discrete-time pidstd2 controller C2. The relationship between the inputs and output of C2 is given by:

$$
u=K_{p}\left[(b r-y)+\frac{1}{T_{i}} I F(z)(r-y)+\frac{T_{d}}{\frac{T_{d}}{N}+D F(z)}(c r-y)\right] .
$$

IFormula can take the following values:

- 'ForwardEuler' $-I F(z)=\frac{T_{s}}{z-1}$.

This formula is best for small sample time, where the Nyquist limit is large compared to the bandwidth of the controller. For larger sample time, the ForwardEuler formula can result in instability, even when discretizing a system that is stable in continuous time.

- 'BackwardEuler' $-I F(z)=\frac{T_{s} z}{z-1}$.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result.

- 'Trapezoidal' $^{\prime}-I F(z)=\frac{T_{s}}{2} \frac{z+1}{z-1}$.

An advantage of the Trapezoidal formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result. Of all available integration formulas, the Trapezoidal formula yields the closest match between frequency-domain properties of the discretized system and the corresponding continuous-time system.

When C2 is a continuous-time controller, IFormula is ' ' .

## Default: 'ForwardEuler'

## DFormula

Discrete integrator formula $D F(z)$ for the derivative filter of the discrete-time pidstd2 controller C2. The relationship between the inputs and output of C 2 is given by:

$$
u=K_{p}\left[(b r-y)+\frac{1}{T_{i}} I F(z)(r-y)+\frac{T_{d}}{\frac{T_{d}}{N}+D F(z)}(c r-y)\right] .
$$

DFormula can take the following values:

- 'ForwardEuler' $-D F(z)=\frac{T_{S}}{z-1}$.

This formula is best for small sample time, where the Nyquist limit is large compared to the bandwidth of the controller. For larger sample time, the ForwardEuler formula can result in instability, even when discretizing a system that is stable in continuous time.

- 'BackwardEuler' $-D F(z)=\frac{T_{s} z}{z-1}$.

An advantage of the BackwardEuler formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result.
-
'Trapezoidal' $-D F(z)=\frac{T_{S}}{2} \frac{z+1}{z-1}$.
An advantage of the Trapezoidal formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result. Of all available integration formulas, the Trapezoidal formula yields the closest match between frequency-domain properties of the discretized system and the corresponding continuous-time system.

The Trapezoidal value for DFormula is not available for a pidstd2 controller with no derivative filter $(\mathrm{N}=\mathrm{Inf})$.

When C2 is a continuous-time controller, DFormula is ' ' .

## Default: 'ForwardEuler'

## InputDelay

Time delay on the system input. InputDelay is always 0 for a pidstd2 controller object.

## OutputDelay

Time delay on the system Output. OutputDelay is always 0 for a pidstd2 controller object.

## Ts

Sample time. For continuous-time models, Ts $=0$. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. PID controller models do not support unspecified sample time (Ts =-1).

Changing this property does not discretize or resample the model. Use c2d and d2c to convert between continuous- and discrete-time representations. Use d2d to change the sample time of a discrete-time system.

Default: 0 (continuous time)

## TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

## InputName

Input channel name, specified as a character vector or a 2-by-1 cell array of character vectors. Use this property to name the input channels of the controller model. For example, assign the names setpoint and measurement to the inputs of a 2-DOF PID controller model C as follows.

```
C.InputName = \{'setpoint';'measurement'\};
```

Alternatively, use automatic vector expansion to assign both input names. For example:
C. InputName = 'C-input';

The input names automatically expand to \{'C-input(1)' ; 'C-input(2)' $\}$.
You can use the shorthand notation $u$ to refer to the InputName property. For example, C. u is equivalent to C. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Specifying connection points when interconnecting models


## Default: \{'';''\}

## InputUnit

Input channel units, specified as a 2-by-1 cell array of character vectors. Use this property to track input signal units. For example, assign the units Volts to the reference input and the concentration units $\mathrm{mol} / \mathrm{m}^{\wedge} 3$ to the measurement input of a 2-DOF PID controller model C as follows.

```
C.InputUnit = {'Volts';'mol/m^3'};
```

InputUnit has no effect on system behavior.
Default: \{' ';''\}

## InputGroup

Input channel groups. This property is not needed for PID controller models.
Default: struct with no fields

## OutputName

Output channel name, specified as a character vector. Use this property to name the output channel of the controller model. For example, assign the name control to the output of a controller model C as follows.
C.OutputName = 'control';

You can use the shorthand notation y to refer to the OutputName property. For example, $\mathrm{C} . \mathrm{y}$ is equivalent to C.OutputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Specifying connection points when interconnecting models

Default: Empty character vector, ' '

## OutputUnit

Output channel units, specified as a character vector. Use this property to track output signal units. For example, assign the unit Volts to the output of a controller model C as follows.
C.OutputUnit = 'Volts';

OutputUnit has no effect on system behavior.
Default: Empty character vector, ' '

## OutputGroup

Output channel groups. This property is not needed for PID controller models.

Default: struct with no fields

## Name

System name, specified as a character vector. For example, 'system_1'.

## Default: ' '

## Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans =
 "sys1 has a string."
ans =
 'sys2 has a character vector.'
```

Default: [ $0 \times 1$ string]
UserData

Any type of data you want to associate with system, specified as any MATLAB data type.

## Default: []

## SamplingGrid

Sampling grid for model arrays, specified as a data structure.
For model arrays that are derived by sampling one or more independent variables, this property tracks the variable values associated with each model in the array. This information appears when you display or plot the model array. Use this information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables should be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, suppose you create a 6 -by- 9 model array, M, by independently sampling two variables, zeta and $w$. The following code attaches the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display $M$, each entry in the array includes the corresponding zeta and $w$ values.

```
M
M(:,:,1,1) [zeta=0.3, w=5] =
 25
 s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
 2 5
 S^2 + 3.5ss+25
 s^2 + 3.5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For example, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid in this way.

## Default: []

## Examples

## 2-DOF PDF Controller

Create a continuous-time 2-DOF PDF controller in standard form. To do so, set the integral time constant to Inf. Set the other gains and the filter divisor to the desired values.

```
Kp = 1;
Ti = Inf; % No integrator
Td = 3;
N = 6;
b = 0.5; % setpoint weight on proportional term
c = 0.5; % setpoint weight on derivative term
C2 = pidstd2(Kp,Ti,Td,N,b,c)
C2 =
 u = Kp * [(b*r-y) +Td * ----------** (c*r-y)]
 (Td/N)*s+1
 with Kp = 1, Td = 3, N = 6, b = 0.5, c = 0.5
Continuous-time 2-DOF PDF controller in standard form
```

The display shows the controller type, formula, and parameter values, and verifies that the controller has no integrator term.

## Discrete-Time 2-DOF PI Controller in Standard Form

Create a discrete-time 2-DOF PI controller in standard form, using the trapezoidal discretization formula. Specify the formula using Name, Value syntax.

```
Kp = 1;
Ti = 2.4;
Td = 0;
N = Inf;
b = 0.5;
c = 0;
Ts = 0.1;
C2 = pidstd2(Kp,Ti,Td,N,b,c,Ts,'IFormula','Trapezoidal')
C2 =
```



```
 with Kp = 1, Ti = 2.4, b = 0.5, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time 2-DOF PI controller in standard form
```

Setting Td $=0$ specifies a PI controller with no derivative term. As the display shows, the values of $N$ and c are not used in this controller. The display also shows that the trapezoidal formula is used for the integrator.

## 2-DOF PID Controller with Named Inputs and Output

Create a 2-DOF PID controller in standard form, and set the dynamic system properties InputName and OutputName. Naming the inputs and the output is useful, for example, when you interconnect the PID controller with other dynamic system models using the connect command.

```
C2 = pidstd2(1,2,3,10,1,1,'InputName',{'r','y'},'OutputName','u')
C2 =
```



```
 with Kp = 1, Ti = 2, Td = 3, N = 10, b = 1, c = 1
Continuous-time 2-DOF PIDF controller in standard form
```

A 2-DOF PID controller has two inputs and one output. Therefore, the 'InputName ' property is an array containing two names, one for each input. The model display does not show the input and
output names for the PID controller, but you can examine the property values to see them. For instance, verify the input name of the controller.

```
C2.InputName
ans = 2x1 cell
 {'r'}
 {'y'}
```


## Array of 2-DOF PID Controllers

Create a 2-by-3 grid of 2-DOF PI controllers in standard form. The proportional gain ranges from 1-2 across the array rows, and the integrator time constant ranges from 5-9 across columns.

To build the array of PID controllers, start with arrays representing the gains.

```
Kp = [1 1 1;2 2 2];
Ti = [5:2:9;5:2:9];
```

When you pass these arrays to the pidstd2 command, the command returns the array of controllers.

```
pi_array = pidstd2(Kp,Ti,0,Inf,0.5,0,'Ts',0.1,'IFormula','BackwardEuler');
size(pi_array)
2x3 array of 2-DOF PID controller.
Each PID has 1 output and 2 inputs.
```

If you provide scalar values for some coefficients, pidstd2 automatically expands them and assigns the same value to all entries in the array. For instance, in this example, $\mathrm{Td}=0$, so that all entries in the array are PI controllers. Also, all entries in the array have $\mathrm{b}=0.5$.

Access entries in the array using array indexing. For dynamic system arrays, the first two dimensions are the I/O dimensions of the model, and the remaining dimensions are the array dimensions. Therefore, the following command extracts the $(2,3)$ entry in the array.

```
pi23 = pi_array(:,:,2,3)
pi23 =
 u = Kp * [(b*r-y) + \---** %----** (r-y)]
 with Kp = 2, Ti = 9, b = 0.5, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time 2-DOF PI controller in standard form
```

You can also build an array of PID controllers using the stack command.

```
C2 = pidstd2(1,5,0.1,Inf,0.5,0.5);
C2f = pidstd2(1,5,0.1,0.5,0.5,0.5);
pid_array = stack(2,C2,C2f);
```

```
% PID controller
% PID controller with filter
% stack along 2nd array dimension
```

These commands return a 1 -by- 2 array of controllers.

```
size(pid_array)
1x2 array of 2-DOF PID controller.
Each PID has 1 output and 2 inputs.
```

All PID controllers in an array must have the same sample time, discrete integrator formulas, and dynamic system properties such as InputName and OutputName.

## Convert 2-DOF PID Controller from Parallel to Standard Form

Convert a parallel-form pid2 controller to standard form.
Parallel PID form expresses the controller actions in terms of proportional, integral, and derivative gains $\mathrm{Kp}, \mathrm{Ki}$, and Kd , and filter time constant Tf . You can convert a parallel-form pid2 controller to standard form using the pidstd2 command, provided that both of the following are true:

- The pid2 controller can be expressed in valid standard form.
- The gains $\mathrm{Kp}, \mathrm{Ki}$, and Kd of the pid2 controller all have the same sign.

For example, consider the following parallel-form controller.

```
Kp = 2;
Ki = 3;
Kd = 4;
Tf = 2;
b = 0.1;
c = 0.5;
C2_par = pid2(Kp,Ki,Kd,Tf,b,c)
C2_par =
```



```
 with Kp = 2, Ki = 3, Kd = 4, Tf = 2, b = 0.1, c = 0.5
Continuous-time 2-DOF PIDF controller in parallel form.
```

Convert this controller to parallel form using pidstd2.

```
C2_std = pidstd2(C2_par)
C2_std =
```



```
 with Kp = 2, Ti = 0.667, Td = 2, N = 1, b = 0.1, c = 0.5
Continuous-time 2-DOF PIDF controller in standard form
```

The display confirms the new standard form. A response plot confirms that the two forms are equivalent.
bodeplot(C2_par,'b-',C2_std,'r--')
legend('Parallel','Standard','Location','Southeast')

## Bode Diagram



## Convert Dynamic System to Standard-Form 2-DOF PID Controller

Convert a two-input, one-output continuous-time dynamic system that represents a 2-DOF PID controller to a standard-form pidstd2 controller.

The following state-space matrices represent a 2-DOF PID controller.
A = [0,0;0,-8.181];
$B=[1,-1 ;-0.1109,8.181]$;
$C=[0.2301,10.66] ;$
D = [0.8905, -11.79];
sys = ss(A,B,C,D);
Rewrite sys in terms of the standard-form PID parameters Kp, Ti, Td, and N, and the setpoint weights b and c .

```
C2 = pidstd2(sys)
C2 \(=\)
```

$$
\mathrm{u}=\mathrm{Kp} *\left[(\mathrm{~b} * \mathrm{r}-\mathrm{y})+\begin{array}{c}
1 \\
---
\end{array} \frac{1}{---} *(\mathrm{r}-\mathrm{y})+\mathrm{Td} *---------*(\mathrm{c} * \mathrm{r}-\mathrm{y})\right]
$$

```
 Ti s (Td/N)*s+1
 with Kp = 1.13, Ti = 4.91, Td = 1.15, N = 9.43, b = 0.66, c = 0.0136
Continuous-time 2-DOF PIDF controller in standard form
```


## Convert Discrete-Time Dynamic System to 2-DOF Standard-Form PID Controller

Convert a discrete-time dynamic system that represents a 2-DOF PID controller with derivative filter to standard pidstd2 form.

The following state-space matrices represent a discrete-time 2-DOF PID controller with a sample time of 0.05 s .

A = [1,0;0,0.6643];
$B=[0.05,-0.05 ;-0.004553,0.3357]$;
$C=[0.2301,10.66] ;$
D = [0.8905,-11.79];
Ts = 0.05;
sys = ss(A,B,C,D,Ts);
When you convert sys to 2-DOF PID form, the result depends on which discrete integrator formulas you specify for the conversion. For instance, use the default, ForwardEuler, for both the integrator and the derivative.

```
C2fe = pidstd2(sys)
C2fe =
 1 Ts 1
 u = Kp* [(b*r-y) + ---**--.-.* (r-y) +Td* ---.----....-** (c*r-y)]
 Ti z-1 (Td/N)+Ts/(z-1)
 with Kp = 1.13, Ti = 4.91, Td = 1.41, N = 9.43, b = 0.66, c = 0.0136, Ts = 0.05
Sample time: 0.05 seconds
Discrete-time 2-DOF PIDF controller in standard form
```

Now convert using the Trapezoidal formula.

```
C2trap = pidstd2(sys,'IFormula','Trapezoidal','DFormula','Trapezoidal')
C2trap =
 1 Ts*(z+1) 1
 u = Kp * [(b*r-y) + ----* -------* (r-y) + Td* -----------------------** (c*r-y)]
 Ti 2*(z-1) (Td/N)+Ts/2*(z+1)/(z-1)
 with Kp = 1.12, Ti = 4.89, Td = 1.41, N = 11.4, b = 0.658, c = 0.0136, Ts = 0.05
Sample time: 0.05 seconds
Discrete-time 2-DOF PIDF controller in standard form
```

The displays show the difference in resulting coefficient values and functional form.

For some dynamic systems, attempting to use the Trapezoidal or BackwardEuler integrator formulas yields invalid results, such as negative Ti, Td, or $\mathbf{N}$ values. In such cases, pidstd2 returns an error.

## Discretize a Standard-Form 2-DOF PID Controller

Discretize a continuous-time standard-form 2-DOF PID controller and specify the integral and derivative filter formulas.

Create a continuous-time pidstd2 controller and discretize it using the zero-order-hold method of the c2d command.

```
C2con = pidstd2(10,5,3,0.5,1,1); \% continuous-time 2-DOF PIDF controller
C2dis1 = c2d(C2con,0.1,'zoh')
C2dis1 =
```



```
Sample time: 0.1 seconds
Discrete-time 2-DOF PIDF controller in standard form
```

The display shows that c2d computes new PID coefficients for the discrete-time controller.
The discrete integrator formulas of the discretized controller depend on the c2d discretization method, as described in "Tips" on page 2-1011. For the zoh method, both IFormula and DFormula are ForwardEuler.

```
C2dis1.IFormula
ans =
'ForwardEuler'
C2dis1.DFormula
ans =
' ForwardEuler'
```

If you want to use different formulas from the ones returned by c 2 d , then you can directly set the Ts, IFormula, and DFormula properties of the controller to the desired values.

```
C2dis2 = C2con;
C2dis2.Ts = 0.1;
C2dis2.IFormula = 'BackwardEuler';
C2dis2.DFormula = 'BackwardEuler';
```

However, these commands do not compute new coefficients for the discretized controller. To see this, examine C2dis2 and compare the coefficients to C2con and C2dis1.

C2dis2

C2dis2 =


Sample time: 0.1 seconds
Discrete-time 2-DOF PIDF controller in standard form

## Tips

- To design a PID controller for a particular plant, use pidtune or pidTuner. To create a tunable 2-DOF PID controller as a control design block, use tunablePID2.
- To break a 2-DOF controller into two SISO control components, such as a feedback controller and a feedforward controller, use getComponents.
- Create arrays of pidstd2 controllers by:
- Specifying array values for one or more of the coefficients $\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N}, \mathrm{b}$, and c .
- Specifying an array of dynamic systems sys to convert to pid2 controller objects.
- Using stack to build arrays from individual controllers or smaller arrays.
- Passing an array of plant models to pidtune.

In an array of pidstd2 controllers, each controller must have the same sample time Ts and discrete integrator formulas IFormula and DFormula.

- To create or convert to a parallel-form controller, use pid2. Parallel form expresses the controller actions in terms of proportional, integral, and derivative gains $K_{p}, K_{i}$ and $K_{d}$, and a filter time constant $T_{f}$. For example, the relationship between the inputs and output of a continuous-time parallel-form 2-DOF PID controller is given by:

$$
u=K_{p}(b r-y)+\frac{K_{i}}{S}(r-y)+\frac{K_{d} S}{T_{f} S+1}(c r-y)
$$

- There are two ways to discretize a continuous-time pidstd2 controller:
- Use the c2d command. c2d computes new parameter values for the discretized controller. The discrete integrator formulas of the discretized controller depend upon the c2d discretization method you use, as shown in the following table.

c2d Discretization   Method	IFormula	DFormula
'zoh'	ForwardEuler	ForwardEuler
'foh'	Trapezoidal	Trapezoidal
'tustin'	Trapezoidal	Trapezoidal
'impulse'	ForwardEuler	ForwardEuler
'matched'	ForwardEuler	ForwardEuler

For more information about c2d discretization methods, See the c2d reference page. For more information about IFormula and DFormula, see "Properties" on page 2-999.

- If you require different discrete integrator formulas, you can discretize the controller by directly setting Ts, IFormula, and DFormula to the desired values. (See "Discretize a Standard-Form 2-DOF PID Controller" on page 2-1010.) However, this method does not compute new gain and filter-constant values for the discretized controller. Therefore, this method might yield a poorer match between the continuous- and discrete-time pidstd2 controllers than using c2d.


## Version History <br> Introduced in R2015b

See Also<br>pid2 | pidstddata2 | pidtune | pidTuner | getComponents<br>\section*{Topics}<br>"Two-Degree-of-Freedom PID Controllers"<br>"Discrete-Time Proportional-Integral-Derivative (PID) Controllers"<br>"What Are Model Objects?"

## pidstddata

Access coefficients of standard-form PID controller

## Syntax

[Kp,Ti,Td,N] = pidstddata(sys)
[Kp,Ti,Td,N,Ts] = pidstddata(sys)
[Kp,Ti,Td,N,Ts] = pidstddata(sys, J1,..., JN)

## Description

[Kp,Ti,Td,N] = pidstddata(sys) returns the proportional gain Kp, integral time Ti, derivative time Td , and filter divisor N of the standard-form controller represented by the dynamic system sys.
$[\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N}, \mathrm{Ts}]=$ pidstddata(sys) also returns the sample time Ts.
$[\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N}, \mathrm{Ts}]=$ pidstddata(sys, J1,..., JN) extracts the data for a subset of entries in the array of sys dynamic systems. The indices J specify the array entries to extract.

## Input Arguments

## sys

SISO dynamic system or array of SISO dynamic systems. If sys is not a pidstd object, it must represent a valid PID controller that can be written in standard PID form.

J
Integer indices of $N$ entries in the array sys of dynamic systems.

## Output Arguments

## Kр

Proportional gain of the standard-form PID controller represented by dynamic system sys.
If sys is a pidstd controller object, the output $K p$ is equal to the $K p$ value of sys.
If sys is not a pidstd object, Kp is the proportional gain of a standard-form PID controller equivalent to sys.

If sys is an array of dynamic systems, Kp is an array of the same dimensions as sys.

## Ti

Integral time constant of the standard-form PID controller represented by dynamic system sys.
If sys is a pidstd controller object, the output Ti is equal to the Ti value of sys.
If sys is not a pidstd object, Ti is the integral time constant of a standard-form PID controller equivalent to sys.

If sys is an array of dynamic systems, Ti is an array of the same dimensions as sys.

## Td

Derivative time constant of the standard-form PID controller represented by dynamic system sys.
If sys is a pidstd controller object, the output Td is equal to the Td value of sys.
If sys is not a pidstd object, Td is the derivative time constant of a standard-form PID controller equivalent to sys.

If sys is an array of dynamic systems, Td is an array of the same dimensions as sys.
N
Filter divisor of the standard-form PID controller represented by dynamic system sys.
If sys is a pidstd controller object, the output N is equal to the N value of sys.
If sys is not a pidstd object, N is the filter time constant of a standard-form PID controller equivalent to sys.

If sys is an array of dynamic systems, N is an array of the same dimensions as sys.

## Ts

Sample time of the dynamic system sys. Ts is always a scalar value.

## Examples

Extract the proportional, integral, and derivative gains and the filter time constant from a standardform pidstd controller.

For the following pidstd object:
sys = pidstd(1,4,0.3,10);
you can extract the parameter values from sys by entering:
[Kp Ti Td N] = pidstddata(sys);
Extract the standard-form proportional and integral gains from an equivalent parallel-form PI controller.

For a standard-form PI controller, such as:
sys = pid( 2,3 );
you can extract the gains of an equivalent parallel-form PI controller by entering:
[Kp Ti] = pidstddata(sys)
These commands return the result:
$\mathrm{Kp}=$
$\mathrm{Ti}=$

$$
0.6667
$$

Extract parameters from a dynamic system that represents a PID controller.
The dynamic system

$$
H(z)=\frac{(z-0.5)(z-0.6)}{(z-1)(z+0.8)}
$$

represents a discrete-time PID controller with a derivative filter. Use pidstddata to extract the standard-form PID parameters.
$\mathrm{H}=\operatorname{zpk}([0.50 .6],[1,-0.8], 1,0.1) ; \%$ sample time $\mathrm{Ts}=0.1 \mathrm{~s}$
[Kp Ti Td N Ts] = pidstddata(H) ;
the pidstddata function uses the default ForwardEuler discrete integrator formula for Iformula and Dformula to compute the parameter values.

Extract the gains from an array of PI controllers.
sys $=$ pidstd(rand $(2,3)$, rand $(2,3))$; \% 2-by-3 array of PI controllers
[Kp Ti Td N] = pidstddata(sys);
The parameters $\mathrm{Kp}, \mathrm{Ti}$, Td, and N are also 2-by- 3 arrays.
Use the index input $J$ to extract the parameters of a subset of sys.
[Kp Ti Td N] = pidstddata(sys,5);

## Tips

If sys is not a pidstd controller object, pidstddata returns $\mathrm{Kp}, \mathrm{Ti}$, Td and N values of a standardform controller equivalent to sys.

For discrete-time sys, piddata returns parameters of an equivalent pidstd controller. This controller has discrete integrator formulas Iformula and Dformula set to ForwardEuler. See the pidstd reference page for more information about discrete integrator formulas.

## Version History

Introduced in R2010b

## See Also

pidstd|pid|get

## pidstddata2

Access coefficients of standard-form 2-DOF PID controller

## Syntax

[Kp,Ti,Td,N, b, c] = pidstddata2(sys)
[Kp,Ti,Td,N,b,c,Ts] = pidstddata2(sys)
[Kp,Ti,Td,N,b,c,Ts] = pidstddata2(sys,J1,..., JN)

## Description

$[\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N}, \mathrm{b}, \mathrm{c}]=$ pidstddata2(sys) returns the proportional gain Kp , integral time Ti , derivative time Td , the filter divisor N , and the setpoint weights b and c of the standard-form 2-DOF PID controller represented by the dynamic system sys.

If sys is a pidstd2 controller object, then each output argument is the corresponding coefficient in sys.

If sys is not a pidstd2 object, then each output argument is the corresponding coefficient of the standard-form 2-DOF PID controller that is equivalent to sys.

If sys is an array of dynamic systems, then each output argument is an array of the same dimensions as sys.
[Kp,Ti,Td,N,b,c,Ts] = pidstddata2(sys) also returns the sample time Ts. For discrete-time sys that is not a pidstd2 object, pidstddata2 calculates the coefficient values using the default ForwardEuler discrete integrator formula for both IFormula and DFormula. See the pidstd2 reference page for more information about discrete integrator formulas.
[Kp,Ti,Td,N,b, c, Ts] = pidstddata2(sys, J1, ..., JN) extracts the data for a subset of entries in sys, where sys is an N -dimensional array of dynamic systems. The indices J specify the array entry to extract.

## Examples

## Extract Coefficients from Standard-Form 2-DOF PID Controller

Typically, you extract coefficients from a controller obtained from another function, such as pidtune or getBlockValue. For this example, create a standard-form 2-DOF PID controller that has random coefficients.

```
rng('default'); % for reproducibility
```

$C 2=$ pidstd2(rand,rand,rand,rand,rand,rand);

Extract the PID coefficients, filter divisor, and setpoint weights.
$[\mathrm{Kp}, \mathrm{Ti}, \mathrm{Td}, \mathrm{N}, \mathrm{b}, \mathrm{c}]=$ pidstddata2(C2);

## Extract Standard-Form Coefficients from Parallel-Form Controller

Create a 2-DOF PID controller in parallel form.
$C 2=\operatorname{pid} 2(2,3,4,10,0.5,0.5)$
C2 =
with $\mathrm{Kp}=2, \mathrm{Ki}=3, \mathrm{Kd}=4, \mathrm{Tf}=10, \mathrm{~b}=0.5, \mathrm{c}=0.5$
Continuous-time 2-DOF PIDF controller in parallel form.
Compute the coefficients of an equivalent parallel-form PID controller.
[Kp,Ti,Td,N, b, c] = pidstddata2(C2);
Check some of the coefficients to confirm that they are different from the parallel-form coefficients.
Ti
$\mathrm{Ti}=0.6667$
Td
$T d=2$

## Extract Standard-Form 2-DOF PID Coefficients from Equivalent System

Extract coefficients from a two-input, one-output dynamic system that represents a valid 2-DOF standard-form PID controller.

The following A, B, C, and D matrices form a discrete-time state-space model that represents a 2-DOF PID controller in standard form.

```
A = [1,0;0,0.5];
B = [0.1,-0.1;-0.25,0.5];
C = [4,400];
D = [220,-440];
sys = ss(A,B,C,D,0.1)
sys =
 A =
 rrr
 B =
 M}\begin{array}{rrr}{u1}&{u2}\\{\times1 }&{0.1}&{-0.1}
 x2 -0.25 0.5
```

```
C =
 y14400
D =
 y1 220 -440
Sample time: 0.1 seconds
Discrete-time state-space model.
```

Extract the PID coefficients, filter divisor, and setpoint weights of the model.
[Kp,Ti,Td,N,b,c,Ts] = pidstddata2(sys);
For a discrete-time system, pidstddata2 calculates the coefficient values using the default ForwardEuler discrete integrator formula for both IFormula and DFormula.

## Extract Standard-Form Coefficients from 2-DOF PI Controller Array

Typically, you obtain an array of controllers by using pidtune on an array of plant models. For this example, create an 2-by-3 array of standard-form 2-DOF PI controllers with random values of Kp, Ti, and b .

```
rng('default');
```

C2 $=$ pidstd2 $($ rand $(2,3)$, rand $(2,3), 0,10, r a n d(2,3), 0)$;

Extract all the coefficients from the array.
[Kp,Ti,Td,N,b, c] = pidstddata2(C2);
Each of the outputs is itself a 2-by-3 array. For example, examine Ki.
Ti
Ti $=2 \times 3$

0.2785	0.9575	0.1576
0.5469	0.9649	0.9706

Extract only the coefficients of entry $(2,1)$ in the array.
[Kp21,Ti21,Td21,N21,b21,c21] = pidstddata2(C2,2,1);
Each of these outputs is a scalar.
Ti21
Ti21 = 0.5469

## Input Arguments

2-DOF PID controller in standard form, specified as a pidstd2 controller object, a dynamic system model, or a dynamic system array. If sys is not a pidstd2 controller object, it must be a two-input, one-output model that represents a valid 2-DOF PID controller that can be written in standard form.

## J - Indices <br> positive integers

Indices of entry to extract from a model array sys, specified as positive integers. Provide as many indices as there are array dimensions in sys. For example, suppose sys is a 4 -by- 5 (two-dimensional) array of pidstd2 controllers or dynamic system models that represent 2-DOF PID controllers. The following command extracts the data for entry $(2,3)$ in the array.
[Kp,Ti,Td,N,b,c,Ts] = piddstdata2(sys,2,3);

## Output Arguments

## Kp - Proportional gain

scalar | array
Proportional gain of the standard-form 2-DOF PID controller represented by sys, returned as a scalar or array.

If sys is a pidstd2 controller object, then $K p$ is the $K p$ value of sys.
If sys is not a pidstd2 object, then Kp is the proportional gain of the standard-form 2-DOF PID controller that is equivalent to sys.

If sys is an array of dynamic systems, then Kp is an array of the same dimensions as sys.

## Ti - Integral time constant

scalar | array
Integral time constant of the standard-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## Td - Derivative time constant

scalar | array
Derivative time constant of the standard-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## N - Filter divisor

scalar | array
Filter divisor of the parallel-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## b - Setpoint weight on proportional term

scalar | array
Setpoint weight on the proportional term of the standard-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## c - Setpoint weight on derivative term

scalar | array

Setpoint weight on the derivative term of the standard-form 2-DOF PID controller represented by sys, returned as a scalar or array.

## Ts - Sample time

scalar
Sample time of the pidstd2 controller, dynamic system sys, or dynamic system array, returned as a scalar.

## Version History <br> Introduced in R2015b

## See Also

pidstd2| piddata2|pidstddata

## pidtune

PID tuning algorithm for linear plant model

## Syntax

C = pidtune(sys,type)
C = pidtune(sys,C0)
C = pidtune(sys,type,wc)
C = pidtune(sys, C0,wc)
C = pidtune(sys,...,opts)
[C,info] = pidtune(...)

## Description

C = pidtune(sys, type) designs a PID controller of type type for the plant sys. If type specifies a one-degree-of-freedom (1-DOF) PID controller, then the controller is designed for the unit feedback loop as illustrated:


If type specifies a two-degree-of-freedom (2-DOF) PID controller, then pidtune designs a 2-DOF controller as in the feedback loop of this illustration:

pidtune tunes the parameters of the PID controller C to balance performance (response time) and robustness (stability margins).
$\mathrm{C}=$ pidtune(sys,C0) designs a controller of the same type and form as the controller C0. If sys and C0 are discrete-time models, C has the same discrete integrator formulas as C0.
$C=$ pidtune(sys,type,wc) and $C=$ pidtune(sys, $C 0, w C)$ specify a target value wc for the first 0 dB gain crossover frequency of the open-loop response.

C = pidtune(sys,..., opts) uses additional tuning options, such as the target phase margin. Use pidtuneOptions to specify the option set opts.
[C,info] = pidtune(...) returns the data structure info, which contains information about closed-loop stability, the selected open-loop gain crossover frequency, and the actual phase margin.

## Input Arguments

## sys

Single-input, single-output dynamic system model of the plant for controller design. sys can be:

- Any type of SISO dynamic system model, including Numeric LTI models and identified models. If sys is a tunable or uncertain model, pidtune designs a controller for the current or nominal value of sys.
- A continuous- or discrete-time model.
- Stable, unstable, or integrating. A plant with unstable poles, however, might not be stabilizable under PID control.
- A model that includes any type of time delay. A plant with long time delays, however, might not achieve adequate performance under PID control.
- An array of plant models. If sys is an array, pidtune designs a separate controller for each plant in the array.

If the plant has unstable poles, and sys is one of the following:

- A frd model
- A ss model with internal time delays that cannot be converted to I/O delays
you must use pidtuneOptions to specify the number of unstable poles in the plant, if any.


## type

Controller type of the controller to design, specified as a character vector. The term controller type refers to which terms are present in the controller action. For example, a PI controller has only a proportional and an integral term, while a PIDF controller contains proportional, integrator, and filtered derivative terms. type can take the values summarized below. For more detailed information about these controller types, see "PID Controller Types for Tuning"

## 1-DOF Controllers

- 'P' - Proportional only
- 'I' - Integral only
- 'PI ' - Proportional and integral
- 'PD' - Proportional and derivative
- 'PDF ' - Proportional and derivative with first-order filter on derivative term
- 'PID ' - Proportional, integral, and derivative
- 'PIDF ' - Proportional, integral, and derivative with first-order filter on derivative term


## 2-DOF Controllers

- 'PI2' - 2-DOF proportional and integral
- 'PD2 ' - 2-DOF proportional and derivative
- 'PDF2' - 2-DOF proportional and derivative with first-order filter on derivative term
- 'PID2 ' - 2-DOF proportional, integral, and derivative
- 'PIDF2' - 2-DOF proportional, integral, and derivative with first-order filter on derivative term

For more information about 2-DOF PID controllers generally, see "Two-Degree-of-Freedom PID Controllers".

## 2-DOF Controllers with Fixed Setpoint Weights

- 'I-PD' - 2-DOF PID with $b=0, c=0$
- 'I-PDF' - 2-DOF PIDF with $b=0, c=0$
- 'ID-P' - 2-DOF PID with $b=0, c=1$
- 'IDF-P' -2 -DOF PIDF with $b=0, c=1$
- 'PI-D' - 2-DOF PID with $b=1, c=0$
- 'PI-DF' -2 -DOF PIDF with $b=1, c=0$

For more detailed information about fixed-setpoint-weight 2-DOF PID controllers, see "PID Controller Types for Tuning".

## Controller Form

When you use the type input, pidtune designs a controller in parallel (pid or pid2) form. Use the input C0 instead of type if you want to design a controller in standard (pidstd or pidstd2) form.

If sys is a discrete-time model with sample time Ts, pidtune designs a discrete-time controller with the same Ts. The controller has the ForwardEuler discrete integrator formula for both integral and derivative actions. Use the input C0 instead of type if you want to design a controller having a different discrete integrator formula.

For more information about PID controller forms and formulas, see:

- "Proportional-Integral-Derivative (PID) Controllers"
- "Two-Degree-of-Freedom PID Controllers"
- "Discrete-Time Proportional-Integral-Derivative (PID) Controllers"


## C0

PID controller setting properties of the designed controller, specified as a pid, pidstd, pid2, or pidstd2 object. If you provide C0, pidtune:

- Designs a controller of the type represented by C0.
- Returns a pid controller, if C0 is a pid controller.
- Returns a pidstd controller, if C0 is a pidstd controller.
- Returns a 2-DOF pid2 controller, if C0 is a pid2 controller.
- Returns a 2-DOF pidstd2 controller, if C0 is a pidstd2 controller.
- Returns a controller with the same Iformula and Dformula values as C0, if sys is a discretetime system. See the pid, pid2, pidstd, and pidstd2 reference pages for more information about Iformula and Dformula.

WC
Target value for the 0 dB gain crossover frequency of the tuned open-loop response. Specify wc in units of radians/TimeUnit, where TimeUnit is the time unit of sys. The crossover frequency wc roughly sets the control bandwidth. The closed-loop response time is approximately $1 / \mathrm{wc}$.

Increase wc to speed up the response. Decrease wc to improve stability. When you omit wc, pidtune automatically chooses a value, based on the plant dynamics, that achieves a balance between response and stability.

## opts

Option set specifying additional tuning options for the pidtune design algorithm, such as target phase margin or design focus. Use pidtuneOptions to create opts.

## Output Arguments

## C

Controller designed for sys. If sys is an array of linear models, pidtune designs a controller for each linear model and returns an array of PID controllers.

## Controller form:

- If the second argument to pidtune is type, C is a pid or pid2 controller.
- If the second argument to pidtune is C0:
- C is a pid controller, if C 0 is a pid object.
- C is a pidstd controller, if C0 is a pidstd object.
- C is a pid2 controller, if C0 is a pid2 object.
- C is a pidstd2 controller, if C0 is a pidstd2 object.


## Controller type:

- If the second argument to pidtune is type, $C$ generally has the specified type.
- If the second argument to pidtune is C0, C generally has the same type as C0.

In either case, however, where the algorithm can achieve adequate performance and robustness using a lower-order controller than specified with type or C0, pidtune returns a C having fewer actions than specified. For example, C can be a PI controller even though type is 'PIDF'.

## Time domain:

- C has the same time domain as sys.
- If sys is a discrete-time model, C has the same sample time as sys.
- If you specify C0, C has the same Iformula and Dformula as C0. If no C0 is specified, both Iformula and Dformula are Forward Euler. See the pid, pid2, pidstd, and pidstd2 reference pages for more information about Iformula and Dformula.

If you specify C0, C also obtains model properties such as InputName and OutputName from C0. For more information about model properties, see the reference pages for each type of dynamic system model.

## info

Data structure containing information about performance and robustness of the tuned PID loop. The fields of info are:

- Stable - Boolean value indicating closed-loop stability. Stable is 1 if the closed loop is stable, and 0 otherwise.
- CrossoverFrequency - First 0 dB crossover frequency of the open-loop system C*sys, in rad/ TimeUnit, where TimeUnit is the time units specified in the TimeUnit property of sys.
- PhaseMargin - Phase margin of the tuned PID loop, in degrees.

If sys is an array of plant models, info is an array of data structures containing information about each tuned PID loop.

## Examples

## PID Controller Design at the Command Line

This example shows how to design a PID controller for the plant given by:

$$
\text { sys }=\frac{1}{(s+1)^{3}}
$$

As a first pass, create a model of the plant and design a simple PI controller for it.

```
sys = zpk([],[-1 -1 -1],1);
[C_pi,info] = pidtune(sys,'PI')
C_pi =
 Kp + Ki* *--
 S
 with Kp = 1.14, Ki = 0.454
Continuous-time PI controller in parallel form.
info = struct with fields:
 Stable: 1
 CrossoverFrequency: 0.5205
 PhaseMargin: 60.0000
```

C_pi is a pid controller object that represents a PI controller. The fields of info show that the tuning algorithm chooses an open-loop crossover frequency of about $0.52 \mathrm{rad} / \mathrm{s}$.

Examine the closed-loop step response (reference tracking) of the controlled system.

```
T_pi = feedback(C_pi*sys, 1);
step(T_pi)
```



To improve the response time, you can set a higher target crossover frequency than the result that pidtune automatically selects, 0.52 . Increase the crossover frequency to 1.0.

```
[C_pi_fast,info] = pidtune(sys,'PI',1.0)
C_pi_fast =
 1
 Kp + Ki * ---
 s
 with Kp = 2.83, Ki = 0.0495
Continuous-time PI controller in parallel form.
info = struct with fields:
 Stable: 1
 CrossoverFrequency: 1
 PhaseMargin: 43.9973
```

The new controller achieves the higher crossover frequency, but at the cost of a reduced phase margin.

Compare the closed-loop step response with the two controllers.

```
T_pi_fast = feedback(C_pi_fast*sys,1);
step(T_pi,T_pi_fast)
```

axis([0 30 0 1.4])
legend('PI','PI,fast')


This reduction in performance results because the PI controller does not have enough degrees of freedom to achieve a good phase margin at a crossover frequency of $1.0 \mathrm{rad} / \mathrm{s}$. Adding a derivative action improves the response.

Design a PIDF controller for Gc with the target crossover frequency of $1.0 \mathrm{rad} / \mathrm{s}$.

```
[C_pidf_fast,info] = pidtune(sys,'PIDF',1.0)
C_pidf_fast =
 Kp + Ki * 1 -- + Kd * -------
 s Tf*s+1
 with Kp = 2.72, Ki = 0.985, Kd = 1.72, Tf = 0.00875
Continuous-time PIDF controller in parallel form.
info = struct with fields:
 Stable: 1
 CrossoverFrequency: 1
 PhaseMargin: 60.0000
```

The fields of info show that the derivative action in the controller allows the tuning algorithm to design a more aggressive controller that achieves the target crossover frequency with a good phase margin.

Compare the closed-loop step response and disturbance rejection for the fast PI and PIDF controllers.

```
T_pidf_fast = feedback(C_pidf_fast*sys,1);
```

step(T_pi_fast, T_pidf_fast);
axis([ $\overline{0} 3 \overline{0} 0 \quad 1.4])$;
legend('PI,fast','PIDF,fast');


You can compare the input (load) disturbance rejection of the controlled system with the fast PI and PIDF controllers. To do so, plot the response of the closed-loop transfer function from the plant input to the plant output.

```
S_pi_fast = feedback(sys,C_pi_fast);
S_pidf_fast = feedback(sys,C_pidf_fast);
step(S_pi_fast,S_pidf_fast);
axis([0 50 0 0.4]);
legend('PI,fast','PIDF,fast');
```



This plot shows that the PIDF controller also provides faster disturbance rejection.

## Design Standard-Form PID Controller

Design a PID controller in standard form for the following plant.

$$
\text { sys }=\frac{1}{(s+1)^{3}}
$$

To design a controller in standard form, use a standard-form controller as the C0 argument to pidtune.

```
sys = zpk([],[-1 -1 -1],1);
C0 = pidstd(1,1,1);
C = pidtune(sys,C0)
C=
```



```
 with Kp = 2.18, Ti = 2.57, Td = 0.642
Continuous-time PID controller in standard form
```


## Specify Integrator Discretization Method

Design a discrete-time PI controller using a specified method to discretize the integrator.
If your plant is in discrete time, pidtune automatically returns a discrete-time controller using the default Forward Euler integration method. To specify a different integration method, use pid or pidstd to create a discrete-time controller having the desired integration method.

```
sys = c2d(tf([1 1],[1 5 6]),0.1);
C0 = pid(1,1,'Ts',0.1,'IFormula','BackwardEuler');
C = pidtune(sys,C0)
C =
 Kp + Ki * %------
 with Kp = -0.0658, Ki = 1.32, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time PI controller in parallel form.
```

Using C0 as an input causes pidtune to design a controller C of the same form, type, and discretization method as C0. The display shows that the integral term of C uses the Backward Euler integration method.

Specify a Trapezoidal integrator and compare the resulting controller.

```
C0_tr = pid(1,1,'Ts',0.1,'IFormula','Trapezoidal');
Ctr = pidtune(sys,C0_tr)
Ctr =
 Ts*(z+1)
 Ki * --------
 2*(z-1)
 with Ki = 1.32, Ts = 0.1
Sample time: 0.1 seconds
Discrete-time I-only controller.
```


## Design 2-DOF PID Controller

Design a 2-DOF PID Controller for the plant given by the transfer function:

$$
G(s)=\frac{1}{s^{2}+0.5 s+0.1}
$$

Use a target bandwidth of $1.5 \mathrm{rad} / \mathrm{s}$.

```
WC = 1.5;
G = tf(1,[1 0.5 0.1]);
C2 = pidtune(G,'PID2',wc)
C2 =
 u = Kp (b*r-y) +Ki
 with Kp = 1.26, Ki = 0.255, Kd = 1.38, b = 0.665, c = 0
Continuous-time 2-DOF PID controller in parallel form.
```

Using the type 'PID2 ' causes pidtune to generate a 2-DOF controller, represented as a pid2 object. The display confirms this result. The display also shows that pidtune tunes all controller coefficients, including the setpoint weights $b$ and $c$, to balance performance and robustness.

## Tips

- By default, pidtune with the type input returns a pid controller in parallel form. To design a controller in standard form, use a pidstd controller as input argument C0. For more information about parallel and standard controller forms, see the pid and pidstd reference pages.
- For interactive PID tuning in the Live Editor, see the Tune PID Controller Live Editor task. This task lets you interactively design a PID controller and automatically generates MATLAB code for your live script.


## Algorithms

For information about the MathWorks ${ }^{\circledR}$ PID tuning algorithm, see "PID Tuning Algorithm".

## Alternatives

- For interactive PID tuning in the Live Editor, see the Tune PID Controller Live Editor task. This task lets you interactively design a PID controller and automatically generates MATLAB code for your live script. For an example, see "PID Controller Design in the Live Editor"
- For interactive PID tuning in a standalone app, use PID Tuner. See "PID Controller Design for Fast Reference Tracking" for an example of designing a controller using the app.


## Version History

Introduced in R2010b

## References

Åström, K. J. and Hägglund, T. Advanced PID Control, Research Triangle Park, NC: Instrumentation, Systems, and Automation Society, 2006.

## See Also

## Functions

pidtuneOptions|pidTuner
Apps
PID Tuner

## Live Editor Tasks

Tune PID Controller

## Objects

pid | pidstd| pid2 | pidstd2

## Topics

"Tune 2-DOF PID Controller (Command Line)"
"Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (Command Line)"
"Designing Cascade Control System with PI Controllers"
"PID Controller Types for Tuning"
"PID Tuning Algorithm"

## pidtuneOptions

Define options for pidtune command

## Syntax

```
opt = pidtuneOptions
```

opt = pidtuneOptions(Name,Value)

## Description

opt $=$ pidtuneOptions returns the default option set for the pidtune command.
opt $=$ pidtuneOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

## Input Arguments

## Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

## PhaseMargin

Target phase margin in degrees. pidtune attempts to design a controller such that the phase margin is at least the value specified for PhaseMargin. The selected crossover frequency could restrict the achievable phase margin. Typically, higher phase margin improves stability and overshoot, but limits bandwidth and response speed.

Default: 60

## DesignFocus

Closed-loop performance objective to favor in the design. For a given target phase margin, pidtune chooses a controller design that balances the two measures of performance, reference tracking and disturbance rejection. When you change the DesignFocus option, the tuning algorithm attempts to adjust the PID gains to favor either reference tracking or disturbance rejection while achieving the same target phase margin. In the control architecture assumed by pidtune, shown in the following diagram, reference tracking is the response at $y$ to signals at $r$, and disturbance rejection is the suppression at $y$ of signals at $d$.


The DesignFocus option can take the following values:

- 'balanced ' (default) - For a given robustness, tune the controller to balance reference tracking and disturbance rejection.
- 'reference-tracking ' - Tune the controller to favor reference tracking, if possible.
- 'disturbance-rejection' - Tune the controller to favor disturbance rejection, if possible.

The more tunable parameters there are in the system, the more likely it is that the PID algorithm can achieve the desired design focus without sacrificing robustness. For example, setting the design focus is more likely to be effective for PID controllers than for P or PI controllers. In all cases, how much you can fine-tune the performance of the system depends strongly on the properties of your plant.

For an example illustrating the effect of this option, see "Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (Command Line)".

Default: 'balanced'

## NumUnstablePoles

Number of unstable poles in the plant. When your plant is a frd model or a state-space model with internal delays, you must specify the number of open-loop unstable poles (if any). Incorrect values might result in PID controllers that fail to stabilize the real plant. (pidtune ignores this option for other model types.)

Unstable poles are poles located at:

- $\operatorname{Re}(s)>0$, for continuous-time plants
- $|z|>1$, for discrete-time plants

A pure integrator in the plant $(s=0)$ or $(|z|>1)$ does not count as an unstable pole for NumUnstablePoles. If your plant is a frd model of a plant with a pure integrator, for best results, ensure that your frequency response data covers a low enough frequency to capture the integrator slope.

Default: 0

## Output Arguments

opt
Object containing the specified options for pidtune.

## Examples

Tune a PIDF controller with a target phase margin of 45 degrees, favoring the disturbance-rejection measure of performance.
sys $\left.=\mathrm{tf}\left(\begin{array}{ll}1,\left[\begin{array}{lll}1 & 3 & 3\end{array}\right]\end{array}\right]\right)$;
opts = pidtuneOptions('PhaseMargin', 45,'DesignFocus','disturbance-rejection');
[C,info] = pidtune(sys,'pid',opts);

## Tips

- When using the pidtune command to design a PID controller for a plant with unstable poles, if your plant model is one of the following:
- A frd model
- A ss model with internal delays that cannot be converted to I/O delays
then use pidtuneOptions to specify the number of unstable poles in the plant.


## Version History <br> Introduced in R2010b

## See Also

pidtune

## Topics

"PID Tuning Algorithm"
"Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (Command Line)"

## PID Tuner

Tune PID controllers

## Description

The PID Tuner app automatically tunes the gains of a PID controller for a SISO plant to achieve a balance between performance and robustness. You can specify the controller type, such as PI, PID with derivative filter, or two-degree-of-freedom (2-DOF) PID controllers. Analysis plots let you examine controller performance in time and frequency domains. You can interactively refine the performance of the controller to adjust loop bandwidth and phase margin, or to favor setpoint tracking or disturbance rejection.

You can use PID Tuner with a plant represented by a numeric LTI model such as a transfer function ( tf ) or state-space (ss) model. If you have Simulink Control Design software, you can use PID Tuner to tune a PID Controller or PID Controller (2DOF) block in a Simulink model. If you have System Identification Toolbox software, you can use the app to estimate a plant from measured or simulated data and design a controller for the estimated plant.

## Interactive Tuning in the Live Editor

For interactive PID tuning in the Live Editor, see the Tune PID Controller Live Editor task. This task lets you interactively design a PID controller and automatically generates MATLAB code for your live script.


## Open the PID Tuner App

- MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app icon.
- MATLAB command prompt: Enter pidTuner.
- Simulink model: In the PID Controller or PID Controller (2DOF) block dialog box, click Tune.


## Examples

- "Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)"
- "PID Controller Tuning in Simulink" (Simulink Control Design)
- "Designing PID Controllers with PID Tuner"
- "Introduction to Model-Based PID Tuning in Simulink" (Simulink Control Design)


## Parameters

Plant - Current plant
LTI model in Data Browser | Import | ...

The Plant menu displays the name of the current plant that PID Tuner is using for controller design.
Change the current plant using the following menu options:

- A list of the LTI models present in the PID Tuner Data Browser.
- Import - Import a new LTI model from the MATLAB workspace.
- Re-Linearize Closed Loop - Linearize the plant at a different snapshot time. See "Tune at a Different Operating Point" (Simulink Control Design). This option is available only when tuning a PID Controller or PID Controller (2DOF) block in a Simulink model.
- Identify New Plant - Use system identification to obtain a plant from measured or simulated system response data (requires System Identification Toolbox software). See:
- "Interactively Estimate Plant Parameters from Response Data", when tuning a PID controller for an LTI model.
- "Interactively Estimate Plant from Measured or Simulated Response Data" (Simulink Control Design), when tuning a PID Controller block in a Simulink model.

If you are tuning a PID controller for a plant represented by an LTI model, the default plant is:

- Plant = 1, if you opened PID Tuner from the Apps tab in the MATLAB Toolstrip, or if you used the pidTuner command without an input argument.
- The plant you specified as an input argument to pidTuner.

If you are tuning a PID Controller or PID Controller (2DOF) block in a Simulink model, then the default plant is linearized at the operating point specified by the model initial conditions. See "What Plant Does PID Tuner See?" (Simulink Control Design)

```
Type - Controller type
'PI'|'PIDF'|'PID2'| ...
```

The controller type specifies which terms are present in the PID controller. For instance, a PI controller has a proportional and an integral term. A PDF controller has a proportional term and a filtered derivative term.

- If you are tuning a controller for a plant represented by an LTI model, use the Type menu to specify controller type. When you change controller type, PID Tuner automatically designs a new controller. Available controller types include 2-DOF PID controllers for more flexibility in the trade-off between disturbance rejection and reference tracking. For details on available controller types, see "PID Controller Types for Tuning".
- If you are tuning a PID Controller or PID Controller (2DOF) block in a Simulink model, the Type field displays the controller type specified in the block dialog box.

Form - Controller form
'Parallel'|'Standard'
This field displays the controller form.

- If you are tuning a controller for a plant represented by an LTI model, use the Form menu to specify controller form. For information about parallel and standard forms, see the pid and pidstd reference pages.
- If you are tuning a PID Controller or PID Controller (2DOF) block in a Simulink model, the Form field displays the controller form specified in the block dialog box.

Domain - Domain for specifying performance targets
'Time'| 'Frequency'
The Domain menu enables you to switch the domain in which PID Tuner displays the target performance parameters.

- Time - Sliders set the Response Time and Transient Behavior.
- Frequency - Sliders set the Bandwidth and Phase Margin.

To refine the controller design, you adjust the target performance parameters using the sliders or the corresponding numeric values.


For more information, see:

- "Refine the Design" (tuning a controller for an LTI model)
- "Refine the Design" (Simulink Control Design) (tuning PID Controller or PID Controller (2DOF) block in Simulink model)

Add Plot - Create analysis plots
Reference Tracking|Input Disturbance Rejection|Controller Effort|...
Create time-domain and frequency-domain analysis plots to help analyze the performance of the PID controller. For detailed information about the available response plots, see:

- "Analyze Design in PID Tuner" (tuning a controller for an LTI model)
- "Analyze Design in PID Tuner" (Simulink Control Design) (tuning PID Controller or PID Controller (2DOF) block in Simulink model)


## Programmatic Use

pidTuner

## Tips

- For PID tuning at the command line, use pidtune. The pidtune command can design a controller for multiple plants at once.
- For interactive PID tuning in the Live Editor, see the Tune PID Controller Live Editor task. This task lets you interactively design a PID controller and automatically generates MATLAB code for your live script.


# Version History 

Introduced in R2010b

## See Also

Functions
pidtune

## Live Editor Tasks

Tune PID Controller

## Topics

"Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)"
"PID Controller Tuning in Simulink" (Simulink Control Design)
"Designing PID Controllers with PID Tuner"
"Introduction to Model-Based PID Tuning in Simulink" (Simulink Control Design)

## pidTuner

Open PID Tuner for PID tuning

## Syntax

pidTuner(sys,type)
pidTuner(sys,Cbase)
pidTuner(sys)
pidTuner

## Description

pidTuner(sys,type) launches the PID Tuner app and designs a controller of type type for plant sys.
pidTuner(sys, Cbase) launches PID Tuner with a baseline controller Cbase so that you can compare performance between the designed controller and the baseline controller. If Cbase is a pid, pidstd, pid2 or pidstd2 controller object, PID Tuner designs a controller of the same form, type, and discrete integrator formulas as Cbase.
pidTuner(sys) designs a parallel-form PI controller.
pidTuner launches PID Tuner with default plant of 1 and proportional (P) controller of 1.

## Input Arguments

## sys

Plant model for controller design. sys can be:

- Any SISO LTI system (such as ss, tf, zpk, or frd).
- Any System Identification Toolbox SISO linear model (idtf, idfrd, idgrey, idpoly, idproc, or idss).
- A continuous- or discrete-time model.
- Stable, unstable, or integrating. However, you might not be able to stabilize a plant with unstable poles under PID control.
- A model that includes any type of time delay. A plant with long time delays, however, might not achieve adequate performance under PID control.

If the plant has unstable poles, and sys is either:

- A frd model
- A ss model with internal time delays that cannot be converted to I/O delays
then you must specify the number of unstable poles in the plant. To do this, after opening PID Tuner,
in the Plant menu, select $\begin{aligned} & \text { 百 } \\ & \text { Import. In the Import Linear System dialog box, reimport sys, }\end{aligned}$ specifying the number of unstable poles where prompted.


## type

Controller type of the controller to design, specified as a character vector. The term controller type refers to which terms are present in the controller action. For example, a PI controller has only a proportional and an integral term, while a PIDF controller contains proportional, integrator, and filtered derivative terms. type can take the values summarized below. For more detailed information about these controller types, see "PID Controller Types for Tuning"

## 1-DOF Controllers

- 'P' - Proportional only
- 'I' - Integral only
- 'PI ' - Proportional and integral
- 'PD ' - Proportional and derivative
- 'PDF ' - Proportional and derivative with first-order filter on derivative term
- 'PID ' - Proportional, integral, and derivative
- 'PIDF ' - Proportional, integral, and derivative with first-order filter on derivative term


## 2-DOF Controllers

- 'PI2' - 2-DOF proportional and integral
- 'PD2 ' - 2-DOF proportional and derivative
- 'PDF2' - 2-DOF proportional and derivative with first-order filter on derivative term
- 'PID2 ' - 2-DOF proportional, integral, and derivative
- 'PIDF2' - 2-DOF proportional, integral, and derivative with first-order filter on derivative term

For more information about 2-DOF PID controllers generally, see "Two-Degree-of-Freedom PID Controllers".

## 2-DOF Controllers with Fixed Setpoint Weights

- 'I-PD' - 2-DOF PID with $b=0, c=0$
- 'I-PDF' - 2-DOF PIDF with $b=0, c=0$
- 'ID-P' -2 -DOF PID with $b=0, c=1$
- 'IDF-P' -2 -DOF PIDF with $b=0, c=1$
- 'PI-D' - 2-DOF PID with $b=1, c=0$
- 'PI-DF' -2 -DOF PIDF with $b=1, c=0$

For more detailed information about fixed-setpoint-weight 2-DOF PID controllers, see "PID Controller Types for Tuning".

## Controller Form

When you use the type input, PID Tuner designs a controller in parallel form. If you want to design a controller in standard form, Use the input Cbase instead of type, or select Standard from the Form menu. For more information about parallel and standard forms, see the pid and pidstd reference pages.

If sys is a discrete-time model with sample time Ts, PID Tuner designs a discrete-time pid controller using the ForwardEuler discrete integrator formula. To design a controller having a different discrete integrator formula:

- Use the input argument Cbase instead of type. PID Tuner reads controller type, form, and discrete integrator formulas from the baseline controller Cbase.
- In PID Tuner, click Options to open the Controller Options dialog box. Select discrete integrator formulas from the Integral Formula and Derivative Formula menus.

For more information about discrete integrator formulas, see the pid and pidstd reference pages.

## Cbase

A dynamic system representing a baseline controller, permitting comparison of the performance of the designed controller to the performance of Cbase.

If Cbase is a pid or pidstd object, PID Tuner also uses it to configure the type, form, and discrete integrator formulas of the designed controller. The designed controller:

- Is the type represented by Cbase.
- Is a parallel-form controller, if Cbase is a pid controller object.
- Is a standard-form controller, if Cbase is a pidstd controller object.
- Is a parallel-form 2-DOF controller, if Cbase is a pid2 controller object.
- Is a standard-form 2-DOF controller, if Cbase is a pidstd2 controller object.
- Has the same Iformula and Dformula values as Cbase. For more information about Iformula and Dformula, see the pid and pidstd reference pages.

If Cbase is any other dynamic system, PID Tuner designs a parallel-form PI controller. You can change the controller form and type using the Form and Type menus after launching PID Tuner.

## Examples

## Interactive PID Tuning of Parallel-Form Controller

Launch PID Tuner to design a parallel-form PIDF controller for a discrete-time plant:

```
Gc = zpk([],[-1 -1 -1],1);
Gd = c2d(Gc,0.1); % Create discrete-time plant
pidTuner(Gd,'pidf') % Launch PID Tuner
```


## Interactive PID Tuning of Standard-Form Controller Using Integrator Discretization Method

Design a standard-form PIDF controller using BackwardEuler discrete integrator formula:

```
Gc = zpk([],[-1 -1 -1],1);
Gd = c2d(Gc,0.1); % Create discrete-time plant
% Create baseline controller.
Cbase = pidstd(1,2,3,4,'Ts',0.1,...
 'IFormula','BackwardEuler','DFormula','BackwardEuler')
pidTuner(Gd,Cbase) % Launch PID Tuner
```

PID Tuner designs a controller for Gd having the same form, type, and discrete integrator formulas as Cbase. For comparison, you can display the response plots of Cbase with the response plots of the designed controller by clicking the Show baseline checkbox in PID Tuner.

## Tips

- If type or Cbase specifies a one-degree-of-freedom (1-DOF) PID controller, then pidTuner designs a controller for the unit feedback loop as illustrated:

- If type or Cbase specifies a two-degree-of-freedom (2-DOF) PID controller, then pidTuner designs a 2-DOF controller as in the feedback loop of this illustration:

- PID Tuner has a default target phase margin of 60 degrees and automatically tunes the PID gains to balance performance (response time) and robustness (stability margins). Use the Response time or Bandwidth and Phase Margin sliders to tune the controller's performance to your requirements. Increasing performance typically decreases robustness, and vice versa.
- Select response plots from the Response menu to analyze the controller's performance.
- If you provide Cbase, check Show baseline to display the response of the baseline controller.
- For more detailed information about using PID Tuner, see "Designing PID Controllers with PID Tuner".
- For interactive PID tuning in the Live Editor, see the Tune PID Controller Live Editor task. This task lets you interactively design a PID controller and automatically generates MATLAB code for your live script.


## Algorithms

For information about the MathWorks PID tuning algorithm, see "PID Tuning Algorithm".

## Alternatives

You can open PID Tuner from the MATLAB desktop, in the Apps tab. When you do so, use the Plant menu in PID Tuner to specify your plant model.

For PID tuning at the command line, use pidtune. The pidtune command can design a controller for multiple plants at once.

For interactive PID tuning in the Live Editor, see the Tune PID Controller Live Editor task. This task lets you interactively design a PID controller and automatically generates MATLAB code for your live script.

## Version History

## Introduced in R2014b

## References

Åström, K. J. and Hägglund, T. Advanced PID Control, Research Triangle Park, NC: Instrumentation, Systems, and Automation Society, 2006.

## See Also

## Functions

pidtune

## Objects

pid | pidstd| pid2 | pidstd2

## Live Editor Tasks

Tune PID Controller

## Topics

"Tune PID Controller to Favor Reference Tracking or Disturbance Rejection (PID Tuner)"
"Tune 2-DOF PID Controller (PID Tuner)"
"Designing PID Controllers with PID Tuner"
"PID Controller Types for Tuning"

## place

Pole placement design

## Syntax

K = place (A, B, p)
$[K$, prec $]=\operatorname{place}(A, B, p)$

## Description

Pole placement is a method of calculating the optimum gain matrix used to assign closed-loop poles to specified locations, thereby ensuring system stability. Closed-loop pole locations have a direct impact on time response characteristics such as rise time, settling time, and transient oscillations. For more information, see "Pole Placement".


From the figure, consider a linear dynamic system in state-space form

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

For a given vector p of desired self-conjugate closed-loop pole locations, place computes a gain matrix $K$ such that the state feedback $u=-K x$ places the poles at the locations p . In other words, the eigenvalues of $A-B K$ will match the entries of $p$ (up to the ordering).
$\mathrm{K}=\mathrm{place}(\mathrm{A}, \mathrm{B}, \mathrm{p})$ places the desired closed-loop poles p by computing a state-feedback gain matrix K. All the inputs of the plant are assumed to be control inputs. place also works for multiinput systems and is based on the algorithm from [1]. This algorithm uses the extra degrees of freedom to find a solution that minimizes the sensitivity of the closed-loop poles to perturbations in $A$ or $B$.
[ $\mathrm{K}, \mathrm{prec}]=\mathrm{place}(\mathrm{A}, \mathrm{B}, \mathrm{p})$ also returns prec, an accuracy estimate of how closely the eigenvalues of $A-B K$ match the specified locations $p$ (prec measures the number of accurate
decimal digits in the actual closed-loop poles). A warning is issued if some nonzero closed-loop pole is more than $10 \%$ off from the desired location.

## Examples

## Pole Placement Design for Second-Order System

For this example, consider a simple second-order system with the following state-space matrices:

$$
A=\left[\begin{array}{cc}
-1 & -2 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D=0
$$

Input the matrices and create the state-space system.

```
A = [-1,-2;1,0];
B = [2;0];
C = [0,1];
D = 0;
sys = ss(A,B,C,D);
```

Compute the open-loop poles and check the step response of the open-loop system.

```
Pol = pole(sys)
Pol = 2x1 complex
 -0.5000 + 1.3229i
 -0.5000 - 1.3229i
```

figure(1)
step(sys)
hold on;


Notice that there is an unstable pole, and the resultant system is underdamped. Hence, choose real poles in the left half of the complex-plane to remove oscillations.
$\mathrm{p}=[-1,-2]$;
Find the gain matrix K using pole placement and check the closed-loop poles of syscl.
$K=p l a c e(A, B, p)$;
$\mathrm{Acl}=\mathrm{A}-\mathrm{B}^{*} \mathrm{~K}$;
syscl = ss(Acl, B,C,D);
Pcl = pole(syscl)
Pcl $=2 \times 1$
-2.0000
-1.0000

Now, compare the step response of the closed-loop system.


Hence, the closed-loop system obtained using pole placement is stable with good steady-state response.

Note that choosing poles that are further away from the imaginary axis achieves faster response time but lowers the steady-state gain of the system. For instance, consider using the poles [-2,-3] for the above system.

```
p = [-2, -3];
K2 = place(A,B,p);
syscl2 = ss(A-B*K2,B,C,D);
figure(1);
step(syscl2);
```


stepinfo(syscl)
ans = struct with fields: RiseTime: 2.5901
TransientTime: 4.6002
SettlingTime: 4.6002 SettlingMin: 0.9023 SettlingMax: 0.9992

Overshoot: 0
Undershoot: 0
Peak: 0.9992
PeakTime: 7.7827
stepinfo(syscl2)
ans = struct with fields:
RiseTime: 1.4130
TransientTime: 2.4766
SettlingTime: 2.4766 SettlingMin: 0.3003 SettlingMax: 0.3331

Overshoot: 0
Undershoot: 0
Peak: 0.3331
PeakTime: 4.1216

## Pole Placement Precision

For this example, consider the pole locations $[-2 e-13,-3 e-4,-3 e-3]$. Compute the precision of the actual poles.

```
A = [4,2,1;0,-1,2;0,1e-8,1];
B = [1,2;3,1;1e-6,0];
p = [-2e-13,-3e-4,3e-3];
[~,prec] = place(A,B,p)
prec = 2
```

A precision value of 2 is obtained indicating that the actual pole locations are precise up to 2 decimal places.

## Pole Placement using Complex Poles

For this example, consider the following transfer function with complex-conjugate poles at $-2 \pm 2 i$ :

$$
\operatorname{syst} f(s)=\frac{8}{s^{2}+4 s+8}
$$

Input the transfer function model. Then, convert it to state-space form since place uses the A and B matrices as input arguments.

```
s = tf('s');
systf = 8/(s^2+4*s+2);
sys = ss(systf);
```

Next, compute the gain matrix K using the complex-conjugate poles.

```
p = [-2+2i,-2-2i];
K = place(sys.A,sys.B,p)
K = 1\times2
```

$0 \quad 1.5000$

The values of the gain matrix are real since the poles are self-conjugate. The values of $K$ would be complex if $p$ did not contain self-conjugate poles.

Now, verify the step response of the closed-loop system.

```
syscl = ss(sys.A-sys.B*K,sys.B,sys.C,sys.D);
step(syscl)
```



## Pole Placement Observer Design

For this example, consider the following SISO state-space model:

$$
A=\left[\begin{array}{cc}
-1 & -0.75 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \quad D=0
$$

Create the SISO state-space model defined by the following state-space matrices:
$\mathrm{A}=[-1,-0.75 ; 1,0]$;
B = [1;0];
C = [1,1];
D = 0;
Plant $=$ ss $(A, B, C, D)$;
Now, provide a pulse to the plant and simulate it using lsim. Plot the output.
$N=250 ;$
t = linspace(0,25,N);
$\mathrm{u}=$ [ones(N/2,1); zeros(N/2,1)];
$\mathrm{x} 0=[1 ; 2]$;
$[y, t, x]=\operatorname{lsim}(P l a n t, u, t, x 0)$;
figure
plot(t,y);
title('Output');


For this example, assume that all the state variables cannot be measured and only the output is measured. Hence, design an observer with this measurement. Use place to compute the estimator gain by transposing the A matrix and substituting $C$ ' for matrix B. For this instance, select the desired pole locations at -2 and -3 .
$\mathrm{L}=\mathrm{place}\left(\mathrm{A}^{\prime}, \mathrm{C}^{\prime},[-2,-3]\right)^{\prime}$;
Use the estimator gain to substitute the state matrices using the principle of duality/separation and create the estimated state-space model.

```
At = A-L*C;
Bt = [B,L];
Ct = [C;eye(2)];
sysObserver = ss(At,Bt,Ct,0);
```

Simulate the time response of the system using the same pulse input.

```
[observerOutput,t] = lsim(sysObserver,[u,y],t);
yHat = observerOutput(:,1);
xHat = observerOutput(:,[2 3]);
```

Compare the response of the actual system and the estimated system.
figure;
$p l o t(t, x)$;
hold on;
plot(t,xHat,'--');
legend('x_1','x_2','xHat_1','xHat_2')
title('Comparisōn - Actuāl vs. Estimated');


## Input Arguments

## A - State matrix

Nx-by-Nx matrix
State matrix, specified as an Nx-by-Nx matrix where, $N x$ is the number of states.

## B - Input-to-state matrix

Nx-by-Nu matrix
Input-to-state matrix, specified as an Nx -by-Nu matrix where, Nx is the number of states and Nu is the number of inputs.

## p - Closed-loop pole locations

vector
Closed-loop pole locations, specified as a vector of length $N x$ where, $N x$ is the number of states. In other words, the length of $p$ must match the row size of $A$. Closed-loop pole locations have a direct impact on time response characteristics such as rise time, settling time, and transient oscillations.

For an example on selecting poles, see "Pole Placement Design for Second-Order System" on page 21047.
place returns an error if some poles in $p$ have multiplicity greater than rank(B).
In high-order problems, some choices of pole locations result in very large gains. The sensitivity problems attached with large gains suggest caution in the use of pole placement techniques. See [2] for results from numerical testing.

## Output Arguments

## K - Optimum gain

Ny-by-Nx matrix
Optimum gain or full-state feedback gain, returned as an Ny -by- Nx matrix where, Nx is the number of states and Ny is the number of outputs. place computes a gain matrix K such that the state feedback $u=-K x$ places the closed-loop poles at the locations p .

When the matrices $A$ and $B$ are real, $K$ is

- real when p is self-conjugate.
- complex when the pole locations are not complex-conjugates.


## prec - Accuracy estimate of the assigned poles

scalar
Accuracy estimate of the assigned poles, returned as a scalar. prec measures the number of accurate decimal digits in the actual closed-loop poles in contrast to the pole locations specified in p .

## Tips

- You can use place for estimator gain selection by transposing the A matrix and substituting C' for matrix B as follows, as shown in "Pole Placement Observer Design" on page 2-1052. You can use the resultant estimator gain for state estimator workflows using estim.


## Version History

## Introduced before R2006a

## References

[1] Kautsky, J., N.K. Nichols, and P. Van Dooren, "Robust Pole Assignment in Linear State Feedback," International Journal of Control, 41 (1985), pp. 1129-1155.
[2] Laub, A.J. and M. Wette, Algorithms and Software for Pole Assignment and Observers, UCRL-15646 Rev. 1, EE Dept., Univ. of Calif., Santa Barbara, CA, Sept. 1984.

## See Also

lqr|rlocus|estim

## Topics

"Pole Placement"

## External Websites

MATLAB Tech Talks - Pole Placement

## pole

Poles of dynamic system

## Syntax

P = pole(sys)
P = pole(sys,J1,..., JN)

## Description

$P=$ pole(sys) returns the poles of the SISO or MIMO dynamic system model sys. The output is expressed as the reciprocal of the time units specified in sys.TimeUnit. The poles of a dynamic system determine the stability and response of the system.

An open-loop linear time-invariant system is stable if:

- In continuous-time, all the poles of the transfer function have negative real parts. When the poles are visualized on the complex s-plane, then they must all lie in the left-half plane (LHP) to ensure stability.
- In discrete-time, all the poles must have a magnitude strictly smaller than one, that is they must all lie inside the unit circle.
$P=$ pole(sys, $J 1, \ldots, J N$ ) returns the poles $P$ of the entries in model array sys with subscripts (J1,..., JN).


## Examples

## Poles of Discrete-Time Transfer Function

Compute the poles of the following discrete-time transfer function:
$\operatorname{sys}(z)=\frac{0.0478 z-0.0464}{z^{2}-1.81 z+0.9048}$
sys $=t f([0.047980 .0464],[1-1.810 .9048], 0.1) ;$
P = pole(sys)
P = 2×1 complex
$0.9050+0.2929 i$
0.9050-0.2929i

For stable discrete systems, all their poles must have a magnitude strictly smaller than one, that is they must all lie inside the unit circle. The poles in this example are a pair of complex conjugates, and lie inside the unit circle. Hence, the system sys is stable.

## Poles of Transfer Function

Calculate the poles of following transfer function:
$\operatorname{sys}(s)=\frac{4.2 s^{2}+0.25 s-0.004}{s^{2}+9.6 s+17}$

```
sys = tf([4.2,0.25,-0.004],[1,9.6,17]);
P = pole(sys)
P = 2\times1
```

    -7.2576
    \(-2.3424\)
    For stable continuous systems, all their poles must have negative real parts. sys is stable since the poles are negative, that is, they lie in the left half of the complex plane.

## Poles of Models in an Array

For this example, load invertedPendulumArray.mat, which contains a 3-by-3 array of inverted pendulum models. The mass of the pendulum varies as you move from model to model along a single column of sys, and the length of the pendulum varies as you move along a single row. The mass values used are $100 \mathrm{~g}, 200 \mathrm{~g}$ and 300 g , and the pendulum lengths used are $3 \mathrm{~m}, 2 \mathrm{~m}$ and 1 m respectively.

Column 1 Column 2 Column 3
Row $1 \quad 100 \mathrm{~g}, 3 \mathrm{~m} \quad 100 \mathrm{~g}, 2 \mathrm{~m} \quad 100 \mathrm{~g}, 1 \mathrm{~m}$
Row $2200 \mathrm{~g}, 3 \mathrm{~m} 200 \mathrm{~g}, 2 \mathrm{~m} 200 \mathrm{~g}, 1 \mathrm{~m}$
Row 3 300g, $3 \mathrm{~m} 300 \mathrm{~g}, 2 \mathrm{~m} 300 \mathrm{~g}, 1 \mathrm{~m}$
load('invertedPendulumArray.mat','sys'); size(sys)
$3 \times 3$ array of transfer functions.
Each model has 1 outputs and 1 inputs.
Find poles of the model array.

```
P = pole(sys);
P(:,:,2,1)
ans = 3\times1
 2.1071
 -2.1642
 -0.1426
```

$P(:,:, 2,1)$ corresponds to the poles of the model with 200 g pendulum weight and 3 m length.

## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as tf , zpk , or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, pole returns the poles of the current or nominal value of sys. If sys is an array of models, pole returns the poles of the model corresponding to its subscript J1, ..., JN in sys. For more information on model arrays, see "Model Arrays".

## J1, ..., JN - Indices of models in array whose poles you want to extract positive integer

Indices of models in array whose poles you want to extract, specified as a positive integer. You can provide as many indices as there are array dimensions in sys. For example, if sys is a 4 -by- 5 array of dynamic system models, the following command extracts the poles for entry $(2,3)$ in the array.

```
P = pole(sys,2,3);
```


## Output Arguments

## P - Poles of the dynamic system

## column vector | array

Poles of the dynamic system, returned as a scalar or an array. If sys is:

- A single model, then $P$ is a column vector of poles of the dynamic system model sys
- A model array, then P is an array of poles of each model in sys
$P$ is expressed as the reciprocal of the time units specified in sys.TimeUnit. For example, pole is expressed in 1 /minute if sys.TimeUnit $=$ 'minutes '.

Depending on the type of system model, poles are computed in the following way:

- For state-space models, the poles are the eigenvalues of the $A$ matrix, or the generalized eigenvalues of $A-\lambda E$ in the descriptor case.
- For SISO transfer functions or zero-pole-gain models, the poles are the denominator roots. For more information, see roots.
- For MIMO transfer functions (or zero-pole-gain models), the poles are returned as the union of the poles for each SISO entry. If some I/O pairs have a common denominator, the roots of such I/O pair denominator are counted only once.


## Limitations

- Multiple poles are numerically sensitive and cannot be computed with high accuracy. A pole $\lambda$ with multiplicity $m$ typically results in a cluster of computed poles distributed on a circle with center $\lambda$ and radius of order

$$
\rho \approx \varepsilon^{1 / m}
$$

where $\varepsilon$ is the relative machine precision (eps).
For more information on multiple poles, see "Sensitivity of Multiple Roots".

- If sys has internal delays, poles are obtained by first setting all internal delays to zero so that the system has a finite number of poles, thereby creating a zero-order Padé approximation. For some systems, setting delays to zero creates singular algebraic loops, which result in either improper or ill-defined, zero-delay approximations. For these systems, pole returns an error.

To assess the stability of models with internal delays, use step or impulse.

## Version History

Introduced before R2006a

## See Also

damp|esort|dsort|pzmap|zero|step|impulse|pzplot

## Topics

"Pole and Zero Locations"
"Sensitivity of Multiple Roots"

## polyBasis

Polynomial basis functions for tunable gain surface

## Syntax

```
shapefcn = polyBasis('canonical',degree)
shapefcn = polyBasis('chebyshev',degree)
shapefcn = polyBasis(
,nvars)
shapefon = polyBasis(
```

$\qquad$

``` , varnames)
```


## Description

You use basis function expansions to parameterize gain surfaces for tuning gain-scheduled controllers. polyBasis generates standard polynomial expansions in any number of scheduling variables. Use the resulting functions to create tunable gain surfaces with tunableSurface.
shapefcn = polyBasis('canonical', degree) generates a function that evaluates the powers of an input variable, $\chi$, up to degree:

$$
\operatorname{shapefcn}(x)=\left[x, x^{2}, \ldots, x^{\text {order }}\right] .
$$

shapefcn = polyBasis('chebyshev', degree) generates a function that evaluates Chebyshev polynomials up to degree:

$$
\operatorname{shapefcn}(x)=\left[T_{1}(x), \ldots, T_{\text {order }}(x)\right] .
$$

The Chebyshev polynomials are defined recursively by:

$$
T_{0}(x)=1 ; \quad T_{1}(x)=x ; \quad T_{i+1}(x)=2 x T_{i}(x)-T_{i-1}(x) .
$$

shapefcn = polyBasis( $\qquad$ , nvars) generates an nvars-dimensional polynomial expansion by taking the outer product of nvars 1-D polynomial expansions. The resulting function shapefcn takes nvars input arguments and returns a vector with (degree+1)^(nvars-1) entries. For example, for nvars $=3$ and canonical polynomials,

$$
\operatorname{shapefcn}(x, y, z)=\left[x^{i} y^{j} z^{k}: 0 \leq i, j, k \leq \text { order, } i+j+k>0\right]
$$

Thus, to specify a bilinear function in two scheduling variables, use:
shapefcn = polyBasis('canonical',1,2);
Using the resulting function with tunableSurface defines a variable gain of the form:

$$
K(x, y)=K_{0}+K_{1} x+K_{2} y+K_{3} x y .
$$

Here, $x$ and $y$ are the normalized scheduling variables, whose values lie in the range [-1,1]. (See tunableSurface for more information.)

To specify basis functions in multiple scheduling variables where the expansions are different for each variable, use ndBasis.
shapefcn = polyBasis (__ , varnames) specifies variable names. Use this syntax with any of the previous syntaxes to name the variables in shapefcn. Using variable names improves readability of the tunableSurface object display and of any MATLAB code you generate using codegen.

## Examples

## Polynomial Basis Functions of One Scheduling Variable

Create basis functions for a gain that varies as a cubic function of one scheduling variable.

```
shapefcn = polyBasis('canonical',3);
```

shapefen is a handle to a function of one variable that returns an array of values corresponding to the first three powers of its input. In other words, shapefcn $(x)=\left[\begin{array}{lll}x & x^{\wedge} 2 & x^{\wedge} 3\end{array}\right]$. For example, examine shapefon(-0.2).

```
x = -0.2;
shapefcn(x)
ans = 1\times3
 -0.2000 0.0400 -0.0080
```

Evaluating [ $x x^{\wedge} 2 x^{\wedge} 3$ ] for $x=-0.2$ returns the same result.

```
[x x^2 (x^3]
ans = 1\times3
 -0.2000 0.0400 -0.0080
```

Use shapefcn as an input argument to tunableSurface to define a polynomial gain surface. This shapefcn is equivalent to using:

```
shapefcn = @(x) [x x^2 x^3];
```


## Chebyshev Basis Functions

Create a set of basis functions that are Chebyshev polynomials of a single variable, up to third degree.

```
shapefcn = polyBasis('chebyshev',3);
```


## Bilinear Function of Two Variables

Create basis functions for a bilinear gain surface, $[x, y, x y]$. Name the variables to make the function more readable.

```
shapefcn = polyBasis('canonical',1,2,{'x','y'})
```

```
shapefcn = function_handle with value:
 @(x,y)utFcnBasisOuterProduct(FDATA_,x,y)
```

Confirm the values returned by shapefcn for a particular $(x, y)$ pair.

```
x = 0.2;
y = -0.5;
shapefcn(x,y)
ans = 1\times3
 0.2000 -0.5000 -0.1000
```

This shapefon is equivalent to:
shapefcn $=@(x, y)\left[x, y, x^{*} y\right] ;$
The basis functions of shapefen are first-order in each of the two variables. To create a set of basis functions in different degrees for each variable, use ndBasis.

## Input Arguments

## degree - Degree of expansion

positive integer
Degree of the polynomial expansion, specified as a positive integer.

## nvars - Number of variables

1 (default) | positive integer
Number of scheduling variables, specified as a positive integer.

## varnames - Variable names

\{'x1','x2', ...\} (default)| character vector | cell array of character vectors
Variable names in the generated function shapefcn, specified as a:

- Character vector, for monovariable basis functions.
- Cell array of character vectors, for multivariable basis functions.

If you do not specify varnames, then the variables in shapefcn are named \{'x1', 'x2', ...\}.
Example: \{'alpha', 'V' \}

## Output Arguments

## shapefcn - Polynomial expansion

function handle
Polynomial expansion, specified as a function handle. shapefon takes as input arguments the number of variables specified by nvars. The function evaluates polynomials in those variables up to the specified degree, and returns the resulting values in a vector. When you use shapefcn to create
a gain surface, tunableSurface automatically generates tunable coefficients for each polynomial term in the vector.

## Version History <br> Introduced in R2015b

## See Also

tunableSurface|fourierBasis|ndBasis

## predict

Predict state and state estimation error covariance at next time step using extended or unscented Kalman filter, or particle filter

## Syntax

[PredictedState,PredictedStateCovariance] = predict(obj)
[PredictedState,PredictedStateCovariance] = predict(obj,Us1,...Usn)

## Description

The predict command predicts the state and state estimation error covariance of an extendedKalmanFilter, unscentedKalmanFilter or particleFilter object at the next time step. To implement the extended or unscented Kalman filter algorithms, use the predict and correct commands together. If the current output measurement exists, you can use predict and correct. If the measurement is missing, you can only use predict. For information about the order in which to use the commands, see "Using predict and correct Commands" on page 2-1071.
[PredictedState,PredictedStateCovariance] = predict(obj) predicts state estimate and state estimation error covariance of an extended or unscented Kalman filter, or particle filter object obj at the next time step.

You create obj using the extendedKalmanFilter, unscentedKalmanFilter or particleFilter commands. You specify the state transition function and measurement function of your nonlinear system in obj. You also specify whether the process and measurement noise terms are additive or nonadditive in these functions. The State property of the object stores the latest estimated state value. Assume that at time step $k$, obj. State is $\widehat{x}[k \mid k]$. This value is the state estimate for time $k$, estimated using measured outputs until time $k$. When you use the predict command, the software returns $\widehat{x}[k+1 \mid k]$ in the PredictedState output. Where $\widehat{x}[k+1 \mid k]$ is the state estimate for time $k+1$, estimated using measured output until time $k$. The command returns the state estimation error covariance of $\widehat{x}[k+1 \mid k]$ in the PredictedStateCovariance output. The software also updates the State and StateCovariance properties of obj with these corrected values.

Use this syntax if the state transition function $f$ that you specified in obj. StateTransitionFcn has one of the following forms:

- $x(k)=f(x(k-1))-$ for additive process noise.
- $x(k)=f(x(k-1), w(k-1))-$ for nonadditive process noise.

Where x and w are the state and process noise of the system. The only inputs to $f$ are the states and process noise.
[PredictedState,PredictedStateCovariance] = predict(obj,Us1,...Usn) specifies additional input arguments, if the state transition function of the system requires these inputs. You can specify multiple arguments.

Use this syntax if your state transition function $f$ has one of the following forms:

- $x(k)=f(x(k-1), U s 1, \ldots U s n)-$ for additive process noise.
- $x(k)=f(x(k-1), w(k-1), U s 1, \ldots U s n)-$ for nonadditive process noise.


## Examples

## Estimate States Online Using Unscented Kalman Filter

Estimate the states of a van der Pol oscillator using an unscented Kalman filter algorithm and measured output data. The oscillator has two states and one output.

Create an unscented Kalman filter object for the oscillator. Use previously written and saved state transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. These functions describe a discrete-approximation to a van der Pol oscillator with nonlinearity parameter, mu , equal to 1 . The functions assume additive process and measurement noise in the system. Specify the initial state values for the two states as $[1 ; 0]$. This is the guess for the state value at initial time $k$, using knowledge of system outputs until time $\mathrm{k}-1, \hat{x}[k \mid k-1]$.
obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[1;0]);
Load the measured output data, $y$, from the oscillator. In this example, use simulated static data for illustration. The data is stored in the vdp_data. mat file.

```
load vdp_data.mat y
```

Specify the process noise and measurement noise covariances of the oscillator.

```
obj.ProcessNoise = 0.01;
obj.MeasurementNoise = 0.16;
```

Initialize arrays to capture results of the estimation.

```
residBuf = [];
xcorBuf = [];
xpredBuf = [];
```

Implement the unscented Kalman filter algorithm to estimate the states of the oscillator by using the correct and predict commands. You first correct $\hat{x}[k \mid k-1]$ using measurements at time $k$ to get $\hat{x}[k \mid k]$. Then, you predict the state value at next time step, $\hat{x}[k+1 \mid k]$, using $\hat{x}[k \mid k]$, the state estimate at time step k that is estimated using measurements until time k .

To simulate real-time data measurements, use the measured data one time step at a time. Compute the residual between the predicted and actual measurement to assess how well the filter is performing and converging. Computing the residual is an optional step. When you use residual, place the command immediately before the correct command. If the prediction matches the measurement, the residual is zero.

After you perform the real-time commands for the time step, buffer the results so that you can plot them after the run is complete.

```
for k = 1:size(y)
 [Residual,ResidualCovariance] = residual(obj,y(k));
 [CorrectedState,CorrectedStateCovariance] = correct(obj,y(k));
 [PredictedState,PredictedStateCovariance] = predict(obj);
```

```
 residBuf(k,:) = Residual;
 xcorBuf(k,:) = CorrectedState';
 xpredBuf(k,:) = PredictedState';
```

end

When you use the correct command, obj. State and obj. StateCovariance are updated with the corrected state and state estimation error covariance values for time step k, CorrectedState and CorrectedStateCovariance. When you use the predict command, obj.State and obj. StateCovariance are updated with the predicted values for time step $\mathrm{k}+1$, PredictedState and PredictedStateCovariance.

In this example, you used correct before predict because the initial state value was $\hat{x}[k \mid k-1]$, a guess for the state value at initial time $k$ using system outputs until time $k$ - 1 . If your initial state value is $\hat{x}[k-1 \mid k-1]$, the value at previous time $k-1$ using measurement until $k-1$, then use the predict command first. For more information about the order of using predict and correct, see "Using predict and correct Commands" on page 2-1071.

Plot the estimated states, using the postcorrection values.
plot(xcorBuf(:,1), xcorBuf(:,2))
title('Estimated States')


Plot the actual measurement, the corrected estimated measurement, and the residual. For the measurement function in vdpMeasurementFcn, the measurement is the first state.
$M=[y, x \operatorname{corBuf}(:, 1), r e s i d B u f] ;$
plot(M)

```
grid on
title('Actual and Estimated Measurements, Residual')
legend('Measured','Estimated','Residual')
```



The estimate tracks the measurement closely. After the initial transient, the residual remains relatively small throughout the run.

## Estimate States Online Using Particle Filter

Load the van der Pol ODE data, and specify the sample time.
vdpODEdata.mat contains a simulation of the van der Pol ODE with nonlinearity parameter mu=1, using ode45, with initial conditions [2;0]. The true state was extracted with sample time $\mathrm{dt}=$ 0.05 .

```
load ('vdpODEdata.mat','xTrue','dt')
tSpan = 0:dt:5;
```

Get the measurements. For this example, a sensor measures the first state with a Gaussian noise with standard deviation 0.04.
sqrtR $=0.04$;
yMeas $=x \operatorname{True}(:, 1)+$ sqrtR*randn(numel(tSpan),1);
Create a particle filter, and set the state transition and measurement likelihood functions.
myPF = particleFilter(@vdpParticleFilterStateFcn,@vdpMeasurementLikelihoodFcn);
Initialize the particle filter at state [2; 0] with unit covariance, and use 1000 particles.

```
initialize(myPF,1000,[2;0],eye(2));
```

Pick the mean state estimation and systematic resampling methods.
myPF.StateEstimationMethod = 'mean';
myPF.ResamplingMethod = 'systematic';
Estimate the states using the correct and predict commands, and store the estimated states.

```
xEst = zeros(size(xTrue));
for k=1:size(xTrue,1)
 xEst(k,:) = correct(myPF,yMeas(k));
 predict(myPF);
end
```

Plot the results, and compare the estimated and true states.

```
figure(1)
plot(xTrue(:,1),xTrue(:,2),'x',xEst(:,1),xEst(:,2),'ro')
legend('True','Estimated')
```



## Specify State Transition and Measurement Functions with Additional Inputs

Consider a nonlinear system with input $u$ whose state $x$ and measurement $y$ evolve according to the following state transition and measurement equations:

$$
\begin{aligned}
& x[k]=\sqrt{x[k-1]+u[k-1]}+w[k-1] \\
& y[k]=x[k]+2 * u[k]+v[k]^{2}
\end{aligned}
$$

The process noise w of the system is additive while the measurement noise v is nonadditive.
Create the state transition function and measurement function for the system. Specify the functions with an additional input $u$.

```
f = @(x,u)(sqrt(x+u));
h = @(x,v,u)(x+2*u+v^2);
```

f and h are function handles to the anonymous functions that store the state transition and measurement functions, respectively. In the measurement function, because the measurement noise is nonadditive, $v$ is also specified as an input. Note that $v$ is specified as an input before the additional input u.

Create an extended Kalman filter object for estimating the state of the nonlinear system using the specified functions. Specify the initial value of the state as 1 and the measurement noise as nonadditive.
obj = extendedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);
Specify the measurement noise covariance.
obj. MeasurementNoise $=0.01$;
You can now estimate the state of the system using the predict and correct commands. You pass the values of $u$ to predict and correct, which in turn pass them to the state transition and measurement functions, respectively.

Correct the state estimate with measurement $y[k]=0.8$ and input $u[k]=0.2$ at time step $k$.
correct(obj, 0.8,0.2)
Predict the state at the next time step, given $u[k]=0.2$.
predict(obj,0.2)
Retrieve the error, or residual, between the prediction and the measurement.
[Residual, ResidualCovariance] = residual(obj, 0.8,0.2);

## Input Arguments

obj - Extended or unscented Kalman filter, or particle filter object
extendedKalmanFilter object | unscentedKalmanFilter object | particleFilter object
Extended or unscented Kalman filter, or particle filter object for online state estimation, created using one of the following commands:

- extendedKalmanFilter - Uses the extended Kalman filter algorithm.
- unscentedKalmanFilter - Uses the unscented Kalman filter algorithm.
- particleFilter - Uses the particle filter algorithm.


## Us1, ... Usn - Additional input arguments to state transition function input arguments of any type

Additional input arguments to state transition function, specified as input arguments of any type. The state transition function, $f$, is specified in the StateTransitionFcn property of the object. If the function requires input arguments in addition to the state and process noise values, you specify these inputs in the predict command syntax.

For example, suppose that your state transition function calculates the predicted state $x$ at time step k using system inputs $u(k-1)$ and time $k-1$, in addition to the state $\times(k-1)$ :
$x(k)=f(x(k-1), u(k-1), k-1)$
Then when you perform online state estimation at time step $k$, specify these additional inputs in the predict command syntax:
[PredictedState, PredictedStateCovariance] = predict(obj,u(k-1),k-1);

## Output Arguments

## PredictedState - Predicted state estimate

vector
Predicted state estimate, returned as a vector of size $M$, where $M$ is the number of states of the system. If you specify the initial states of obj as a column vector then $M$ is returned as a column vector, otherwise $M$ is returned as a row vector.

For information about how to specify the initial states of the object, see the extendedKalmanFilter, unscentedKalmanFilter and particleFilter reference pages.

## PredictedStateCovariance - Predicted state estimation error covariance

 matrixPredicted state estimation error covariance, returned as an $M$-by- $M$ matrix, where $M$ is the number of states of the system.

## More About

## Using predict and correct Commands

After you have created an extended or unscented Kalman filter, or particle filter object, obj, to implement the estimation algorithms, use the correct and predict commands together.

At time step $k$, correct command returns the corrected value of states and state estimation error covariance using measured system outputs $y[k]$ at the same time step. If your measurement function has additional input arguments $\mathrm{U}_{\mathrm{m}}$, you specify these as inputs to the correct command. The command passes these values to the measurement function.
[CorrectedState,CorrectedCovariance] $=\operatorname{correct(obj,y,Um)~}$

The correct command updates the State and StateCovariance properties of the object with the estimated values, CorrectedState and CorrectedCovariance.

The predict command returns the prediction of state and state estimation error covariance at the next time step. If your state transition function has additional input arguments $U_{s}$, you specify these as inputs to the predict command. The command passes these values to the state transition function.
[PredictedState,PredictedCovariance] = predict(obj,Us)
The predict command updates the State and StateCovariance properties of the object with the predicted values, PredictedState and PredictedCovariance.

If the current output measurement exists at a given time step, you can use correct and predict. If the measurement is missing, you can only use predict. For details about how these commands implement the algorithms, see "Extended and Unscented Kalman Filter Algorithms for Online State Estimation".

The order in which you implement the commands depends on the availability of measured data $y, U_{s}$, and $\mathrm{U}_{\mathrm{m}}$ for your system:

- correct then predict - Assume that at time step $k$, the value of obj. State is $\widehat{x}[k \mid k-1]$. This value is the state of the system at time $k$, estimated using measured outputs until time $k-1$. You also have the measured output $y[k]$ and inputs $U_{s}[k]$ and $U_{m}[k]$ at the same time step.

Then you first execute the correct command with measured system data y [k] and additional inputs $U_{m}[k]$. The command updates the value of obj. State to be $\widehat{x}[k \mid k]$, the state estimate for time $k$, estimated using measured outputs up to time $k$. When you then execute the predict command with input $U_{s}[k]$, obj. State now stores $\widehat{x}[k+1 \mid k]$. The algorithm uses this state value as an input to the correct command in the next time step.

- predict then correct - Assume that at time step k, the value of obj. State is $\widehat{x}[k-1 \mid k-1]$. You also have the measured output $y[k]$ and input $U_{m}[k]$ at the same time step but you have $\mathrm{U}_{\mathrm{s}}[k-1]$ from the previous time step.

Then you first execute the predict command with input $U_{s}[k-1]$. The command updates the value of obj. State to $\widehat{x}[k \mid k-1]$. When you then execute the correct command with input arguments $y[k]$ and $U_{m}[k]$, obj. State is updated with $\widehat{x}[k \mid k]$. The algorithm uses this state value as an input to the predict command in the next time step.

Thus, while in both cases the state estimate for time $k, \widehat{x}[k \mid k]$ is the same, if at time $k$ you do not have access to the current state transition function inputs $U_{s}[k]$, and instead have $U_{s}[k-1]$, then use predict first and then correct.

For an example of estimating states using the predict and correct commands, see "Estimate States Online Using Unscented Kalman Filter" on page 2-1066 or "Estimate States Online Using Particle Filter" on page 2-1068.

## Version History <br> Introduced in R2016b

## See Also

correct | clone | extendedKalmanFilter | unscentedKalmanFilter|particleFilter| initialize|residual

Topics
"Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter"
"Generate Code for Online State Estimation in MATLAB"
"Extended and Unscented Kalman Filter Algorithms for Online State Estimation"

## prescale

Optimal scaling of state-space models

## Syntax

```
scaledsys = prescale(sys)
scaledsys = prescale(sys,focus)
[scaledsys,info] = prescale(...)
prescale(sys)
```


## Description

scaledsys = prescale(sys) scales the entries of the state vector of a state-space model sys to maximize the accuracy of subsequent frequency-domain analysis. The scaled model scaledsys is equivalent to sys.
scaledsys = prescale(sys,focus) specifies a frequency interval focus = \{fmin,fmax (in rad/TimeUnit, where TimeUnit is the system's time units specified in the TimeUnit property of sys) over which to maximize accuracy. This is useful when sys has a combination of slow and fast dynamics and scaling cannot achieve high accuracy over the entire dynamic range. By default, prescale attempts to maximize accuracy in the frequency band with dominant dynamics.
[scaledsys,info] = prescale(...) also returns a structure info with the fields shown in the following table.

SL
SR
Freqs
RelAcc

Left scaling factors
Right scaling factors
Frequencies used to test accuracy
Guaranteed relative accuracy at these frequencies

The test frequencies lie in the frequency interval focus when specified. The scaled state-space matrices are

$$
\begin{aligned}
& A_{S}=T_{L} A T_{R} \\
& B_{S}=T_{L} B \\
& C_{S}=C T_{R} \\
& E_{S}=T_{L} E T_{R}
\end{aligned}
$$

where $T_{L}=\operatorname{diag}(S L)$ and $T_{R}=\operatorname{diag}(S R) . T_{L}$ and $T_{R}$ are inverse of each other for explicit models ( $E=$ [ ]).
prescale(sys) opens an interactive GUI for:

- Visualizing accuracy trade-offs for sys.
- Adjusting the frequency interval where the accuracy of sys is maximized.


For more information on scaling and using the Scaling Tool GUI, see "Scaling State-Space Models".

## Tips

Most frequency-domain analysis commands perform automatic scaling equivalent to scaledsys = prescale(sys).

You do not need to scale for time-domain simulations and doing so may invalidate the initial condition x 0 used in initial and lsim simulations.

## Version History

Introduced in R2008b

## See Also

ss

## pzmap

Pole-zero plot of dynamic system

## Syntax

```
pzmap(sys)
pzmap(sys1,sys2,...,sysN)
[p,z] = pzmap(sys)
```


## Description

pzmap (sys) creates a pole-zero plot of the continuous or discrete-time dynamic system model sys. x and o indicates the poles and zeros respectively, as shown in the following figure.


From the figure above, an open-loop linear time-invariant system is stable if:

- In continuous-time, all the poles on the complex s-plane must be in the left-half plane (blue region) to ensure stability. The system is marginally stable if distinct poles lie on the imaginary axis, that is, the real parts of the poles are zero.
- In discrete-time, all the poles in the complex z-plane must lie inside the unit circle (blue region). The system is marginally stable if it has one or more poles lying on the unit circle.
pzmap (sys1, sys2, ... sysN) creates the pole-zero plot of multiple models on a single figure. The models can have different numbers of inputs and outputs and can be a mix of continuous and discrete systems. For SISO systems, pzmap plots the system poles and zeros. For MIMO systems, pzmap plots the system poles and transmission zeros.
$[p, z]=p z m a p(s y s)$ returns the system poles and transmission zeros as column vectors $p$ and $z$. The pole-zero plot is not displayed on the screen.


## Examples

## Pole-Zero Plot of Dynamic System

Plot the poles and zeros of the continuous-time system represented by the following transfer function:

$$
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+3 s+5} .
$$

$H=t f\left(\left[\begin{array}{lll}2 & 5 & 1\end{array}\right],\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]\right)$;
pzmap(H)
grid on


Turning on the grid displays lines of constant damping ratio (zeta) and lines of constant natural frequency (wn). This system has two real zeros, marked by o on the plot. The system also has a pair of complex poles, marked by x.

## Pole-Zero Plot of Identified System

Plot the pole-zero map of a discrete time identified state-space (idss) model. In practice you can obtain an idss model by estimation based on input-output measurements of a system. For this example, create one from state-space data.
$A=[0.10 ; 0.2-0.9] ;$
$B=[.1$; 0.1];
$C=[105] ;$
D = [0];
sys = idss(A,B,C,D,'Ts',0.1);
Examine the pole-zero map.
pzmap(sys)


System poles are marked by $x$, and zeros are marked by 0 .

## Pole-Zero Map of Multiple Models

For this example, load a 3-by-1 array of transfer function models.
load('tfArray.mat','sys');
size(sys)
$3 \times 1$ array of transfer functions.
Each model has 1 outputs and 1 inputs.
Plot the poles and zeros of each model in the array with distinct colors. For this example, use red for the first model, green for the second and blue for the third model in the array.

```
pzmap(sys(:,:,1),'r',sys(:,:,2),'g',sys(:,:,3),'b')
sgrid
```


sgrid plots lines of constant damping ratio and natural frequency in the s-plane of the pole-zero plot.

## Poles and Zeros of Transfer Function

Use pzmap to calculate the poles and zeros of the following transfer function:
$\operatorname{sys}(s)=\frac{4.2 s^{2}+0.25 s-0.004}{s^{2}+9.6 s+17}$
sys $=\mathrm{tf}([4.2,0.25,-0.004],[1,9.6,17])$;
[p,z] = pzmap(sys)
$p=2 \times 1$

- 7.2576
-2.3424
$z=2 \times 1$
$-0.0726$
0.0131


## Identify Near-Cancelling Pole-Zero Pairs

This example uses a model of a building with eight floors, each with three degrees of freedom: two displacements and one rotation. The I/O relationship for any one of these displacements is represented as a 48 -state model, where each state represents a displacement or its rate of change (velocity).

Load the building model.
load('building.mat');
size(G)
State-space model with 1 outputs, 1 inputs, and 48 states.
Plot the poles and zeros of the system.
pzmap(G)

Pole-Zero Map


From the plot, observe that there are numerous near-canceling pole-zero pairs that could be potentially eliminated to simplify the model, with no effect on the overall model response. pzmap is useful to visually identify such near-canceling pole-zero pairs to perform pole-zero simplification.

## Input Arguments

## sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a dynamic system model or model array. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as tf , zpk , or ss models.

If sys is an array of models, pzmap plots all the poles and zeros of every model in the array on the same plot.

## Output Arguments

## p - Poles of the system

column vector
Poles of the system, returned as a column vector, in order of its increasing natural frequency. p is the same as the output of pole(sys), except for the order.

## z - Transmission zeros of the system

column vector
Transmission zeros of the system, returned as a column vector. $z$ is the same as the output of tzero(sys).

## Tips

- Use the functions sgrid or zgrid to plot lines of constant damping ratio and natural frequency in the $s$ - or $z$-plane on the pole-zero plot.
- For MIMO models, pzmap displays all system poles and transmission zeros on a single plot. To map poles and zeros for individual I/O pairs, use iopzmap.
- For additional options to customize the appearance of the pole-zero plot, use pzplot.


## Version History

## Introduced before R2006a

## See Also

damp|esort|dsort|pole|rlocus|sgrid|zgrid|zero|iopzmap|pzplot

## pzplot

Pole-zero plot of dynamic system model with additional plot customization options

## Syntax

h = pzplot(sys)
h = pzplot(sys1,sys2,...,sysN)
h = pzplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = pzplot(ax,...)
h = pzplot(...,plotoptions)

## Description

pzplot lets you plot pole-zero maps with a broader range of plot customization options than pzmap. You can use pzplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use pzplot to draw a pole-zero plot on an existing set of axes represented by an axes handle. To customize an existing plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create pole-zero maps with default options or to extract pole-zero data, use pzmap.
$\mathrm{h}=\mathrm{pzplot}($ sys $)$ plots the poles and transmission zeros of the dynamic system model sys and returns the plot handle $h$ to the plot. x and o indicates poles and zeros respectively.
h = pzplot(sys1,sys2,...sysN) displays the poles and transmission zeros of multiple models on a single plot. You can specify distinct colors for each model individually.
h = pzplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and color for the plot of each system. All systems must have the same number of inputs and outputs to use this syntax.
$h=p z p l o t(a x, \ldots)$ plots into the axes specified by ax instead of the current axis gca.
$\mathrm{h}=\mathrm{pzplot}(. . ., \mathrm{plotoptions})$ plots the poles and transmission zeros with the options specified in plotoptions. For more information on the ways to change properties of your plots, see "Ways to Customize Plots".

## Examples

## Pole-Zero Plot with Custom Plot Title

Plot the poles and zeros of the continuous-time system represented by the following transfer function:

$$
\operatorname{sys}(s)=\frac{2 s^{2}+5 s+1}{s^{2}+3 s+5} .
$$

sys = tf([2 5 1],[11 3 5]);
h = pzplot(sys);
grid on


Turning on the grid displays lines of constant damping ratio (zeta) and lines of constant natural frequency (wn). This system has two real zeros, marked by o on the plot. The system also has a pair of complex poles, marked by x .

Change the color of the plot title. To do so, use the plot handle, h .

```
p = getoptions(h);
p.Title.Color = [1,0,0];
setoptions(h,p);
```



## Pole-Zero Plot of Multiple Models

For this example, load a 3-by-1 array of transfer function models.
load('tfArrayMargin.mat','sys');

```
size(sys)
```

$3 \times 1$ array of transfer functions.
Each model has 1 outputs and 1 inputs.
Plot the poles and zeros of the model array. Define the colors for each model. For this example, use red for the first model, green for the second and blue for the third model in the array.
pzplot(sys(:,:,1),'r',sys(:,:,2),'g',sys(:,:,3),'b');


## Pole-Zero Plot with Custom Options

Plot the poles and zeros of the continuous-time system represented by the following transfer function with a custom option set:

$$
\operatorname{sys}(s)=\frac{2 s^{2}+5 s+1}{s^{2}+3 s+5} .
$$

Create the custom option set using pzoptions.
plotoptions = pzoptions;
For this example, specify the grid to be visible.
plotoptions.Grid = 'on';
Use the specified options to create a pole-zero map of the transfer function.



Turning on the grid displays lines of constant damping ratio (zeta) and lines of constant natural frequency (wn). This system has two real zeros, marked by o on the plot. The system also has a pair of complex poles, marked by $x$.

## Input Arguments

sys - Dynamic system
dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as tf, zpk, or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, pzplot returns the poles and transmission zeros of the current or nominal value of sys. If sys is an array of models, pzplot plots the poles and zeros of each model in the array on the same diagram.

## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.

Example: ' - - or' is a red dashed line with circle markers

Line Style	Description
-	Solid line
--	Dashed line
$:$	Dotted line
.-	Dash-dot line


Marker	Description	
' 0 '	Circle	
'+'	Plus sign	
1*'	Asterisk	
'.'	Point	
' x '	Cross	
'_'	Horizontal line	
' \\| '	Vertical line	
's'	Square	
'd'	Diamond	
'^1	Upward-pointing triangle	
'v'	Downward-pointing triangle	
'>'	Right-pointing triangle	
'<'	Left-pointing triangle	
'p'	Pentagram	
'h'	Hexagram	


Color	Description
y	yellow
m	magenta
C	cyan
r	red
g	green
b	blue
w	white
k	black

## ax - Axes handle

axes object
Axes handle, specified as an axes object. If you do not specify the axes object, then pzplot uses the current axes gca to plot the poles and zeros of the system.

## plotoptions - Pole-zero plot options <br> options object

Pole-zero plot options, specified as an options object. See pzoptions for a list of available plot options.

## Output Arguments

## h - Pole-zero plot options handle <br> scalar

Pole-zero plot options handle, returned as a scalar. Use $h$ to query and modify properties of your polezero plot. You can use this handle to customize the plot with the getoptions and setoptions commands.

## Tips

- Use sgrid or zgrid to plot lines of constant damping ratio and natural frequency in the $s$ - or $z$ plane.


## Version History <br> Introduced before R2006a

## See Also

getoptions | pzmap| setoptions|iopzplot|pzoptions

## Topics

"Ways to Customize Plots"

## pzoptions

Create list of pole/zero plot options

## Description

Use the pzoptions command to create a PZOptions object to customize your pole/zero plot appearance. You can also use the command to override the plot preference settings in the MATLAB session in which you create the pole/zero plots.

## Creation

## Syntax

plotoptions = pzoptions
plotoptions = pzoptions('cstprefs')

## Description

plotoptions = pzoptions returns a default set of plot options for use with the pzplot and iopzplot commands. You can use these options to customize the pole/zero plot appearance using the command line. This syntax is useful when you want to write a script to generate plots that look the same regardless of the preference settings of the MATLAB session in which you run the script.
plotoptions = pzoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox and System Identification Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor". This syntax is useful when you want to change a few plot options but otherwise use your default preferences. A script that uses this syntax may generate results that look different when run in a session with different preferences.

## Properties

## FreqUnits - Frequency units <br> 'rad/s' (default)

Frequency units, specified as one of the following values:

- 'Hz'
- 'rad/second'
- 'rpm'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rad/nanosecond'
- 'rad/microsecond'
- 'rad/millisecond'
- 'rad/minute'
- 'rad/hour'
- 'rad/day'
- 'rad/week'
- 'rad/month'
- 'rad/year'
- 'cycles/nanosecond'
- 'cycles/microsecond'
- 'cycles/millisecond'
- 'cycles/hour'
- 'cycles/day'
- 'cycles/week'
- 'cycles/month'
- 'cycles/year'


## TimeUnits - Time units

'seconds' (default)
Time units, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

You can also specify ' auto' which uses time units specified in the TimeUnit property of the input system. For multiple systems with different time units, the units of the first system is used.

ConfidenceRegionNumberSD - Number of standard deviations to use to plot the confidence region
1 (default) | scalar
Number of standard deviations to use to plot the confidence region, specified as a scalar. This is applicable to identified models only.

## IOGrouping - Grouping of input-output pairs

'none' (default) | 'inputs' | 'outputs' | 'all'
Grouping of input-output (I/O) pairs, specified as one of the following:

- 'none' - No input-output grouping.
- 'inputs' - Group only the inputs.
- 'outputs' - Group only the outputs.
- 'all' - Group all the I/O pairs.


## InputLabels - Input label style

structure (default)
Input label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4, 0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## OutputLabels - Output label style

structure (default)
Output label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## InputVisible - Toggle display of inputs

\{'on'\} (default) | \{'off'\} | cell array

Toggle display of inputs, specified as either $\{$ 'on ' $\}$, \{ 'off' $\}$ or a cell array with multiple elements.

## OutputVisible - Toggle display of outputs

\{'on'\} (default) |\{'off'\}|cell array
Toggle display of outputs, specified as either \{'on'\}, \{'off'\} or a cell array with multiple elements.

## Title - Title text and style

structure (default)
Title text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the plot is titled 'Pole-Zero Map'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals 1/72 inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0, 0, 0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## XLabel - X-axis label text and style

structure (default)
X-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the axis is titled based on the time units TimeUnits.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## YLabel - Y-axis label text and style

## structure (default)

Y-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a cell array of character vectors. By default, the axis is titled based on the time units TimeUnits.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0, 0, 0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## TickLabel - Tick label style

## structure (default)

Tick label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].


## Grid - Toggle grid display

'off' (default) | 'on'
Toggle grid display on the plot, specified as either 'off' or 'on'.

## GridColor - Color of the grid lines

[0.15,0.15, 0.15] (default)| RGB triplet
Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB triplet [0.15, 0.15, 0.15].

## XLimMode - X-axis limit selection mode <br> 'auto' (default) | 'manual' | cell array

Selection mode for the x -axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the XLim property.


## YLimMode - Y-axis limit selection mode

'auto' (default) | 'manual' | cell array
Selection mode for the $y$-axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the YLim property.


## XLim - X-axis limits

' $\{[1,10]\}$ ' (default) | cell array of two-element vector of the form [min, max] |cell array
X -axis limits, specified as a cell array of two-element vector of the form [min, max].

## YLim - $\mathbf{Y}$-axis limits

' $\{[1,10]\}$ ' (default) | cell array of two-element vector of the form [min, max] | cell array
Y-axis limits, specified as a cell array of two-element vector of the form [min, max].

## Object Functions

iopzplot Plot pole-zero map for I/O pairs with additional plot customization options pzplot Pole-zero plot of dynamic system model with additional plot customization options

## Examples

## Pole-Zero Plot with Custom Options

Plot the poles and zeros of the continuous-time system represented by the following transfer function with a custom option set:

$$
\operatorname{sys}(s)=\frac{2 s^{2}+5 s+1}{s^{2}+3 s+5} .
$$

Create the custom option set using pzoptions.
plotoptions = pzoptions;
For this example, specify the grid to be visible.
plotoptions.Grid = 'on';
Use the specified options to create a pole-zero map of the transfer function.

```
h = pzplot(tf([2 5 1],[1 3 5]),plotoptions);
```



Turning on the grid displays lines of constant damping ratio (zeta) and lines of constant natural frequency (wn). This system has two real zeros, marked by o on the plot. The system also has a pair of complex poles, marked by $x$.

## Version History <br> Introduced in R2008a

## See Also

getoptions|iopzplot|pzplot|setoptions

## Topics

"Toolbox Preferences Editor"

## realp

Real tunable parameter

## Syntax

```
p = realp(paramname,initvalue)
```


## Description

p = realp(paramname, initvalue) creates a tunable real-valued parameter with name specified by paramname and initial value initvalue. Tunable real parameters can be scalar- or matrixvalued.

## Input Arguments

paramname
Name of the realp parameter $p$, specified as a character vector such as 'a' or 'zeta'. This input argument sets the value of the Name property of $p$.

## initvalue

Initial numeric value of the parameter $p$. initvalue can be a real scalar value or a 2-dimensional matrix.

## Output Arguments

## p

realp parameter object.

## Properties

## Name

Name of the realp parameter object, stored as a character vector. The value of Name is set by the paramname input argument to realp and cannot be changed.

## Value

Value of the tunable parameter.
Value can be a real scalar value or a 2-dimensional matrix. The initial value is set by the initvalue input argument. The dimensions of Value are fixed on creation of the realp object.

## Minimum

Lower bound for the parameter value. The dimension of the Minimum property matches the dimension of the Value property.

For matrix-valued parameters, use indexing to specify lower bounds on individual elements:

$$
\begin{aligned}
& p=\operatorname{realp}\left(' \mathrm{~K}^{\prime}, \operatorname{eye}(2)\right) ; \\
& \mathrm{p} . \operatorname{Minimum}([14])=-5 ;
\end{aligned}
$$

Use scalar expansion to set the same lower bound for all matrix elements:

```
p.Minimum = -5;
```

Default: - Inf for all entries

## Maximum

Upper bound for the parameter value. The dimension of the Maximum property matches the dimension of the Value property.

For matrix-valued parameters, use indexing to specify upper bounds on individual elements:

```
p = realp('K',eye(2));
p.Maximum([1 4]) = 5;
```

Use scalar expansion to set the same upper bound for all matrix elements:

```
p.Maximum = 5;
```

Default: Inf for all entries

## Free

Boolean value specifying whether the parameter is free to be tuned. Set the Free property to 1 (true) for tunable parameters, and 0 (false) for fixed parameters.

The dimension of the Free property matches the dimension of the Value property.
Default: 1 (true) for all entries

## Examples

## Tunable Low-Pass Filter

In this example, you will create a low-pass filter with one tunable parameter $a$ :

$$
F=\frac{a}{s+a}
$$

Since the numerator and denominator coefficients of a tunableTF block are independent, you cannot use tunableTF to represent F. Instead, construct F using the tunable real parameter object realp.

Create a real tunable parameter with an initial value of 10.

```
a = realp('a',10)
a =
 Name: 'a'
 Value: 10
 Minimum: - Inf
```

```
 Maximum: Inf
 Free: 1
Real scalar parameter.
```

Use tf to create the tunable low-pass filter F .

```
numerator = a;
```

denominator = [1,a];
$F=t f($ numerator, denominator)
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 1 states, and the follow.
a: Scalar parameter, 2 occurrences.
Type "ss(F)" to see the current value and "F.Blocks" to interact with the blocks.
$F$ is a genss object which has the tunable parameter a in its Blocks property. You can connect $F$ with other tunable or numeric models to create more complex control system models. For an example, see "Control System with Tunable Components".

## Create Parametric Diagonal Matrix

Create a matrix with tunable diagonal elements and with off-diagonal elements fixed to zero.
Create a parametric matrix whose initial value is the identity matrix.
$p=r e a l p(' P ', e y e(2)) ;$
p is a 2 -by- 2 parametric matrix. Since the initial value is the identity matrix, the off-diagonal initial values are zero.

Fix the values of the off-diagonal elements by setting the Free property to false.

```
p.Free(1,2) = false;
p.Free(2,1) = false;
```


## Tips

- Use arithmetic operators ( $+,-, *, /, \backslash$, and ${ }^{\wedge}$ ) to combine realp objects into rational expressions or matrix expressions. You can use the resulting expressions in model-creation functions such as tf, zpk, and ss to create tunable models. For more information about tunable models, see "Models with Tunable Coefficients" in the Control System Toolbox User's Guide.


## Version History

## Introduced in R2011a

## See Also

genss|genmat|tf|ss

## Topics

"Models with Tunable Coefficients"

## Reduce Model Order

Reduce complexity of linear time-invariant (LTI) models in the Live Editor

## Description

The Reduce Model Order task lets you interactively compute reduced-order approximations of highorder models while preserving model characteristics that are important to your application. The task automatically generates MATLAB code for your live script. For more information about Live Editor tasks generally, see "Add Interactive Tasks to a Live Script".

Working with lower order models can simplify analysis and control design. Simpler models are also easier to understand and manipulate. You can reduce a plant model to focus on relevant dynamics before designing a controller for the plant. You can also use model reduction to simplify a full-order controller. For more information about model reduction and when it is useful, see "Model Reduction Basics".

To get started, select a model to reduce and a model-reduction method. For each method, the task gives you controls and plots that help you ensure that your reduced model preserves dynamics that are important for your application.

- Balanced Truncation - Compute a lower order approximation of your model by removing states with relatively small energy contributions.
- Mode Selection - Select modes by specifying a frequency range of interest.
- Pole-Zero Simplification - Eliminate canceling or near-canceling pole-zero pairs.


## Related Functions

The model-reduction code that Reduce Model Order generates uses the following functions.

- balred
- freqsep
- minreal



## Description (collapsed portion)

## Related Functions

The model-reduction code that Reduce Model Order generates uses the following functions.

- balred
- freqsep
- minreal


## Open the Task

To add the Reduce Model Order task to a live script in the MATLAB Editor:

- On the Live Editor tab, select Task > Reduce Model Order.
- In a code block in your script, type a relevant keyword, such as reduce, bal red, or minreal. Select Reduce Model Order from the suggested command completions.


## Parameters

Model - Model to reduce
numeric LTI model
Choose the model to reduce. The list of available models includes proper tf, ss, or zpk models in the MATLAB workspace. The model can be SISO or MIMO, and continuous or discrete.

- Continuous-time models cannot have time delays. To reduce a continuous-time model with time delays, first use pade to approximate the time delays as model dynamics.
- Discrete-time models can have time delays. For the Balanced Truncation reduction method, the task uses absorbDelay to convert the delay into poles at $z=0$ before reducing the model.

Note Reduce Model Order assumes that the model time unit (specified in the TimeUnit property of the model) is seconds. For the Balanced Truncation and Mode Selection methods, if your $\underline{\text { model does not have TimeUnit }=\text { ' seconds', use chgTimeUnit to convert the model to seconds. }}$

## Method - Model reduction method

Balanced Truncation (default)|Mode Selection|Pole-Zero Simplification
For each method, the Reduce Model Order task gives you controls and plots that help you ensure that your reduced model preserves dynamics that are important for your application.

- Balanced Truncation - Compute a lower order approximation of your model by removing states with relatively small energy contributions. To use this method, specify the number of states (order) in the reduced model. The Hankel singular-value plot visualizes the relative energy contribution of each state in the original model. The task discards states with lower energy than the state you select in this plot. This method generates code that uses the bal red command.

For discrete-time model that has time delays, Reduce Model Order uses absorbDelay to convert the delay into poles at $z=0$ before reducing the model by balanced truncation. The additional states are reflected in the response plot and Hankel singular-value plot.

- Mode Selection - Select modes by specifying a frequency range of interest. The task discards dynamics that fall outside the region you specify on the frequency-response plot. This method generates code that uses the freqsep command.
- Pole-Zero Simplification - Eliminate canceling or near-canceling pole-zero pairs. The task discards pole-zero pairs that cancel with the threshold specified by the Tolerance parameter. Increase the tolerance to discard more states. This method generates code that uses the minreal command.


## Balanced Truncation Parameters

Reduced Order - Number of states in reduced model
positive integer
Specify the number of states in the reduced-order model. You can use any value that falls between the number of unstable states in the model and the number of states in the original model. For more information, see "Balanced Truncation Model Reduction".

Preserve DC Gain - Match DC gain of reduced model to that of original model on (default) | off

Match the DC gain of the reduced model to that of the original model. Select Preserve DC Gain when the DC behavior of the model is important in your application. Clear the parameter to get better matching of higher frequency behavior. For more information, see "Balanced Truncation Model Reduction".

Frequency Range - Limit analysis to specified frequencies
off (default) | on
By default, Reduce Model Order analyzes Hankel singular values across all frequencies. Restricting this analysis to a particular frequency range is useful when you know the model has modes outside the region of interest to your particular application. When you apply a frequency limit, Reduce Model Order determines which states are the low-energy states to truncate based on their energy contribution within the specified frequency range only.

To limit the analysis of state contributions to a particular frequency range, check Frequency range. Then, drag the vertical cursors on the response plot to specify the frequency range of interest. Alternatively, enter the minimum and maximum frequencies in the text boxes. The unit is rad/s. If your model does not have TimeUnit = 'seconds', use chgTimeUnit to convert the model to seconds.

Comparison Plot - How to compare original and reduced models
Model response (default) | Absolute error|Relative error
Reduce Model Order shows you a comparison of the frequency responses between the original and reduced models. You can use this plot to monitor the match between the original and reduced-order models while you experiment with model-reduction parameter values. Available comparison plots are:

- Model response - Frequency response of the original and reduced models, shown as a Bode plot for SISO models and a singular-value plot for MIMO models.
- Absolute error plot - Singular values of G-Gr, where $G$ is the original model and $G r$ is the current reduced model. (For SISO models, the singular-value plot is the magnitude of the frequency response.)
- Relative error plot - Singular values of (G-Gr)/G. This plot is useful when the model has very high or very low gain in the region that is important to your application. In such regions, absolute error can be misleading.


## Mode Selection Parameters

Cutoff Frequency - Frequency range in which to preserve dynamics
positive scalar values
Specify the lower and upper bounds of the frequency range in which to preserve dynamics. You can also use the vertical cursors on the response plot to specify the range. Reduce Model Order discards dynamics outside the specified range.

For more information about this method, see "Mode-Selection Model Reduction".
Comparison Plot - How to compare original and reduced models
Model response (default)|Absolute error|Relative error
Reduce Model Order shows you a comparison of the frequency responses between the original and reduced models. You can use this plot to monitor the match between the original and reduced-order models while you experiment with model-reduction parameter values. Available comparison plots are:

- Model response - Frequency response of the original and reduced models, shown as a Bode plot for SISO models and a singular-value plot for MIMO models.
- Absolute error plot - Singular values of G-Gr, where G is the original model and Gr is the current reduced model. (For SISO models, the singular-value plot is the magnitude of the frequency response.)
- Relative error plot - Singular values of (G-Gr)/G. This plot is useful when the model has very high or very low gain in the region that is important to your application. In such regions, absolute error can be misleading.


## Pole-Zero Simplification Parameters

## Tolerance - Margin for pole-zero cancellation

positive scalar
Specify the margin for pole-zero cancellation. Pole-zero pairs that cancel within this tolerance are removed from the reduced model. You can use the slider to change the tolerance and observe the results in a response plot.

## Results Parameters

Output Plot - Type of response plot to generate
None (default) | Step | Impulse | Bode | ...
Reduce Model Order generates code that shows the response of the original and reduced systems on the plot type you specify. Available plots include:

- Step response
- Impulse response
- Bode plot
- Singular value (sigma) plot
- Pole-zero plot


## Version History

Introduced in R2019b

## See Also

## Functions

balred|minreal|freqsep

## Apps

Model Reducer

## Topics

"Model Reduction in the Live Editor"
"Model Reduction Basics"

## reg

Form regulator given state-feedback and estimator gains

## Syntax

```
rsys = reg(sys,K,L)
rsys = reg(sys,K,L,sensors,known,controls)
```


## Description

rsys $=$ reg(sys, $\mathrm{K}, \mathrm{L}$ ) forms a dynamic regulator or compensator rsys given a state-space model sys of the plant, a state-feedback gain matrix K, and an estimator gain matrix L. The gains K and L are typically designed using pole placement or LQG techniques. The function reg handles both continuous- and discrete-time cases.

This syntax assumes that all inputs of sys are controls, and all outputs are measured. The regulator $r$ sys is obtained by connecting the state-feedback law $u=-K x$ and the state estimator with gain matrix $L$ (see estim). For a plant with equations

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

this yields the regulator

$$
\begin{aligned}
& \dot{\hat{x}}=[A-L C-(B-L D) K] \widehat{x}+L y \\
& u=-K \widehat{x}
\end{aligned}
$$

This regulator should be connected to the plant using positive feedback.

rsys = reg(sys,K,L,sensors,known,controls) handles more general regulation problems where:

- The plant inputs consist of controls $u$, known inputs $u_{d}$, and stochastic inputs $w$.
- Only a subset $y$ of the plant outputs is measured.

The index vectors sensors, known, and controls specify $y, u_{d}$, and $u$ as subsets of the outputs and inputs of sys. The resulting regulator uses $\left[u_{d} ; y\right]$ as inputs to generate the commands $u$ (see next figure).


Regulator rsys

## Examples

Given a continuous-time state-space model
sys = ss(A,B,C,D)
with seven outputs and four inputs, suppose you have designed:

- A state-feedback controller gain K using inputs 1,2 , and 4 of the plant as control inputs
- A state estimator with gain $L$ using outputs 4,7 , and 1 of the plant as sensors, and input 3 of the plant as an additional known input

You can then connect the controller and estimator and form the complete regulation system by

```
controls = [1,2,4];
sensors = [4,7,1];
known = [3];
regulator = reg(sys,K,L,sensors,known,controls)
```


## Version History

Introduced before R2006a

## See Also

estim| kalman | lqgreg|lqr|dlqr|place

## replaceBlock

Replace or update control design blocks in generalized LTI model

## Syntax

```
Mnew = replaceBlock(M,Block1,Value1,...,BlockN,ValueN)
Mnew = replaceBlock(M,blockvalues)
Mnew = replaceBlock(...,mode)
```


## Description

Mnew = replaceBlock(M,Block1,Value1, ..., BlockN,ValueN) replaces the Control Design Blocks Block1, ..., BlockN of M with the specified values Value1, ... , ValueN. M is a Generalized LTI model or a Generalized matrix.

Mnew = replaceBlock(M,blockvalues) specifies the block names and replacement values as field names and values of the structure blockvalues.

Mnew $=$ replaceBlock (.. . , mode) performs block replacement on an array of models $M$ using the substitution mode specified by mode.

## Input Arguments

## M

Generalized LTI model, Generalized matrix, or array of such models.

## Block1,..., BlockN

Names of Control Design Blocks in M. The replaceBlock command replaces each listed block of $M$ with the corresponding values Value1, . . , ValueN that you supply.

If a specified $B l o c k$ is not a block of $M$, replaceBlock that block and the corresponding value.

## Value1, ..., ValueN

Replacement values for the corresponding blocks Block1, ..., BlockN.
The replacement value for a block can be any value compatible with the size of the block, including a different Control Design Block, a numeric matrix, or an LTI model. If any value is [], the corresponding block is replaced by its nominal (current) value.

## blockvalues

Structure specifying blocks of M to replace and the values with which to replace those blocks.
The field names of blockvalues match names of Control Design Blocks of $M$. Use the field values to specify the replacement values for the corresponding blocks of $M$. The replacement values may be numeric values, Numeric LTI models, Control Design Blocks, or Generalized LTI models.

## mode

Block replacement mode for an input array M of Generalized matrices or LTI models, specified as one of the following values:

- ' - once ' (default) - Vectorized block replacement across the model array M. Each block is replaced by a single value, but the value may change from model to model across the array.

For vectorized block replacement, use a structure array for the input blockvalues, or cell arrays for the Value $1, \ldots$, , ValueN inputs. For example, if $M$ is a 2-by-3 array of models:

- Mnew = replaceBlock(M,blockvalues,'-once'), where blockvalues is a 2-by-3 structure array, specifies one set of block values blockvalues( $k$ ) for each model M(: ,: ,k) in the array.
- Mnew = replaceBlock(M,Block,Value,' - once'), where Value is a 2-by-3 cell array, replaces Block by Value\{k\} in the model $M(:,:, k)$ in the array.
- ' - batch ' - Batch block replacement. Each block is replaced by an array of values, and the same array of values is used for each model in M. The resulting array of model Mnew is of size [size(M) Asize], where Asize is the size of the replacement value.

When the input M is a single model, ' - once' and ' - batch ' return identical results.
Default: '- once'

## Output Arguments

## Mnew

Matrix or linear model or matrix where the specified blocks are replaced by the specified replacement values.

Mnew is a numeric array or numeric LTI model when all the specified replacement values are numeric values or numeric LTI models.

## Examples

## Replace Control Design Block with Numeric Values

This example shows how to replace a tunable PID controller (tunablePID) in a Generalized LTI model by a pure gain, a numeric PI controller, or the current value of the tunable controller.

1 Create a Generalized LTI model of the following system:

where the plant $G(s)=\frac{(s-1)}{(s+1)^{3}}$, and $C$ is a tunable PID controller.

G = zpk(1,[-1,-1,-1],1);
C = tunablePID('C','pid');
Try $=\operatorname{feedback}\left(G^{*} C, 1\right)$
2 Replace $C$ by a pure gain of 5 .
T1 = replaceBlock(Try,'C',5);
T1 is a ss model that equals feedback ( $G * 5,1$ ).
3 Replace C by a PI controller with proportional gain of 5 and integral gain of 0.1 .
C2 $=$ pid(5,0.1);
T2 = replaceBlock(Try,'C',C2);
T2 is a ss model that equals feedback ( $\mathrm{G}^{*} \mathrm{C} 2,1$ ).
4 Replace C by its current (nominal) value.

```
T3 = replaceBlock(Try,'C',[]);
```

T3 is a ss model where $C$ has been replaced by getValue ( $C$ ).

## Sample Tunable Model Over Grid of Values

Consider the second-order filter represented by:

$$
F(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Sample this filter at varying values of the damping constant $\zeta$ and the natural frequency $\omega_{n}$. Create a tunable model of the filter by using tunable elements for $\zeta$ and $\omega_{n}$.

```
wn = realp('wn',3);
zeta = realp('zeta',0.8);
F = tf(wn^2,[1 2*zeta*wn wn^2])
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 2 states, and the follow.
 wn: Scalar parameter, 5 occurrences.
 zeta: Scalar parameter, 1 occurrences.
Type "ss(F)" to see the current value and "F.Blocks" to interact with the blocks.
```

Create a grid of sample values.

```
wnvals = [3;5];
zetavals = [0.6 0.8 1.0];
[wngrid,zetagrid] = ndgrid(wnvals,zetavals);
Fsample = replaceBlock(F,'wn',wngrid,'zeta',zetagrid);
size(Fsample)
2x3 array of state-space models.
Each model has 1 outputs, 1 inputs, and 2 states.
```

The ndgrid command produces a full 2-by-3 grid of parameter combinations. Thus, Fsample is a 2-by-3 array of state-space models. Each entry in the array is a state-space model that represents $F$ evaluated at the corresponding (wn, zeta) pair. For example, Fsample (: , : , 2, 3) has wn $=5$ and zeta $=1.0$.

```
damp(Fsample(:,:,2,3))
\begin{tabular}{cccc}
Pole & Damping & \begin{tabular}{c}
Frequency \\
(rad/seconds)
\end{tabular} & \begin{tabular}{c}
Time Constant \\
\((\) seconds \()\)
\end{tabular} \\
\(-5.00 \mathrm{e}+00\) & \(1.00 \mathrm{e}+00\) & \(5.00 \mathrm{e}+00\) & \(2.00 \mathrm{e}-01\) \\
\(-5.00 \mathrm{e}+00\) & \(1.00 \mathrm{e}+00\) & \(5.00 \mathrm{e}+00\) & \(2.00 \mathrm{e}-01\)
\end{tabular}
```


## Tips

- Use replaceBlock to perform parameter studies by sampling Generalized LTI models across a grid of parameters, or to evaluate tunable models for specific values of the tunable blocks. See "Examples" on page 2-1108.
- For additional options for sampling control design blocks, including concurrent sampling, use sampleBlock.
- To take random samples of control design blocks, see rsampleBlock


## Version History

Introduced in R2011a

## See Also

getValue | genss | genmat | nblocks | sampleBlock| rsampleBlock

## Topics

"Generalized Matrices"
"Generalized and Uncertain LTI Models"
"Models with Tunable Coefficients"

## repsys

Replicate and tile models

## Syntax

```
rsys = repsys(sys,[M N])
rsys = repsys(sys,N)
rsys = repsys(sys,[M N S1,...,Sk])
```


## Description

rsys $=$ repsys(sys,[M N]) replicates the model sys into an M-by-N tiling pattern. The resulting model rsys has size(sys,1)*M outputs and size(sys,2)*N inputs.
rsys = repsys(sys,N) creates an N -by-N tiling.
rsys = repsys(sys,[M N S1,..., Sk]) replicates and tiles sys along both I/O and array dimensions to produce a model array. The indices $S$ specify the array dimensions. The size of the array is [size(sys,1)*M, size(sys,2)*N, size(sys,3)*S1, ...].

## Input Arguments

## sys

Model to replicate.
M
Number of replications of sys along the output dimension.

## N

Number of replications of sys along the input dimension.

## S

Numbers of replications of sys along array dimensions.

## Output Arguments

## rsys

Model having size(sys,1)*M outputs and size(sys,2)*N inputs.
If you provide array dimensions $\mathrm{S} 1, \ldots, \mathrm{Sk}$, rsys is an array of dynamic systems which each have size(sys,1)*M outputs and size(sys,2)*N inputs. The size of rsys is [size(sys,1)*M, size(sys,2)*N, size(sys,3)*S1, ...].

## Examples

## Replicate SISO Transfer Function to Create MIMO Transfer Function

Create a single-input single-output (SISO) transfer function.
sys $=t f\left(2,\left[\begin{array}{ll}1 & 3\end{array}\right)\right.$
sys $=$
2
----
s + 3
Continuous-time transfer function.
Replicate the SISO transfer function to create a MIMO transfer function that has three inputs and two outputs.

```
rsys = repsys(sys,[2 3])
rsys =
 From input 1 to output...
 2
 1: -----
 s + 3
 2
 2: -----
 s + 3
 From input 2 to output...
 2
 1: -----
 s + 3
 2
 2: -----
 s + 3
 From input 3 to output...
 2
 1: -----
 s + 3
 2
 2: -----
 s + 3
Continuous-time transfer function.
```

Alternatively, you can obtain the MIMO transfer function as follows:
rsys $=$ [sys sys sys; sys sys sys];

## Replicate SISO Transfer Function to Create Array of Transfer Functions

Create a SISO transfer function.
sys = tf(2,[13]);
Replicate the transfer function into a 3-by-4 array of two-input, one-output transfer functions.

```
rsys = repsys(sys,[1 2 3 4]);
```

Check the size of rsys.

```
size(rsys)
3x4 array of transfer functions.
Each model has 1 outputs and 2 inputs.
```


## Tips

rsys = repsys(sys,N) produces the same result as rsys = repsys(sys,[N N]). To produce a diagonal tiling, use rsys = sys*eye(N).

## Version History

Introduced in R2010b

## See Also

append

## reshape

Change shape of model array

## Syntax

sys = reshape(sys,s1,s2,...,sk)
sys $=$ reshape(sys,[s1 s2 ... sk])

## Description

sys = reshape(sys,s1,s2,...,sk) (or, equivalently, sys = reshape(sys,[s1 s2 ...
sk])) reshapes the LTI array sys into an s1-by-s2-by-...-by-sk model array. With either syntax, there must be s1*s2*...*sk models in sys to begin with.

## Examples

## Change Shape of Model Array

Generate a 2-by-3 array of SISO models with four states each.

```
sys = rss(4,1,1,2,3);
size(sys)
2x3 array of state-space models.
Each model has 1 outputs, 1 inputs, and 4 states.
```

Change the shape of the array to create a 6-by-1 model array.

```
sys1 = reshape(sys,6,1);
size(sys1)
6x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 4 states.
```


## Version History

Introduced before R2006a

## See Also

ndims|size

## residual

Return measurement residual and residual covariance when using extended or unscented Kalman filter

## Syntax

[Residual,ResidualCovariance] = residual(obj,y)
[Residual,ResidualCovariance] = residual(obj,y,Um1,...,Umn)

## Description

The residual command returns the difference between the actual and predicted measurements for extendedKalmanFilter and unscentedKalmanFilter objects. Viewing the residual provides a way for you to validate the performance of the filter. Residuals, also known as innovations, quantify the prediction error and drive the correction step in the extended and unscented Kalman filter update sequence. When using correct and predict to update the estimated Kalman filter state, use the residual command immediately before using the correct command.
[Residual,ResidualCovariance] = residual(obj,y) returns the residual Residual between a measurement y and a predicted measurement produced by the Kalman filter obj. The function also returns the covariance of the residual ResidualCovariance.

You create obj using the extendedKalmanFilter or unscentedKalmanFilter commands. You specify the state transition function $f$ and measurement function $h$ of your nonlinear system in obj. The State property of the object stores the latest estimated state value. At each time step, you use correct and predict together to update the state $x$. The residual $s$ is the difference between the actual and predicted measurements for the time step, and is expressed as $s=y-h(x)$. The covariance of the residual $S$ is the sum $R+R_{P}$, where $R$ is the measurement noise matrix set by the MeasurementNoise property of the filter and $R_{P}$ is the state covariance matrix projected onto the measurement space.

Use this syntax if the measurement function $h$ that you specified in obj. MeasurementFcn has one of the following forms:

- $y(k)=h(x(k))$ for additive measurement noise
- $y(k)=h(x(k), v(k))$ for nonadditive measurement noise

Here, $y(k), x(k)$, and $v(k)$ are the measured output, states, and measurement noise of the system at time step $k$. The only inputs to $h$ are the states and measurement noise.
[Residual,ResidualCovariance] = residual(obj,y,Um1, $\ldots$, Umn) specifies additional input arguments if the measurement function of the system requires these inputs. You can specify multiple arguments.

Use this syntax if the measurement function $h$ has one of the following forms:

- $y(k)=h(x(k), U m 1, \ldots, U m n)$ for additive measurement noise
- $y(k)=h(x(k), v(k), U m 1, \ldots$, Umn $)$ for nonadditive measurement noise


## Examples

## Estimate States Online Using Extended Kalman Filter

Estimate the states of a van der Pol oscillator using an extended Kalman filter algorithm and measured output data. The oscillator has two states and one output.

Create an extended Kalman filter object for the oscillator. Use previously written and saved state transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. These functions describe a discrete-approximation to a van der Pol oscillator with the nonlinearity parameter mu equal to 1 . The functions assume additive process and measurement noise in the system. Specify the initial state values for the two states as $[1 ; 0]$. This is the guess for the state value at initial time $k$, based on knowledge of system outputs until time $k-1, \hat{x}[k \mid k-1]$.

```
obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[1;0]);
```

Load the measured output data $y$ from the oscillator. In this example, use simulated static data for illustration. The data is stored in the vdp_data.mat file.
load vdp_data.mat y
Specify the process noise and measurement noise covariances of the oscillator.

```
obj.ProcessNoise = 0.01;
obj.MeasurementNoise = 0.16;
```

Initialize arrays to capture results of the estimation.

```
residBuf = [];
xcorBuf = [];
xpredBuf = [];
```

Implement the extended Kalman filter algorithm to estimate the states of the oscillator by using the correct and predict commands. You first correct $\hat{\chi}[k \mid k-1]$ using measurements at time $k$ to get $\hat{x}[k \mid k]$. Then, you predict the state value at the next time step $\hat{x}[k+1 \mid k]$ using $\hat{x}[k \mid k]$, the state estimate at time step k that is estimated using measurements until time k .

To simulate real-time data measurements, use the measured data one time step at a time. Compute the residual between the predicted and actual measurement to assess how well the filter is performing and converging. Computing the residual is an optional step. When you use residual, place the command immediately before the correct command. If the prediction matches the measurement, the residual is zero.

After you perform the real-time commands for the time step, buffer the results so that you can plot them after the run is complete.

```
for k = 1:size(y)
 [Residual,ResidualCovariance] = residual(obj,y(k));
 [CorrectedState,CorrectedStateCovariance] = correct(obj,y(k));
 [PredictedState,PredictedStateCovariance] = predict(obj);
 residBuf(k,:) = Residual;
 xcorBuf(k,:) = CorrectedState';
 xpredBuf(k,:) = PredictedState';
end
```

When you use the correct command, obj.State and obj.StateCovariance are updated with the corrected state and state estimation error covariance values for time step k, CorrectedState and CorrectedStateCovariance. When you use the predict command, obj. State and obj. StateCovariance are updated with the predicted values for time step $\mathrm{k}+1$, PredictedState and PredictedStateCovariance. When you use the residual command, you do not modify any obj properties.

In this example, you used correct before predict because the initial state value was $\hat{x}[k \mid k-1]$, a guess for the state value at initial time $k$ based on system outputs until time $k$ - 1 . If your initial state value is $\hat{x}[k-1 \mid k-1]$, the value at previous time $k-1$ based on measurements until $k-1$, then use the predict command first. For more information about the order of using predict and correct, see "Using predict and correct Commands" on page 2-178.

Plot the estimated states, using the postcorrection values.

```
plot(xcorBuf(:,1), xcorBuf(:,2))
title('Estimated States')
```



Plot the actual measurement, the corrected estimated measurement, and the residual. For the measurement function in vdpMeasurementFcn, the measurement is the first state.

```
M = [y,xcorBuf(:,1),residBuf];
plot(M)
grid on
title('Actual and Estimated Measurements, Residual')
legend('Measured','Estimated','Residual')
```



The estimate tracks the measurement closely. After the initial transient, the residual remains relatively small throughout the run.

## Specify State Transition and Measurement Functions with Additional Inputs

Consider a nonlinear system with input $u$ whose state $x$ and measurement $y$ evolve according to the following state transition and measurement equations:

$$
\begin{aligned}
& x[k]=\sqrt{x[k-1]+u[k-1]}+w[k-1] \\
& y[k]=x[k]+2 * u[k]+v[k]^{2}
\end{aligned}
$$

The process noise w of the system is additive while the measurement noise v is nonadditive.
Create the state transition function and measurement function for the system. Specify the functions with an additional input $u$.
$f=@(x, u)(\operatorname{sqrt}(x+u)) ;$
$h=@(x, v, u)\left(x+2 * u+v^{\wedge} 2\right) ;$
f and h are function handles to the anonymous functions that store the state transition and measurement functions, respectively. In the measurement function, because the measurement noise is nonadditive, $v$ is also specified as an input. Note that $v$ is specified as an input before the additional input $u$.

Create an extended Kalman filter object for estimating the state of the nonlinear system using the specified functions. Specify the initial value of the state as 1 and the measurement noise as nonadditive.

```
obj = extendedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);
```

Specify the measurement noise covariance.
obj. MeasurementNoise $=0.01$;
You can now estimate the state of the system using the predict and correct commands. You pass the values of $u$ to predict and correct, which in turn pass them to the state transition and measurement functions, respectively.

Correct the state estimate with measurement $\mathrm{y}[\mathrm{k}]=0.8$ and input $\mathrm{u}[\mathrm{k}]=0.2$ at time step k .
correct (obj, 0.8,0.2)
Predict the state at the next time step, given $u[k]=0.2$.
predict(obj,0.2)
Retrieve the error, or residual, between the prediction and the measurement.
[Residual, ResidualCovariance] = residual(obj, 0.8,0.2);

## Input Arguments

obj - Extended or unscented Kalman filter
extendedKalmanFilter object | unscentedKalmanFilter object
Extended or unscented Kalman filter, created using one of the following commands:

- extendedKalmanFilter - Uses the extended Kalman filter algorithm
- unscentedKalmanFilter - Uses the unscented Kalman filter algorithm


## y - Measured system output

vector
Measured system output at the current time step, specified as an $N$-element vector, where $N$ is the number of measurements.

## Um1, . . . Umn - Additional input arguments to measurement function <br> input arguments of any type

Additional input arguments to the measurement function of the system, specified as input arguments of any type. The measurement function $h$ is specified in the MeasurementFcn or MeasurementLikelihoodFcn property of obj. If the function requires input arguments in addition to the state and measurement noise values, you specify these inputs in the residual command syntax. The residual command passes these inputs to the measurement or the measurement likelihood function to calculate estimated outputs. You can specify multiple arguments.

For instance, suppose that your measurement or measurement likelihood function calculates the estimated system output $y$ using system inputs $u$ and current time $k$, in addition to the state $x$. The $U_{m 1}$ and $U_{m 2}$ terms are therefore $\mathrm{u}(\mathrm{k})$ and k . These inputs result in the estimated output
$y(k)=h(x(k), u(k), k)$
Before you perform online state estimation correction at time step $k$, specify these additional inputs in the residual command syntax:
[Residual, ResidualCovariance] = residual(obj, y,u(k),k);
For an example showing how to use additional input arguments, see "Specify State Transition and Measurement Functions with Additional Inputs" on page 2-1118.

## Output Arguments

## Residual - Residual between current and predicted measurement

## scalar | vector

Residual between current and predicted measurement, returned as a:

- Scalar for a single-output system
- Vector of size $N$ for a multiple-output system, where $N$ is the number of measured outputs

ResidualCovariance - Residual covariance
matrix
Residual covariance, returned as an $N$-by- $N$ matrix where $N$ is the number of measured outputs.

## Version History <br> Introduced in R2019b

## See Also

correct | predict | extendedKalmanFilter|unscentedKalmanFilter

## Topics

"Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter"
"Generate Code for Online State Estimation in MATLAB"
"Extended and Unscented Kalman Filter Algorithms for Online State Estimation"
"Validate Online State Estimation at the Command Line"

## RespConfig

Options for step or impulse responses

## Description

Use a RespConfig object to specify options for the step and impulse responses.
The step function applies this configuration as follows.

- In the SISO case

$$
u(t)=\left\{\begin{array}{c}
U, \quad t<T_{0}+T_{d} \\
U+d U, \quad t \geq T_{0}+T_{d} .
\end{array}\right.
$$

- In the MIMO case, the step response of the $j$ th input channel is obtained by setting

$$
u(t)=\left\{\begin{array}{cc}
U, & t<T_{0}+T_{d} \\
U+d U_{j} * e_{j}, & t \geq T_{0}+T_{d}^{\prime}
\end{array}\right.
$$

where $e_{j}$ is the $j$ th basis vector.
The impulse function applies this configuration as follows.

$$
u(t)=U+d U^{*} \delta\left(t-\left(T_{0}+T_{d}\right)\right)
$$

Here:

- $U$ is the input signal offset.
- $d U$ is the input level change relative to $U$.
- $T_{0}$ is the start time.
- $T_{\mathrm{d}}$ is the time at which the change occurs relative to $T_{0}$.


## Creation

## Syntax

```
respOpt = RespConfig
respOpt = RespConfig(Name=Value)
Description
```

resp0pt = RespConfig creates a response configuration object with default property values.
resp0pt = RespConfig(Name=Value) creates a response configuration object and sets its properties using one or more name-value arguments.

## Properties

## InputOffset - Input signal offset level

0 (default) | scalar | vector
Input signal offset level, specified as a scalar or vector.

- For single-input systems, InputOffset is a scalar value.
- For multi-input systems, InputOffset is a vector of length $N_{u}$, where $N_{\mathrm{u}}$ is the number of input channels. Each vector value corresponds to the signal offset in that input channel. The functions compute the responses one input channel at a time.
- For linear parameter-varying (LPV) and linear time-varying (LTV) models, use a scalar or vector to specify a constant offset. Otherwise, set Input0ffset = 'u0' to apply the step of impulse change relative to the input offsets $u_{0}(t)$ of the LTV model or $u_{0}(t, p)$ of the LPV model. This is the $u 0$ output of the data function. The total input signal is then $u_{0}+u(t)$.


## Amplitude - Input level change

1 (default) | scalar | vector
Input level change relative to the input signal offset, specified as a scalar or vector.

- For single-input systems, Amplitude is a scalar value.
- For multi-input systems, Amplitude is a vector of length $N_{\mathrm{u}}$, where $N_{\mathrm{u}}$ is the number of input channels. Each vector value corresponds to the level change amplitude in that input channel. The functions compute the responses one input channel at a time.


## Delay - Step or impulse delay

0 (default) | nonnegative scalar
Input signal delay, specified as a nonnegative scalar value. This value specifies when the change occurs relative to the simulation start time $T_{0}$.

## InitialState - Initial state values

[] (default) | vector | initialCondition object
Initial state values, specified as a vector or initialCondition object.
By default, the simulation starts from the steady-state condition obtained for a constant input level equal to the input offset $U$. For state-space models without internal delays, the initial state $x_{\text {init }}$ is obtained by solving:

- Continuous time $-0=A x_{\text {init }}+B U$
- Discrete time $-x_{\text {init }}=A x_{\text {init }}+B U$

To start the simulation from a different initial state, use one of the following.

- For state-space models, InitialState is a vector of length $N_{\mathrm{x}}$, where $N_{\mathrm{x}}$ is the number of states.
- For LTV and LPV models, you can also set InitialState to ' $\times 0$ ' . This uses the state offset value $x_{0}\left(T_{0}\right)$ or $x_{0}\left(T_{0}, p\left(T_{0}\right)\right)$. The state offset value is the $\times 0$ output of the data function evaluated at $t=$ $T_{0}$.
- For identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models, you can use an initialCondition object to specify the initial state. Using identified models requires System Identification Toolbox software.


## InitialParameter - Initial parameter values for LPV models

[ ] (default) | scalar | vector
Initial parameter values for LPV models, specified as a scalar or vector.
This property is required only when you specify Input0ffset = 'u0' or InitialState = [] or ' $x 0$ '. Otherwise, this value is ignored.

## Object Functions

impulse Impulse response plot of dynamic system; impulse response data step Step response plot of dynamic system; step response data

## Examples

## Configure Options for Step Response

Create a transfer function model.
sys = tf([1 5],[1 10 50]);
Create an option set to specify step input offset, amplitude, and delay.

```
Config = RespConfig('InputOffset',-2,'Amplitude',5,'Delay',2);
```

Calculate the step response using the specified options.
step(sys,Config)


## Configure Options for Impulse Response

Create a state-space model.
$A=[-0.8429,-0.2134 ;-0.5162,-1.2139] ;$
$B=[0.7254,0.7147 ; 0,-0.2050]$;
$C=[-0.1241,1.4090 ; 1.4897,1.4172] ;$
D = [0.6715,0.7172;-1.2075,0];
sys $=s s(A, B, C, D) ;$
Create a default option set and use the dot notation to specify values.

```
resp0pt = RespConfig;
respOpt.InputOffset = [-2,3];
respOpt.Amplitude = [2,-0.5];
respOpt.InitialState = [0.1,-0.1];
respOpt.Delay = 5;
```

Compute the impulse response.

```
t = 0:0.1:20;
impulse(sys,t,resp0pt)
```



## Version History <br> Introduced in R2023a <br> R2023a: Recommended over stepDataOptions

RespConfig replaces stepDataOptions for creating a response configuration for the step command. RespConfig has better support for providing initial conditions and input signal offsets for linear time-varying and linear parameter-varying models.

## See Also <br> impulse|step

## rlocus

Root locus plot of dynamic system

## Syntax

rlocus(sys)
rlocus(sys1,sys2,...)
[r,k] = rlocus(sys)
$r=r l o c u s(s y s, k)$

## Description

rlocus(sys) calculates and plots the root locus of the SISO model sys. The root locus returns the closed-loop pole trajectories as a function of the feedback gain k (assuming negative feedback). Root loci are used to study the effects of varying feedback gains on closed-loop pole locations. In turn, these locations provide indirect information on the time and frequency responses.

You can use rlocus to plot the root locus diagram of any of the following negative feedback loops by setting sys as shown below:


For instance, if sys is a transfer function represented by

$$
\operatorname{sys}(s)=\frac{n(s)}{d(s)}
$$

the closed-loop poles are the roots of

$$
d(s)+k n(s)=0
$$

The root locus plot depicts the trajectories of closed-loop poles when the feedback gain k varies from 0 to infinity. rlocus adaptively selects a set of positive gains $k$ to produce a smooth plot. The poles on the root locus plot are denoted by $x$ and the zeros are denoted by 0 .
rlocus(sys1, sys2, ...) plots the root loci of multiple LTI models sys1, sys2, .. on a single plot. You can specify a color, line style, and marker for each model. For even more plot customization options, see rlocusplot.
$[r, k]=r l o c u s(s y s)$ returns the vector of feedback gains $k$ and the complex root locations $r$ for these gains.
$r=r l o c u s(s y s, k)$ uses the user-specified vector of feedback gains $k$ to output the closed-loop poles $r$ that define the root locus plot.

## Examples

## Root Locus Plot of Dynamic System

For this example. plot the root-locus of the following SISO dynamic system:

$$
\operatorname{sys}(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3} .
$$

sys = tf([2 5 1],[1 2 3]);
rlocus(sys)


The poles of the system are denoted by $\mathbf{x}$, while the zeros are denoted by $\mathbf{o}$ on the root locus plot. You can use the menu within the generated root locus plot to add grid lines, zoom in or out, and also invoke the Property Editor to customize the plot.

For more plot customization options, use rlocusplot.

## Root Locus Plot of Multiple Dynamic System Models

For this example, consider sisoModels.mat which contains the following three SISO models:

- sys1 - a transfer function model
- sys2 - a state-space model
- sys3 - a zero-pole-gain model

Load the models from the mat file.

```
load('sisoModels.mat','sys1','sys2','sys3');
```

Create the root locus plot using rlocus and specify the color for each system. Also add a legend to the root locus plot.

```
rlocus(sys1,'b',sys2,'k',sys3,'r')
hold on
legend('sys1','sys2','sys3')
hold off
```



The figure contains root locus diagrams for all three systems in the same plot. For more plot customization, see rlocusplot.

## Closed-Loop Poles and Feedback Gain Values using Root Locus

For this example, consider the following SISO transfer function model:

$$
\operatorname{sys}(s)=\frac{3 s^{2}+1}{9 s^{3}+7 s^{2}+5 s+6}
$$

Use the above transfer function model with rlocus to extract the closed-loop poles and associated feedback gain values.

```
sys = tf([3 0 1],[9 7 5 6]);
[r,k] = rlocus(sys)
r = 3\times53 complex
102 x
\begin{tabular}{rrrrr}
\(-0.0094+0.0000 i\) & \(-0.0104+0.0000 i\) & \(-0.0105+0.0000 i\) & \(-0.0106+0.0000 i\) & \(-0.0107+0.0000 i\) \\
\(0.0008+0.0084 i\) & \(0.0006+0.0083 i\) & \(0.0006+0.0082 i\) & \(0.0006+0.0082 i\) & \(0.0006+0.0082 i\)
\end{tabular}
k = 1\times53
\begin{tabular}{lllllllll}
0 & 0.4201 & 0.4542 & 0.4911 & 0.5309 & 0.5740 & 0.6205 & 0.6709 & 0.7253
\end{tabular}
```

Since sys contains 3 poles, the size of the resultant array of poles $r$ is $3 x 53$. Each column in $r$ corresponds to a gain value from vector k. For this example, rlocus automatically chose 53 values of k from zero to infinity to obtain a smooth trajectory for the three closed-loop poles.
display(r(:, 39$)$ )

$$
\begin{aligned}
& -3.2585+0.0000 i \\
& -0.0145+0.6791 i \\
& -0.0145-0.6791 i
\end{aligned}
$$

display(k(39))
7.5289

For instance, $\mathrm{r}(:, 39)$ contains the above closed-loop poles for a feedback gain value of 7.5289.

## Closed-Loop Pole Locations for a Set of Feedback Gain Values

For this example, consider the following SISO transfer function model:

$$
\operatorname{sys}(s)=\frac{0.5 s^{2}-1}{4 s^{4}+3 s^{2}+2}
$$

Define the transfer function model and required vector of feedback gain values. For this example, consider a set of gain values varying from 1 to 8 with increments of 0.5 and extract the closed-loop pole locations using rlocus.

```
sys = tf([0.5 0 -1],[4 0 3 0 2]);
k = (1:0.5:5);
r= rlocus(sys,k);
size(r)
ans = 1\times2
```

    49
    Since sys contains 4 closed-loop poles, the size of the resultant array of closed-pole locations $r$ is $4 x 9$ where the 9 columns correspond to the 9 specific gain values defined in $k$.

You can also visualize the trajectory of the closed-loop poles for the specific gain values in k on the root locus plot.
rlocus(sys,k)


## Input Arguments

sys - SISO dynamic system
tf object | ss object | zpk object

SISO dynamic system, specified as one of the following:

- Continuous-time or discrete-time numeric LTI models which include tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
rlocus assumes
- current values of the tunable components for tunable control design blocks.
- nominal model values for uncertain control design blocks.
- Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models. (Using identified models requires System Identification Toolbox software.)


## k - Feedback gain values

vector
Feedback gain values that pertain to pole locations, specified as a vector. The feedback gains define the trajectory of the poles thereby affecting the shape of the root locus plot.

## Output Arguments

## r - Closed-loop pole locations

n-by-m array
Closed-loop pole locations of sys corresponding to each value in $k$, returned as an $n$-by-m array, where n is the number of closed-loop poles of sys and $\mathrm{m}=\max ($ length( k$)$ ).

## k - Feedback gain values

vector
Feedback gain values that pertain to pole locations, returned as a vector. The feedback gains define the trajectory of the poles thereby affecting the shape of the root locus plot. When k is not defined by the user, rlocus adaptively selects a set of positive gains $k$ between zero and infinity, to produce a smooth plot.

## Tips

- For an interactive approach to root locus plotting, see Control System Designer.


## Version History

Introduced before R2006a

## See Also

rlocusplot|tf|pole|zero|ss|zpk|Control System Designer
Topics
"Root Locus Design"
"Control of an Inverted Pendulum on a Cart"
"DC Motor Control"

## rlocusplot

Plot root locus and return plot handle

## Syntax

```
h = rlocusplot(sys)
rlocusplot(sys,k)
rlocusplot(sys1,sys2,...)
rlocusplot(AX,...)
rlocusplot(..., plotoptions)
```


## Description

$\mathrm{h}=$ rlocusplot(sys) computes and plots the root locus of the single-input, single-output LTI model sys. It also returns the plot handle $h$. You can use this handle to customize the plot with the getoptions and setoptions commands. Type
help pzoptions
for a list of available plot options.
See rlocus for a discussion of the feedback structure and algorithms used to calculate the root locus.
rlocusplot(sys,k) uses a user-specified vector $k$ of gain values.
rlocusplot (sys1,sys2,...) draws the root loci of multiple LTI models sys1, sys2,... on a single plot. You can specify a color, line style, and marker for each model, as in

```
rlocusplot(sys1,'r',sys2,'y:',sys3,'gx')
```

rlocusplot (AX,...) plots into the axes with handle AX.
rlocusplot(..., plotoptions) plots the root locus with the options specified in plotoptions. Type
help pzoptions
for more details.

## Examples

Use the plot handle to change the title of the plot.

```
sys = rss(3);
h = rlocusplot(sys);
p = getoptions(h); % Get options for plot.
p.Title.String = 'My Title'; % Change title in options.
setoptions(h,p); % Apply options to plot.
```


## Tips

You can change the properties of your plot, for example the units. For information on the ways to change properties of your plots, see "Ways to Customize Plots".

## Version History

Introduced before R2006a

See Also<br>getoptions|rlocus|pzoptions| setoptions

## rsampleBlock

Randomly sample Control Design blocks in generalized model

## Syntax

Msamp = rsampleBlock(M, names, N )
Msamp = rsampleBlock(M, names1,N1, names2,N2, ..., namesM,NM)
[Msamp,samples] = rsampleBlock( $\qquad$ )

## Description

Msamp = rsampleBlock(M, names, N ) randomly samples a subset of the Control Design blocks in the generalized model $M$. The names argument specifies which blocks to sample, and $N$ specifies how many samples to take. The result Msamp is a model array of size [size(M) N] obtained by replacing the sampled blocks with their randomized values.

Msamp = rsampleBlock(M,names1,N1, names2,N2, ..., namesM,NM) takes N1 samples of the blocks listed in names1, N 2 samples of the blocks listed in names2, and so on. The result Msamp is a model array of size [size(M) N1 N2 ... NM].
[Msamp, samples] = rsampleBlock( ___ ) also returns a data structure containing the block replacement values for each sampling point. You can use this syntax with any of the preceding input argument combinations.

## Examples

## Randomly Sample Parameter in Tunable Model

Create the first-order model $G(s)=1 /(\tau s+1)$, where $\tau$ is a tunable real parameter.

```
tau = realp('tau',5);
G = tf(1,[tau 1]);
```

Restrain tau to nonnegative values only.
G.Blocks.tau.Minimum = 0;

Generate 20 random samples of G . The result is a 20 -by-1 array of first-order models with random values of tau taken from the range of tau.

```
Gs = rsampleBlock(G,'tau',20);
size(Gs)
20x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
```


## Randomly Sample Multiple Parameters

Take random samples of a model with both tunable and uncertain blocks. Using uncertain blocks requires Robust Control Toolbox ${ }^{\text {TM }}$. Random sampling of tunable blocks works the same way as shown in this example.

Create an uncertain model of $G(s)=a /(\tau s+1)$, where $a$ is an uncertain parameter that varies in the interval [3,5], and $\tau=0.5+/-30 \%$. Also, create a tunable PI controller, and form a closed-loop system from the tunable controller and uncertain system.
a = ureal('a',4);
tau = ureal('tau',.5,'Percentage',30);
G = tf(a,[tau 1]);
C = tunablePID('C','pi');
T = feedback(G*C,1);
T is a generalized state-space model with two uncertain blocks, a and tau, and one tunable block, C . Sample T at 20 random (a, tau) pairs.
[Ts,samples] = rsampleBlock(T,\{'a','tau'\},20);
Ts is a 20-by-1 array of genss models. The tunable block C, which is not sampled, is preserved in Ts. The structure samples has fields samples.a and samples.tau that contain the values at which those blocks are sampled.

Grouping a and tau into a cell array causes rsampleBlock to sample them together, as (a,tau) pairs. Sampling the blocks independently generates a higher-dimensionality arrays. For example, independently taking 10 random samples of a and 5 samples of tau generates a 10-by-5 model array.

```
[TsInd,samples] = rsampleBlock(T,'a',10,'tau',5);
TsInd
10x5 array of generalized continuous-time state-space models.
Each model has 1 outputs, 1 inputs, 2 states, and the following blocks:
 C: Tunable PID controller, 1 occurrences.
Type "ss(TsInd)" to see the current value and "TsInd.Blocks" to interact with the blocks.
```

In this array, a varies along one dimension and tau varies along the other.

## Input Arguments

## M - Model to sample

generalized model | uncertain model | generalized matrix | uncertain matrix
Model to sample, specified as a:

- Generalized model (genss or genfrd)
- Generalized matrix (genmat)
- Uncertain model (uss or ufrd)
- Uncertain matrix (umat)


## names - Control Design blocks

character vector | cell array of character vectors

Control Design blocks to sample, specified as a character vector or cell array of character vectors. The entries in names correspond to the names of at least a subset of the Control Design blocks in M. For example, suppose that M is a genss model with tunable blocks t 1 and t 2 , and uncertain blocks $u 1$ and $u 2$. Then, $\{$ ' $t 1$ ', ' $u 2$ ' $\}$ is one possible value for names.

Grouping block names together in a cell array generates samples of the group rather than independent samples of each block. For example, the following code generates a 10-by-1 array of models, where each entry in the array has a random value for the pair ( $\mathrm{t} 1, \mathrm{u} 2$ ).

Msamp = rsampleBlock(M,\{'t1','u2'\},10);
To sample parameters independently, do not group them. For example, the following code generates a 10 -by- 20 array of models, where t1 varies along the first dimension and $u 2$ varies along the second dimension.

Msamp = rsampleBlock(M,'t1',10,'u2',20);
rsampleBlock ignores any entry in names that does not appear in $M$.

## N - Number of samples <br> positive integer

Number of samples to take of the preceding block or blocks, specified as a positive integer.

## Output Arguments

## Msamp - Array of model samples

generalized model array | ss array | frd array | numeric array
Array of model samples, returned as a generalized model array, ss array, frd array, or numeric array. Msamp is of the same type as $M$, unless all blocks are sampled. In that case, Msamp is a numeric array, ss array, or frd array. For example, suppose that $M$ is a uss model with uncertain blocks u1 and u2. The following command returns an array of uss models, with uncertain block u2.

Msamp1 = rsampleBlock(M,'u1',10);
The following command samples both blocks and returns an array of ss models.
Msamp2 = rsampleBlock(M,\{'u1','u2'\},10);
rsampleBlock uses values that fall within the uncertainty range when sampling uncertain blocks, and within the maximum and minimum parameter values when sampling tunable blocks.

## samples - Block sample values

structure
Block sample values, returned as a structure. The fields of samples are the names of the sampled blocks. The values are arrays containing the corresponding random values used to generate the entries in Msamp. For instance, suppose that you run the following command, where M is a genss model with tunable blocks t1 and t2.

```
[Msamp,samples] = rsampleBlock(M,{'t1','t2'},10);
```

Then, samples. $t 1$ contains the 10 values of $t 1$ and samples. $t 2$ contains the 10 values of $t 2$. If you sample a block that is not scalar valued, the corresponding field of samples contains values
compatible with the block. For instance, if you sample a tunablePID block, samples contains an array of state-space models that represent PID controllers.

## Version History

Introduced in R2016a

## See Also

sampleBlock|replaceBlock| getValue | genss | genmat | uss
Topics
"Generalized Models"

## rSS

Generate random continuous test model

## Syntax

```
rss(n)
rss(n,p)
rss(n,p,m,s1,\ldots,sn)
```


## Description

rss (n) generates an n-th order model with one input and one output and returns the model in the state-space object sys. The poles of sys are random and stable with the possible exception of poles at $s=0$ (integrators).
$r s s(n, p)$ generates an $n t h$ order model with one input and $p$ outputs, and $r s s(n, p, m)$ generates an $n$-th order model with $m$ inputs and $p$ outputs. The output sys is always a state-space model.
rss ( $n, p, m, s 1, \ldots, s n$ ) generates an s1-by-...-by-sn array of $n$-th order state-space models with $m$ inputs and $p$ outputs.

Use tf, frd, or zpk to convert the state-space object sys to transfer function, frequency response, or zero-pole-gain form.

## Examples

## Generate State-Space Models

Generate a random SISO state-space model with two states.

```
sys2 = rss(2)
sys2 =
 A =
 rrra
 x2 -0.5162 -1.214
 B =
 M}\begin{array}{r}{\mathrm{ u1}}\\{\times1 0.7254}
 x2 -0.06305
 C =
 y1 0
 D =
```

        u1
    y1 -0.1241
Continuous-time state-space model.
Generate a model with four states, three outputs, and two inputs. The input arguments to rss are arranged in the order states, outputs, inputs.

```
sys4 = rss(4,3,2)
sys4 =
 A =
\begin{tabular}{rrrrr}
& & & x1 & x2 \\
\(\times 1\) & 45.92 & 1.332 & -9.841 & -18.02 \\
\(\times 2\) & -3.679 & -0.8695 & 2.348 & -0.8719 \\
\(\times 3\) & 89.8 & -2.097 & -22.31 & -28.27 \\
x4 & 79.49 & -2.367 & -19.69 & -24.7
\end{tabular}
 B =
\begin{tabular}{rrr}
& u 1 & u 2 \\
\(\times 1\) & 0 & -0.2256 \\
\(\times 2\) & 1.533 & 0 \\
\(\times 3\) & -0.7697 & 0 \\
x4 & 0 & 0.03256
\end{tabular}
 C =
\begin{tabular}{lrrrr}
& \(x 1\) & \(x 2\) & \(x 3\) & \(x 4\) \\
\(y 1\) & 0.5525 & 0.08593 & -1.062 & 0.7481 \\
y2 & 1.101 & 0 & 2.35 & -0.1924 \\
y3 & 1.544 & 0 & -0.6156 & 0.8886
\end{tabular}
 D =
 lrr
 y2 -1.402 0
 y3 0 -0.1961
Continuous-time state-space model.
```


## Generate Array of Random Models

Generate a 4-by-5 array of SISO models with three states each.

```
sysarray = rss(3,1,1,4,5);
size(sysarray)
4x5 array of state-space models.
Each model has 1 outputs, 1 inputs, and 3 states.
```


## Version History

Introduced before R2006a

```
See Also
drss|frd|tf|zpk
```


## sample

Sample linear parameter-varying or time-varying dynamics

## Syntax

```
ssArray = sample(vSys,T)
ssArray = sample(vSys,T,P)
ssArray = sample(vSys,T,P1,..., Pn)
ssArray = sample(vSys,S)
ssArray = sample(vSys)
[ssArray,offsets] = sample(
```

$\qquad$

``` )
```


## Description

ssArray $=$ sample(vSys, $T$ ) samples the dynamics of the linear time-varying (LTV) model vSys at the times specified in the time vector T and returns an array of time-invariant state-space (ss) models.
ssArray $=$ sample(vSys, $T, P$ ) samples the dynamics of the linear-parameter varying (LPV) model vSys at the single point (T,P) and returns an array of time-invariant state-space ( $\mathrm{s} s$ ) models. Set T to [ ] if the dynamics of the LPV model only depend on $P$.
ssArray $=$ sample(vSys,T,P1, .., Pn) samples the dynamics over a grid of $(T, P)$ values. P1, ..., Pn are arrays specifying the values of each parameter of the LPV model.
ssArray $=$ sample(vSys, S) specifies the sample values as a structure S .
ssArray = sample(vSys) samples a gridded LTV or LPV model at values obtained from vSys.Grid. You can use this syntax as a quick way to access the state-space data and offsets used to construct the gridded LTV or LPV model.
[ssArray,offsets] = sample(__ ) also returns a structure array offsets containing the derivative, state, input, and output offset values at the specified times. You can use this syntax with any of the input-argument combinations in previous syntaxes.

## Examples

## Sample Dynamics of LTV Models

You can sample the dynamics of an LTV model over a point or a vector of $t$ values to obtain affine dynamics for a given time.

Consider a model defined by the data function ltvssDataFcn.m.
Create an LTV model.
ltvSys = ltvss(@ltvssDataFcn)

Continuous-time state-space LTV model with 1 outputs, 1 inputs, and 1 states.
Define a set of times values to sample this model over.
$\mathrm{t}=5: 0.5: 10 ;$
Use the sample command to obtain an array of ss models.
[ssArray,offsets] = sample(ltvSys,t); size(ssArray)
$1 \times 11$ array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
Plot the step response of the fourth model in the array.

```
x0 = offsets(4).x;
resp0pt = RespConfig(Amplitude=1,InitialState=x0);
step(ssArray(:,:,:,4),respOpt)
```

Step Response


View the data function.

```
type ltvssDataFcn.m
function [A,B,C,D,E,dx0,x0,u0,y0,Delays] = ltvssDataFcn(t)
% SISO, first order
A = -(1+0.5*sin(t));
B = 1;
```

```
C = 1;
D = 0;
E = [];
dx0 = [];
x0 = [];
u0 = [];
y0 = 0.1*sin(5*t);
Delays = [];
```


## Sample Dynamics of LPV Models

You can sample the dynamics of an LPV model over a point or a grid of $(t, p)$ values to obtain affine dynamics for a given time or parameter value.

For this example, consider dataFcnMaglev.m that defines the matrices and offsets of a magnetic levitation system. The magnetic levitation controls the height of a levitating ball using the coil current which creates a magnetic force on the ball.

Create an LPV model.
lpvSys = lpvss('h',@dataFcnMaglev)
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 2 states, and 1 parameters.
Sample the LPV dynamics at $\mathrm{h}=1$ to obtain local LTI models.

```
hmin = 0.05;
hmax = 0.25;
hcd = linspace(hmin,hmax,3);
[ssArray,offsets] = sample(lpvSys,[],hcd);
size(ssArray)
1x3 array of state-space models.
Each model has 1 outputs, 1 inputs, and 2 states.
```

Plot the bode response.
bodemag(ssArray)


## Sample LPV Dynamics Over Grid Values Specified Using Structures

This example shows how to specify the sampling grid values using a structure array.
For this example, consider lpvHCModel.m that defines the following model.

$$
\begin{aligned}
& \dot{x}=-\left(x-x_{0}(p)\right)+\left(u-u_{0}(p)\right) \\
& y=y_{0}(p)+\left(1-p^{2}\right)\left(x-x_{0}(p)\right) \\
& \left(x_{0}(p), u_{0}(p), y_{0}(p)\right)=\left(\tanh ^{-1}(p), \tanh ^{-1}(p), p\right)
\end{aligned}
$$

Use lpvss to construct this LPV plant. Since $\tanh ^{-1}(p)$ is infinite for $|p|=1$, clip $p$ to the range [ $-p_{\max }, p_{\max }$ ] to stay away from singularity.
pmax = 0.99;
G = lpvss('p',@(t,p) lpvHCModel(t,p,pmax),'StateName','x')
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 1 states, and 1 parameters.
Specify a structure containing the sampling values.

```
pvals = linspace(-0.9,0.9,5);
S = struct('p',pvals)
S = struct with fields:
 p: [-0.9000 -0.4500 0 0.4500 0.9000]
```

Sample the model.

```
ssArr = sample(G,S);
size(ssArr)
1x5 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
```


## Obtain State-Space Data from Gridded Model

You can obtain the array of state-space models back from the gridded LTV or LPV model using the sample command.

For this example, load a gridded LPV model obtained from the batch linearization of a water-tank Simulink ${ }^{\circledR}$ model in the "Create LPV Model from Batch Linearization Results" on page 2-1332 example.
load watertankLPVModel.mat
Obtain the array of local state-space models.

```
ssArray = sample(gLPV);
size(ssArray)
7x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
```

For a gridded model, the sample command samples the model at the grid obtained from the Grid property of the model.

```
gLPV.Grid
ans = struct with fields:
 H: [7x1 double]
 Time: [7\times1 double]
```


## Input Arguments

## vSys - Varying model to sample

ltvss object | lpvss object
Varying model to sample, specified as an ltvss or lpvss object.

## T - Time values

scalar | vector | array

Time values at which the model is sampled.

- For LTV models, specify T as a scalar or vector for real and finite values to sample the dynamics at a single or multiple times values, respectively.
- For LPV models, specify T as one of the following:
- [] - LPV model dynamics only depend only on parameters $p$.
- Scalar - Sample the dynamics at a single time value.
- Vector - Sample the dynamics at multiple time values.
- Multidimensional array - Sample the dynamics at a grid of values. You must specify a rectangular ( $\mathrm{T}, \mathrm{P}$ ) grid of values, such as the ones you create using ndgrid.
[t, p1, p2, p3] = ndgrid(tvals,p1vals,p2vals,p3vals)
The vectors or arrays T and P1, ... , Pn must be of the same size.
In discrete time, specify T as integer index values k that count the number of sampling periods Ts . The absolute time is given by $t=k * T s$.


## P - Parameter values

scalar | vector | array
Parameter values at which the LPV model is sampled.
For an LPV model with $n$ parameters, use comma-separated arguments P1, . . . Pn to specify the values for each parameter.

Specify P as one of the following:

- Scalar - Sample the dynamics at a single parameter value.
- Vector - Sample the dynamics at multiple parameter values.
- Multidimensional array - Sample the dynamics at a grid of values. You must specify a rectangular ( $\mathrm{T}, \mathrm{P}$ ) grid of values, such as the ones you create using ndgrid.

```
[t,p1,p2,p3] = ndgrid(tvals,p1vals,p2vals,p3vals)
```

The vectors or arrays T and P1, ... , Pn must be of the same size.

## S - Sampling grid structure

## struct

Sampling grid structure array used to specify values at which the model is sampled.

- For LTV models, S is a structure array with field Time. For example, if an array Tvalues specifies the sampling time, S is the following structure.

```
S = struct('Time',Tvalues)
```

- For LPV models, S is a structure with fields for parameter names corresponding to the ParameterName property of the lpvss model vSys and Time. For example, if vSys has two parameters named 'speed ' and 'altitude' with values specified using arrays Plvals and P 2 vals , respectively, S is the following structure.

```
S = struct('speed',P1vals,'altitude',P2vals)
```

If the dynamics of your LPV model depend on parameter values, do not specify the field Time for S.

## Output Arguments

## ssArray - Sampled dynamics

array of ss models
Sampled dynamics, returned as an array of time-invariant state-space (ss) models.
The dimensions of ssArray depend on the number of sampling points in the array or grid.

## offsets - Model offsets

structure array
Model offsets, returned as a structure array with the same dimensions as the sampling points or grid. Each offset structure has the following fields:

Field	Description
x	State offsets, returned as a column vector of   length $n_{x}$, where $n_{x}$ is the number of states in   vSys
dx	Derivative offsets, returned as a column vector of   length $n_{x}$, where $n_{x}$ is the number of states in   vSys
u	Input offsets, returned as a column vector of   length $n_{u}$, where $n_{u}$ is the number of inputs in   vSys
y	Output offsets, returned as a column vector of   length $n_{y}$, where $n_{y}$ is the number of outputs in   vSys

Some fields of offsets may be [ ] if the offset is absent (zero) for all values of $(t, p)$.

## Version History

## Introduced in R2023a

## See Also

lpvss|ltvss|ss|ssInterpolant

## sampleBlock

Sample Control Design blocks in generalized model

## Syntax

```
Msamp = sampleBlock(M,name,vals)
Msamp = sampleBlock(M,nameset,valset)
Msamp = sampleBlock(M, nameset1,valset1,nameset2,valset2,...,namesetM,valsetM)
[Msamp,samples] = sampleBlock(
```

$\qquad$

``` )
```


## Description

Msamp = sampleBlock( $M$, name, vals) samples one Control Design block in the generalized model M. The result Msamp is a model array of size [size(M) N] obtained by replacing the block with the specified values, where N is the number of values in vals.

Msamp = sampleBlock(M, nameset, valset) concurrently samples multiple blocks specified as a cell array of block names. val set is a cell array of $N$ sample values for each block. The result Msamp is a model array of size [size(M) N].

Msamp = sampleBlock( $M$, nameset1, valset1, nameset2, valset2,.. , namesetM, valsetM) independently samples multiple blocks. nameset1, nameset2, ... namesetM can each be a single block name (see name) or a cell array of names (see nameset). The model M is sampled over a grid of size [N1 N2 ... NM], where N1 is the number of values in valset1, N2 is the number of values in valset2, and so on. The resulting Msamp is an array of size [size(M) N1 N2 ... NM].
[Msamp,samples] = sampleBlock( $\qquad$ ) also returns a data structure containing the block replacement values for each sampling point. You can use this syntax with any of the preceding input argument combinations.

## Examples

## Sample Real Parameter in Tunable Model

Create the first-order model $G(s)=1 /(\tau s+1)$, where $\tau$ is a tunable real parameter.

```
tau = realp('tau',5);
G = tf(1,[tau 1]);
```

Evaluate this transfer function for $\tau=3,4, . ., 7$. The result is a 5 -by- 1 array of first-order models.

```
Gs = sampleBlock(G,'tau',3:7);
size(Gs)
5x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
```


## Sample Multiple Parameters in Tunable Model

Create a model with a pole at $\mathrm{s}=\mathrm{a}$ and a gain of $\mathrm{b} * \mathrm{c}$, where $\mathrm{a}, \mathrm{b}$, and c are tunable scalars.
a = realp('a',1);
b = realp('b',3);
c = realp('c',1);
G = tf(b* $\left.{ }^{*},[1 a]\right)$;
Pick 5 samples for a and 3 samples for ( $b, c$ ) pairs. Evaluate $G$ over the corresponding 5 -by- 3 grid of ( $a, b, c$ ) combinations.

```
as = 0.8:0.1:1.2;
bs = 2:4;
cs = [0.5 1 1.5];
Gs = sampleBlock(G,'a',as,{'b','c'},{bs,cs});
```

Grouping the values for $b$ and $c$ in cell arrays causes sampleBlock to treat them as the ( $b, c$ ) pairs, $(2,0.5),(3,1)$, and $(1,5)$. Gs is a 5 -by- 3 array of state-space models, in which a varies along the first dimension and $(b, c)$ varies along the second dimension. Thus, for example, $\operatorname{Gs}(:,:, 3,2)$ corresponds to $a=1,(b, c)=(3,1)$.

A step plot shows a set of responses for each of the three (b, c) pairs. Each set contains a response for each of the five a values.

```
stepplot(Gs)
```



If you do not group the values, sampleBlock replaces all values independently, resulting in a 5-by-3-by-3 model array.

```
GsInd = sampleBlock(G,'a',as,'b',bs,'c',cs);
size(GsInd)
5\times3\times3 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
```

For example, in GsInd, $\operatorname{Gs}(:,:, 3,2,1)$ is a model with $\mathrm{a}=1, \mathrm{~b}=3$, and $\mathrm{c}=0.5$.

## Input Arguments

## M - Model to sample

generalized model | uncertain model | generalized matrix | uncertain matrix
Model to sample, specified as a:

- Generalized model (genss or genfrd)
- Generalized matrix (genmat)
- Uncertain model (uss or ufrd)
- Uncertain matrix (umat)


## name - Control Design block

character vector
Control Design block to sample, specified as a character vector. For example, suppose that M is a genss model with tunable blocks t1 and t2. Then, either 't1' or 't2' is a possible value for name.

## vals - Sample block values

numeric array | model array
Sample block values, specified as a numeric array or a model array. Values must be compatible with the block type. For example, if name is a tunable real parameter (realp), then vals is a numerical array of length $N$, the number of samples. If name is a tunable PID controller (tunablePID), then vals is an array of LTI models compatible with PID structure.

## nameset - Control Design blocks

cell array of character vectors
Control Design blocks to sample concurrently, specified as cell array of character vectors. The entries in nameset correspond to the names of at least a subset of the Control Design blocks in M. For example, suppose that $M$ is a genss model with tunable blocks $t 1$ and $t 2$, and uncertain blocks $u 1$ and $u 2$. Then, \{'t1', 'u2'\} is one possible value for nameset.

Grouping block names together in a cell array generates samples of the group rather than independent samples. For example, the following code generates a 10 -by- 1 array of models, where each entry in the array has the corresponding value for the pair ( $\mathrm{t} 1, \mathrm{u} 2$ ).

```
t1s = 1:10;
u2s = 2:2:20;
valset = {t1s,t2s};
Msamp = sampleBlock(M,{'t1','u2'},valset);
```

sampleBlock ignores any entry in nameset that does not appear in M.
valset - Sample block values
cell array
Sample block values, specified as a cell array. Each entry in the cell array is itself an array of N sample values for each block in nameset. For example, the following code samples a model $M$ at the (t1, u2) pairs (1,2), (2,4), ... $(10,20)$.
t1s = 1:10;
u2s = 2:2:20;
valset $=\{t 1 s, t 2 s\}$;
Msamp = sampleBlock(M,\{'t1','u2'\},valset);
Values in valset must be compatible with the corresponding block type.

## Output Arguments

## Msamp - Array of model samples

generalized model array | ss array | frd array | numeric array
Array of model samples, returned as a generalized model array, ss array, frd array, or numeric array. Msamp is of the same type as M , unless all blocks are sampled. In that case, Msamp is a numeric array, ss array, or frd array. For example, suppose that M is a uss model with uncertain blocks $u 1$ and $u 2$. The following command returns an array of uss models, with uncertain block u2.

```
Msamp1 = sampleBlock(M,'u1',1:10);
```

The following command samples both blocks and returns an array of ss models.

```
Msamp2 = sampleBlock(M,{'u1','u2'},{1:10,2:20});
```

samples - Block sample values
structure
Block sample values, returned as a structure. The fields of samples are the names of the sampled blocks. The values are arrays containing the corresponding values used to generate the entries in Msamp.

## Version History

Introduced in R2016a

## See Also

replaceBlock | rsampleBlock | getValue | genss | genmat |uss

## Topics

"Study Parameter Variation by Sampling Tunable Model"
"Generalized Models"

## sectorplot

Compute or plot sector index as function of frequency

## Syntax

```
sectorplot(H,Q)
sectorplot(H,Q,w)
sectorplot(H1,H2,\ldots..,HN,Q)
sectorplot(H1,H2,\ldots.,HN,Q,w)
sectorplot(H1,LineSpec1,..., HN,LineSpecN,Q)
sectorplot(H1,LineSpec1,...,HN,LineSpecN,Q,w)
sectorplot(
```

$\qquad$

``` ,plotoptions)
[index,wout] = sectorplot(H,Q)
index = sectorplot(H,Q,w)
```


## Description

sectorplot ( $\mathrm{H}, \mathrm{Q}$ ) plots the relative sector indices for the dynamic system $H$ and a given sector matrix Q. These indices measure by how much the sector bound is satisfied (index less than 1) or violated (index greater than 1) at a given frequency. (See "About Sector Bounds and Sector Indices" for more information about the meaning of the sector index.) sectorplot automatically chooses the frequency range and number of points based on the dynamics of H .

Let the following be an orthogonal decomposition of the symmetric matrix Q into its positive and negative parts.

$$
Q=W_{1} W_{1}^{T}-W_{2} W_{2}^{T}, \quad W_{1}^{T} W_{2}=0 .
$$

The sector index plot is only meaningful if $W_{2}^{T} H$ has a proper stable inverse. In that case, the sector indices are the singular values of:

$$
\left(W_{1}^{T} H(j \omega)\right)\left(W_{2}^{T} H(j \omega)\right)^{-1} .
$$

If H is a model with complex coefficients, then in:

- Log frequency scale, the plot shows two branches, one for positive frequencies and one for negative frequencies. The arrows indicate the direction of increasing frequency values for each branch.
- Linear frequency scale, the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero.
sectorplot ( $H, Q, w$ ) plots the sector index for frequencies specified by $w$.
- If $w$ is a cell array of the form \{wmin, wmax\}, then sectorplot plots the sector index at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then sectorplot plots the sector index at each specified frequency. The vector $w$ can contain both negative and positive frequencies.
sectorplot ( $\mathrm{H} 1, \mathrm{H} 2, \ldots, \mathrm{HN}, \mathrm{Q}$ ) and sectorplot( $\mathrm{H} 1, \mathrm{H} 2, \ldots, \mathrm{HN}, \mathrm{Q}, \mathrm{w})$ plot the sector index for multiple dynamic systems $\mathrm{H} 1, \mathrm{H} 2, \ldots, \mathrm{HN}$ on the same plot.
sectorplot(H1, LineSpec1,..., HN, LineSpecN, Q) and sectorplot(H1, LineSpec1, . . . HN , LineSpecN , Q , w ) specify a color, linestyle, and marker for each system in the plot.
sectorplot (__ , plotoptions) plots the sector index with the options set specified in plotoptions. You can use these options to customize the plot appearance using the command line. Settings you specify in plotoptions override the preference settings in the MATLAB session in which you run sectorplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.
[index, wout] = sectorplot $(H, Q)$ returns the sector index at each frequency in the vector wout. The output index is a matrix, and the value index ( $:, k$ ) gives the sector indices in descending order at the frequency $w(k)$. This syntax does not draw a plot.
index $=$ sectorplot $(H, Q, w)$ returns the sector indices at the frequencies specified by $w$.


## Examples

## Plot Sector Index Versus Frequency

Plot the sector index to visualize the frequencies at which the I/O trajectories of $G(s)=(s+2) /(s+1)$ lie within the sector defined by:

$$
S=\left\{(y, u): 0.1 u^{2}<u y<10 u^{2}\right\}
$$

In U/Y space, this sector is the shaded region of the following diagram.


The Q matrix for this sector is given by:
a = 0.1;
b $=10$;
$Q=[1-(a+b) / 2 ;-(a+b) / 2 a * b] ;$
A trajectory $y(t)=G u(t)$ lies within the sector $S$ when for all $T>0$,

$$
0.1 \int_{0}^{T} u(t)^{2}<\int_{0}^{T} u(t) y(t) d t<10 \int_{0}^{T} u(t)^{2} d t
$$

In the frequency domain, this same condition can be expressed as:

$$
\binom{G(j \omega)}{1}^{H} Q\binom{G(j \omega)}{1}<0
$$

To check whether G satisfies or violates this condition at any frequency, plot the sector index for $\mathrm{H}=$ [G;1].

G = tf([1 2],[11]);
sectorplot([G;1],Q)


The plot shows that the sector index is less than 1 at all frequencies. Therefore, the trajectories of $\mathrm{G}(\mathrm{s})$ fit within in the specified sector Q at all frequencies.

## Sector Plot with MIMO System

Examine the sector plot of a 2-output, 2-input system for a particular sector. Load the system, H 1 , and define the sector, Q.

```
load("sectorExampleSystem.mat","H1")
Q = [-5.12 2.16 -2.04 2.17
 2.16 -1.22 -0.28 -1.11
 -2.04 -0.28 -3.35 0.00
 2.17 -1.11 0.00 0.18];
```

Create the plot.
sectorplot (H1, Q)


Because H is 2-by-2, there are two lines on the sector plot. The largest value of the sector index exceeds 1 below about $0.5 \mathrm{rad} / \mathrm{s}$ and in a narrow band around $3 \mathrm{rad} / \mathrm{s}$. Therefore, H does not satisfy the sector bound represented by Q .

Plot Sector Index of Model with Complex Coefficients
Plot the relative sector indices of a model with complex coefficients and a model with real coefficients on the same plot.

```
A = [-3.50,-1.25-0.25i;2,0];
B = [1;0];
C = [-0.75-0.5i,0.625-0.125i];
D = 0.5;
Hc = [ss(A,B,C,D);1]; % create system with complex coefficients
load("sectorExampleSystem.mat","Hr") % load system with real coefficients
Q = [1 0.1;0.1 -1];
sectorplot(Hc,Hr,Q)
legend('Complex-coefficient model','Real-coefficient model','Location','southwest')
```



In log frequency scale, the plot shows two branches for models with complex coefficients, one for positive frequencies, with a right-pointing arrow, and one for negative frequencies, with a leftpointing arrow. In both branches, the arrows indicate the direction of increasing frequencies. The plots for models with real coefficients always contain a single branch with no arrows.

Set the plotting frequency scale to linear.

```
opt = sectorplotoptions;
opt.FreqScale = 'Linear';
```

Plot the indices.
sectorplot(Hc, Hr, Q,opt)
legend('Complex-coefficient model','Real-coefficient model','Location','southwest')


In linear frequency scale, the plots show a single branch with a symmetric frequency range centered at a frequency value of zero. The plot also shows the negative-frequency response of a model with real coefficients when you plot the response along with a model with complex coefficients.

## Input Arguments

## H - Model to analyze

dynamic system model | model array
Model to analyze against sector bounds, specified as a dynamic system model such as a tf, ss, or genss model. H can be continuous or discrete. If H is a generalized model with tunable or uncertain blocks, sectorplot analyzes the current, nominal value of H .

To analyze whether all I/O trajectories $(u(t), y(t)$ of a linear system $G$ lie in a particular sector, use $\mathrm{H}=$ [G;I], where I = eyes(nu), and nu is the number of inputs of $G$.

If H is a model array, then sectorplot plots the sector index of all models in the array on the same plot. When you use output arguments to get sector-index data, H must be a single model.

## Q - Sector geometry

 matrix | LTI modelSector geometry, specified as:

- A matrix, for constant sector geometry. Q is a symmetric square matrix that is ny on a side, where ny is the number of outputs of H .
- An LTI model, for frequency-dependent sector geometry. Q satisfies $Q(s)^{\prime}=Q(-s)$. In other words, $Q(s)$ evaluates to a Hermitian matrix at each frequency.

The matrix Q must be indefinite to describe a well-defined conic sector. An indefinite matrix has both positive and negative eigenvalues.

For more information, see "About Sector Bounds and Sector Indices".

## w - Frequencies

\{wmin,wmax\}|vector
Frequencies at which to compute and plot indices, specified as the cell array \{wmin, wmax\} or as a vector of frequency values.

- If $w$ is a cell array of the form \{wmin, wmax\}, then the function computes the index at frequencies ranging between wmin and wmax.
- If $w$ is a vector of frequencies, then the function computes the index at each specified frequency. For example, use logspace to generate a row vector with logarithmically-spaced frequency values.

For models with complex coefficients, if you specify a frequency range of [ $w_{\min }, w_{\max }$ ] for your plot, then in:

- Log frequency scale, the plot frequency limits are set to [ $w_{\min }, w_{\max }$ ] and the plot shows two branches, one for positive frequencies $\left[w_{\min }, w_{\max }\right.$ ] and one for negative frequencies $\left[-w_{\max },-w_{\min }\right]$.
- Linear frequency scale, the plot frequency limits are set to [ $-w_{\max }, w_{\max }$ ] and the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

## LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

## plotoptions - Sector index plot options set

SectorPlotOptions object
Sector index plot options set, specified as a SectorPlot0ptions object. You can use this option set to customize the plot appearance. Use sectorplotoptions to create the option set. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run
sectorplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see sectorplotoptions.

## Output Arguments

## index - Sector indices

matrix
Sector indices as a function of frequency, returned as a matrix. index contains the sector indices computed at the frequencies w if you supplied them, or wout if you did not. index has as many columns as there are values in w or wout, and as many rows as H has inputs. Thus the value index $(:, k)$ gives the sector indices in descending order at the frequency $w(k)$.

For example, suppose that G is a 3 -input, 3-output system, Q is a suitable sector matrix, and w is a 1 -by-30 vector of frequencies, then the following syntax returns a 3-by-30 matrix index.

H = [G;eyes(3)]
index $=\operatorname{sectorplot(H,Q,w);~}$
The entry index (: , k) contains the three sector indices for H , in descending order, at the frequency $w(k)$.

For more information, see "About Sector Bounds and Sector Indices".

## wout - Frequencies

vector
Frequencies at which the indices are calculated, returned as a vector. The function automatically chooses the frequency range and number of points based on the dynamics of the model.
wout also contains negative frequency values for models with complex coefficients.

## Version History

## Introduced in R2016a

## See Also

sectorplotoptions| getSectorIndex| getPassiveIndex| passiveplot
Topics
"About Sector Bounds and Sector Indices"

## sectorplotoptions

Create list of relative index plot options

## Description

Use the sectorplotoptions command to create a SectorPlotOptions object to customize your sector plot appearance. You can also use the command to override the plot preference settings in the MATLAB session in which you create the sector plots.

## Creation

## Syntax

plotoptions = sectorplotoptions
plotoptions = sectorplotptions('cstprefs')

## Description

plotoptions = sectorplotoptions returns a default set of plot options for use with the passiveplot and sectorplot commands. You can use these options to customize the plot appearance using the command line. This syntax is useful when you want to write a script to generate plots that look the same regardless of the preference settings of the MATLAB session in which you run the script.
plotoptions = sectorplotptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor". This syntax is useful when you want to change a few plot options but otherwise use your default preferences. A script that uses this syntax can generate results that look different when run in a session with different preferences.

## Properties

## FreqUnits - Frequency units

'rad/s' (default)
Frequency units, specified as one of the following values:

- 'Hz'
- 'rad/s'
- 'rpm'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rad/nanosecond '
- 'rad/microsecond'
- 'rad/millisecond'
- 'rad/minute'
- 'rad/hour'
- 'rad/day'
- 'rad/week'
- 'rad/month'
- 'rad/year'
- 'cycles/nanosecond'
- 'cycles/microsecond'
- 'cycles/millisecond'
- 'cycles/hour'
- 'cycles/day'
- 'cycles/week'
- 'cycles/month'
- 'cycles/year'


## FreqScale - Frequency scale

'log' (default) | 'linear'
Frequency scale, specified as either 'log' or 'linear'.

## IndexScale - Index scale

'log' (default) | 'linear'
Index scale, specified as either 'log' or 'linear'.

## IOGrouping - Input-output pair grouping

'none' (default)|'inputs'|'outputs'|'all'
Grouping of input-output (I/O) pairs, specified as one of the following:

- 'none' - No input-output grouping.
- 'inputs' - Group only the inputs.
- 'outputs' - Group only the outputs.
- 'all' - Group all the I/O pairs.


## InputLabels - Input label style

structure
Input label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inches.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## OutputLabels - Output label style

structure
Output label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inches.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## InputVisible - Input display toggle

\{'on'\} (default) | \{'off'\} | cell array
Toggle display of inputs, specified as \{'on'\}, \{'off'\}, or a cell array with multiple elements.

## OutputVisible - Output display toggle

\{'on'\} (default)|\{'off'\}|cell array
Toggle display of outputs, specified as \{'on'\}, \{'off'\}, or a cell array with multiple elements.

## Title - Title text and style

structure
Title text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the plot is titled 'Singular Values'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inches.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black, as specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## XLabel - X-axis label text and style

structure (default)
X -axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the axis is titled based on the frequency units FreqUnits.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals 1/72 inches.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black, as specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## YLabel - Y-axis label text and style

structure (default)
Y-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a cell array of character vectors. By default, the axis is titled based on the magnitude units MagUnits.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inches.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black, as specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## TickLabel - Tick label style

## structure (default)

Tick label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inches.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black, as specified by the RGB triplet [0,0,0].


## Grid - Toggle grid display

## 'off' (default) | 'on'

Toggle grid display on the plot, specified as either 'off' or 'on'.

## GridColor - Grid line color

[0.15,0.15, 0.15] (default) | RGB triplet
Color of the grid lines, specified as an RGB triplet. The default color is light grey, as specified by the RGB triplet [0.15, 0. 15, 0.15].

## XLimMode - X-axis limit selection mode

\{'auto'\} (default)|\{'manual'\}| cell array
Selection mode for the x -axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the XLim property.


## YLimMode - Y-axis limit selection mode

\{'auto'\} (default) \| \{'manual'\} | cell array
Selection mode for the $y$-axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the YLim property.


## XLim - X-axis limits

' $\{[1,10]\}$ ' (default) | cell array containing two-element vector of the form [min, max]
X -axis limits, specified as a cell array containing a two-element vector of the form [min, max].

## YLim - Y-axis limits

' $\{[1,10]\}$ ' (default) | cell array containing two-element vector of the form [min, max]
Y-axis limits, specified as a cell array containing a two-element vector of the form [min, max].

## Object Functions

passiveplot Compute or plot passivity index as function of frequency sectorplot Compute or plot sector index as function of frequency

## Examples

## Custom Passivity Index Plot Settings Independent of Preferences

For this example, create a passivity index plot that uses 15 -point red text for the title. This plot looks the same in any MATLAB® session, regardless of the preferences of the one in which it is generated.

First, create a default options set using sectorplotoptions.

```
plotoptions = sectorplotoptions;
```

Next, change the required properties of the options set plotoptions.

```
plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [1 0 0];
plotoptions.FreqUnits = 'Hz';
plotoptions.Grid = 'on';
```

Now, create a passivity index plot using the options set plotoptions.

```
G = tf(1,[1 1]);
passiveplot(G,plotoptions)
```


## Relative passivity index



Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the current MATLAB session.

## Customized Sector Plot of Model with Complex Coefficients

For this example, create a relative sector plot of a model with complex coefficients. Then, turn the grid on, rename the plot, and change the frequency scale.

Create a state space model with complex data and specify a sector geometry.

```
A = [-3.50,-1.25-0.25i;2,0];
B = [1;0];
C = [-0.75-0.5i,0.625-0.125i];
D = 0.5;
Hc = [ss(A,B,C,D);1];
Q = [1 0.1;0.1 -1];
```

Create an options set based on the toolbox preferences.

```
plotoptions = sectorplotoptions('cstprefs');
plotoptions.Grid = 'on';
plotoptions.FreqScale = 'linear';
plotoptions.Title.String = 'Relative Sector Index Plot of Complex-Coefficient Model';
```

Now, create a sector plot with custom option set plotoptions.


# Version History 

Introduced in R2016a

## See Also

passiveplot | sectorplot
Topics
"Toolbox Preferences Editor"

## series

Series connection of two models

## Syntax

```
series
```

sys $=$ series(sys1,sys2)
sys = series(sys1,sys2,outputs1,inputs2)

## Description

series connects two model objects in series. This function accepts any type of model. The two systems must be either both continuous or both discrete with identical sample time. Static gains are neutral and can be specified as regular matrices.
sys = series(sys1,sys2) forms the basic series connection shown below.


This command is equivalent to the direct multiplication
sys $=$ sys2 * sys1
sys $=$ series (sys1,sys2,outputs1,inputs2) forms the more general series connection.
sys


The index vectors outputs1 and inputs2 indicate which outputs $y_{1}$ of sys1 and which inputs $u_{2}$ of sys2 should be connected. The resulting model sys has $u$ as input and $y$ as output.

## Examples

Consider a state-space system sys1 with five inputs and four outputs and another system sys 2 with two inputs and three outputs. Connect the two systems in series by connecting outputs 2 and 4 of sys1 with inputs 1 and 2 of sys 2 .
outputs1 = [2 4];
inputs2 = [1 2];
sys = series(sys1,sys2,outputs1,inputs2)

## Version History

Introduced before R2006a

See Also<br>append | feedback | parallel

## set

Set or modify model properties

## Syntax

```
set(sys,'Property',Value)
set(sys,'Property1',Value1,'Property2',Value2,...)
sysnew = set(___)
set(sys,'Property')
```


## Description

set is used to set or modify the properties of a dynamic system model using property name/property value pairs.
set (sys,'Property', Value) assigns the value Value to the property of the model sys.
'Property' can be the full property name (for example, 'UserData') or any unambiguous caseinsensitive abbreviation (for example, 'user'). The specified property must be compatible with the model type. For example, if sys is a transfer function, Variable is a valid property but StateName is not. For a complete list of available system properties for any linear model type, see the reference page for that model type. This syntax is equivalent to sys.Property = Value.
set(sys,'Property1',Value1,'Property2', Value2,...) sets multiple property values with a single statement. Each property name/property value pair updates one particular property.
sysnew $=\operatorname{set}(\ldots \ldots)$ returns the modified dynamic system model, and can be used with any of the previous syntaxes.
set (sys,'Property') displays help for the property specified by 'Property'.

## Examples

## Specify Model Properties

Create a SISO state-space model with matrices $A, B, C$, and $D$ equal to $1,2,3$, and 4 , respectively.

```
sys = ss(1,2,3,4);
```

Modify the properties of the model. Add an input delay of 0.1 second, label the input as torque, and set the $D$ matrix to 0 .

```
set(sys,'InputDelay',0.1,'InputName','torque','D',0);
```

View the model properties, and verify the changes.

```
get(sys)
```

$$
\begin{array}{ll}
\text { A: } & 1 \\
\text { B: } & 2 \\
\text { C: } & 3
\end{array}
$$

```
 D: 0
 E: []
 Scaled: 0
 StateName: {''}
 StatePath: {''}
 StateUnit: {''}
InternalDelay: [0x1 double]
 InputDelay: 0.1000
 OutputDelay: 0
 InputName: {'torque'}
 InputUnit: {''}
 InputGroup: [1x1 struct]
 OutputName: {''}
 OutputUnit: {''}
 OutputGroup: [1x1 struct]
 Notes: [0x1 string]
 UserData: []
 Name: ''
 Ts: 0
 TimeUnit: 'seconds'
SamplingGrid: [1x1 struct]
```


## Tips

For discrete-time transfer functions, the convention used to represent the numerator and denominator depends on the choice of variable (see $t f$ for details). Like $t f$, the syntax for set changes to remain consistent with the choice of variable. For example, if the Variable property is set to ' $z$ ' (the default),
set(h,'num',[1 2],'den',[lllll
produces the transfer function

$$
h(z)=\frac{z+2}{z^{2}+3 z+4}
$$

However, if you change the Variable to 'z^-1' by
set(h,'Variable','z^-1'),
the same command
set(h,'num',[1 2],'den',[1 3 4])
now interprets the row vectors [llll 12 and $\left[\begin{array}{lll}1 & 3 & 4\end{array}\right]$ as the polynomials $1+2 z^{-1}$ and $1+3 z^{-1}+4 z^{-2}$ and produces:

$$
\bar{h}\left(z^{-1}\right)=\frac{1+2 z^{-1}}{1+3 z^{-1}+4 z^{-2}}=z h(z)
$$

Note Because the resulting transfer functions are different, make sure to use the convention consistent with your choice of variable.

## Version History

Introduced before R2006a

## See Also

get |frd|ss|tf|zpk

## Topics

"Store and Retrieve Model Data" "What Are Model Objects?"

## setDelayModel

Construct state-space model with internal delays

## Syntax

sys = setDelayModel(H,tau)
sys = setDelayModel(A,B1,B2,C1,C2,D11,D12,D21,D22,tau)

## Description

sys = setDelayModel ( $\mathrm{H}, \mathrm{tau}$ ) constructs the state-space model sys obtained by LFT interconnection of the state-space model H with the vector of internal delays tau, as shown:

sys $=$ setDelayModel ( $\mathrm{A}, \mathrm{B} 1, \mathrm{~B} 2, \mathrm{C} 1, \mathrm{C} 2, \mathrm{D} 11, \mathrm{D} 12, \mathrm{D} 21, \mathrm{D} 22$, tau $)$ constructs the state-space model sys described by the following equations:

$$
\begin{gathered}
\frac{d x(t)}{d t}=A x(t)+B_{1} u(t)+B_{2} w(t) \\
y(t)=C_{1} x(t)+D_{11} u(t)+D_{12} w(t) \\
z(t)=C_{2} x(t)+D_{21} u(t)+D_{22} w(t) \\
w(t)=z(t-\tau) .
\end{gathered}
$$

tau $(\tau)$ is the vector of internal delays in sys.

## Input Arguments

H

State-space (ss) model to interconnect with internal delays tau.

## tau

Vector of internal delays of sys.
For continuous-time models, express tau in seconds.
For discrete-time models, express tau as integer values that represent multiples of the sample time.

## A, B1, B2, C1, C2 , D11, D12, D21, D22

Set of state-space matrices that, with the internal delay vector tau, explicitly describe the state-space model sys.

## Output Arguments

## sys

State-space (ss) model with internal delays tau.

## Tips

- setDelayModel is an advanced operation and is not the natural way to construct models with internal delays. See "Time Delays in Linear Systems" for recommended ways of creating internal delays.
- The syntax sys $=$ setDelayModel(A, B1, B2, C1, C2, D11, D12, D21, D22, tau) constructs a continuous-time model. You can construct the discrete-time model described by the state-space equations

$$
\begin{gathered}
x[k+1]=A x[k]+B_{1} u[k]+B_{2} w[k] \\
y[k]=C_{1} x[k]+D_{11} u[k]+D_{12} w[k] \\
z[k]=C_{2} x[k]+D_{21} u[k]+D_{22} w[k] \\
w[k]=z[k-\tau] .
\end{gathered}
$$

To do so, first construct sys using sys = setDelayModel(A, B1, B2, C1, C2, D11, D12, D21, D22, tau). Then, use sys.Ts to set the sample time.

## Version History

## Introduced in R2007a

## See Also

getDelayModel|ss|lft

## Topics

"Internal Delays"
"Time Delays in Linear Systems"

## setoptions

## Package:

Set plot options handle or plot options property

## Syntax

```
setoptions(h,p)
setoptions(h,'property1','value1',...,'propertyN','valueN')
setoptions(h,p,'propertyl','valuel',...,'propertyN','valueN')
```


## Description

You can use setoptions to set the plot handle options or properties list and use it to customize the plot, such as modify the axes labels, limits and units. For a list of the properties and values available for each plot type, see "Properties and Values Reference". To customize an existing plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line".
setoptions ( $\mathrm{h}, \mathrm{p}$ ) sets preferences for response plot using the plot handle h and plot options handle $p$ that contains information about plot options.
setoptions(h,'property1','value1',...,'propertyN','valueN') assigns values to property-value pairs instead of using the plot options handle $p$. For a list of the properties and values available for each plot type, see "Properties and Values Reference".
setoptions(h,p,'property1','value1',...,'propertyN','valueN') first assigns properties using the plot options handle $p$, and then overrides any properties governed by the specified property-value pairs.. For a list of the properties and values available for each plot type, see "Properties and Values Reference".

## Examples

## Impulse Plot with Specified Grid Color

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a impulse plot with red colored grid lines.

Create the MIMO state-space model sys_mimo.

```
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
```

```
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)
State-space model with 3 outputs, 3 inputs, and 3 states.
```

Create an impulse plot with plot handle $h$ and use getoptions for a list of the options available.

```
h = impulseplot(sys_mimo)
```

Impulse Response

$\mathrm{h}=$
resppack.timeplot
p = getoptions(h)
$p=$
Normalize: 'off'
SettleTimeThreshold: 0.0200 RiseTimeLimits: [0.1000 0.9000]

TimeUnits: 'seconds'
ConfidenceRegionNumberSD: 1
IOGrouping: 'none'
InputLabels: [1x1 struct]
OutputLabels: [1x1 struct]
InputVisible: \{3x1 cell\}

```
OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1\times1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {3x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {3x1 cell}
```

Use setoptions to update the plot with the required customization.
setoptions(h,'Grid','on','GridColor',[1 0 0]);


The impulse plot automatically updates when you call setoptions. For MIMO models, impulseplot produces a grid of plots, each plot displaying the impulse response of one I/O pair.

## Bode Plot with Specified Frequency Scale and Units

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a Bode plot with linear frequency scale, specify frequency units in Hz and turn the grid on.

Create the MIMO state-space model sys_mimo.

```
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
size(sys_mimo)
State-space model with 3 outputs, 3 inputs, and 3 states.
```

Create a Bode plot with plot handle h and use getoptions for a list of the options available.

```
h = bodeplot(sys_mimo);
p = getoptions(h)
p =
 FreqUnits: 'rad/s'
 FreqScale: 'log'
 MagUnits: 'dB'
 MagScale: 'linear'
 MagVisible: 'on'
 MagLowerLimMode: 'auto'
 PhaseUnits: 'deg'
 PhaseVisible: 'on'
 PhaseWrapping: 'off'
 PhaseMatching: 'off'
 PhaseMatchingFreq: 0
 ConfidenceRegionNumberSD: 1
 MagLowerLim: 0
 PhaseMatchingValue: 0
 PhaseWrappingBranch: -180
 IOGrouping: 'none'
 InputLabels: [1x1 struct]
 OutputLabels: [1x1 struct]
 InputVisible: {3x1 cell}
 OutputVisible: {3x1 cell}
 Title: [1x1 struct]
 XLabel: [1x1 struct]
 YLabel: [1x1 struct]
 TickLabel: [1x1 struct]
 Grid: 'off'
 GridColor: [0.1500 0.1500 0.1500]
 XLim: {3x1 cell}
 YLim: {6x1 cell}
 XLimMode: {3x1 cell}
 YLimMode: {6x1 cell}
```

Use setoptions to update the plot with the requires customization.

```
setoptions(h,'FreqScale','linear','FreqUnits','Hz','Grid','on');
```



The Bode plot automatically updates when you call setoptions. For MIMO models, bodeplot produces an array of Bode plots, each plot displaying the frequency response of one I/O pair.

## Change Frequency Units in Response Plot

Create the following continuous-time transfer function:

$$
H(s)=\frac{1}{s+1}
$$

sys = tf(1,[11]);
Create a Bode plot with plot handle h.
h = bodeplot(sys);


Create a plot options handle p.
$\mathrm{p}=$ getoptions(h);
Change frequency units of the plot to Hz .
p.FreqUnits = 'Hz';

Apply the plot options to the Bode plot.
setoptions(h, p);


Alternatively, use setoptions(h,'FreqUnits','Hz').

## Input Arguments

## h - Plot handle

plot handle object
Plot handle, specified as a plot handle object. For example, h is a mpzplot object for a pole-zero or I/O pole-zero plot.

## p - Plot options handle

plot options handle object
Plot options handle, specified as a plot options handle object. For example, p is a PZMapOptions object for a pole-zero or I/O pole-zero plot.

There are two ways to create a plot options handle:

- Use getoptions, which accepts a plot handle and returns a plot options handle.
$\mathrm{p}=$ getoptions(h)
- Create a default plot options handle using one of the following commands:
- bodeoptions - Bode plot
- hsvoptions - Hankel singular values plot
- nicholsoptions - Nichols plot
- nyquistoptions - Nyquist plot
- pzoptions - Pole-zero plot
- sigmaoptions - Sigma plot
- timeoptions - Time plots (step, initial, impulse, etc.)

For example,
$\mathrm{p}=$ bodeoptions
returns a plot options handle for Bode plot.

## Version History

Introduced before R2006a

## See Also

getoptions

## Topics

"Properties and Values Reference"
"Customizing Response Plots from the Command Line"

## setBlockValue

Modify value of Control Design Block in Generalized Model

## Syntax

M = setBlockValue(M0,blockname,val)
M = setBlockValue(M0,blockvalues)
M = setBlockValue(M0,Mref)

## Description

$M=$ setBlockValue(M0,blockname, val) modifies the current or nominal value of the Control Design Block blockname in the Generalized Model M0 to the value specified by val.
$M=$ setBlockValue(M0,blockvalues) modifies the value of several Control Design Blocks at once. The structure blockvalues specifies the blocks and replacement values. Blocks of M0 not listed in blockvalues are unchanged.
$M=$ setBlockValue(M0, Mref) takes replacement values from Control Design blocks in the Generalized Model Mref. This syntax modifies the Control Design Blocks in M0 to match the current values of all corresponding blocks in Mref.

Use this syntax to propagate block values, such as tuned parameter values, from one parametric model to other models that depend on the same parameters.

## Input Arguments

## M0

Generalized Model containing the blocks whose current or nominal value is modified to val. For the syntax M = setBlockValue(M0,Mref) M0 can be a single Control Design Block whose value is modified to match the value of the corresponding block in Mref.

## blockname

Name of the Control Design Block in the model M0 whose current or nominal value is modified.
To get a list of the Control Design Blocks in M0, enter M0. Blocks.
val
Replacement value for the current or nominal value of the Control Design Block, blockname. The value val can be any value that is compatible with blockname without changing the size, type, or sample time of blockname.

For example, you can set the value of a tunable PID block (tunablePID) to a pid controller model, or to a transfer function ( tf ) model that represents a PID controller.

## blockvalues

Structure specifying Control Design Blocks of M0 to modify, and the corresponding replacement values. The fields of the structure are the names of the blocks to modify. The value of each field specifies the replacement current or nominal value for the corresponding block.

Mref
Generalized Model that shares some Control Design Blocks with M0. The values of these blocks in Mref are used to update their counterparts in M0.

## Output Arguments

## M

Generalized Model obtained from M0 by updating the values of the specified blocks.

## Examples

## Update Controller Model with Tuned Values

Propagate the values of tuned parameters to other Control Design Blocks.
You can use tuning commands such as systune, looptune, or the Robust Control Toolbox ${ }^{\mathrm{TM}}$ command hinfstruct to tune blocks in a closed-loop model of a control system. If you do so, the tuned controller parameters are embedded in a generalized model. You can use setBlockValue to propagate those parameters to a controller model.

Create a tunable model of the closed-loop response of a control system, and tune the parameters using systune.

```
s = tf('s');
num = 33000*(s^2 - 200*s + 90000);
den = (s + 12.5)*(s^2 + 25*s + 63000);
G = num/den;
C0 = tunablePID('C0','pi');
a = realp('a',1);
F0 = tf(a,[1 a]);
T0 = feedback(G*C0,F0);
T0.InputName = 'r';
T0.OutputName = 'y';
```

T0 is a generalized model of the closed-loop control system and contains two tunable blocks:

- C0 - Tunable PID controller
- a - Real tunable parameter

Create a tuning requirement for the output $y$ to track the input $r$, and tune the system to meet that requirement.

```
Req = TuningGoal.Tracking('r','y',0.05);
[T,fSoft,~] = systune(T0,Req);
```

Final: Soft = 1.43, Hard = -Inf, Iterations = 59
The generalized model T contains the tuned values of C 0 and a .
Propagate the tuned values of the controller in T to the controller model C0.

```
C = setBlockValue(C0,T)
Tunable continuous-time PID controller "C0" with formula:
```

    1
    \(\mathrm{Kp}+\mathrm{Ki} * \underset{\mathrm{~s}}{ }\)
    and tunable parameters $\mathrm{Kp}, \mathrm{Ki}$.
Type "pid(C)" to see the current value.

C is still a tunablePID controller. The current PID gains in C are set to the values of the controller in T.

Obtain a numeric LTI model of the tuned controller using getValue.

```
CVal = getValue(C,T);
```

This command returns a numerical state-space model of the tuned controller.

## Version History <br> Introduced in R2011b

## See Also

getValue | getBlockValue | showBlockValue | genss | systune | looptune| hinfstruct

## setData

Set values of tunable-surface coefficients

## Syntax

Knew $=$ setData(K,Kco)
Knew $=\operatorname{setData}(\mathrm{K}, \mathrm{J}, \mathrm{KcoJ})$

## Description

Knew $=$ setData (K,Kco) sets the current values of the tunable coefficients of a tunable surface. K is a tunableSurface object that represents the parametric gain surface:

$$
K(n(\sigma))=\gamma\left[K_{0}+K_{1} F_{1}(n(\sigma))+\ldots+K_{M} F_{M}(n(\sigma))\right],
$$

where:

- $\sigma$ is a vector of scheduling variables.
- $n(\sigma)$ is a normalization function (see the Normalization property of tunableSurface).
- $\gamma$ is a scaling factor (see the Normalization property of tunableSurface).
- $F_{1}, \ldots, F_{M}$ are basis functions.
- $K_{0}, \ldots, K_{M}$ are tunable coefficients.

Kco is an array of new values for the coefficients $\left[K_{0}, \ldots, K_{M}\right]$.
Knew $=\operatorname{setData}(\mathrm{K}, \mathrm{J}, \mathrm{KcoJ})$ sets the current value of the coefficient of the $J$ th basis function $F_{J}$ to KcoJ. Use J = 0 to set the constant coefficient $K_{0}$.

## Input Arguments

## K - Gain surface

tunableSurface object
Gain surface, specified as a tunableSurface object,

## Kco - New coefficient values

array
New coefficient values of the tunable surface, specified as an array.
If the tunable surface $K$ is a scalar-valued gain, then the length of $K$ is $(M+1)$, where $M$ is the number of basis functions in the parameterization. For example, if $K$ represents the tunable gain surface:

$$
K(\alpha, V)=K_{0}+K_{1} \alpha+K_{2} V+K_{3} \alpha V,
$$

then Kco is the 1 -by- 4 vector [ $K_{0}, K_{1}, K_{2}, K_{3}$ ].
For array-valued gains, each coefficient expands to the I/O dimensions of the gain. These expanded coefficients are concatenated horizontally in Kco. (See tunableSurface.) For example, for a two-
input, two-output gain surface, Kco has dimensions [2,2(M+1)]. See evalSurf for an example that uses setData on an array-valued gain.

## J - Index of basis function

nonnegative integer
Index of basis function, specified as a nonnegative integer. To set the constant coefficient $K_{0}$, use $\mathrm{J}=$ 0.

## KcoJ - Coefficient of Jth basis function

scalar | array
Coefficient of the Jth basis function in the tunable surface parameterization, specified as a scalar or an array.

If the tunable surface $K$ is a scalar-valued gain, then $K c o J$ is a scalar. If $K$ is an array-valued gain, then KcoJ is an array that matches the I/O dimensions of the gain.

## Output Arguments

Knew - Gain surface
tunableSurface object
Gain surface with new coefficient values, returned as a tunableSurface object.

## Version History <br> Introduced in R2015b

## See Also

tunableSurface | getData|evalSurf|viewSurf

## setTestValue

Modify test values for validating data function

## Syntax

msys = setTestValue(vSys,t0)
msys $=$ setTestValue(vSys,t0, p0)

## Description

msys $=$ setTestValue(vSys,t0) modifies the test time t0 used to validate the data function. The data function is reevaluated for this new value.
msys $=$ setTestValue(vSys, $\mathrm{t} 0, \mathrm{p} 0)$ also modifies the test parameters p 0 used to validate the data function of LPV models.

## Examples

## Modify Test Value for Data Function

This example shows how to modify the test values for the data function of an LPV model.
For this example, consider dataFcnMaglev.m data function which describes the dynamics of a magnetic levitation system.

Create the LPV model with default test values.
vsys = lpvss('h',@dataFcnMaglev);
This model is not valid for height $h=0$ as the A matrix is not finite for $(t, h)=(0,0)$.

```
A = vsys.DataFunction(0,0)
A = 2\times2
 0 1
 Inf 0
Modify the test value to \(h=1\).
h0 = 1;
msys \(=\) setTestValue(vsys, \(0, \mathrm{~h} 0\))
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 2 states, and 1 parameters. Model Properties
\(\mathrm{A}=\) vsys. DataFunction (0,h0)
\(A=2 \times 2\)
```

```
0
1.0000

Data function code.
```

type dataFcnMaglev.m
function [A,B,C,D,E,dx0,x0,u0,y0,Delays] = dataFcnMaglev(~,p)
% MAGLEV example:
% x = [h ; dh/dt]
% p=hbar (equilibrium height)
mb = 0.02; % kg
g = 9.81;
alpha = 2.4832e-5;
A = [0 1;2*g/p 0];
B = [0 ; -2*sqrt(g*alpha/mb)/p];
C = [1 0]; % h
D = 0;
E = [];
dx0 = [];
x0 = [p;0];
u0 = sqrt(mb*g/alpha)*p; % ibar
y0 = p; % % = h = hbar + (h-hbar)
Delays = [];

```

\section*{Input Arguments}

\section*{vSys - LTV or LPV Model}
ltvss object| lpvss object
LTV or LPV model, specified as an ltvss or lpvss object, respectively.
Specify a model whose data function must be validated at a different time. The software only lets you combine models with shared parameters when their data function is validated at the same value for that parameter.

\section*{t0 - Test value for time \\ scalar}

New test value for time, specified as a scalar.

\section*{p0 - Test value for parameters}
vector
New test value for parameter, specified as a vector with length equal to the number of parameters.

\section*{Output Arguments}

\section*{msys - Modified LTV or LPV model}
ltvss object|lpvss object
LTV or LPV model with modified test values for data function, returned as an ltvss object or lpvss object, respectively.

\section*{Version History}

Introduced in R2023a

\section*{See Also}
lpvss|ltvss|getTestValue

\section*{setValue}

Modify current value of Control Design Block

\section*{Syntax}
blk = setValue(blk0,val)

\section*{Description}
blk = setValue(blk0,val) modifies the parameter values in the tunable Control Design Block, blk0, to best match the values specified by val. An exact match can only occur when val is compatible with the structure of blk0.

\section*{Input Arguments}

\section*{blk0}

Control Design Block whose value is modified.
val
Specifies the replacement parameters values for \(b l k 0\). The value val can be any value that is compatible with blk0 without changing the size, type, or sample time of blk0. For example, if blk0 is a tunablePID block, valid types for val include tunablePID, a numeric pid controller model, or a numeric tf model that represents a PID controller. setValue uses the parameter values of val to set the current value of blockname.

\section*{Output Arguments}

\section*{blk}

Control Design Block of the same type as blk0, whose parameters are updated to best match the parameters of val.

\section*{Version History}

Introduced in R2011b

\author{
See Also \\ getValue | setBlockValue | getBlockValue
}

\section*{sgrid}

Generate s-plane grid of constant damping factors and natural frequencies

\section*{Syntax}
sgrid
sgrid(zeta,wn)
sgrid(__,'new')
sgrid(\(\overline{A X}\), \(\qquad\))

\section*{Description}
sgrid generates a grid of constant damping factors from 0 to 1 in steps of 0.1 and natural frequencies from 0 to \(10 \mathrm{rad} / \mathrm{sec}\) in steps of one rad/sec for pole-zero and root locus plots. sgrid then plots the grid over the current axis. sgrid creates the grid over the plot if the current axis contains a continuous s-plane root locus diagram or pole-zero map.
sgrid(zeta,wn) plots a grid of constant damping factor and natural frequency lines for the damping factors and natural frequencies in the vectors zeta and wn, respectively. sgrid(zeta, wn) creates the grid over the plot if the current axis contains a continuous s-plane root locus diagram or pole-zero map.

Alternatively, you can select Grid from the context menu to generate the same s-plane grid.
sgrid(\(\qquad\) , 'new') clears the current axes first and sets hold on.
sgrid(AX, \(\qquad\)) plots the s-plane grid on the Axes or UIAxes object in the current figure with the handle AX. Use this syntax when creating apps with sgrid in the App Designer.

\section*{Examples}

\section*{Generate S-Plane Grid on Root Locus Plot}

Create the following continuous-time transfer function:
\[
H(s)=\frac{2 s^{2}+5 s+1}{s^{2}+2 s+3}
\]

H = tf([2 5 1], \(\left.\left.\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)\);
Plot the root locus of the transfer function.
rlocus(H)

Plot s-plane grid lines on the root locus.
sgrid

\section*{Input Arguments}
zeta - Damping ratio
vector
Damping ratio, specified as a vector in the same order as wn.
wn - Normalized natural frequency
vector
Normalized natural frequency, specified as a vector.

\section*{AX - Object handle}

Axes object | UIAxes object
Object handle, specified as an Axes or UIAxes object. Use AX to create apps with sgrid in the App Designer.

\section*{Version History}

Introduced before R2006a

See Also
pzmap|rlocus | zgrid

\section*{showBlockValue}

Display current value of Control Design Blocks in Generalized Model

\section*{Syntax}
showBlockValue(M)

\section*{Description}
showBlockValue(M) displays the current values of all Control Design Blocks in the Generalized Model, M. (For uncertain blocks, the "current value" is the nominal value of the block.)

\section*{Input Arguments}

\section*{M}

Generalized Model.

\section*{Examples}

Create a tunable genss model, and display the current value of its tunable elements.
```

G = zpk([],[-1,-1],1);
C = tunablePID('C','PID');
a = realp('a',10);
F = tf(a,[1 a]);
T = feedback(G*C,1)*F;
showBlockValue(T)
C =
Continuous-time I-only controller:
Ki * % --
S
With Ki = 0.001
a = 10

```

\section*{Tips}
- Displaying the current values of a model is useful, for example, after you have tuned the free parameters of the model using a tuning command such as systune.
- showBlockValue displays the current values of all Control Design Blocks in a model, including tunable, uncertain, and switch blocks. To display the current values of only the tunable blocks, use showTunable.

\title{
Version History \\ Introduced in R2011b
}

\section*{See Also \\ genss|getBlockValue | setBlockValue| showTunable}

\section*{showStateInfo}

State vector map for sparse model

\section*{Syntax}
showStateInfo(sys)

\section*{Description}
showStateInfo(sys) prints a state vector map of the x or q vectors, that is, how they are partitioned into components, interfaces, and signals.

For sparss models, showStateInfo maps the content of the state vector \(x\) back to individual components and internal signals. Here, Component refers to the sub-components or sub-structures that were combined into sys. The Signal group includes all signals flowing between components, for example, in series or feedback connections.

For mechss models, showStateInfo maps the content of the vector q of generalized degrees of freedom in terms of components, interfaces, and signals. The Interface group includes all DAE variables arising from physical couplings between components (see interface).

\section*{Examples}

\section*{Sparse Second-Order Model in a Feedback Loop}

For this example, consider sparseSOSignal.mat that contains a sparse second-order model. Define an actuator, sensor, and controller and connect them together with the plant in a feedback loop.

Load the sparse matrices and create the mechss object.
```

load sparseSOSignal.mat
plant = mechss(M,C,K,B,F,[],[],'Name','Plant');

```

Next, create an actuator and sensor using transfer functions.
```

act = tf(1,[1 0.5 3],'Name','Actuator');
sen = tf(1,[0.02 7],'Name','Sensor');

```

Create a PID controller object for the plant.
```

con = pid(1,1,0.1,0.01,'Name','Controller');

```

Use the feedback command to connect the plant, sensor, actuator, and controller in a feedback loop.
```

sys = feedback(sen*plant*act*con,1)
Sparse continuous-time second-order model with 1 outputs, 1 inputs, and 7111 degrees of freedom.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help mechssOptions" for available solver options for this model.

```

The resultant system sys is a mechss object since mechss objects take precedence over all other model object types.

Use showStateInfo to view the component and signal groups.
```

showStateInfo(sys)

```
The state groups are:
\begin{tabular}{|c|c|c|}
\hline Type & Name & Size \\
\hline Component & Sensor & 1 \\
\hline Component & Plant & 7102 \\
\hline Signal & & 1 \\
\hline Component & Actuator & 2 \\
\hline Signal & & 1 \\
\hline Component & Controller & 2 \\
\hline Signal & & 1 \\
\hline Signal & & 1 \\
\hline
\end{tabular}

Use xsort to sort the components and signals, and then view the component and signal groups.
```

sysSort = xsort(sys);
showStateInfo(sysSort)
The state groups are:

Type	Name	Size
Component	Sensor	1
Component	Plant	7102
Component	Actuator	2
Component	Controller	2
Signal		4

```

Observe that the components are now ordered before the signal partition. The signals are now sorted and grouped together in a single partition.

You can also visualize the sparsity pattern of the resultant system using spy.
```

spy(sysSort)

```


\section*{Physical Connections Between Components in Sparse Second-Order Model}

For this example, consider a structural model that consists of two square plates connected with pillars at each vertex as depicted in the figure below. The lower plate is attached rigidly to the ground while the pillars are attached rigidly to each vertex of the square plate.

Load the finite element model matrices contained in platePillarModel.mat and create the sparse second-order model representing the above system.
```

load('platePillarModel.mat')
model = ...
mechss(M1,[],K1,B1,F1,'Name','Plate1') + ...
mechss(M2,[],K2,B2,F2,'Name','Plate2') + ...
mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar3') + ...
mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar4') + ...
mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar5') + ...
mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar6');
sys = model;

```

Use showStateInfo to examine the components of the mechss model object.
```

showStateInfo(sys)

```

The state groups are:
\begin{tabular}{|c|c|c|}
\hline Type & Name & Size \\
\hline Component & Plate1 & 2646 \\
\hline Component & Plate2 & 2646 \\
\hline Component & Pillar3 & 132 \\
\hline Component & Pillar4 & 132 \\
\hline Component & Pillar5 & 132 \\
\hline Component & Pillar6 & 132 \\
\hline
\end{tabular}

Now, load the interfaced degree of freedom (DOF) index data from dofData.mat and use interface to create the physical connections between the two plates and the four pillars. dofs is a \(6 \times 7\) cell array where the first two rows contain DOF index data for the first and second plates while the remaining four rows contain index data for the four pillars. By default, the function uses dualassembly method of physical coupling.
```

load('dofData.mat','dofs')
for i=3:6
sys = interface(sys,"Plate1",dofs{1,i},"Pillar"+i,dofs{i,1});
sys = interface(sys,"Plate2",dofs{2,i},"Pillar"+i,dofs{i,2});
end

```

Specify connection between the bottom plate and the ground.
```

sysConDual = interface(sys,"Plate2",dofs{2,7});

```

Use showStateInfo to confirm the physical interfaces.
\begin{tabular}{lcr}
\multicolumn{1}{l}{ showStateInfo(sysConDual) } \\
The state groups are: \\
Type & Name & Size \\
Component & Plate1 & 2646 \\
Component & Plate2 & 2646 \\
Component & Pillar3 & 132 \\
Component & Pillar4 & 132 \\
Component & Pillar5 & 132 \\
Component & Pillar6 & 132 \\
Interface & Plate1-Pillar3 & 12 \\
Interface & Plate2-Pillar3 & 12 \\
Interface & Plate1-Pillar4 & 12 \\
Interface & Plate2-Pillar4 & 12 \\
Interface & Plate1-Pillar5 & 12 \\
Interface & Plate2-Pillar5 & 12 \\
Interface & Plate1-Pillar6 & 12 \\
Interface & Plate2-Pillar6 & 12 \\
Interface & Plate2-Ground & 6
\end{tabular}

You can use spy to visualize the sparse matrices in the final model.
```

spy(sysConDual)

```


Now, specify physical connections using the primal-assembly method.
```

sys = model;
for i=3:6
sys = interface(sys,"Plate1",dofs{1,i},"Pillar"+i,dofs{i,1},'primal');
sys = interface(sys,"Plate2",dofs{2,i},"Pillar"+i,dofs{i,2},'primal');
end
sysConPrimal = interface(sys,"Plate2",dofs{2,7},'primal');

```

Use showStateInfo to confirm the physical interfaces.
```

showStateInfo(sysConPrimal)

```

The state groups are:
\begin{tabular}{lcr}
Type & Name & Size \\
------------------------ \\
Component & Plate1 & 2646 \\
Component & Plate2 & 2640 \\
Component & Pillar3 & 108 \\
Component & Pillar4 & 108 \\
Component & Pillar5 & 108 \\
Component & Pillar6 & 108
\end{tabular}

Primal assembly eliminates half of the redundant DOFs associated with the shared set of DOFs in the global finite element mesh.

You can use spy to visualize the sparse matrices in the final model.
spy(sysConPrimal)

The data set for this example was provided by Victor Dolk from ASML.

\section*{Input Arguments}
sys - Sparse state-space model
sparss model object | mechss model object
Sparse state-space model, specified as a sparss or mechss model object.

\section*{Version History}

Introduced in R2020b

\section*{See Also}
sparss|mechss|interface|xsort|spy

\section*{Topics}
"Sparse Model Basics"
"Rigid Assembly of Model Components"

\section*{showTunable}

Display current value of tunable Control Design Blocks in Generalized Model

\section*{Syntax}
showTunable(M)

\section*{Description}
showTunable(M) displays the current values of all tunable Control Design Blocks in a generalized LTI model. Tunable control design blocks are parametric blocks such as realp, tunableTF, and tunablePID.

\section*{Examples}

\section*{Display Block Values of Tuned Control System Model}

Tune the following control system using systune, and display the values of the tunable blocks.

The control structure includes a PI controller C and a tunable low-pass filter in the feedback path. The plant G is a third-order system.

Create models of the system components and connect them together to create a tunable closed-loop model of the control system.
```

s = tf('s');
num = 33000*(s^2 - 200*s + 90000);
den = (s + 12.5)*(s^2 + 25*s + 63000);
G = num/den;
C0 = tunablePID('C','pi');
a = realp('a',1);
F0 = tf(a,[1 a]);
X = AnalysisPoint('X');
T0 = feedback(G*X*C0,F0);
T0.InputName = 'r';
T0.OutputName = 'y';

```

T0 is a genss model that has two tunable blocks, the PI controller, C, and the parameter, a. T0 also contains the switch block \(X\).

Create a tuning requirement that forces the output \(y\) to track the input \(r\), and tune the system to meet that requirement.
```

Req = TuningGoal.Tracking('r','y',0.05);
[T,fSoft,~] = systune(T0,Req);
Final: Soft = 1.43, Hard = -Inf, Iterations = 60

```
systune finds values for the tunable parameters that optimally meet the tracking requirement. The output T is a genss model with the same Control Design Blocks as T0. The current values of those blocks are the tuned values.

Examine the tuned values of the tunable blocks of the control system.
```

showTunable(T)
C =
1
Kp + Ki * ---
S
with Kp = 0.000433, Ki = 0.00525
Name: C
Continuous-time PI controller in parallel form.
a = 67.8

```
showTunable displays the values of the tunable blocks only. If you use showBlockValue instead, the display also includes the switch block X .

\section*{Input Arguments}

\section*{M - Input model}
generalized LTI model
Input model of which to display tunable block values, specified as a generalized LTI model such as a genss model.

\section*{Tips}
- Displaying the current values of tunable blocks is useful, for example, after you have tuned the free parameters of the model using a tuning command such as systune.
- showTunable displays the current values of the tunable blocks only. To display the current values of all Control Design Blocks in a model, including tunable, uncertain, and switch blocks, use showBlockValue.

\section*{Version History}

Introduced in R2012b

\section*{See Also}
genss| getBlockValue | setBlockValue | showBlockValue | systune

\section*{Topics}
"Generalized Models"
"Control Design Blocks"

\section*{sigma}

Singular value plot of dynamic system

\section*{Syntax}
```

sigma(sys)
sigma(sys1,sys2,...,sysN)
sigma(sys1,LineSpec1,...,sysN,LineSpecN)
sigma(

```
\(\qquad\)
``` , w)
sigma(
```

\qquad

``` ,type)
[sv,wout] = sigma(sys)
[sv,wout] = sigma(sys,w)
```


Description

sigma(sys) plots the singular values of the frequency response of a dynamic system model sys. sigma automatically determines frequencies to plot based on system dynamics.

If sys is a single-input, single-output (SISO) model, then the singular value plot is similar to its Bode magnitude response.

If sys is a multi-input, multi-output (MIMO) model with Nu inputs and Ny outputs, then the singular value plot shows min (Nu, Ny) lines on the plot corresponding to each singular value of the frequency response matrix. For MIMO systems, the singular value plot extends the Bode magnitude response and is useful in robustness analysis.

If sys is a model with complex coefficients, then in:

- Log frequency scale, the plot shows two branches, one for positive frequencies and one for negative frequencies. The plot also shows arrows to indicate the direction of increasing frequency values for each branch. See "Singular Value Plot of Model with Complex Coefficients" on page 21218.
- Linear frequency scale, the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero.
sigma(sys1, sys2, ...,sysN) plots the singular values of response of multiple dynamic systems on the same plot. All systems must have the same number of inputs and outputs.
sigma(sys1,LineSpec1, ...,sysN,LineSpecN) specifies a color, line style, and marker for each system in the plot.
sigma(\qquad ,w) plots singular values of the system response for frequencies specified by w.
- If w is a cell array of the form \{wmin, wmax\}, then sigma plots the response at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then sigma plots the response at each specified frequency. The vector w can contain both negative and positive frequencies.

You can use w with any of the input-argument combinations in previous syntaxes.
sigma(__ , type) plots the modified singular value responses based on the type argument. Specify type as:

- 1 to plot the singular values of the frequency response H^{-1}, where H is the frequency response of sys.
- 2 to plot the singular values of the frequency response $I+H$.
- 3 to plot the singular values of the frequency response $I+H^{-1}$.

You can only use the type argument for square systems, that is, systems that have the same number of inputs and outputs.
[sv, wout] = sigma(sys) returns the singular values of the response at each frequency in the vector wout. The output sv is a matrix, and the value sv(:,k) gives the singular values in descending order at the frequency wout (k). The function automatically determines frequencies in wout based on system dynamics. This syntax does not draw a plot.
[sv,wout] = sigma(sys,w) returns the singular values sv at the frequencies specified by w .

- If w is a cell array of the form $\{w m i n, w m a x\}$, then wout contains frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then wout = w.

Examples

Singular Value Plot of Dynamic System

Create a singular value plot of the following continuous-time SISO dynamic system.

$$
H(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

H = tf([1 0.1 7.5],[1 0.12 9000$])$;
sigma(H)

sigma automatically selects the plot range based on the system dynamics.

Sigma Plot at Specified Frequencies

Create a singular value plot over a specified frequency range. Use this approach when you want to focus on the dynamics in a particular range of frequencies.

H = tf([-0.1,-2.4,-181,-1950],[1,3.3,990, 2600]);
sigma(H, $\{1,100\}$)
grid on

The cell array $\{1,100\}$ specifies the minimum and maximum frequency values in the plot. When you provide frequency bounds in this way, the function selects intermediate points for frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency response.

```
w = [1 5 10 15 20 23 31 40 44 50 85 100];
sigma(H,w,'.-')
grid on
```


sigma plots the frequency response at the specified frequencies only.

Compare Singular Value Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an equivalent discretized system on the same singular value plot.

Create continuous-time and discrete-time dynamic systems.
H = tf([1 0.1 7.5],[1 0.12 9000$])$;
Hd = c2d(H, 0.5,'zoh');
Create a plot that displays both systems.
sigma(H,Hd)

The sigma plot of a discrete-time system includes a vertical line marking the Nyquist frequency of the system.

Singular Value Plot with Specified Line Attributes

Specify the line style, color, or marker for each system in a sigma plot using the LineSpec input argument.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

Hd = c2d(H,0.5,'zoh');
sigma(H, 'r', Hd, 'b--')

The first LineSpec, ' r ', specifies a solid red line for the response of H . The second LineSpec, 'b--' , specifies a dashed blue line for the response of Hd.

Obtain Singular Value Data

Compute the singular values of the frequency response of a SISO system.
If you do not specify frequencies, sigma chooses frequencies based on the system dynamics and returns them in the second output argument.

```
H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

[sv,wout] = sigma(H);

Because H is a SISO model, the first dimension of sv is 1 . The second dimension is the number of frequencies in wout.

```
size(sv)
ans = 1\times2
```

140

```
ans = 40
```

Thus, each entry along the second dimension of sv gives the singular value of the response at the corresponding frequency in wout.

Singular Values of MIMO System

For this example, create a 2-output, 3-input system.
rng(0,'twister'); \% For reproducibility
H = rss (4, 2, 3) ;
For this system, sigma plots the singular values of the frequency response matrix in the same plot. sigma(H)

Compute the singular values at 20 frequencies between 1 and 10 radians.

```
w = logspace(0,1,20);
sv = sigma(H,w);
```

sv is a matrix, in which the rows correspond to the singular values of the frequency response matrix and the columns are the frequency values. Examine the dimensions.
size(sv)

ans $=1 \times 2$

$2 \quad 20$

Thus, for example, $\operatorname{sv}(:, 10)$ are the singular values of the response computed at the 10th frequency in w.

Compute and Plot Singular Values

Consider the following two-input, two-output dynamic system.

$$
H(s)=\left[\begin{array}{cc}
0 & \frac{3 s}{s^{2}+s+10} \\
\frac{s+1}{s+5} & \frac{2}{s+6}
\end{array}\right]
$$

Compute the singular value responses of $H(s)$ and $I+H(s)$.

```
H = [0, tf([3 0],[1 1 10]) ; tf([1 1],[1 5]), tf(2,[1 6])];
```

[svH,wH] = sigma(H);
[svIH,wIH] = sigma(H,[],2);
In the last command, the input 2 selects the second response type, $I+H(s)$. The vectors svH and svIH contain the singular value response data, at the frequencies in wH and wIH.

Plot the singular value responses of both systems.

```
subplot(211)
sigma(H)
subplot(212)
sigma(H,[],2)
```


Singular Value Plot of Model with Complex Coefficients

Create a singular value plot of a model with complex coefficients and a model with real coefficients on the same plot.

```
rng(0)
A = [-3.50,-1.25-0.25i;2,0];
B = [1;0];
C = [-0.75-0.5i,0.625-0.125i];
D = 0.5;
Gc = ss(A,B,C,D);
Gr = rss(4);
sigma(Gc,Gr)
legend('Complex-coefficient model','Real-coefficient model')
```


In log frequency scale, the plot shows two branches for models with complex coefficients, one for positive frequencies, with a right-pointing arrow, and one for negative frequencies, with a leftpointing arrow. In both branches, the arrows indicate the direction of increasing frequencies. The plots for models with real coefficients always contain a single branch with no arrows.

You can change the frequency scale of the plot by right-clicking the plot and selecting Properties. In the Property Editor dialog, on the Units tab, set the frequency scale to linear scale. Alternatively, you can use the sigmaplot function with a sigmaoptions object to create a customized plot.

```
opt = sigmaoptions;
opt.FreqScale = 'Linear';
```

Create the plot with customized options.

```
sigmaplot(Gc,Gr,opt)
legend('Complex-coefficient model','Real-coefficient model')
```


In linear frequency scale, the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero. The plot also shows the negative-frequency response of a model with real coefficients when you plot the response along with a model with complex coefficients.

Input Arguments

sys - Dynamic system
dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or an array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning frequency response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns frequency response data for the nominal model only.
- Frequency-response data models such as frd models. For such models, the function plots the response at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. Using identified models requires System Identification Toolbox software.

If sys is an array of models, the function plots the frequency responses of all models in the array on the same axes.

LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.
Example: 'r-- ' specifies a red dashed line
Example: ' $* \mathrm{~b}$ ' specifies blue asterisk markers
Example: ' y' specifies a yellow line

w- Frequencies

\{wmin,wmax\} | vector
Frequencies at which to compute and plot frequency response, specified as the cell array \{wmin,wmax\} or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the function computes the response at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function computes the response at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values. The vector w can contain both positive and negative frequencies.

For models with complex coefficients, if you specify a frequency range of $\left[w_{\min }, w_{\max }\right]$ for your plot, then in:

- Log frequency scale, the plot frequency limits are set to [$w_{\min }, w_{\max }$] and the plot shows two branches, one for positive frequencies [$w_{\min }, w_{\max }$] and one for negative frequencies [$-w_{\max },-w_{\min }$].
- Linear frequency scale, the plot frequency limits are set to [$-w_{\max }, w_{\max }$] and the plot shows a single branch with a symmetric frequency range centered at a frequency value of zero.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

type - Option to plot modified singular values

$1|2| 3$
Option to plot modified singular values, specified as one of the following options:

- 1 to plot the singular values of the frequency response H^{-1}, where H is the frequency response of sys.
- 2 to plot the singular values of the frequency response $I+H$.
- 3 to plot the singular values of the frequency response $I+H^{-1}$.

You can only use the type argument for square systems, that is, systems that have the same number of inputs and outputs.

Output Arguments

sv - Singular values of frequency response

matrix

Singular values of the frequency response in absolute units, returned as a matrix. sv contains the singular values computed at the frequencies w if you supplied them, or wout if you did not. For a system sys with Nu inputs and Ny outputs, sv has min(Nu, Ny) rows, and as many columns as there are values in w or wout.

wout - Frequencies

vector
Frequencies at which the function returns the system response, returned as a column vector. The function chooses the frequency values based on the model dynamics, unless you specify frequencies using the input argument w.
wout also contains negative frequency values for models with complex coefficients.
Frequency values are in radians per TimeUnit, where TimeUnit is the value of the TimeUnit property of sys.

Tips

- When you need additional plot customization options, use sigmaplot instead.

Algorithms

sigma uses the MATLAB function svd to compute the singular values of the complex frequency response.

- For an frd model, sigma computes the singular values of sys.ResponseData at the frequencies, sys.Frequency.
- For continuous-time tf, ss, or zpk models with transfer function $H(s)$, sigma computes the singular values of $H(j \omega)$ as a function of the frequency ω.
- For discrete-time tf, ss, or zpk models with transfer function $H(z)$ and sample time T_{s}, sigma computes the singular values of

$$
H\left(e^{j \omega T_{s}}\right)
$$

for frequencies ω between 0 and the Nyquist frequency $\omega_{N}=\pi / T_{s}$.

Version History

Introduced before R2006a

See Also

sigmaplot | freqresp| nyquist| bode

Topics

"Frequency-Domain Responses"
"Dynamic System Models"

sigmaoptions

Sigma plot options

Description

Use the sigmaoptions command to create a SigmaOptions object to customize your sigma plot appearance. You can also use the command to override the plot preference settings in the MATLAB session in which you create the sigma plots.

Creation

Syntax

plotoptions = sigmaoptions
plotoptions = sigmaoptions('cstprefs')

Description

plotoptions = sigmaoptions returns a default set of plot options for use with the sigmaplot command. You can use these options to customize sigma plot appearance using the command line. This syntax is useful when you want to write a script to generate plots that look the same regardless of the preference settings of the MATLAB session in which you run the script.
plotoptions = sigmaoptions('cstprefs') initializes the plot options with the options you selected in the Control System Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor". This syntax is useful when you want to change a few plot options but otherwise use your default preferences. A script that uses this syntax might generate results that look different when run in a session with different preferences.

Properties

FreqUnits - Frequency units

'rad/s' (default)
Frequency units, specified as one of the following values:

- 'Hz'
- 'rad/s'
- 'rpm'
- 'kHz'
- 'MHz'
- 'GHz'
- 'rad/nanosecond'
- 'rad/microsecond'
- 'rad/millisecond'
- 'rad/minute'
- 'rad/hour'
- 'rad/day'
- 'rad/week'
- 'rad/month'
- 'rad/year'
- 'cycles/nanosecond'
- 'cycles/microsecond'
- 'cycles/millisecond'
- 'cycles/hour'
- 'cycles/day'
- 'cycles/week'
- 'cycles/month'
- 'cycles/year'

FreqScale - Frequency scale

'log' (default) | 'linear'
Frequency scale, specified as either 'log' or 'linear'.

MagUnits - Magnitude units

'dB' (default) | 'abs'
Magnitude units, specified as either ' dB ' or absolute value 'abs'.

MagScale - Magnitude scale

'linear' (default) | 'log'
Magnitude scale, specified as either 'log' or 'linear'.

IOGrouping - Grouping of input-output pairs

'none' (default) | 'inputs' | 'outputs' | 'all'
Grouping of input-output (I/O) pairs, specified as one of the following:

- 'none' - No input-output grouping.
- 'inputs' - Group only the inputs.
- 'outputs' - Group only the outputs.
- 'all' - Group all the I/O pairs.

InputLabels - Input label style

structure (default)
Input label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

OutputLabels - Output label style

structure (default)
Output label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

InputVisible - Input visibility toggle

\{'on'\} (default)|\{'off'\}|cell array
Input visibility toggle, specified as either \{'on'\}, \{'off'\} or a cell array with multiple elements.

OutputVisible - Output visibility toggle

\{'on'\} (default) | \{'off'\} | cell array
Output visibility toggle, specified as either \{'on'\}, \{'off'\} or a cell array with multiple elements.

Title - Title text and style

structure (default)
Title text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the plot is titled 'Singular Values'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

XLabel - X-axis label text and style

structure (default)

X-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the axis is titled based on the frequency units FreqUnits.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

YLabel - Y-axis label text and style

structure (default)
Y-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a cell array of character vectors. By default, the axis is titled based on the magnitude units MagUnits.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.

TickLabel - Tick label style

structure (default)
Tick label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].

Grid - Toggle grid display

'off' (default) | 'on'
Toggle grid display on the plot, specified as either 'off' or 'on'.

GridColor - Color of the grid lines

[0.15, 0.15, 0.15] (default)| RGB triplet
Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB triplet [0.15, 0.15, 0.15].

XLimMode - X-axis limit selection mode

'auto' (default) | 'manual' | cell array
Selection mode for the x -axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the XLim property.

YLimMode - Y-axis limit selection mode
'auto' (default) | 'manual' | cell array

Selection mode for the y-axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the YLim property.

XLim - X-axis limits

' $\{[1,10]\}$ ' (default) | cell array of two-element vector of the form [min, max] |cell array
X-axis limits, specified as a cell array of two-element vector of the form [min, max].

YLim - \mathbf{Y}-axis limits

' $\{[1,10]\}$ ' (default) | cell array of two-element vector of the form [min,max] |cell array
Y-axis limits, specified as a cell array of two-element vector of the form [min,max].

Object Functions

sigmaplot Plot singular values of frequency response with additional plot customization options

Examples

Customize Sigma Plot using Plot Handle

For this example, use the plot handle to change the frequency units to Hz and turn on the grid.
Generate a random state-space model with 5 states and create the sigma plot with plot handle h .

```
rng("default")
```

sys = rss(5);
h = sigmaplot(sys);

Change the units to Hz and turn on the grid. To do so, edit properties of the plot handle, h using setoptions.
setoptions(h,'FreqUnits','Hz','Grid','on');

The sigma plot automatically updates when you call setoptions.
Alternatively, you can also use the sigmaoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.

```
p = sigmaoptions('cstprefs');
```

Change properties of the options set by setting the frequency units to Hz and enable the grid.
p.FreqUnits = 'Hz';
p.Grid = 'on';
sigmaplot(sys,p);

You can use the same option set to create multiple sigma plots with the same customization. Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example Grid and FreqUnits, override the toolbox preferences.

Custom Sigma Plot Settings Independent of Preferences

For this example, create a sigma plot that uses 15-point red text for the title. This plot should look the same, regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set using sigmaoptions.

```
plotoptions = sigmaoptions;
```

Next, change the required properties of the options set plotoptions.

```
plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [1 0 0];
plotoptions.FreqUnits = 'Hz';
plotoptions.Grid = 'on';
```

Now, create a sigma plot using the options set plotoptions.

```
h = sigmaplot(tf(1,[1,1]),plotoptions);
```


Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

Customized Sigma Plot of Transfer Function

For this example, create a sigma plot of the following continuous-time SISO dynamic system. Then, turn the grid on, rename the plot and change the frequency scale.

$$
\operatorname{sys}(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

Create the transfer function sys.

```
sys = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

Next, create the options set using sigmaoptions and change the required plot properties.
plotoptions = sigmaoptions;
plotoptions.Grid = 'on';
plotoptions.FreqScale = 'linear';
plotoptions.Title.String = 'Singular Value Plot of Transfer Function';
Now, create the sigma plot with the custom option set plotoptions.

```
h = sigmaplot(sys,plotoptions);
```


sigmaplot automatically selects the plot range based on the system dynamics.

Singular Value Plot of Identified Parametric and Nonparametric Models

For this example, compare the SV for the frequencies of a parametric model, identified from input/ output data, to a non-parametric model identified using the same data. Identify parametric and nonparametric models based on the data.

Load the data and create the parametric and non-parametric models using tfest and spa, respectively.

```
load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
```

spa and tfest require System Identification Toolbox ${ }^{\text {TM }}$ software. The model sys_np is a nonparametric identified model while, sys_p is a parametric identified model.

Create an options set to turn the grid on. Then, create a sigma plot that includes both systems using this options set.

```
plotoptions = sigmaoptions;
plotoptions.Grid = 'on';
```

h = sigmaplot(sys_p,'b--',sys_np,'r--',w,plotoptions);
legend('Parametric Model','Non̄-Parametric model');

Modified Singular Value Plot of MIMO System

Consider the following two-input, two-output dynamic system.

$$
H(s)=\left[\begin{array}{cc}
0 & \frac{3 s}{s^{2}+s+10} \\
\frac{s+1}{s+5} & \frac{2}{s+6}
\end{array}\right]
$$

Plot the singular value responses of $H(s)$ and $I+H(s)$. Set appropriate titles using the plot option set.

```
H = [0, tf([3 0],[1 1 10]) ; tf([1 1],[1 5]), tf(2,[1 6])];
opts1 = sigmaoptions;
opts1.Grid = 'on';
optsl.Title.String = 'Singular Value Plot of H(s)';
h1 = sigmaplot(H,opts1);
```


Use input 2 to plot the modified SV of type, $I+H(s)$.

```
opts2 = sigmaoptions;
opts2.Grid = 'on';
opts2.Title.String = 'Singular Value Plot of I+H(s)';
h2 = sigmaplot(H,[],2,opts2);
```


Version History

Introduced in R2008a

See Also

getoptions| setoptions| sigmaplot

Topics

"Toolbox Preferences Editor"

sigmaplot

Plot singular values of frequency response with additional plot customization options

Syntax

h = sigmaplot(sys)
h = sigmaplot(sys1,sys2,...,sysN)
h = sigmaplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = sigmaplot , w)
h = sigmaplot(__, type)
h = sigmaplot($\overline{A X}$,)
h = sigmaplot (__, plotoptions)

Description

sigmaplot lets you plot the singular values (SV) of frequency response of a dynamic system model with a broader range of plot customization options than sigma. You can use sigmaplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use sigmaplot to draw an SV plot on an existing set of axes represented by an axes handle. To customize an existing SV plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create SV plots with default options or to extract the frequency response data, use sigma.
$\mathrm{h}=$ sigmaplot(sys) plots the singular values (SV) of the frequency response of the dynamic system model sys and returns the plot handle h to the plot. You can use this handle h to customize the plot with the getoptions and setoptions commands.
h = sigmaplot(sys1,sys2,...,sysN) plots the SV of multiple dynamic systems sys1,sys2, ..., sysN on the same plot. All systems must have the same number of inputs and outputs to use this syntax.
h = sigmaplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and color for the SV plot of each system. All systems must have the same number of inputs and outputs to use this syntax.
h = sigmaplot (\qquad ,w) plots singular values for frequencies specified by the frequencies in w.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then sigmaplot plots the singular values at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then sigmaplot plots the singular values at each specified frequency.

You can use w with any of the input-argument combinations in previous syntaxes.
See logspace to generate logarithmically spaced frequency vectors.
h = sigmaplot (\qquad , type) plots the modified singular value responses based on the type argument. Specify type as:

- 1 to plot the SV of the frequency response H^{-1}, where H is the frequency response of sys.
- 2 to plot the SV of the frequency response $I+H$.
- 3 to plot the SV of the frequency response $I+H^{-1}$.

You can only use the type argument for square systems, that is, systems that have the same number of inputs and outputs.
h = sigmaplot(AX, \qquad) plots the singular values on the Axes object in the current figure with the handle AX.
h = sigmaplot (__, plotoptions) plots the singular values with the options set specified in plotoptions. You can use these options to customize the SV plot appearance using the command line. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run sigmaplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

Examples

Customize Sigma Plot using Plot Handle

For this example, use the plot handle to change the frequency units to Hz and turn on the grid.
Generate a random state-space model with 5 states and create the sigma plot with plot handle h .
rng("default")
sys = rss(5);
h = sigmaplot(sys);

Change the units to Hz and turn on the grid. To do so, edit properties of the plot handle, h using setoptions.
setoptions(h,'FreqUnits','Hz','Grid','on');

The sigma plot automatically updates when you call setoptions.
Alternatively, you can also use the sigmaoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.

```
p = sigmaoptions('cstprefs');
```

Change properties of the options set by setting the frequency units to Hz and enable the grid.
p.FreqUnits = 'Hz';
p.Grid = 'on';
sigmaplot(sys,p);

You can use the same option set to create multiple sigma plots with the same customization. Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example Grid and FreqUnits, override the toolbox preferences.

Custom Sigma Plot Settings Independent of Preferences

For this example, create a sigma plot that uses 15-point red text for the title. This plot should look the same, regardless of the preferences of the MATLAB session in which it is generated.

First, create a default options set using sigmaoptions.

```
plotoptions = sigmaoptions;
```

Next, change the required properties of the options set plotoptions.

```
plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [1 0 0];
plotoptions.FreqUnits = 'Hz';
plotoptions.Grid = 'on';
```

Now, create a sigma plot using the options set plotoptions.

```
h = sigmaplot(tf(1,[1,1]),plotoptions);
```


Singular Values

Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

Customized Sigma Plot of Transfer Function

For this example, create a sigma plot of the following continuous-time SISO dynamic system. Then, turn the grid on, rename the plot and change the frequency scale.

$$
\operatorname{sys}(s)=\frac{s^{2}+0.1 s+7.5}{s^{4}+0.12 s^{3}+9 s^{2}}
$$

Create the transfer function sys.

```
sys = tf([1 0.1 7.5],[1 0.12 9 0 0]);
```

Next, create the options set using sigmaoptions and change the required plot properties.
plotoptions = sigmaoptions;
plotoptions.Grid = 'on';
plotoptions.FreqScale = 'linear';
plotoptions.Title.String = 'Singular Value Plot of Transfer Function';
Now, create the sigma plot with the custom option set plotoptions.

```
h = sigmaplot(sys,plotoptions);
```


sigmaplot automatically selects the plot range based on the system dynamics.

Sigma Plot with Specified Frequency Scale and Units

For this example, consider a MIMO state-space model with 3 inputs, 3 outputs and 3 states. Create a sigma plot with linear frequency scale, frequency units in Hz and turn the grid on.

Create the MIMO state-space model sys_mimo.
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
$\mathrm{A}=-\mathrm{J} \backslash \mathrm{F}$;
$\mathrm{B}=\operatorname{inv}(\mathrm{J})$;
C = eye(3);
D = 0;
sys_mimo = ss(A,B,C,D);
sizè(sys_mimo)
State-space model with 3 outputs, 3 inputs, and 3 states.
Create a sigma plot with plot handle h and use getoptions for a list of the options available.
h = sigmaplot(sys_mimo);


```
p = getoptions(h)
p =
            FreqUnits: 'rad/s'
            FreqScale: 'log'
                MagUnits: 'dB'
                MagScale: 'linear'
            IOGrouping: 'none'
        InputLabels: [1x1 struct]
        OutputLabels: [1x1 struct]
        InputVisible: {0x1 cell}
    OutputVisible: {0x1 cell}
            Title: [1x1 struct]
            XLabel: [1x1 struct]
            YLabel: [1x1 struct]
            TickLabel: [1x1 struct]
                Grid: 'off'
            GridColor: [0.1500 0.1500 0.1500]
                XLim: {[1.0000e-03 1]}
                YLim: {[-25 15]}
            XLimMode: {'auto'}
            YLimMode: {'auto'}
```

Use setoptions to update the plot with the requires customization.
setoptions(h,'FreqScale','linear','FreqUnits','Hz','Grid','on');

The sigma plot automatically updates when you call setoptions.

Singular Value Plot of Identified Parametric and Nonparametric Models

For this example, compare the SV for the frequencies of a parametric model, identified from input/ output data, to a non-parametric model identified using the same data. Identify parametric and nonparametric models based on the data.

Load the data and create the parametric and non-parametric models using tfest and spa, respectively.

```
load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);
```

spa and tfest require System Identification Toolbox ${ }^{\text {TM }}$ software. The model sys_np is a nonparametric identified model while, sys_p is a parametric identified model.

Create an options set to turn the grid on. Then, create a sigma plot that includes both systems using this options set.

```
plotoptions = sigmaoptions;
plotoptions.Grid = 'on';
```

h = sigmaplot(sys_p,'b--',sys_np,'r--',w,plotoptions);
legend('Parametric Model','Non-Parametric model');

Modified Singular Value Plot of MIMO System

Consider the following two-input, two-output dynamic system.

$$
H(s)=\left[\begin{array}{cc}
0 & \frac{3 s}{s^{2}+s+10} \\
\frac{s+1}{s+5} & \frac{2}{s+6}
\end{array}\right]
$$

Plot the singular value responses of $H(s)$ and $I+H(s)$. Set appropriate titles using the plot option set.

```
H = [0, tf([3 0],[1 1 10]) ; tf([1 1],[1 5]), tf(2,[1 6])];
opts1 = sigmaoptions;
opts1.Grid = 'on';
optsl.Title.String = 'Singular Value Plot of H(s)';
h1 = sigmaplot(H,opts1);
```


Use input 2 to plot the modified SV of type, $I+H(s)$.

```
opts2 = sigmaoptions;
opts2.Grid = 'on';
opts2.Title.String = 'Singular Value Plot of I+H(s)';
h2 = sigmaplot(H,[],2,opts2);
```


Input Arguments

sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Sparse state-space models, such as sparss or mechss models. Frequency grid w must be specified for sparse models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to plot the SV.
- For uncertain control design blocks, the function plots the SV at the nominal value and random samples of the model.
- Frequency-response data models such as frd models. For such models, the function plots the SV at frequencies defined in the model.
- Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can also plot confidence intervals and return standard deviations of the frequency response. (Using identified models requires System Identification Toolbox software.)

LineSpec - Line style, marker, and color

character vector | string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - or' is a red dashed line with circle markers

Line Style	Description
-	Solid line
--	Dashed line
$:$	Dotted line
.-	Dash-dot line

Marker	Description
'0'	Circle
'+'	Plus sign
'*'	Asterisk
'.'	Point
'x'	Cross
-	Horizontal line
' \|'	Vertical line
's'	Square
'd'	Diamond
^'	Upward-pointing triangle
'v'	Downward-pointing triangle
'>'	Right-pointing triangle
'<'	Left-pointing triangle
'p'	Pentagram
'h'	Hexagram

Color	Description
y	yellow
m	magenta
c	cyan
r	red
g	green
b	blue
W	white
k	black

w - Frequencies

\{wmin,wmax\} | vector
Frequencies at which to compute and plot SV of the frequency response, specified as the cell array \{wmin, wmax\} or as a vector of frequency values.

- If w is a cell array of the form $\{w m i n, w m a x\}$, then the function plots the SV at frequencies ranging between wmin and wmax.
- If w is a vector of frequencies, then the function plots the SV at each specified frequency. For example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the model.

type - Option to plot modified singular values

1|2|3
Option to plot modified singular values, specified as one of the following options:

- 1 to plot the SV of the frequency response H^{-1}, where H is the frequency response of sys.
- 2 to plot the SV of the frequency response $I+H$.
- 3 to plot the SV of the frequency response $I+H^{-1}$.

You can only use the type argument for square systems, that is, systems that have the same number of inputs and outputs.

AX - Target axes

Axes object
Target axes, specified as an Axes object. If you do not specify the axes and if the current axes are Cartesian axes, then sigmaplot plots on the current axes.

plotoptions - Sigma plot options set

SigmaPlotOptions object
Sigma plot options set, specified as a SigmaPlotOptions object. You can use this option set to customize the SV plot appearance. Use sigmaoptions to create the option set. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run sigmaplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see sigmaoptions.

Output Arguments

h - Plot handle
handle object
Plot handle, returned as a handle object. Use the handle h to get and set the properties of the SV plot using getoptions and setoptions. For the list of available options, see the Properties and Values Reference section in "Customizing Response Plots from the Command Line".

Version History
 Introduced before R2006a

See Also

getoptions|setoptions|sigma|sigmaoptions

Topics

"Customizing Response Plots from the Command Line"

sisoinit

Configure Control System Designer at startup

Syntax

```
init_config = sisoinit(config)
```


Description

init_config = sisoinit(config) returns a template init_config for initializing the Control System Designer with one of the following control system configurations:

Configuration 1

Configuration 3

Configuration 5

Configuration 2

Configuration 4

Configuration 6

For more information about the control system configurations supported by the Control System Designer, see "Feedback Control Architectures".

For each configuration, you can specify the plant model G and the sensor dynamics H, initialize the compensator C and prefilter F, and configure the open- loop and closed-loop views by specifying the corresponding fields of the structure init_config. Then you can start the Control System Designer in the specified configuration using controlSystemDesigner(init_config).

Output argument init_config is an object with properties. The following tables list the block and loop properties.

Block Properties

Block	Properties	Values
F	Name	Character vector
	Description	Character vector
	Value	LTI object
G	Name	Character vector
	Value	- LTI object - Row or column array of LTI objects. If the sensor H is also an array of LTI objects, the lengths of G and H must match.
H	Name	Character vector
	Value	- LTI object - Row or column array of LTI objects. If the plant G is also an array of LTI objects, the lengths of H and G must match.
C	Name	Character vector
	Description	Character vector
	Value	LTI object

Loop Properties

Loops	Properties	Values
OL1	Name	Character vector
	Description	Character vector
CL1	View	'rlocus ' 'bode'
	Name	Character vector
	Description	Character vector
	View	'bode'

Examples

Initialize Control System Designer

Create an initialization template for configuration 2 , with the compensator in the feedback path.
$\mathrm{T}=$ sisoinit(2);
Specify the fixed plant model.
T.G.Value = tf(1, [11]);

Specify an initial compensator value.
T.C.Value = tf(1,[12]);

Open a root locus Editor and Nichols editor for tuning the open-loop response.
T.OL1.View = \{'rlocus','nichols'\};

Open Control System Designer using the specified configuration settings.
controlSystemDesigner(T)

By default, the template for configuration 2 also opens a Bode editor for tuning the closed-loop response.

Initialize Control System Designer Using Array of Plant Models

Specify a configuration template.
initconfig = sisoinit(2);
Specify model parameters.

```
m = 3;
b = 0.5;
k = 8:1:10;
T = 0.1:.05:.2;
```

Create an array of LTI objects to model variations in plant G.
for ct = 1:length(k);
$G(:,:, c t)=t f(1,[m, b, k(c t)]) ;$
end
Assign G to the initial configuration.
initconfig.G.Value = G;
Specify initial compensator value.
initconfig.C.Value = tf(1,[12]);
Use a graphical Bode editor to tune the open-loop response.
initconfig.OL1.View = \{'bode'\};
Open Control System Designer using the specified configuration settings.
controlSystemDesigner(initconfig)

By default, the template for configuration 2 also opens a Bode editor for tuning the closed-loop response.

Version History
 Introduced in R2006a

See Also

Control System Designer

Topics

"Feedback Control Architectures"
"Programmatically Initializing the Control System Designer"
"Multimodel Control Design"

size

Query output/input/array dimensions of input-output model and number of frequencies of FRD model

Syntax

size(sys)
d = size(sys)
Ny = size(sys,1)
$\mathrm{Nu}=\operatorname{size}(\mathrm{sys}, 2)$
Sk = size(sys,2+k)
Nf = size(sys,'frequency')

Description

When invoked without output arguments, size(sys) returns a description of type and the inputoutput dimensions of sys. If sys is a model array, the array size is also described. For identified models, the number of free parameters is also displayed. The lengths of the array dimensions are also included in the response to size when sys is a model array.
d = size(sys) returns:

- The row vector $\mathrm{d}=$ [Ny Nu] for a single dynamic model sys with Ny outputs and Nu inputs
- The row vector $d=\left[\begin{array}{ll}\mathrm{Ny} & \mathrm{Nu} \text { S1 S2 } \ldots \mathrm{Sp}] \text { for an S1-by-S2-by-...-by-Sp array of dynamic }\end{array}\right.$ models with Ny outputs and Nu inputs

Ny = size(sys,1) returns the number of outputs of sys.
$\mathrm{Nu}=\operatorname{size}($ sys, 2$)$ returns the number of inputs of sys.
Sk = size(sys, $2+\mathrm{k}$) returns the length of the k-th array dimension when sys is a model array.
Nf = size(sys,'frequency') returns the number of frequencies when sys is a frequency response data model. This is the same as the length of sys.frequency.

Examples

Query Dimensions of Model Array

Create a 3-by-1 model array of random state-space models with 3 outputs, 2 inputs, and 5 states.
sys $=$ rss (5, $3,2,3$);
Verify the size of the model array.

```
size(sys)
3x1 array of state-space models.
Each model has 3 outputs, 2 inputs, and 5 states.
```


Query Dimensions of Identified Model

Create a 2-input 2-output continuous-time process model with identifiable parameters.
type = \{'p1d','p2';'p3uz','p0'\};
sys = idproc(type);
Each element of the type cell array describes the model structure for the corresponding input-output pair.

Query the input-output dimensions and number of free parameters in the model.
size(sys)
Process model with 2 outputs, 2 inputs and 12 free parameters.

Version History
 Introduced before R2006a

See Also

isempty|issiso|ndims

sminreal

Structural pole/zero cancellations

Syntax

msys = sminreal(sys)

Description

msys $=$ sminreal (sys) eliminates the states of the state-space model sys that don't affect the input/output response. All of the states of the resulting state-space model msys are also states of sys and the input/output response of msys is equivalent to that of sys.
sminreal eliminates only structurally non minimal states, i.e., states that can be discarded by looking only at hard zero entries in the A, B, and C matrices. Such structurally nonminimal states arise, for example, when linearizing a Simulink model that includes some unconnected state-space or transfer function blocks.

Examples

Suppose you concatenate two SS models, sys1 and sys2.
sys = [sys1,sys2];
This operation is depicted in the diagram below.

If you extract the subsystem sys 1 from sys, with
sys $(1,1)$
all of the states of sys, including those of sys2 are retained. To eliminate the unobservable states from sys2, while retaining the states of sys1, type
sminreal(sys(1,1))

Tips

The model resulting from sminreal (sys) is not necessarily minimal, and may have a higher order than one resulting from minreal(sys). However, sminreal(sys) retains the state structure of sys, while, in general, minreal(sys) does not.

Alternative Functionality

App

Model Reducer
Live Editor Task
Reduce Model Order

Version History

Introduced before R2006a

See Also
minreal | Model Reducer | Reduce Model Order
Topics
"Pole-Zero Simplification"
"Model Reduction Basics"

sparss

Sparse first-order state-space model

Description

Use sparss to represent sparse descriptor state-space models using matrices obtained from your finite element analysis (FEA) package. FEA involves the concept of dynamic substructuring where a mechanical system is partitioned into components that are modeled separately. These components are then coupled using rigid or semi-rigid physical interfaces that express consistency of displacements and equilibrium of internal forces. The resultant matrices from this type of modeling are quite large with a sparse pattern. Hence, using sparss is an efficient way to represent such large sparse state-space models in MATLAB to perform linear analysis. You can also use sparss to convert a second-order mechss model object to a sparss object.

You can use sparss model objects to represent SISO or MIMO state-space models in continuous time or discrete time. In continuous time, a first-order sparse state-space model is represented in the following form:

$$
\begin{aligned}
E \frac{d x}{d t} & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

Here, x, u and y represent the states, inputs and outputs respectively, while $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are the state-space matrices. The sparss object represents a state-space model in MATLAB storing sparse matrices A, B, C, D and E along with other information such as sample time, names and delays specific to the inputs and outputs.

You can use a sparss object to:

- Perform time-domain and frequency-domain response analysis.
- Specify signal-based connections with other LTI models.
- Transform models between continuous-time and discrete-time representations.

For more information, see "Sparse Model Basics".

Creation

Syntax

```
sys = sparss(A,B,C,D,E)
sys = sparss(A,B,C,D,E,ts)
sys = sparss(D)
sys = sparss( ___,Name,Value)
sys = sparss(ltiSys)
```


Description

sys $=$ sparss (A, B, C, D, E) creates a continuous-time first-order sparse state-space model object of the following form:

$$
\begin{aligned}
E \frac{d x}{d t} & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

For instance, consider a plant with Nx states, Ny outputs, and Nu inputs. The first-order state-space matrices are:

- A is the sparse state matrix with $N x-b y-N x$ real- or complex-values.
- B is the sparse input-to-state matrix with Nx -by-Nu real- or complex-values.
- is the sparse state-to-output matrix with Ny -by-Nx real- or complex-values.
- D is the sparse gain or input-to-output matrix with Ny-by-Nu real- or complex-values.
- E is the sparse mass matrix with the same size as matrix A . When E is omitted, sparss populates E with an identity matrix.
sys $=\operatorname{sparss}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{ts})$ creates a discrete-time sparse state-space model with sample time ts with the form:

$$
\begin{aligned}
E x[k+1] & =A x[k]+B u[k] \\
y[k] & =C x[k]+D u[k]
\end{aligned}
$$

To leave the sample time unspecified, set ts to -1 . When E is an identity matrix, you can set E as [] or omit E as long as A is not a scalar.
sys = sparss(D) creates a sparse state-space model that represents the static gain, D . The output state-space model is equivalent to sparss([], [], [], D, []).
sys = sparss(__ ,Name, Value) sets properties of the first-order sparse state-space model using one or more name-value pair arguments. Use this syntax with any of the previous inputargument combinations.
sys = sparss(ltiSys) converts the dynamic system model ltiSys to a first-order sparse statespace model.

Input Arguments

A - State Matrix

Nx -by-Nx sparse matrix
State matrix, specified as an $N x$-by-Nx sparse matrix, where $N x$ is the number of states. This input sets the value of property A .

B - Input-to-state matrix
Nx-by-Nu sparse matrix
Input-to-state matrix, specified as an $N x$-by-Nu sparse matrix, where $N x$ is the number of states and Nu is the number of inputs. This input sets the value of property B.

C - State-to-output matrix

Ny -by-Nx sparse matrix

State-to-output matrix, specified as an Ny-by-Nx sparse matrix, where $N x$ is the number of states and Ny is the number of outputs. This input sets the value of property C.

D - Input-to-output matrix

Ny -by-Nu sparse matrix
Input-to-output matrix, specified as an Ny-by-Nu sparse matrix, where Ny is the number of outputs and Nu is the number of inputs. This input sets the value of property D .

E-Mass matrix
Nx-by-Nx sparse matrix
Mass matrix, specified as an $N x$-by-Nx sparse matrix, where $N x$ is the number of states. This input sets the value of property E .

ts - Sample time

scalar
Sample time, specified as a scalar. For more information see the Ts property.

ltiSys - Dynamic system to convert to first-order sparse state-space form

dynamic system model | model array
Dynamic system to convert to first-order sparse state-space form, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can convert include:

- Continuous-time or discrete-time numeric LTI models, such as mechss, tf, zpk, ss or pid models.

Output Arguments
sys - Output system model
sparss model object
Output system model, returned as a sparss model object.

Properties

A - State matrix

Nx -by-Nx sparse matrix
State matrix, specified as an Nx-by-Nx sparse matrix, where $N x$ is the number of states.

B - Input-to-state matrix

Nx-by-Nu sparse matrix
Input-to-state matrix, specified as an $N x$-by-Nu sparse matrix, where $N x$ is the number of states and Nu is the number of inputs.

C - State-to-output matrix

Ny -by-Nx sparse matrix
State-to-output matrix, specified as an $N y$-by-Nx sparse matrix, where $N x$ is the number of states and Ny is the number of outputs.

D - Input-to-output matrix

Ny-by-Nu sparse matrix
Input-to-output matrix, specified as an Ny-by-Nu sparse matrix, where $N y$ is the number of outputs and Nu is the number of inputs. D is also called as the static gain matrix which represents the ratio of the output to the input under steady state condition.

E - Mass matrix

Nx -by-Nx sparse matrix
Mass matrix, specified as a Nx-by-Nx sparse matrix. E is the same size as A.
Differential algebraic equations (DAEs) are characterized by their differential index, which is a measure of their singularity. A linear DAE is of index ≤ 1 if it can be transformed by congruence to the following form with E_{11} and A_{22} being invertible matrices.

$$
\begin{aligned}
E_{11} \dot{x}_{1} & =A_{11} x_{1}+A_{12} x_{2}+B_{1} u \\
0 & =A_{21} x_{1}+A_{22} x_{2}+B_{2} u
\end{aligned}
$$

The index of the DAE is 0 if x_{2} is empty. The index is 1 if x_{2} is not empty. In other words, a linear DAE has structural index ≤ 1 if it can be brought to the above form by row and column permutations of A and E . Some functionality, such as computing the impulse response of the system, is limited to DAEs with structural index less than 1.

For more information on DAE index, see "Solve Differential Algebraic Equations (DAEs)".

StateInfo - State partition information

structure array
State partition information containing state vector components, interfaces between components and internal signal connecting components, specified as a structure array with the following fields:

- Type - Type includes component, signal or physical interface
- Name - Name of the component, signal or physical interface
- Size - Number of states or degrees of freedom in the partition

You can view the partition information of the sparse state-space model using showStateInfo. You can also sort and order the partitions in your sparse model using xsort.

SolverOptions - Options for model analysis

structure
Options for model analysis, specified as a structure with the following fields:

- UseParallel - Set this option true to enable parallel computing and false to disable it. Parallel computing is disabled by default. The UseParallel option requires a Parallel Computing Toolbox license.
- DAESolver - Use this option to select the type of Differential Algebraic Equation (DAE) solver. The available DAE solvers are:
- 'trbdf2' - Fixed-step solver with an accuracy of $o\left(h^{\wedge} 2\right)$, where h is the step size.[1]
- 'trbdf3' - Fixed-step solver with an accuracy of $o\left(h^{\wedge} 3\right)$, where h is the step size.

Reducing the step size increases accuracy and extends the frequency range where numerical damping is negligible. 'trbdf3' is about 50% more computationally intensive than 'trbdf2'

InternalDelay - Internal delays in the model

vector

Internal delays in the model, specified as a vector. Internal delays arise, for example, when closing feedback loops on systems with delays, or when connecting delayed systems in series or parallel. For more information about internal delays, see "Closing Feedback Loops with Time Delays".

For continuous-time models, internal delays are expressed in the time unit specified by the TimeUnit property of the model. For discrete-time models, internal delays are expressed as integer multiples of the sample time Ts. For example, InternalDelay = 3 means a delay of three sampling periods.

You can modify the values of internal delays using the property InternalDelay. However, the number of entries in sys. InternalDelay cannot change, because it is a structural property of the model.

InputDelay - Input delay

0 (default) | scalar | Nu-by-1 vector
Input delay for each input channel, specified as one of the following:

- Scalar - Specify the input delay for a SISO system or the same delay for all inputs of a multi-input system.
- Nu-by-1 vector - Specify separate input delays for input of a multi-input system, where Nu is the number of inputs.

For continuous-time systems, specify input delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

OutputDelay - Output delay

0 (default) | scalar | Ny-by-1 vector
Output delay for each output channel, specified as one of the following:

- Scalar - Specify the output delay for a SISO system or the same delay for all outputs of a multioutput system.
- Ny-by-1 vector - Specify separate output delays for output of a multi-output system, where Ny is the number of outputs.

For continuous-time systems, specify output delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify output delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

Ts - Sample time

0 (default) | positive scalar | - 1
Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.
- - 1 for a discrete-time system with an unspecified sample time.

Note Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

TimeUnit - Time variable units

'seconds' (default)|'nanoseconds'|'microseconds' |'milliseconds'|'minutes'| 'hours' | 'days' | 'weeks' |'months'|'years'|...

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

InputName - Input channel names

' ' (default) | character vector | cell array of character vectors
Input channel names, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no names specified, for any input channels.

Alternatively, you can assign input names for multi-input models using automatic vector expansion.
For example, if sys is a two-input model, enter the following:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)';'controls(2)'\}.
You can use the shorthand notation u to refer to the InputName property. For example, sys. u is equivalent to sys. InputName.

Use InputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.

InputUnit - Input channel units

' ' (default) | character vector | cell array of character vectors
Input channel units, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no units specified, for any input channels.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.

InputGroup - Input channel groups

structure
Input channel groups, specified as a structure. Use InputGroup to assign the input channels of MIMO systems into groups and refer to each group by name. The field names of InputGroup are the group names and the field values are the input channels of each group. For example, enter the following to create input groups named controls and noise that include input channels 1 and 2 , and 3 and 5 , respectively.
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
You can then extract the subsystem from the controls inputs to all outputs using the following.
sys(:,'controls')
By default, InputGroup is a structure with no fields.

OutputName - Output channel names

' ' (default) | character vector | cell array of character vectors
Output channel names, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' ', no names specified, for any output channels.

Alternatively, you can assign output names for multi-output models using automatic vector expansion. For example, if sys is a two-output model, enter the following.

```
sys.OutputName = 'measurements';
```

The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can also use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.

OutputUnit - Output channel units

' ' (default) | character vector | cell array of character vectors
Output channel units, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no units specified, for any output channels.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.

OutputGroup - Output channel groups

structure

Output channel groups, specified as a structure. Use OutputGroupto assign the output channels of MIMO systems into groups and refer to each group by name. The field names of OutputGroup are the group names and the field values are the output channels of each group. For example, create output groups named temperature and measurement that include output channels 1 , and 3 and 5, respectively.

```
sys.OutputGroup.temperature = [1];
```

sys.OutputGroup.measurement = [3 5];

You can then extract the subsystem from all inputs to the measurement outputs using the following.
sys('measurement', :)
By default, OutputGroup is a structure with no fields.

Notes - User-specified text

\{ \} (default) | character vector | cell array of character vectors
User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

UserData - User-specified data

[] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, 'system_1'.

SamplingGrid - Sampling grid for model arrays

structure array
Sampling grid for model arrays, specified as a structure array.
Use SamplingGrid to track the variable values associated with each model in a model array.

Set the field names of the structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables must be numeric scalars, and all arrays of sampled values must match the dimensions of the model array.

For example, you can create an 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, you can create a 6-by-9 model array, M, by independently sampling two variables, zeta and w . The following code maps the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

By default, SamplingGrid is a structure with no fields.

Object Functions

The following lists show functions you can use with sparss model objects.

Modeling

mechss
getx0
full
imp2exp
inv
getDelayModel

Sparse second-order state-space model
Map initial conditions from a mechss object to a sparss object
Convert sparse models to dense storage
Convert implicit linear relationship to explicit input-output relation
Invert dynamic system models
State-space representation of internal delays

Data Access

sparssdata Access first-order sparse state-space model data
mechssdata Access second-order sparse state-space model data
showStateInfo State vector map for sparse model
spy
Visualize sparsity pattern of a sparse model

Model Transformation

c2d Convert model from continuous to discrete time
d2c Convert model from discrete to continuous time
d2d Resample discrete-time model

Time and Frequency Response

step
Step response plot of dynamic system; step response data
impulse Impulse response plot of dynamic system; impulse response data
initial
System response to initial states of state-space model
lsim Plot simulated time response of dynamic system to arbitrary inputs; simulated response data
bode Bode plot of frequency response, or magnitude and phase data
nyquist Nyquist plot of frequency response
nichols Nichols chart of frequency response

```
sigma Singular value plot of dynamic system
passiveplot Compute or plot passivity index as function of frequency
dcgain Low-frequency (DC) gain of LTI system
evalfr Evaluate system response at specific frequency
freqresp Evaluate system response over a grid of frequencies
```


Model Interconnection

interface	Specify physical connections between components of mechss model
xsort	Sort states based on state partition
feedback	Feedback connection of multiple models
parallel	Parallel connection of two models
append	Group models by appending their inputs and outputs
connect	Block diagram interconnections of dynamic systems
lft	Generalized feedback interconnection of two models (Redheffer star product)
series	Series connection of two models

Examples

Continuous-Time Sparse First-Order Model

For this example, consider sparseFOContinuous.mat which contains sparse matrices for a continuous-time sparse first-order state-space model.

Extract the sparse matrices from sparseFOContinuous.mat.
load('sparseFOContinuous.mat','A','B','C','D','E');
Create the sparss model object.
sys $=\operatorname{sparss}(A, B, C, D, E)$
Sparse continuous-time state-space model with 1 outputs, 1 inputs, and 199 states.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help sparssOptions" for available solver options for this model.
The output sys is a continuous-time sparss model object containing with 199 states, 1 input and 1 output.

You can use the spy command to visualize the sparsity of the sparss model object.
spy(sys)

Discrete-Time Sparse First-Order Model

For this example, consider sparseFODiscrete.mat which contains sparse matrices for a discretetime sparse first-order state-space model.

Extract the sparse matrices from sparseFODiscrete.mat.
load('sparseFODiscrete.mat','A','B','C','D','E','ts');
Create the sparss model object.
sys $=$ sparss (A,B,C,D,E,ts)
Sparse discrete-time state-space model with 1 outputs, 1 inputs, and 398 states.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help sparssOptions" for available solver options for this model.
The output sys is a discrete-time sparss model object containing with 398 states, 1 input and 1 output.

You can use the spy command to visualize the sparsity of the sparss model object.
spy(sys)

You can also view model properties of the sparss model object.

```
properties('sparss')
Properties for class sparss:
    A
    B
    C
    D
    E
    Scaled
    StateInfo
    SolverOptions
    InternalDelay
    InputDelay
    OutputDelay
    InputName
    InputUnit
    InputGroup
    OutputName
    OutputUnit
    OutputGroup
    Notes
    UserData
    Name
    Ts
```


MIMO Static Gain Sparse First-Order Model

Create a static gain MIMO sparse first-order state-space model.
Consider the following three-input, two-output static gain matrix:

$$
D=\left[\begin{array}{lll}
1 & 5 & 7 \\
6 & 3 & 9
\end{array}\right]
$$

Specify the gain matrix and create the static gain sparse first-order state-space model.
D = [1,5,7;6,3,9];
sys = sparss(D);
size(sys)
Sparse state-space model with 2 outputs, 3 inputs, and 0 states.

Convert Second-Order Sparse Model to First-Order Sparse Model Representation

For this example, consider mechssModel . mat that contains a mechss model object ltiSys.
Load the mechss model object from mechssModel . mat.

```
load('mechssModel.mat','ltiSys');
ltiSys
Sparse continuous-time second-order model with 1 outputs, 1 inputs, and 872 degrees of freedom.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help mechssOptions" for available solver options for this model.
```

Use the sparss command to convert to first-order sparse representation.

```
sys = sparss(ltiSys)
Sparse continuous-time state-space model with l outputs, 1 inputs, and 1744 states.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help sparssOptions" for available solver options for this model.
```

The resultant sparss model object sys has exactly double the number of states than the mechss object ltisys since the mass matrix M is full rank. If the mass matrix is not full rank then the number of states in the resultant sparss model when converting from a mechss model is between n and $2 n$. Here, n is the number of nodes in the mechss model object.

Sparse First-Order Model in a Feedback Loop

For this example, consider sparseFOSignal. mat that contains a sparse first-order model. Define an actuator, sensor, and controller and connect them together with the plant in a feedback loop.

Load the sparse matrices and create the sparss object.

```
load sparseFOSignal.mat
plant = sparss(A,B,C,D,E,'Name','Plant');
```

Next, create an actuator and sensor using transfer functions.

```
act = tf(1,[\begin{array}{lll}{1}&{2}&{3}\end{array}],'Name','Actuator');
sen = tf(1,[6 7],'Name','Sensor');
```

Create a PID controller object for the plant.

```
con = pid(1,1,0.1,0.01,'Name','Controller');
```

Use the feedback command to connect the plant, sensor, actuator, and controller in a feedback loop.

```
sys = feedback(sen*plant*act*con,1)
Sparse continuous-time state-space model with 1 outputs, 1 inputs, and 29 states.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help sparssOptions" for available solver options for this model.
```

The resultant system sys is a sparss object since sparss objects take precedence over tf and PID model object types.

Use showStateInfo to view the component and signal groups.

```
showStateInfo(sys)
The state groups are:
\begin{tabular}{|c|c|c|}
\hline Type & Name & Size \\
\hline Component & Sensor & 1 \\
\hline Component & Plant & 20 \\
\hline Signal & & 1 \\
\hline Component & Actuator & 2 \\
\hline Signal & & 1 \\
\hline Component & Controller & 2 \\
\hline Signal & & 1 \\
\hline Signal & & 1 \\
\hline
\end{tabular}
```

Use xsort to sort the components and signals, and then view the component and signal groups.
sysSort = xsort(sys);
showStateInfo(sysSort)
The state groups are:

Type	Name	Size
Component	Sensor	1
Component	Plant	20

```
Component Actuator 2
Component Controller 2
Signal
```

Observe that the components are now ordered before the signal partition. The signals are now sorted and grouped together in a single partition.

You can also visualize the sparsity pattern of the resultant system using spy.

```
spy(sysSort)
```


Version History

Introduced in R2020b

References

[1] M. Hosea and L. Shampine. "Analysis and implementation of TR-BDF2." Applied Numerical Mathematics, vol. 20, no. 1-2, pp. 21-37, 1996.

See Also

sparssdata|mechss| showStateInfo|xsort|full|getx0| spy | Descriptor State-Space

Topics

"Sparse Model Basics"

sparssdata

Access first-order sparse state-space model data

Syntax

```
[A,B,C,D,E] = sparssdata(sys)
[A,B,C,D,E,ts] = sparssdata(sys)
___ = sparssdata(sys,J1,...,JN)
```


Description

[A, B, C, D, E] = sparssdata(sys) returns the A, B, C, D, E matrices of the sparse state-space model sys. If sys is not a sparss model, it is first converted to sparss model form.

When your system has internal delays, sparssdata returns the matrices for pade (sys, 0), which involves feedback loops around the internal delays and the model is retained in differential algebraic equation (DAE) form to preserve sparsity. As a result, the size of matrices A and E are typically larger than the order of sys.
$[A, B, C, D, E, t s]=$ sparssdata(sys) also returns the sample time ts.
\ldots _ sparssdata(sys $, \mathrm{J} 1, \ldots, \mathrm{JN}$) extracts the data for the $\mathrm{J} 1, \ldots, \mathrm{JN}$ entry in the model array sys.

Examples

Extract Continuous-Time Sparse First-Order State-Space Model Data

For this example, consider sparseFOData.mat which contains a continuous-time sparss model sys1.

Load the model sys1 to the workspace and use sparssdata to extract the sparse matrices.

```
load('sparseFOData.mat','sys1');
size(sys1)
Sparse state-space model with 1 outputs, 2 inputs, and 199 states.
[A,B,C,D,E] = sparssdata(sys1);
```

The matrices are returned as arrays of sparse doubles.

Extract Discrete-Time Sparse First-Order State-Space Model Data

For this example, consider sparseFOData.mat which contains a discrete-time sparss model sys2.
Load the model sys2 to the workspace and use sparssdata to extract the sparse matrices.

```
load('sparseF0Data.mat','sys2');
size(sys2)
Sparse state-space model with 1 outputs, 1 inputs, and 235 states.
[A,B,C,D,E,ts] = sparssdata(sys2);
```

The matrices are returned as arrays of sparse doubles.

Extract Data from Specific Model in Sparse First-Order Model Array

For this example, extract sparse matrices for a specific sparse first-order state-space model contained in the 3×1 array of sparse first-order models sys 3 .

Load the data and extract the sparse matrices of the second model in the array.

```
load('sparseFOData.mat','sys3');
size(sys3)
1x3 array of sparse state-space models.
Each model has 1 outputs, 3 inputs, and 671 states.
[A,B,C,D,E] = sparssdata(sys3,1,2);
```


Input Arguments

sys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as sparss, mechss, tf, ss and zpk models.

If sys is not a sparss model, it is first converted to first-order sparse form using sparss. For more information on the format of sparse first-order state-space model data, see the sparss reference page.

J1, ..., JN - Indices of models in array whose data you want to access positive integer

Indices of models in array whose data you want to access, specified as a positive integer. You can provide as many indices as there are array dimensions in sys. For example, if sys is a 4-by-5 array of sparse models, the following command accesses the data for entry $(2,3)$ in the array.

$$
[A, B, C, D, E]=\text { sparssdata(sys, 2, 3); }
$$

Output Arguments

A - State matrix

Nx-by-Nx sparse matrix
State matrix, returned as an Nx -by- Nx sparse matrix where, Nx is the number of states.

B - Input-to-state matrix
 Nx-by-Nu sparse matrix

Input-to-state matrix, returned as an Nx -by-Nu sparse matrix where Nx is the number of states and Nu is the number of inputs.

C - State-to-output matrix
$\mathrm{Ny} y$-by-Nx sparse matrix
State-to-output matrix, returned as an $N y-b y-N x$ sparse matrix where $N x$ is the number of states and Ny is the number of outputs.

D - Input-to-output matrix

Ny-by-Nu sparse matrix
Input-to-output matrix, returned as an Ny-by-Nu sparse matrix where Ny is the number of outputs and Nu is the number of inputs. D is also called as the static gain matrix which represents the ratio of the output to the input under steady state condition.

E - Mass matrix

Nx -by-Nx sparse matrix
Mass matrix, returned as a Nx-by-Nx sparse matrix. E is the same size as A.

ts - Sample time

scalar
Sample time, returned as a scalar.

Version History
 Introduced in R2020b

See Also

sparss

Topics

"Sparse Model Basics"

spectralfact

Spectral factorization of linear systems

Syntax

[G,S] = spectralfact(H)
$[G, S]=\operatorname{spectralfact}(F, R)$
G = spectralfact(F,[])

Description

[G,S] = spectralfact(H) computes the spectral factorization:
$\mathrm{H}=\mathrm{G}^{\prime *}{ }^{*}{ }^{*} \mathrm{G}$
of an LTI model satisfying $\mathrm{H}=\mathrm{H}^{\prime}$. In this factorization, S is a symmetric matrix and G is a square, stable, and minimum-phase system with unit (identity) feedthrough. G^{\prime} is the conjugate of G , which has transfer function $G(-s)^{T}$ in continuous time, and $G(1 / z)^{T}$ in discrete time.
$[G, S]=\operatorname{spectralfact}(F, R)$ computes the spectral factorization:
$F^{\prime *} \mathrm{R}^{*} \mathrm{~F}=\mathrm{G}{ }^{*}{ }^{*}{ }^{*} \mathrm{G}$
without explicitly forming $H=F^{\prime} * R^{*} F$. As in the previous syntax, S is a symmetric matrix and G is a square, stable, and minimum-phase system with unit feedthrough.
$\mathrm{G}=$ spectralfact($\mathrm{F},[\mathrm{l}$) computes a stable, minimum-phase system G such that:
$\mathrm{G}^{\prime *} \mathrm{G}=\mathrm{F}^{\prime *} \mathrm{~F}$.

Examples

Spectral Factorization of System

Consider the following system.

```
G0 = ss(zpk([-1 -5 1+2i 1-2i],[-100 1+2i 1-2i -10],1e3));
```

H = G0' ${ }^{*}$ G0;

G0 has a mix of stable and unstable dynamics. H is a self-conjugate system whose dynamics consist of the poles and zeros of G0 and their reflections across the imaginary axis. Use spectral factorization to separate the stable poles and zeros into G and the unstable poles and zeros into G^{\prime}.
[G, S] = spectralfact(H);
Confirm that G is stable and minimum phase, by checking that all its poles and zeros fall in the left half-plane $(\operatorname{Re}(s)<0)$.

```
p = pole(G)
```

```
p = 4\times1 complex
102 x
    -0.0100 + 0.0200i
    -0.0100 - 0.0200i
    -0.1000 + 0.0000i
    -1.0000 + 0.0000i
z = zero(G)
z = 4x1 complex
    -1.0000 + 2.0000i
    -1.0000 - 2.0000i
    -1.0000 + 0.0000i
    -5.0000 + 0.0000i
```

G also has unit feedthrough.
G.D
ans $=1$
Because H is SISO, S is a scalar. If H were MIMO, the dimensions of S would match the I / O dimensions of H .

S
$S=1000000$
Confirm that G and S satisfy $\mathrm{H}=\mathrm{G}^{\prime} * \mathrm{~S}^{*} \mathrm{G}$ by comparing the original system to the difference between the original and factored systems. sigmaplot throws a warning because the difference is very small.

```
Hf = G'*S*G;
sigmaplot(H,H-Hf)
```

Warning: The frequency response has poor relative accuracy. This may be because the response is

Spectral Factorization from Factored Form

Suppose that you have the following 2 -output, 2 -input state-space model, F .

```
A = [-1.1 0.37;
        0.37 -0.95];
B = [0.72 0.71;
0 -0.20]
C = [0.12 1.40
    1.49 1.41];
D = [0.67 0.7172;
    -1.2 0];
F = ss(A,B,C,D);
```

Suppose further that you have a symmetric 2-by-2 matrix, R.
$\left.R=\begin{array}{cc}{[0.65} & 0.61 \\ 0.61 & -3.42\end{array}\right]$

Compute the spectral factorization of the system given by $H=F^{\prime} * R^{*}$, without explicitly computing H.
[G,S] = spectralfact(F,R);
G is a minimum-phase system with identity feedthrough.
G.D
ans $=2 \times 2$

1	0
0	1

Because F is has two inputs and two outputs, both R and S are 2-by-2 matrices.
Confirm that $\mathrm{G}^{\prime *} \mathrm{~S}^{*} \mathrm{G}=\mathrm{F}^{\prime} * \mathrm{R}^{*} \mathrm{~F}$ by comparing the original factorization to the difference between the two factorizations. The singular values of the difference are far below those of the original system.

```
Ff = F'*R*F;
Gf = G'*S*G;
sigmaplot(Ff,Ff-Gf)
```

Singular Values

Implicit Factorization

Consider the following discrete-time system.
$F=z p k(-1.76,[-1+i-1-i],-4,0.002)$;
F has poles and zeros outside the unit circle. Use spectral fact to compute a system G with stable poles and zeros, such that $\mathrm{G}^{\prime *} \mathrm{G}=\mathrm{F}^{\prime *} \mathrm{~F}$.

```
G = spectralfact(F,[])
```

G =
-3.52 z ($z+0.5682$)

```
    (z^2 + z + 0.5)
Sample time: 0.002 seconds
Discrete-time zero/pole/gain model.
```

Unlike F, G has no poles or zeroes outside the unit circle. G does have an additional zero at $z=0$, which is a reflection of the unstable zero at $z=\operatorname{Inf}$ in F.
pzplot(G)

Confirm that $\mathrm{G}^{\prime *} \mathrm{G}=\mathrm{F}^{\prime} * \mathrm{~F}$ by comparing the original factorization to the difference between the two factorizations. The singular values of the difference are far below those of the original factorization.

```
Ff = F'*F;
Gf = G'*G;
sigmaplot(Ff,Ff-Gf)
```


Input Arguments

H - Self-conjugate LTI model

tf|zpk|ss
Self-conjugate LTI model, specified as a tf, ss, or zpk model. Self-conjugate means that is equal to its conjugate, $\mathbf{H}=\mathbf{H}^{\prime}$. The conjugate \mathbf{H}^{\prime} is the transfer function $H(-s)^{T}$ in continuous time and $H(1 / z)^{T}$ in discrete time.

H can be SISO or MIMO, provided it has as many outputs as inputs. H can be continuous or discrete with the following restrictions:

- In continuous time, H must be biproper with no poles or zeros at infinity or on the imaginary axis.
- In discrete time, H must have no poles or zeros on the unit circle.

F-F factor

tf|zpk|ss
F factor of the factored form $H=F^{\prime} * R^{*}$, specified as a $t f, s s$, or $z p k$ model. F cannot have more inputs than outputs.
$\mathbf{R}-\mathbf{R}$ factor
square matrix

R factor of the factored form $\mathrm{H}=\mathrm{F}^{\prime} * \mathrm{R} * \mathrm{~F}$, specified as a symmetric square matrix with as many rows as there are outputs in F .

Output Arguments

G - LTI factor

tf|zpk|ss
LTI factor, returned as a tf , ss , or zpk model. G is a stable, minimum-phase system that satisfies:

- $H=G^{\prime *} S^{*} G$, if you use the syntax $[G, S]=$ spectralfact(H).

- $G^{\prime} * G=F^{\prime} * F$, if you use the syntax $G=$ spectralfact($F,[]$).

S - Numeric factor

matrix
Numeric factor, returned as a symmetric matrix that satisfies:

- $H=G^{\prime *} S^{*} G$, if you use the syntax $[G, S]=$ spectralfact (H). The dimensions of S match the I / O dimensions of H and G .
- $\mathrm{G}^{\prime *} \mathrm{~S}^{*} \mathrm{G}=\mathrm{F}^{\prime} * \mathrm{R} * \mathrm{~F}$, if you use the syntax $[\mathrm{G}, \mathrm{S}]=\operatorname{spectralfact}(\mathrm{F}, \mathrm{R})$. The size of S along each dimension matches the number of outputs of F.

Tips

- spectralfact assumes that H is self-conjugate. In some cases when H is not self-conjugate, spectral fact returns G and S that do not satisfy $H=G^{\prime *}$ S*G. Therefore, verify that your input model is in fact self-conjugate before using spectralfact. One way to verify H is to compare H to $\mathrm{H}-\mathrm{H}^{\prime}$ on a singular value plot.

```
sigmaplot(H,H-H')
```

If H is self-conjugate, the $\mathrm{H}-\mathrm{H}^{\prime}$ line on the plot lies far below the H line.

Version History
 Introduced in R2016a

See Also

stabsep | modsep

Topics

"Arithmetic Operations"

spy

Visualize sparsity pattern of a sparse model

Syntax

spy(sys)
spy(AX, sys)

Description

spy (sys) plots the sparsity pattern of the sparse model sys, which can be a first-order (sparss) or second-order (mechss) model. The plot displays the number of nonzero elements in each sparse matrix of sys. To display a matrix, right click the plot and select the desired matrix.

spy (AX, sys) plots the sparsity pattern on the Axes or UIAxes object in the current figure with the handle AX. Use this syntax when creating apps with spy in the App Designer.

Examples

Continuous-Time Sparse First-Order Model

For this example, consider sparseFOContinuous.mat which contains sparse matrices for a continuous-time sparse first-order state-space model.

Extract the sparse matrices from sparseFOContinuous.mat.
load('sparseFOContinuous.mat','A','B','C','D','E');
Create the sparss model object.
sys $=\operatorname{sparss}(A, B, C, D, E)$
Sparse continuous-time state-space model with 1 outputs, 1 inputs, and 199 states.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help sparssOptions" for available solver options for this model.
The output sys is a continuous-time sparss model object containing with 199 states, 1 input and 1 output.

You can use the spy command to visualize the sparsity of the sparss model object.
spy(sys)

Discrete-Time Sparse First-Order Model

For this example, consider sparseFODiscrete.mat which contains sparse matrices for a discretetime sparse first-order state-space model.

Extract the sparse matrices from sparseFODiscrete.mat.
load('sparseFODiscrete.mat','A','B','C','D','E','ts');
Create the sparss model object.
sys = sparss(A,B,C,D,E,ts)
Sparse discrete-time state-space model with 1 outputs, 1 inputs, and 398 states.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help sparssOptions" for available solver options for this model.
The output sys is a discrete-time sparss model object containing with 398 states, 1 input and 1 output.

You can use the spy command to visualize the sparsity of the sparss model object.
spy(sys)

You can also view model properties of the sparss model object.
properties('sparss')

```
Properties for class sparss:
    A
    B
    C
D
E
Scaled
StateInfo
SolverOptions
InternalDelay
InputDelay
OutputDelay
InputName
InputUnit
InputGroup
OutputName
OutputUnit
OutputGroup
Notes
UserData
Name
Ts
TimeUnit
SamplingGrid
```


Continuous-Time Sparse Second-Order Model

For this example, consider the sparse matrices for the 3-D beam model subjected to an impulsive point load at its tip in the file sparseBeam.mat.

Extract the sparse matrices from sparseBeam.mat.
load('sparseBeam.mat','M','K','B','F','G','D');
Create the mechss model object by specifying [] for matrix C, since there is no damping.
sys $=$ mechss $(M,[], K, B, F, G, D)$
Sparse continuous-time second-order model with 3 outputs, 1 inputs, and 3408 degrees of freedom.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help mechssOptions" for available solver options for this model.
The output sys is a mechss model object containing a 3 -by- 1 array of sparse models with 3408 degrees of freedom, 1 input, and 3 outputs.

You can use the spy command to visualize the sparsity of the mechss model object.
spy(sys)

Discrete-Time Sparse Second-Order Model

For this example, consider the sparse matrices of the discrete system in the file discreteSOSparse.mat.

Load the sparse matrices from discreteSOSparse.mat.
load('discreteS0Sparse.mat','M','C','K','B','F','G','D','ts');
Create the discrete-time mechss model object by specifying the sample time ts .
sys $=$ mechss ($M, C, K, B, F, G, D, t s)$
Sparse discrete-time second-order model with 1 outputs, 1 inputs, and 28408 degrees of freedom.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help mechssOptions" for available solver options for this model.
The output sys is a discrete-time mechss model object with 28408 degrees of freedom, 1 input, and 1 output.

You can use the spy command to visualize the sparsity pattern of the mechss model object. You can right-click on the plot to select matrices to be displayed.
spy(sys)

Input Arguments

sys - Sparse model
sparss object|mechss object
Sparse model, specified as a one of the following objects.

- sparss - First-order sparse model
- mechss - Second-order sparse model

When sys contains interfaced or interconnected components, use spy (xsort (sys)) to view the underlying block arrow structure. For more information about the block arrow structure, see xsort.

AX - Object handle

Axes object | UIAxes object
Object handle, specified as an Axes or UIAxes object. Use AX to create apps with spy in the App Designer.

Version History

Introduced in R2020b

See Also

sparss|mechss|xsort|showStateInfo
Topics
"Sparse Model Basics"

SS

State-space model

Description

Use ss to create real-valued or complex-valued state-space models, or to convert dynamic system models to state-space model form. You can also use ss to create generalized state-space (genss) models or uncertain state-space (uss) models.

A state-space model is a mathematical representation of a physical system as a set of input, output, and state variables related by first-order differential equations. The state variables define the values of the output variables. The ss model object can represent SISO or MIMO state-space models in continuous time or discrete time.

In continuous-time, a state-space model is of the following form:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

Here, x, u and y represent the states, inputs and outputs respectively, while $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are the state-space matrices. The ss object represents a state-space model in MATLAB storing A, B, C and D along with other information such as sample time, names and delays specific to the inputs and outputs.

You can create a state-space model object by either specifying the state, input and output matrices directly, or by converting a model of another type (such as a transfer function model tf) to statespace form. For more information, see "State-Space Models". You can use an ss model object to:

- Perform linear analysis
- Represent a linear time-invariant (LTI) model to perform control design
- Combine with other LTI models to represent a more complex system

Creation

Syntax

```
sys = ss(A,B,C,D)
sys = ss(A,B,C,D,ts)
sys = ss(A,B,C,D,ltiSys)
sys = ss(D)
sys = ss(___ ,Name,Value)
sys = ss(ltiSys)
sys = ss(ltiSys,component)
sys = ss(ssSys,'minimal')
sys = ss(ssSys,'explicit')
```


Description

sys $=\operatorname{ss}(A, B, C, D)$ creates a continuous-time state-space model object of the following form:

$$
\dot{x}=A x+B u
$$

$$
y=C x+D u
$$

For instance, consider a plant with $N x$ states, Ny outputs, and $N u$ inputs. The state-space matrices are:

- A is an Nx -by-Nx real- or complex-valued matrix.
- B is an $N x$-by-Nu real- or complex-valued matrix.
- C is an Ny-by-Nx real- or complex-valued matrix.
- D is an Ny-by-Nu real- or complex-valued matrix.
sys $=s s(A, B, C, D, t s)$ creates the discrete-time state-space model object of the following form with the sample time ts (in seconds):

$$
\begin{aligned}
& x[n+1]=A x[n]+B u[n] \\
& y[n]=C x[n]+D u[n]
\end{aligned}
$$

To leave the sample time unspecified, set ts to -1.
sys $=$ ss (A, B, C,D,ltiSys) creates a state-space model with properties such as input and output names, internal delays and sample time values inherited from the model ltisys.
sys $=\mathrm{ss}(\mathrm{D})$ creates a state-space model that represents the static gain, D . The output state-space model is equivalent to ss([], [], [], D).
sys = ss(__, Name, Value) sets properties of the state-space model using one or more Name, Value pair arguments for any of the previous input-argument combinations.
sys $=$ ss(ltiSys) converts the dynamic system model ltiSys to a state-space model. If ltiSys contains tunable or uncertain elements, ss uses the current or nominal values for those elements respectively.
sys = ss(ltiSys, component) converts to ss object form the measured component, the noise component or both of specified component of an identified linear time-invariant (LTI) model ltiSys. Use this syntax only when ltiSys is an identified (LTI) model such as an idtf, idss, idproc, idpoly or idgrey object.
sys $=$ ss(ssSys,'minimal') returns the minimal state-space realization with no uncontrollable or unobservable states. This realization is equivalent to minreal (ss(sys)) where matrix A has the smallest possible dimension.

Conversion to state-space form is not uniquely defined in the SISO case. It is also not guaranteed to produce a minimal realization in the MIMO case. For more information, see "Recommended Working Representation".
sys $=$ ss(ssSys,' $\operatorname{explicit')~returns~an~explicit~state-space~realization~}(E=I)$ of the dynamic system state-space model ssSys. ss returns an error if ssSys is improper. For more information on explicit state-space realization, see "State-Space Models".

Input Arguments

A - State matrix
 Nx-by-Nx matrix

State matrix, specified as an Nx -by-Nx matrix where, Nx is the number of states. This input sets the value of property A.

B - Input-to-state matrix

Nx-by-Nu matrix
Input-to-state matrix, specified as an Nx-by-Nu matrix where, Nx is the number of states and Nu is the number of inputs. This input sets the value of property B.

C - State-to-output matrix

Ny-by-Nx matrix
State-to-output matrix, specified as an Ny -by-Nx matrix where, Nx is the number of states and Ny is the number of outputs. This input sets the value of property C.

D - Feedthrough matrix

Ny-by-Nu matrix
Feedthrough matrix, specified as an Ny-by-Nu matrix where, Ny is the number of outputs and Nu is the number of inputs. This input sets the value of property D.

ts - Sample time

scalar
Sample time, specified as a scalar. For more information, see Ts property.

ltiSys - Dynamic system to convert to state-space form

dynamic system model | model array
Dynamic system to convert to state-space form, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can convert include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pid models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)

The resulting state-space model assumes

- current values of the tunable components for tunable control design blocks.
- nominal model values for uncertain control design blocks.
- Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models. To select the component of the identified model to convert, specify component. If you do not specify component, ss converts the measured component of the identified model by default. (Using identified models requires System Identification Toolbox software.)

component - Component of identified model

'measured' (default) | 'noise' | 'augmented'
Component of identified model to convert, specified as one of the following:

- 'measured ' - Convert the measured component of sys.
- 'noise' - Convert the noise component of sys
- 'augmented ' - Convert both the measured and noise components of sys.
component only applies when sys is an identified LTI model.
For more information on identified LTI models and their measured and noise components, see "Identified LTI Models".
ssSys - Dynamic system model to convert to minimal realization or explicit form ss model object

Dynamic system model to convert to minimal realization or explicit form, specified as an ss model object.

Output Arguments

sys - Output system model

ss model object | genss model object | uss model object
Output system model, returned as:

- A state-space (ss) model object, when the inputs A, B, C and D are numeric matrices or when converting from another model object type.
- A generalized state-space model (genss) object, when one or more of the matrices A, B, C and D includes tunable parameters, such as realp parameters or generalized matrices (genmat). For an example, see "Create State-Space Model with Both Fixed and Tunable Parameters" on page 21314.
- An uncertain state-space model (uss) object, when one or more of the inputs A, B, C and D includes uncertain matrices. Using uncertain models requires Robust Control Toolbox software.

Properties

A - State matrix

Nx-by-Nx matrix
State matrix, specified as an Nx-by-Nx matrix where $N x$ is the number of states. The state-matrix can be represented in many ways depending on the desired state-space model realization such as:

- Model Canonical Form
- Companion Canonical Form
- Observable Canonical Form
- Controllable Canonical Form

For more information, see "State-Space Realizations".

B - Input-to-state matrix

Nx-by-Nu matrix
Input-to-state matrix, specified as an Nx -by-Nu matrix where Nx is the number of states and Nu is the number of inputs.

C - State-to-output matrix

Ny-by-Nx matrix
State-to-output matrix, specified as an Ny -by-Nx matrix where $N \mathrm{x}$ is the number of states and Ny is the number of outputs.

D - Feedthrough matrix

Ny-by-Nu matrix
Feedthrough matrix, specified as an Ny -by-Nu matrix where Ny is the number of outputs and Nu is the number of inputs. D is also called as the static gain matrix which represents the ratio of the output to the input under steady state condition.

E - Matrix for implicit state-space models

[] (default) | Nx-by-Nx matrix
Matrix for implicit or descriptor state-space models, specified as a $N x$-by-Nx matrix. E is empty by default, meaning that the state equation is explicit. To specify an implicit state equation $E d x / d t=A x$ $+B u$, set this property to a square matrix of the same size as A. See dss for more information about creating descriptor state-space models.

Scaled - Logical value indicating whether scaling is enabled or disabled
 0 (default) | 1

Logical value indicating whether scaling is enabled or disabled, specified as either 0 or 1.
When Scaled is set to 0 (disabled), then most numerical algorithms acting on the state-space model sys automatically rescale the state vector to improve numerical accuracy. You can prevent such autoscaling by setting Scaled to 1 (enabled).

For more information about scaling, see prescale.

StateName - State names

' ' (default) | character vector | cell array of character vectors
State names, specified as one of the following:

- Character vector - For first-order models, for example, ' velocity '
- Cell array of character vectors - For models with two or more states

StateName is empty ' ' for all states by default.

StatePath - State path

' ' (default) | character vector | cell array of character vectors
State path to facilitate state block path management in linearization, specified as one of the following:

- Character vector - For first-order models
- Cell array of character vectors - For models with two or more states

StatePath is empty ' ' for all states by default.

StateUnit - State units

' ' (default) | character vector | cell array of character vectors

State units, specified as one of the following:

- Character vector - For first-order models, for example, ' m/s '
- Cell array of character vectors - For models with two or more states

Use StateUnit to keep track of the units of each state. StateUnit has no effect on system behavior. StateUnit is empty ' ' for all states by default.

InternalDelay - Internal delays in the model

vector
Internal delays in the model, specified as a vector. Internal delays arise, for example, when closing feedback loops on systems with delays, or when connecting delayed systems in series or parallel. For more information about internal delays, see "Closing Feedback Loops with Time Delays".

For continuous-time models, internal delays are expressed in the time unit specified by the TimeUnit property of the model. For discrete-time models, internal delays are expressed as integer multiples of the sample time Ts. For example, InternalDelay $=3$ means a delay of three sampling periods.

You can modify the values of internal delays using the property InternalDelay. However, the number of entries in sys. InternalDelay cannot change, because it is a structural property of the model.

InputDelay - Input delay

0 (default) | scalar | Nu-by-1 vector
Input delay for each input channel, specified as one of the following:

- Scalar - Specify the input delay for a SISO system or the same delay for all inputs of a multi-input system.
- Nu-by-1 vector - Specify separate input delays for input of a multi-input system, where Nu is the number of inputs.

For continuous-time systems, specify input delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

OutputDelay - Output delay

0 (default) | scalar | Ny-by-1 vector
Output delay for each output channel, specified as one of the following:

- Scalar - Specify the output delay for a SISO system or the same delay for all outputs of a multioutput system.
- Ny-by-1 vector - Specify separate output delays for output of a multi-output system, where Ny is the number of outputs.

For continuous-time systems, specify output delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify output delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

Ts - Sample time

0 (default) | positive scalar | - 1

Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.
- - 1 for a discrete-time system with an unspecified sample time.

Note Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

TimeUnit - Time variable units

```
'seconds' (default)|'nanoseconds' | 'microseconds'|'milliseconds'|'minutes'|
'hours'|'days'|'weeks'|'months'|'years'|...
```

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

InputName - Input channel names

' ' (default) | character vector | cell array of character vectors
Input channel names, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no names specified, for any input channels.

Alternatively, you can assign input names for multi-input models using automatic vector expansion.
For example, if sys is a two-input model, enter the following:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)'; 'controls(2)' \}.
You can use the shorthand notation u to refer to the InputName property. For example, sys. u is equivalent to sys. InputName.

Use InputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.

InputUnit - Input channel units

' ' (default) | character vector | cell array of character vectors
Input channel units, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ', no units specified, for any input channels.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.

InputGroup - Input channel groups

structure

Input channel groups, specified as a structure. Use InputGroup to assign the input channels of MIMO systems into groups and refer to each group by name. The field names of InputGroup are the group names and the field values are the input channels of each group. For example, enter the following to create input groups named controls and noise that include input channels 1 and 2, and 3 and 5, respectively.
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
You can then extract the subsystem from the controls inputs to all outputs using the following.
sys(:,'controls')
By default, InputGroup is a structure with no fields.

OutputName - Output channel names

' ' (default) | character vector | cell array of character vectors
Output channel names, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no names specified, for any output channels.

Alternatively, you can assign output names for multi-output models using automatic vector expansion. For example, if sys is a two-output model, enter the following.
sys.OutputName = 'measurements';
The output names automatically expand to \{'measurements (1)' ; 'measurements (2)' \}.
You can also use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.

OutputUnit - Output channel units

' ' (default) | character vector | cell array of character vectors
Output channel units, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no units specified, for any output channels.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.

OutputGroup - Output channel groups

structure

Output channel groups, specified as a structure. Use OutputGroupto assign the output channels of MIMO systems into groups and refer to each group by name. The field names of 0utputGroup are the group names and the field values are the output channels of each group. For example, create output groups named temperature and measurement that include output channels 1, and 3 and 5, respectively.

```
sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];
```

You can then extract the subsystem from all inputs to the measurement outputs using the following.
sys('measurement',:)
By default, OutputGroup is a structure with no fields.

Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, 'system_1'.

Notes - User-specified text

\{ \} (default) | character vector | cell array of character vectors
User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

UserData - User-specified data

[] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

SamplingGrid - Sampling grid for model arrays
 structure array

Sampling grid for model arrays, specified as a structure array.

Use SamplingGrid to track the variable values associated with each model in a model array, including identified linear time-invariant (IDLTI) model arrays.

Set the field names of the structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables must be numeric scalars, and all arrays of sampled values must match the dimensions of the model array.

For example, you can create an 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, you can create a 6-by-9 model array, M, by independently sampling two variables, zeta and w . The following code maps the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display M, each entry in the array includes the corresponding zeta and w values.

```
M
M(:,:,1,1) [zeta=0.3, w=5] =
    2 5
    s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
            2 5
    s^2 + 3.5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For instance, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid automatically.

By default, SamplingGrid is a structure with no fields.

Object Functions

The following lists contain a representative subset of the functions you can use with ss model objects. In general, any function applicable to "Dynamic System Models" is applicable to an ss object.

Linear Analysis

step Step response plot of dynamic system; step response data
impulse Impulse response plot of dynamic system; impulse response data
lsim Plot simulated time response of dynamic system to arbitrary inputs; simulated response data
bode Bode plot of frequency response, or magnitude and phase data
nyquist Nyquist plot of frequency response
nichols Nichols chart of frequency response
bandwidth Frequency response bandwidth

Stability Analysis

pole Poles of dynamic system
zero Zeros and gain of SISO dynamic system
pzplot Pole-zero plot of dynamic system model with additional plot customization options
margin Gain margin, phase margin, and crossover frequencies

Model Transformation

zpk Zero-pole-gain model
tf Transfer function model
c2d Convert model from continuous to discrete time
d2c Convert model from discrete to continuous time
d2d Resample discrete-time model

Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

Controller Design

pidtune PID tuning algorithm for linear plant model
rlocus Root locus plot of dynamic system
lqr Linear-Quadratic Regulator (LQR) design
lqg Linear-Quadratic-Gaussian (LQG) design
lqi Linear-Quadratic-Integral control
kalman Design Kalman filter for state estimation

Examples

SISO State-Space Model

Create the SISO state-space model defined by the following state-space matrices:

$$
A=\left[\begin{array}{cc}
-1.5 & -2 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D=0
$$

Specify the A, B, C and D matrices, and create the state-space model.

```
\(A=[-1.5,-2 ; 1,0] ;\)
\(B=[0.5 ; 0] ;\)
\(C=[0,1]\);
D = 0;
sys \(=\operatorname{ss}(A, B, C, D)\)
```

```
sys =
    A =
        x1 x2
    x2 1 0
    B =
        u1
    x1 0.5
    x2 0
    C =
        x1 x2
    y1 0 1
    D =
        u1
    y1 0
```

Continuous-time state-space model.

Create Discrete-Time State-Space Model

Create a state-space model with a sample time of 0.25 seconds and the following state-space matrices:

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-5 & -2
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D=[0]
$$

Specify the state-space matrices.
$\mathrm{A}=[01 ;-5-2] ;$
B $=[0 ; 3]$;
C = [0 1];
D = 0;
Specify the sample time.
Ts = 0.25;
Create the state-space model.
sys = ss(A,B,C,D,Ts);

Continuous-Time MIMO State-Space Model

For this example, consider a cube rotating about its corner with inertia tensor J and a damping force F of 0.2 magnitude. The input to the system is the driving torque while the angular velocities are the outputs. The state-space matrices for the cube are:

$$
\begin{aligned}
& A=-J^{-1} F, \quad B=J^{-1}, \quad C=I, \quad D=0 \\
& \text { where, } J=\left[\begin{array}{ccc}
8 & -3 & -3 \\
-3 & 8 & -3 \\
-3 & -3 & 8
\end{array}\right] \text { and } F=\left[\begin{array}{ccc}
0.2 & 0 & 0 \\
0 & 0.2 & 0 \\
0 & 0 & 0.2
\end{array}\right]
\end{aligned}
$$

Specify the A, B, C and D matrices, and create the continuous-time state-space model.

```
J = [8 -3 -3; -3 8 -3; -3 -3 8];
F = 0.2*eye(3);
A = -J\F;
B = inv(J);
C = eye(3);
D = 0;
sys = ss(A,B,C,D)
sys =
    A =
```



```
    B =
\begin{tabular}{rrrr} 
& \(u 1\) & \(u 2\) & \(u 3\) \\
\(\times 1\) & 0.2273 & 0.1364 & 0.1364 \\
\(\times 2\) & 0.1364 & 0.2273 & 0.1364 \\
\(\times 3\) & 0.1364 & 0.1364 & 0.2273
\end{tabular}
    C=
    x1 x2 x3
        y1 1 0 0
        y2 0 1 0
        y3 0 0 1
    D =
\begin{tabular}{lrrr} 
& u1 & u2 & u3 \\
y1 & 0 & 0 & 0 \\
y2 & 0 & 0 & 0 \\
y3 & 0 & 0 & 0
\end{tabular}
Continuous-time state-space model.
```

sys is MIMO since the system contains 3 inputs and 3 outputs observed from matrices C and D. For more information on MIMO state-space models, see "MIMO State-Space Models".

Discrete-Time MIMO State-Space Model

Create a state-space model using the following discrete-time, multi-input, multi-output state matrices with sample time ts $=0.2$ seconds:

$$
A=\left[\begin{array}{cc}
-7 & 0 \\
0 & -10
\end{array}\right] \quad B=\left[\begin{array}{ll}
5 & 0 \\
0 & 2
\end{array}\right] \quad C=\left[\begin{array}{cc}
1 & -4 \\
-4 & 0.5
\end{array}\right] \quad D=\left[\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right]
$$

Specify the state-space matrices and create the discrete-time MIMO state-space model.

```
A = [-7,0;0,-10];
B = [5,0;0,2];
C = [1,-4;-4,0.5];
D = [0,-2;2,0];
ts = 0.2;
sys = ss(A,B,C,D,ts)
sys =
    A =
        }\begin{array}{rrr}{x1}&{x2}\\{\times1 -7 0}
        x2 0-10
    B =
            u1 u2
        x1 5 0
        x2 0 2
    C =
            x1 x2
        y1 1 -4
        y2 -4 0.5
    D =
            u1 u2
    y1 0 -2
    y2 2 0
```

Sample time: 0.2 seconds
Discrete-time state-space model.

Specify State and Input Names for State-Space Model

Create state-space matrices and specify sample time.

```
A = [0 1;-5 -2];
B = [0;3];
C = [0 1];
D = 0;
Ts = 0.05;
```

Create the state-space model, specifying the state and input names using name-value pairs.

```
sys = ss(A,B,C,D,Ts,'StateName',{'Position' 'Velocity'},...
    'InputName','Force');
```

The number of state and input names must be consistent with the dimensions of A, B, C, and D.
Naming the inputs and outputs can be useful when dealing with response plots for MIMO systems.
step(sys)

Step Response

Notice the input name Force in the title of the step response plot.

State-Space Model with Inherited Properties

For this example, create a state-space model with the same time and input unit properties inherited from another state-space model. Consider the following state-space models:

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cc}
-1.5 & -2 \\
1 & 0
\end{array}\right] \quad B_{1}=\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \quad C_{1}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D_{1}=5 \\
& A_{2}=\left[\begin{array}{cc}
7 & -1 \\
0 & 2
\end{array}\right] \quad B_{2}=\left[\begin{array}{c}
0.85 \\
2
\end{array}\right] \quad C_{2}=\left[\begin{array}{ll}
10 & 14
\end{array}\right] \quad D_{2}=2
\end{aligned}
$$

First, create a state-space model sys1 with the TimeUnit and InputUnit property set to 'minutes'.

```
A1 = [-1.5,-2;1,0];
B1 = [0.5;0];
C1 = [0,1];
D1 = 5;
sys1 = ss(A1,B1,C1,D1,'TimeUnit','minutes','InputUnit','minutes');
```

Verify that the time and input unit properties of sys1 are set to 'minutes'.

```
propValues1 = [sys1.TimeUnit,sys1.InputUnit]
```

```
propValues1 = 1x2 cell
    {'minutes'} {'minutes'}
```

Create the second state-space model with properties inherited from sys1.

```
A2 = [7,-1;0,2];
B2 = [0.85;2];
C2 = [10,14];
D2 = 2;
sys2 = ss(A2,B2,C2,D2,sys1);
```

Verify that the time and input units of sys2 have been inherited from sys1.

```
propValues2 = [sys2.TimeUnit,sys2.InputUnit]
propValues2 = 1x2 cell
    {'minutes'} {'minutes'}
```


MIMO Static Gain State-Space Model

In this example, you will create a static gain MIMO state-space model.
Consider the following two-input, two-output static gain matrix:

$$
D=\left[\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right]
$$

Specify the gain matrix and create the static gain state-space model.

```
D = [2,4;3,5];
sys1 = ss(D)
sys1 =
    D =
\begin{tabular}{rrr} 
& u1 & u2 \\
y1 & 2 & 4 \\
y2 & 3 & 5
\end{tabular}
Static gain.
```


Convert Transfer Function to State-Space Model

Compute the state-space model of the following transfer function:

$$
H(s)=\left[\begin{array}{c}
\frac{s+1}{s^{3}+3 s^{2}+3 s+2} \\
\frac{s^{2}+3}{s^{2}+s+1}
\end{array}\right]
$$

Create the transfer function model.
$H=\left[t f\left(\left[\begin{array}{ll}1 & 1\end{array}\right],\left[\begin{array}{lll}1 & 3 & 3\end{array}\right]\right)\right.$; tf([11 003$\left.\left.],\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\right)\right] ;$
Convert this model to a state-space model.
sys = ss(H);
Examine the size of the state-space model.

```
size(sys)
```

State-space model with 2 outputs, 1 inputs, and 5 states.
The number of states is equal to the cumulative order of the SISO entries in $H(s)$.
To obtain a minimal realization of $H(s)$, enter

```
sys = ss(H,'minimal');
size(sys)
State-space model with 2 outputs, 1 inputs, and 3 states.
```

The resulting model has an order of three, which is the minimum number of states needed to represent $H(s)$. To see this number of states, refactor $H(s)$ as the product of a first-order system and a second-order system.

$$
H(s)=\left[\begin{array}{cc}
\frac{1}{s+2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{s+1}{s^{2}+s+1} \\
\frac{s^{2}+3}{s^{2}+s+1}
\end{array}\right]
$$

Extract State-Space Models from Identified Model

For this example, extract the measured and noise components of an identified polynomial model into two separate state-space models.

Load the Box-Jenkins polynomial model ltiSys in identifiedModel.mat.
load('identifiedModel.mat','ltiSys');
ltiSys is an identified discrete-time model of the form: $y(t)=\frac{B}{F} u(t)+\frac{C}{D} e(t)$, where $\frac{B}{F}$ represents the measured component and $\frac{C}{D}$ the noise component.

Extract the measured and noise components as state-space models.

```
sysMeas = ss(ltiSys,'measured')
```

sysMeas $=$
$\mathrm{A}=$
x1 x2

```
    x1 1.575 -0.6115
    x2 1 0
    B =
        u1
    x1 0.5
    x2 0
    C =
        rrrer
    D =
        u1
        y1 0
    Input delays (sampling periods): 2
Sample time: 0.04 seconds
Discrete-time state-space model.
sysNoise = ss(ltiSys,'noise')
sysNoise =
    A =
        x1 x2 x3
        x1 1.026 -0.26 0.3899
        rr2 
        B =
            v@y1
        x1 0.25
        x2 0
        x3 0
    C =
        lrrr
    D =
        v@y1
    y1 0.04556
Input groups:
    Name Channels
    Noise 1
Sample time: 0.04 seconds
Discrete-time state-space model.
```

The measured component can serve as a plant model, while the noise component can be used as a disturbance model for control system design.

Explicit Realization of Descriptor State-Space Model

Create a descriptor state-space model $(E \neq I)$.

```
a = [2 -4; 4 2];
b = [-1; 0.5];
c = [-0.5, -2];
d = [-1];
e = [1 0; -3 0.5];
sysd = dss(a,b,c,d,e);
```

Compute an explicit realization of the system ($E=I$).

```
syse = ss(sysd,'explicit')
```

syse =
$A=$

	x1	x2
x1	2	-4
$\times 2$	20	-20

 \(B=\)
 u1
 x1 -1
 \(\times 2 \quad-5\)
 \(C=\)
 \(\begin{array}{lrr} & x 1 & x 2 \\ y 1 & -0.5 & -2\end{array}\)
 D =
 u1
 y1 - 1
 Continuous-time state-space model.

Confirm that the descriptor and explicit realizations have equivalent dynamics.

```
bodeplot(sysd,syse,'g--')
```


Create State-Space Model with Both Fixed and Tunable Parameters

This example shows how to create a state-space genss model having both fixed and tunable parameters.

$$
A=\left[\begin{array}{cc}
1 & a+b \\
0 & a b
\end{array}\right], \quad B=\left[\begin{array}{c}
-3.0 \\
1.5
\end{array}\right], \quad C=\left[\begin{array}{ll}
0.3 & 0
\end{array}\right], \quad D=0,
$$

where a and b are tunable parameters, whose initial values are -1 and 3, respectively.
Create the tunable parameters using realp.
a = realp('a',-1);
b = realp('b',3);
Define a generalized matrix using algebraic expressions of a and b.
$\mathrm{A}=[1 \mathrm{a}+\mathrm{b} ; 0 \mathrm{a}$ * b ;
A is a generalized matrix whose Blocks property contains a and b. The initial value of A is [1 $2 ; 0$ -3], from the initial values of a and b.

Create the fixed-value state-space matrices.

```
B = [-3.0;1.5];
C = [0.3 0];
D = 0;
```

Use ss to create the state-space model.

```
sys = ss(A,B,C,D)
```

Generalized continuous-time state-space model with 1 outputs, 1 inputs, 2 states, and the follow.
a: Scalar parameter, 2 occurrences.
b: Scalar parameter, 2 occurrences.
Type "ss(sys)" to see the current value and "sys.Blocks" to interact with the blocks.
sys is a generalized LTI model (genss) with tunable parameters a and b.

State-Space Model with Input and Output Delay

For this example, consider a SISO state-space model defined by the following state-space matrices:

$$
A=\left[\begin{array}{cc}
-1.5 & -2 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \quad D=0
$$

Considering an input delay of 0.5 seconds and an output delay of 2.5 seconds, create a state-space model object to represent the A, B, C and D matrices.

```
A = [-1.5,-2;1,0];
B = [0.5;0];
C = [0,1];
D = 0;
sys = ss(A,B,C,D,'InputDelay',0.5,'OutputDelay',2.5)
sys =
    A =
        rrer
    B =
        M}\begin{array}{r}{u1}\\{\times1 0.5}
        x2 0
    C =
        x1 x2
        y1 0 1
    D =
        u1
        y1 0
    Input delays (seconds): 0.5
    Output delays (seconds): 2.5
Continuous-time state-space model.
```

You can also use the get command to display all the properties of a MATLAB object.
get(sys)

```
                    A: [2x2 double]
                    B: [2x1 double]
                    C: [0 1]
                    D: 0
                    E: []
                Scaled: 0
        StateName: {2x1 cell}
        StatePath: {2x1 cell}
        StateUnit: {2x1 cell}
InternalDelay: [0x1 double]
        InputDelay: 0.5000
        OutputDelay: 2.5000
            InputName: {''}
            InputUnit: {''}
        InputGroup: [1x1 struct]
        OutputName: {''}
        OutputUnit: {''}
    OutputGroup: [1x1 struct]
            Notes: [0x1 string]
        UserData: []
            Name: '
            Ts: 0
        TimeUnit: 'seconds'
    SamplingGrid: [1x1 struct]
```

For more information on specifying time delay for an LTI model, see "Specifying Time Delays".

Stability Analysis of State-Space Systems

For this example, consider a state-space system object that represents the following state matrices:

$$
A=\left[\begin{array}{ccc}
-1.2 & -1.6 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad C=\left[\begin{array}{llll}
0 & 0.5 & 1.3
\end{array}\right], \quad D=0,
$$

Create a state-space object sys using the ss command.

```
A = [-1.2,-1.6,0;1,0,0;0,1,0];
B = [1;0;0];
C = [0,0.5,1.3];
D = 0;
sys = ss(A,B,C,D);
```

Next, compute the closed-loop state-space model for a unit negative gain and find the poles of the closed-loop state-space system object sysFeedback.
sysFeedback = feedback(sys,1);
P = pole(sysFeedback)
P $=3 \times 1$ complex

```
-0.2305 + 1.3062i
-0.2305 - 1.3062i
-0.7389 + 0.0000i
```

The feedback loop for unit gain is stable since all poles have negative real parts. Checking the closedloop poles provides a binary assessment of stability. In practice, it is more useful to know how robust (or fragile) stability is. One indication of robustness is how much the loop gain can change before stability is lost. You can use the root locus plot to estimate the range of k values for which the loop is stable.

```
rlocus(sys)
```


Changes in the loop gain are only one aspect of robust stability. In general, imperfect plant modeling means that both gain and phase are not known exactly. Since modeling errors have the most detrimental effect near the gain crossover frequency (frequency where open-loop gain is 0 dB), it also matters how much phase variation can be tolerated at this frequency.

You can display the gain and phase margins on a Bode plot as follows.

```
bode(sys)
grid
```


For a more detailed example, see "Assessing Gain and Phase Margins".

Control Design using State-Space Models

For this example, design a 2-DOF PID controller with a target bandwidth of $0.75 \mathrm{rad} / \mathrm{s}$ for a system represented by the following matrices:

$$
A=\left[\begin{array}{cc}
-0.5 & -0.1 \\
1 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], \quad D=0
$$

Create a state-space object sys using the ss command.
$\mathrm{A}=[-0.5,-0.1 ; 1,0] ;$
$B=[1 ; 0]$;
$\mathrm{C}=[0,1]$;
D = 0;
sys = ss(A,B,C,D)
sys $=$
$A=$

	x1	x2
$\times 1$	-0.5	-0.1
$\times 2$	1	0

```
    B =
            ul
    x1 1
    x2 0
    C =
        x1 x2
    y1 0 1
    D =
        u1
    y1 0
Continuous-time state-space model.
```

Using the target bandwidth, use pidtune to generate a 2-DOF controller.

```
wc = 0.75;
C2 = pidtune(sys,'PID2',wc)
C2 =
    u = Kp (b*r-y) +Ki M-- (r-y) + Kd*s (c*r-y)
    S
    with Kp = 0.513, Ki = 0.0975, Kd = 0.577, b = 0.344, c = 0
Continuous-time 2-DOF PID controller in parallel form.
```

Using the type 'PID2' causes pidtune to generate a 2-DOF controller, represented as a pid2 object. The display confirms this result. The display also shows that pidtune tunes all controller coefficients, including the setpoint weights b and c, to balance performance and robustness.

For interactive PID tuning in the Live Editor, see the Tune PID Controller Live Editor task. This task lets you interactively design a PID controller and automatically generates MATLAB code for your live script.

For interactive PID tuning in a standalone app, use PID Tuner. See "PID Controller Design for Fast Reference Tracking" for an example of designing a controller using the app.

Connect Specific Inputs and Outputs of State-Space Models in a Feedback Loop

Consider a state-space plant G with five inputs and four outputs and a state-space feedback controller K with three inputs and two outputs. The outputs 1,3 , and 4 of the plant G must be connected the controller K inputs, and the controller outputs to inputs 4 and 2 of the plant.

For this example, consider two continuous-time state-space models for both G and K represented by the following set of matrices:

$$
\begin{aligned}
& A_{G}=\left[\begin{array}{ccc}
-3 & 0.4 & 0.3 \\
-0.5 & -2.8 & -0.8 \\
0.2 & 0.8 & -3
\end{array}\right], \quad B_{G}=\left[\begin{array}{ccccc}
0.4 & 0 & 0.3 & 0.2 & 0 \\
-0.2 & -1 & 0.1 & -0.9 & -0.5 \\
0.6 & 0.9 & 0.5 & 0.2 & 0
\end{array}\right], \quad C_{G}=\left[\begin{array}{ccc}
0 & -0.1 & -1 \\
0 & -0.2 & 1.6 \\
-0.7 & 1.5 & 1.2 \\
-1.4 & -0.2 & 0
\end{array}\right], \\
& D_{G}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & -1 \\
0 & 0.4 & -0.7 & 0 & 0.9 \\
0 & 0.3 & 0 & 0 & 0 \\
0.2 & 0 & 0 & 0 & 0
\end{array}\right] \\
& A_{K}=\left[\begin{array}{ccc}
-0.2 & 2.1 & 0.7 \\
-2.2 & -0.1 & -2.2 \\
-0.4 & 2.3 & -0.2
\end{array}\right], \quad B_{K}=\left[\begin{array}{ccc}
-0.1 & -2.1 & -0.3 \\
-0.1 & 0 & 0.6 \\
1 & 0 & 0.8
\end{array}\right], \quad C_{K}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
-0.4 & -0.2 & 0.3
\end{array}\right], \quad D_{K} \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1.2
\end{array}\right]
\end{aligned}
$$

AG $=[-3,0.4,0.3 ;-0.5,-2.8,-0.8 ; 0.2,0.8,-3] ;$
BG $=[0.4,0,0.3,0.2,0 ;-0.2,-1,0.1,-0.9,-0.5 ; 0.6,0.9,0.5,0.2,0]$;
CG $=[0,-0.1,-1 ; 0,-0.2,1.6 ;-0.7,1.5,1.2 ;-1.4,-0.2,0]$;
DG $=[0,0,0,0,-1 ; 0,0.4,-0.7,0,0.9 ; 0,0.3,0,0,0 ; 0.2,0,0,0,0] ;$
sysG $=\operatorname{ss}(A G, B G, C G, D G)$
sysG =

$$
\begin{array}{rrrr}
A= & & & \\
& x 1 & x 2 & x 3 \\
\times 1 & -3 & 0.4 & 0.3 \\
\times 2 & -0.5 & -2.8 & -0.8 \\
x 3 & 0.2 & 0.8 & -3
\end{array}
$$

```
    B =
        rrrrrr
    C=
        rrrr
    D =
        rrrrrr
Continuous-time state-space model.
AK = [-0.2,2.1,0.7;-2.2,-0.1,-2.2;-0.4,2.3,-0.2];
BK = [-0.1,-2.1,-0.3;-0.1,0,0.6;1,0,0.8];
CK = [-1,0,0;-0.4,-0.2,0.3];
DK = [0,0,0;0,0,-1.2];
sysK = ss(AK,BK,CK,DK)
sysK =
    A =
        rrrrer
        x2 -2.2 -0.1 -2.2
        x3 -0.4 2.3 -0.2
    B =
        u1 u2 u3
        x1 -0.1 -2.1 -0.3
        x2 -0.1 
    C =
        rrrr
    D =
    rrrr
Continuous-time state-space model.
```

Define the feedout and feedin vectors based on the inputs and outputs to be connected in a feedback loop.

```
feedin = [4 2];
feedout = [1 3 4];
sys = feedback(sysG,sysK,feedin,feedout,-1)
sys =
\begin{tabular}{rrrrrrr}
\(A=\) & & & & & \\
& \(x 1\) & \(x 2\) & \(x 3\) & \(x 4\) & \(x 5\) & \(x 6\) \\
x1 & -3 & 0.4 & 0.3 & 0.2 & 0 & 0 \\
x2 & 1.18 & -2.56 & -0.8 & -1.3 & -0.2 & 0.3 \\
x3 & -1.312 & 0.584 & -3 & 0.56 & 0.18 & -0.27 \\
x4 & 2.948 & -2.929 & -2.42 & -0.452 & 1.974 & 0.889 \\
x5 & -0.84 & -0.11 & 0.1 & -2.2 & -0.1 & -2.2 \\
x6 & -1.12 & -0.26 & -1 & -0.4 & 2.3 & -0.2
\end{tabular}
    B =
\begin{tabular}{rrrrrr} 
& u1 & u2 & u3 & u4 & u5 \\
x1 & 0.4 & 0 & 0.3 & 0.2 & 0 \\
x2 & -0.44 & -1 & 0.1 & -0.9 & -0.5 \\
x3 & 0.816 & 0.9 & 0.5 & 0.2 & 0 \\
x4 & -0.2112 & -0.63 & 0 & 0 & 0.1 \\
x5 & 0.12 & 0 & 0 & 0 & 0.1 \\
x6 & 0.16 & 0 & 0 & 0 & -1
\end{tabular}
    C =
\begin{tabular}{rrrrrrr} 
& & \(x 1\) & \(x 2\) & \(x 3\) & \(x 4\) & \(x 5\) \\
y1 & 0 & -0.1 & -1 & 0 & 0 & \(x 6\) \\
y2 & -0.672 & -0.296 & 1.6 & 0.16 & 0.08 & -0.12 \\
y3 & -1.204 & 1.428 & 1.2 & 0.12 & 0.06 & -0.09 \\
y4 & -1.4 & -0.2 & 0 & 0 & 0 & 0
\end{tabular}
    D =
        u1
        y1
    y2 rrrrer
Continuous-time state-space model.
size(sys)
State-space model with 4 outputs, 5 inputs, and 6 states.
```

sys is the resultant closed loop state-space model obtained by connecting the specified inputs and outputs of G and K .

Version History

Introduced before R2006a

See Also

dss|frd|get|set|ssdata|tf|zpk

Topics

"Dynamic System Models"
"What Are Model Objects?"
"State-Space Models"
"MIMO State-Space Models"
"State-Space Realizations"
"Recommended Working Representation"
"Time Delays in Linear Systems"
"Specifying Time Delays"

ss2ss

State coordinate transformation for state-space model

Syntax

sysT $=$ ss2ss(sys,T)

Description

ss2ss performs the similarity transformation $z=T x$ on the state vector x of a state-space model. For more information, see "Algorithms" on page 2-1329.
sysT = ss2ss(sys, T) performs the state-coordinate transformation of sys using the specified transformation matrix T . The matrix T must be invertible.

Examples

Similarity Transformation for State-Space Model

Perform a similarity transform for a state space model.
Generate a random state-space model and a transformation matrix.

```
rng(0)
sys = rss(5);
t = randn(5);
```

Perform the transformation and plot the frequency response of both models.

```
tsys = ss2ss(sys,t);
bode(sys,'b',tsys,'r--')
legend
```


The responses of both models match closely.

Similarity Transformation for Generalized State-Space Models

ss2ss applies state transformation only to the state vectors of the numeric portion of the generalized model.

Create a genss model.
sys $=$ rss (2,2,2) * tunableSS('a',2,2,3) + tunableGain('b',2,3)
Generalized continuous-time state-space model with 2 outputs, 3 inputs, 4 states, and the follow.
a: Tunable 2×3 state-space model, 2 states, 1 occurrences.
b: Tunable 2×3 gain, 1 occurrences.
Type "ss(sys)" to see the current value and "sys.Blocks" to interact with the blocks.
Specify a transformation matrix and obtain the transformation.
T = [1 -2;3 5];
tsys = ss2ss(sys,T)
Generalized continuous-time state-space model with 2 outputs, 3 inputs, 4 states, and the follow.
a: Tunable 2×3 state-space model, 2 states, 1 occurrences.
b: Tunable 2×3 gain, 1 occurrences.

```
Type "ss(tsys)" to see the current value and "tsys.Blocks" to interact with the blocks.
```

Decompose both models.
[$\mathrm{H}, \mathrm{B}, \sim, \sim]=$ getLFTModel(sys);
[H1,B1,~,~] = getLFTModel(tsys);
Obtain the transformation separately on the model from decomposed sys.
$\mathrm{H} 2=\operatorname{ss2ss}(\mathrm{H}, \mathrm{T})$;
Compare this transformed model with the model from decomposed tsys.

```
isequal(H1,H2)
```

ans = logical
1

Both models are equal.

Similarity Transformation for Identified State-Space Models

The file icEngine. mat contains one data set with 1500 input-output samples collected at the a sampling rate of 0.04 seconds. The input $u(t)$ is the voltage (V) controlling the By-Pass Idle Air Valve (BPAV), and the output $\mathrm{y}(\mathrm{t})$ is the engine speed (RPM/100).

Use the data in icEngine. mat to create a state-space model with identifiable parameters.

```
load icEngine.mat
z = iddata(y,u,0.04);
sys = n4sid(z,4,'InputDelay',2);
```

Specify a random transformation matrix.
$\mathrm{T}=\mathrm{randn}(4)$;
Obtain the transformation.
sysT = ss2ss(sys,T);
Compare the frequency responses.

```
bode(sys,'b',sysT,'r--')
legend
```


The responses match closely.

Transformation for Models with Complex Coefficients

ss2ss also lets you perform similarity transformation for models with complex coefficients.
For this example, generate a random state-space model with complex coefficients.
rng(0)
sys $=\operatorname{ss}\left(\operatorname{randn}(5)+1 i^{*}\right.$ randn $\left.(5), \operatorname{randn}(5,3), r a n d n(2,5)+1 i^{*} r a n d n(2,5), 0, .1\right)$;
Specify a transformation matrix containing complex data.
T = randn(5)+li*randn(5);
Obtain the transformation.
sysT = ss2ss(sys,T);
Compare the singular values of the frequency response.
sigma(sys,'b',sysT,'r--')
legend

The responses match closely for both branches.

Input Arguments

sys - Dynamic system
dynamic system model
Dynamic system, specified as a SISO, or MIMO dynamic system model. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as ss or dss models.
- Generalized or uncertain LTI models, such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)

For such models, the state transformation is applied only to the state vectors of the numeric portion of the model. For more information about decomposition of these models, see getLFTModel and "Internal Structure of Generalized Models".

- Identified state-space idss models. (Using identified models requires System Identification Toolbox software.)

If sys is an array of state-space models, ss2ss applies the transformation T to each individual model in the array.

T - Transformation matrix

matrix
Transformation matrix, specified as an n-by- n matrix, where n is the number of states. T is the transformation between the state vector of the state-space model sys and the state vector of the transformed model sysT. (See "Algorithms" on page 2-1329.)

Output Arguments

sysT - Transformed model

dynamic system model
Transformed state-space model, returned as a dynamic system model of the same type as sys.

Algorithms

ss2ss performs the similarity transformation $\bar{x}=T x$ on the state vector x of a state-space model.
This table summarizes the transformations returned by ss2ss for each model form.

Input Model	Transformed Model
Explicit state-space models of the form:	$\dot{\bar{x}}=T A T^{-1} \overline{\bar{x}}+T B u$
$\dot{x}=A x+B u$ $y=C x+D u$	$y=C T^{-1} \bar{x}+D u$
Descriptor (implicit) state-space models for the	
form:	$E T^{-1} \dot{\bar{x}}=A T^{-1} \bar{x}+B u$
	$y=C T^{-1} \bar{x}+D u$
$E \dot{x}=A x+B u$ $y=C x+D u$	
Identified state-space (idss) models of the form:	$\dot{\bar{x}}=T A T^{-1} 1 \bar{x}+T B u+T K e$
$\frac{d x}{d t}=A x+B u+K e$	$y=C T^{-} 1 \bar{x}+D u+e$
$y=C x+D u+e$	

Version History

Introduced before R2006a

R2021b: ss2ss returns different transformation results for descriptor state-space models Behavior changed in R2021b

For a descriptor state-space model

$$
\begin{gathered}
E \dot{x}=A x+B u \\
y=C x+D u,
\end{gathered}
$$

ss2ss now returns

$$
\begin{gathered}
E T^{-1} \dot{\bar{x}}=A T^{-1} \bar{x}+B u \\
y=C T^{-1} \bar{x}+D u .
\end{gathered}
$$

Previously, the function returned the following transformation.

$$
\begin{gathered}
T E T^{-1} \dot{\bar{x}}=T A T^{-1} \overline{\bar{x}}+T B u \\
y=C T^{-1} \overline{\bar{x}}+D u
\end{gathered}
$$

R2021b: Similarity transformation is no longer supported for mechss models

Errors starting in R2021b
ss2ss no longer supports sparse second-order (mechss) models. Performing similarity transformations on mechss models destroys symmetry and has no obvious general form.

See Also

balreal | canon | balance

Topics

"Scaling State-Space Models to Maximize Accuracy"

ssdata

Access state-space model data

Syntax

[a,b,c,d] = ssdata(sys)
[a,b,c,d,Ts] = ssdata(sys)

Description

[a,b,c,d] = ssdata(sys) extracts the matrix (or multidimensional array) data A, B, C, D from the state-space model (LTI array) sys. If sys is a transfer function or zero-pole-gain model (LTI array), it is first converted to state space. See ss for more information on the format of state-space model data.

If sys appears in descriptor form (nonempty E matrix), an equivalent explicit form is first derived.
If sys has internal delays, A, B, C, D are obtained by first setting all internal delays to zero (creating a zero-order Padé approximation). For some systems, setting delays to zero creates singular algebraic loops, which result in either improper or ill-defined, zero-delay approximations. For these systems, ssdata cannot display the matrices and returns an error. This error does not imply a problem with the model sys itself.

For generalized state-space (genss) models, ssdata returns the state-space models evaluated at the current, nominal value of all control design blocks. To access the dependency of a genss model on its static control design blocks, use the A, B, C, and D properties of the model.
$[a, b, c, d, T s]=$ ssdata(sys) also returns the sample time Ts.
You can access the remaining LTI properties of sys with get or by direct referencing. For example:
sys.statename
For arrays of state-space models with variable numbers of states, use the syntax:

```
[a,b,c,d] = ssdata(sys,'cell')
```

to extract the state-space matrices of each model as separate cells in the cell arrays a, b, c, and d.

Version History

Introduced before R2006a

See Also

dssdata|get|getDelayModel|set|ss|tfdata|zpkdata

ssInterpolant

Build gridded LTV or LPV model from state-space data

Syntax

sys = ssInterpolant(ssArray,offsets)
sys = ssInterpolant(vSys,S)
sys = ssInterpolant(__, , IMethod, EMethod)

Description

For a collection of local ss models sampled in time or parameter space, ssInterpolant builds a linear time-varying (LTV) or linear parameter-varying (LPV) model that interpolates local LTI behaviors into global LTV or LPV behavior. You can also use ssInterpolant to turn analytic LTV or LPV models into gridded LTV or LPV models, or to resample gridded LTV or LPV models.
sys = ssInterpolant(ssArray, offsets) constructs the LTV or LPV interpolant from the array of state-space models ssArray and the structure array offsets containing the derivative, state, input, and output linearization offsets.
sys = ssInterpolant(vSys,S) constructs the interpolant by sampling an existing LTV or LPV model vSys at a grid of time and parameter values specified in S.
sys = ssInterpolant (\qquad ,IMethod,EMethod) specifies both the interpolation and extrapolation methods. You can specify these methods as the last input arguments in any of the previous syntaxes.

Examples

Create LPV Model from Batch Linearization Results

This example shows how to create an LPV model from the array of state space models and associated offsets obtained from batch linearization of a water-tank Simulink ${ }^{\circledR}$ model.

Open the Simulink model.

```
mdl = 'watertankNLModel';
open_system(mdl)
```

Specify the initial condition for water height.
h0 = 10;
Specify model linear analysis points.

```
io(1) = linio('watertankNLModel/Step',1,'input');
io(2) = linio('watertankNLModel/H',1,'output');
```

Simulate the model and extract operating points at time snapshots.

```
tlin = [0 30 40 50 60 70 80];
op = findop(mdl,tlin);
```

Compute the linearizations along with offsets.
options = linearizeOptions('StoreOffsets',true);
[linsys,~,info] = linearize(mdl,io,op,options);
Specify a grid of height values and construct the LPV model. For this model, height is the first state/

```
h = zeros(size(tlin));
for ct=1:numel(h)
    h(ct) = op(ct).States(1).x;
end
linsys.SamplingGrid.H = h;
gLPV = ssInterpolant(linsys,info.Offsets,'spline')
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 1 states, and 1 parameters.
Model Properties
```

Simulate the watertank model.

```
h0 = 15;
sim(mdl);
usim = getElement(logsOut,'V');
hsim = getElement(logsOut,'H');
```

Simulate the LPV model with the exact parameter trajectory.
$\mathrm{t}=$ linspace $(0,150,200)$;
$\mathrm{p}=\mathrm{@}(\mathrm{t}, \mathrm{x}, \mathrm{u}) \mathrm{x}(1)$;
$\mathrm{u}=$ interpl(usim.Values.Time, usim.Values.Data,t);
ylpv = lsim(gLPV,u,t,h0,p);
Plot the results.
plot(hsim.Values.Time,hsim.Values.Data, t,ylpv,'--')
legend('Simulink model','LPV model')

The LPV model provides a good approximation of the nonlinear model.

Convert Analytic LPV Model To Gridded LPV Model

For this example, consider dataFcnMaglev.m that defines the matrices and offsets of a magnetic levitation system. The magnetic levitation controls the height of a levitating ball using the coil current which creates a magnetic force on the ball.

Create the LPV model.

```
h0 = 1;
lpvSys = lpvss('h',@dataFcnMaglev,0,0,h0)
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 2 states, and 1 parameters.
lpvSys.StateName = {'h','hdot'};
lpvSys.InputName = 'current';
lpvSys.InputName = 'height';
```

Define a parameter variation for height h.

```
hmin = 0.05;
hmax = 0.25;
hcd = linspace(hmin,hmax,5);
SamplingGrid.h = hcd;
Convert to gridded model.
```

```
glpvSys1 = ssInterpolant(lpvSys,SamplingGrid)
```

glpvSys1 = ssInterpolant(lpvSys,SamplingGrid)
Continuous-time state-space LPV model with 1 outputs, 1 inputs, 2 states, and 1 parameters.

```

This is equivalent to constructing a gridded model from an array of local models sampled at the same parameter space.
[ssArray,offsets] = sample(lpvSys,SamplingGrid);
glpvSys2 = ssInterpolant(ssArray,offsets);

\section*{Compare Gridded LPV Model Extrapolation Methods}

For this example consider an array of state space models and associated offsets obtained from batch linearization of a water-tank Simulink \({ }^{\circledR}\) model in the "Create LPV Model from Batch Linearization Results" on page 2-1332 example.

The dynamics of this water-tank system is described by this equation.
\[
A \frac{d H}{d t}=b V-a \sqrt{H}
\]

Load the linearization results.
load watertankLinModel.mat
Construct the gridded model with the 'spline' interpolation method and 'clip ' extrapolation method.
```

glpv1 = ssInterpolant(linsys,info.Offsets,'spline','clip');

```

Construct the gridded model with the extrapolation method 'spline'.
glpv2 = ssInterpolant(linsys,info.Offsets,'spline','spline');
Compare the simulation results when initial height starts from a point outside the constructing grid. Set the height such that the tank is almost empty.
```

h0 = 0.4;
sim('watertankNLModel.slx');
usim = getElement(logsOut,'V');
hsim = getElement(logsOut,'H');

```

Simulate the LPV models with the exact parameter trajectory.
```

t = linspace(0,150,200);
p = @(t,x,u) x(1);
u = interpl(usim.Values.Time,usim.Values.Data,t);

```
```

ylpv1 = lsim(glpv1,u,t,h0,p);
ylpv2 = lsim(glpv2,u,t,h0,p);
plot(t,ylpv1,t,ylpv2,'--',hsim.Values.Time,hsim.Values.Data,' . -')
legend('clip extrapolation','spline extrapolation','nonlinear simulation',Location='best')

```


When the tank is almost empty, the 'spline' method captures the rapid slope change resulting from the nonlinearity better than the 'clip' method.

\section*{Input Arguments}
ssArray - Array of state-space models
array of ss objects
Array of state-space (ss) models. Use the SamplingGrid property of the state-space object to specify the time and parameter dependence of the models in ssArray, and assign time and parameter values to each model. The field names of SamplingGrid become the parameters of the LPV model, except for the field Time which is interpreted as describing the time dependence. If Time is the only field, ssInterpolant returns an LTV model. The function ignores fields with constant value. See ss reference page for more information on the SamplingGrid property.

You can also obtain ssArray and corresponding offsets in one of the following ways:
- Perform batch linearization of a Simulink model with StoreOffsets option. For more information, see linearize and linearize0ptions.
- Sample an existing LTV or LPV model. For more information, see sample.

\section*{offsets - Model offsets}
structure array
Model offsets, specified as a structure array with the same dimensions as ssArray. Each offset structure must have the following fields:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline\(x\) & \begin{tabular}{l} 
State offsets, specified as a column vector of \\
length \(n_{x}\), where \(n_{x}\) is the number of states in \\
ssArray
\end{tabular} \\
\hline dx & \begin{tabular}{l} 
Derivative offsets, specified as a column vector of \\
length \(n_{x}\), where \(n_{x}\) is the number of states in \\
ssArray
\end{tabular} \\
\hline u & \begin{tabular}{l} 
Input offsets, specified as a column vector of \\
length \(n_{u}\), where \(n_{u}\) is the number of inputs in \\
ssArray
\end{tabular} \\
\hline y & \begin{tabular}{l} 
Output offsets, specified as a column vector of \\
length \(n_{y}\), where \(n_{y}\) is the number of outputs in \\
ssArray
\end{tabular} \\
\hline
\end{tabular}

You can also obtain ssArray and corresponding offsets in one of the following ways:
- Perform batch linearization of a Simulink model with StoreOffsets option. For more information, see linearize and linearize0ptions.
- Sample an existing LTV or LPV model. For more information, see sample.

You can also set any of the fields to [] when the model has no offsets.

\section*{vSys - LTV or LPV model}
ltvss object| lpvss object
LTV or LPV model, specified as an ltvss or lpvss object.
If vSys is an ltvss or lpvss object, ssInterpolant builds a gridded LTV or LPV model at the grid values specified using \(S\).

\section*{S - Sampling grid}
struct
Sampling grid values, specified as a structure. S defines the rectangular grid of time and/or parameter values where vSys is sampled. The gridded LTV or LPV model interpolates between these grid points.
- For LTV models, S is a structure array with field Time. For example, if an array Tvalues specifies the sampling time, S is the following structure.
```

S = struct('Time',Tvalues)

```
- For LPV models, S is a structure with fields for parameter names corresponding to the ParameterName property of the LPV model vSys, and Time. Because interpolation is supported only over a rectangular grid, you must use ndgrid to generate values for this structure. For example, if vSys has two parameters named 'speed ' and 'altitude' with values specified using arrays P1vals and P2vals, respectively, S is the following structure.
```

[P1,P2] = ndgrid(P1vals,P2vals);
S = struct('speed',P1,'altitude',P2)

```

If the dynamics of your LPV model do not have an explicit dependence on time, do not specify the field Time for S.

In discrete time, specify Time as integer index values k that count the number of sampling periods Ts. The absolute time is given by \(t=k * T s\).

\section*{IMethod - Interpolation method}
'linear' (default)|'nearest'|'next'|'previous'|'pchip'|'cubic'|'spline'| 'makima'

Interpolation method, specified as 'linear', 'nearest', 'next', 'previous', 'pchip', 'cubic', 'spline', or 'makima'. See the Method input argument of griddedInterpolant for more information.

If you omit both the IMethod and EMethod arguments, the values default to ' linear' for IMethod and 'clip' for EMethod.

\section*{EMethod - Extrapolation method}
'clip' (default)|'linear'|'nearest'|'next'|'previous'|'pchip'|'cubic'| 'spline'|'makima'|'none'

Extrapolation method, specified as 'clip','linear','nearest', 'next', 'previous', 'pchip', 'cubic', 'spline', or 'makima'. In addition, you can specify 'none' if you want queries outside the domain of your grid to return NaN values.

If you omit both the IMethod and EMethod arguments, the values default to ' linear' for IMethod and 'clip' for EMethod.

The 'clip' method limits each parameter values to its [ \(p_{\min }, p_{\max }\) ] range in the grid. This method is similar to the 'Clip' method in Simulink lookup table blocks.

\section*{Output Arguments}

\section*{sys - Gridded LTV or LPV model}

GriddedLTVSS object | GriddedLPVSS object
Gridded LTV or LPV model, returned as a GriddedLTVSS or GriddedLPVSS object, respectively.
In addition to the properties in ltvss and lpvss objects, the GriddedLTVSS and GriddedLPVSS objects contain the properties Grid, Interpolation, and Extrapolation, which specify the grid values, interpolation method, and extrapolation method, respectively, used to construct the gridded model.

\section*{Limitations}

The interpolation is supported only over a rectangular grid. You must use ndgrid to generate a sampling grid for your array of state-space models.

\section*{Version History}

Introduced in R2023a

\section*{See Also}
lpvss|ltvss|ss|sample|griddedInterpolant|linearize

\section*{stabsep}

Stable-unstable decomposition

\section*{Syntax}
[GS,GNS]=stabsep(G)
[G1,GNS] \(=\operatorname{stabsep}(G\), 'abstol',ATOL,'reltol',RTOL)
[G1,G2]=stabsep(G, ...,'Mode', MODE,'Offset', ALPHA)
\([G 1, G 2]=\operatorname{stabsep}(G\), opts)

\section*{Description}
[GS , GNS ]=stabsep ( \(G\) ) decomposes the LTI model G into its stable and unstable parts
\[
G=G S+G N S
\]
where GS contains all stable modes that can be separated from the unstable modes in a numerically stable way, and GNS contains the remaining modes. GNS is always strictly proper.
[G1,GNS] = stabsep(G,'abstol',ATOL,'reltol',RTOL) specifies absolute and relative error tolerances for the stable/unstable decomposition. The frequency responses of G and GS + GNS should differ by no more than ATOL+RTOL*abs (G). Increasing these tolerances helps separate nearby stable and unstable modes at the expense of accuracy. The default values are ATOL=0 and RTOL=1e-8.
[G1,G2]=stabsep(G, ...,'Mode', MODE,'Offset', ALPHA) produces a more general stable/ unstable decomposition where G1 includes all separable poles lying in the regions defined using offset ALPHA. This can be useful when there are numerical accuracy issues. For example, if you have a pair of poles close to, but slightly to the left of the \(j \omega\)-axis, you can decide not to include them in the stable part of the decomposition if numerical considerations lead you to believe that the poles may be in fact unstable

This table lists the stable/unstable boundaries as defined by the offset ALPHA.
\begin{tabular}{lll} 
Mode & Continuous Time Region & Discrete Time Region \\
1 & \(\operatorname{Re}(s)<-\operatorname{ALPHA} \max _{\max }(1,|\operatorname{Im}(s)|)\) & \(1|z|<1-A L P H A\) \\
2 & \(\operatorname{Re}(s)>\operatorname{ALPHA} \max (1,|\operatorname{Im}(s)|)\) & \(2|z|>1+A L P H A\)
\end{tabular}

The default values are \(\operatorname{MODE}=1\) and \(A L P H A=0\).
[G1,G2] = stabsep(G, opts) computes the stable/unstable decomposition of G using the options specified in the stabsepOptions object opts.

\section*{Examples}

Compute a stable/unstable decomposition with absolute error no larger than \(1 \mathrm{e}-5\) and an offset of 0.1 :
```

h = zpk(1,[-2 -1 1 -0.001],0.1)
[hs,hns] = stabsep(h,stabsepOptions('AbsTol',1e-5,'Offset',0.1));

```

The stable part of the decomposition has poles at -1 and -2 .
hs
Zero/pole/gain:
-0.050075 (s+2.999)
-----------------
( \(s+1\) ) ( \(s+2\) )
The unstable part of the decomposition has poles at +1 and -.001 (which is nominally stable).
hns
Zero/pole/gain:
0.050075 (s-1)
\((s+0.001)(s-1)\)

\section*{Version History}

Introduced before R2006a

\author{
See Also \\ stabsep0ptions|modsep
}

\section*{stabsepOptions}

Options for stable-unstable decomposition

\section*{Syntax}
```

opts = stabsepOptions
opts = stabsepOptions('OptionName', OptionValue)

```

\section*{Description}
opts = stabsepOptions returns the default options for the stabsep command.
opts = stabsepOptions('OptionName', OptionValue) accepts one or more commaseparated name/value pairs. Specify OptionName inside single quotes.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

\section*{Focus}

Focus of decomposition. Specified as one of the following values:
'stable' First output of stabsep contains only stable dynamics.
'unstable' First output of stabsep contains only unstable dynamics.
Default: 'stable'

\section*{SepTol}

Accuracy loss factor for stable/unstable decomposition. Positive scalar values. When decomposing a model \(G(s)\), stabsep ensures that the frequency responses of \(G\) and \(G 1+G 2\) differ by no more than SepTol times the absolute accuracy of the computed value of \(G(s)\). Increasing SepTol helps separate nearby stable and unstable modes at the expense of accuracy.

Default: 10

\section*{Offset}

Offset for the stable/unstable boundary. Positive scalar value. The first output of stabsepincludes only poles satisfying:

Continuous time:
- \(\operatorname{Re}(s)<-O f f s e t * \max (1,|\operatorname{Im}(s)|)\) (Focus = 'stable')
- Re(s) > Offset * max(1,|Im(s)|) (Focus = 'unstable')

Discrete time:
- |z| < 1 - Offset (Focus = 'stable')
- \(|z|>1+0 f f s e t(F o c u s=' u n s t a b l e ')\)

Increase the value of Offset to treat poles close to the stability boundary as unstable.
Default: 0
For additional information on the options and how to use them, see the stabsep reference page.

\section*{Examples}

Compute the stable/unstable decomposition of the system given by:
\[
G(s)=\frac{10(s+0.5)}{\left(s+10^{-6}\right)(s+2-5 i)(s+2+5 i)}
\]

Use the Offset option to force stabsep to exclude the pole at \(s=10^{-6}\) from the stable term of the stable/unstable decomposition.
```

G = zpk(-.5,[-1e-6 -2+5i -2-5i],10);
opts = stabsepOptions('Offset',.001); % Create option set
[G1,G2] = stabsep(G,opts) % treats -1e-6 as unstable

```

These commands return the result:
```

Zero/pole/gain:
-0.17241 (s-54)
(s^2 + 4s + 29)
Zero/pole/gain:
0.17241
(s+1e-006)

```

The pole at \(s=10^{-6}\) is in the second (unstable) output.

\section*{Version History \\ Introduced in R2010a}

\section*{See Also}
stabsep

\section*{stack}

Build model array by stacking models or model arrays along array dimensions

\section*{Syntax}
sys = stack(arraydim,sys1,sys2,...)

\section*{Description}
sys = stack(arraydim,sys1,sys2,...) produces an array of dynamic system models sys by stacking (concatenating) the models (or arrays) sys 1, sys \(2, \ldots\) along the array dimension arraydim. All models must have the same number of inputs and outputs (the same I/O dimensions), but the number of states can vary. The I/O dimensions are not counted in the array dimensions. For more information about model arrays and array dimensions, see "Model Arrays".

For arrays of state-space models with variable order, you cannot use the dot operator (e.g., sys.A) to access arrays. Use the syntax
[A,B,C,D] = ssdata(sys,'cell')
to extract the state-space matrices of each model as separate cells in the cell arrays \(A, B, C\), and \(D\).

\section*{Examples}

\section*{Example 1}

If sys1 and sys2 are two models:
- stack(1,sys1,sys2) produces a 2-by-1 model array.
- stack(2,sys1,sys2) produces a 1-by-2 model array.
- stack(3,sys1,sys2) produces a 1-by-1-by-2 model array.

\section*{Example 2}

Stack identified state-space models derived from the same estimation data and compare their bode responses.
```

load iddatal z1
sysc = cell(1,5);
opt = ssestOptions('Focus','simulation');
for i = 1:5
sysc{i} = ssest(z1,i-1,opt);
end
sysArray = stack(1, sysc{:});
bode(sysArray);

```

\section*{Version History}

\section*{Introduced before R2006a}

\section*{step}

Step response plot of dynamic system; step response data

\section*{Syntax}
```

step(sys)
step(sys,tFinal)
step(sys,t)
step(sys,t,p)
step(sys1,sys2,...,sysN,___)
step(sys1,LineSpec1,...,sysN,LineSpecN,___)
step(__,config)
y = step(sys,t)
y = step(sys,t,p)
[y,tOut] = step(sys)
[y,tOut] = step(sys,tFinal)
[y,t,x] = step(sys)
[y,t,x,ysd] = step(sys)
[y,t,x,ysd,pOut] = step(sys,t,p)
[___] = step(___,config)

```

\section*{Description}

\section*{Step Response Plots}
step (sys) plots the response of a dynamic system model to a step input of unit amplitude. The model sys can be continuous- or discrete-time, and SISO or MIMO. For MIMO systems, the plot displays the step responses for each I/O channel. step automatically determines the time steps and duration of the simulation based on the system dynamics.
step(sys, tFinal ) simulates the step response from \(t=0\) to the final time \(t=t\) Final. The function uses system dynamics to determine the intervening time steps.
step (sys,t) plots the step response at the times that you specify in the vector \(t\).
step (sys,t,p) plots the step response for LPV model with parameter trajectory p.
step (sys1, sys \(2, \ldots\), sysN, __ ) plots the step response of multiple dynamic systems on the same plot. All systems must have the same number of inputs and outputs. You can use multiple dynamic systems with any of the previous input-argument combinations.
step(sys1,LineSpec1,...,sysN,LineSpecN, \(\qquad\) ) specifies a color, line style, and marker for each system in the plot. You can use LineSpec with any of the previous input-argument combinations. When you need additional plot customization options, use stepplot instead.
step (__ , config) specifies additional options for computing the step response, such as the step amplitude or input offset. Use RespConfig to create the option set config. You can use config with any of the previous input-argument and output-argument combinations.

\section*{Step Response Data}
\(y=s t e p(s y s, t)\) returns the step response of a dynamic system model sys at the times specified in the vector \(t\). This syntax does not draw a plot.
\(\mathrm{y}=\mathrm{step}(\mathrm{sys}, \mathrm{t}, \mathrm{p})\) also specifies the parameter trajectory p for LPV models.
[ \(y\), tOut] = step(sys) also returns a vector of times tOut corresponding to the responses in \(y\). If you do not provide an input vector \(t\) of times, step chooses the length and time step of tout based on the system dynamics.
[y,tOut] = step(sys,tFinal) computes the step response up to the end time tFinal. step chooses the time step of tOut based on the system dynamics.
\([y, t, x]=\) step(sys) also returns the state trajectories \(x\), when sys is a state-space model such as an ss or idss model.
[ \(y, t, x, y s d]=\) step(sys) also computes the standard deviation ysd of the step response \(y\), when sys is an identified model such as an idss, idtf, or idnlarx model.
[y,t,x,ysd,p0ut] = step(sys,t,p) also returns parameter trajectories pOut, when sys is an lpvss model.
\(\qquad\) ] = step (__ , config) specifies additional options for computing the step response, such as the step amplitude or input offset. Use RespConfig to create the option set config. You can use config with any of the previous input-argument and output-argument combinations.

\section*{Examples}

\section*{Step Response of Dynamic System}

Plot the step response of a continuous-time system represented by the following transfer function.
\[
\operatorname{sys}(s)=\frac{4}{s^{2}+2 s+10} .
\]

For this example, create a tf model that represents the transfer function. You can similarly plot the step response of other dynamic system model types, such as zero-pole gain (zpk) or state-space (ss) models.
```

sys = tf(4,[1 2 10]);

```

Plot the step response.
step(sys)


The step plot automatically includes a dotted horizontal line indicating the steady-state response. In a MATLAB® figure window, you can right-click on the plot to view other step-response characteristics such as peak response and settling time. For more information about these characteristics, see stepinfo.

\section*{Step Response of Discrete-Time System}

Plot the step response of a discrete-time system. The system has a sample time of 0.2 s and is represented by the following state-space matrices.
```

A = [1.6 -0.7;
1 0];
B = [0.5; 0];
C = [0.1 0.1];
D = 0;

```

Create the state-space model and plot its step response.
sys = ss(A, B, C, D, 0.2);
step(sys)


The step response reflects the discretization of the model, showing the response computed every 0.2 seconds.

\section*{Step Response at Specified Times}

Examine the step response of the following transfer function.
```

sys = zpk(-1,[-0.2+3j,-0.2-3j],1) * tf([1 1],[1 0.05])
sys =

```
```

 (s+1)^2
 (s+0.05) (s^2 + 0.4s + 9.04)
    ```
Continuous-time zero/pole/gain model.
step(sys)


By default, step chooses an end time that shows the steady state that the response is trending toward. This system has fast transients, however, which are obscured on this time scale. To get a closer look at the transient response, limit the step plot to \(t=15 \mathrm{~s}\).
step(sys,15)


Alternatively, you can specify the exact times at which you want to examine the step response, provided they are separated by a constant interval. For instance, examine the response from the end of the transient until the system reaches steady state.
\(\mathrm{t}=20: 0.2: 120 ;\)
step(sys,t)


Even though this plot begins at \(\mathrm{t}=20\), step always applies the step input at \(\mathrm{t}=0\).

\section*{Step Response Plot of MIMO Systems}

Consider the following second-order state-space model:
\[
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.5572 & -0.7814 \\
0.7814 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
& y=\left[\begin{array}{lll}
1.9691 & 6.4493
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
\]
\(A=[-0.5572,-0.7814 ; 0.7814,0] ;\)
\(B=[1,-1 ; 0,2]\);
\(C=[1.9691,6.4493]\);
sys \(=s s(A, B, C, 0)\);
This model has two inputs and one output, so it has two channels: from the first input to the output, and from the second input to the output. Each channel has its own step response.

When you use step, it computes the responses of all channels.
```

step(sys)

```

\section*{Step Response}


The left plot shows the step response of the first input channel, and the right plot shows the step response of the second input channel. Whenever you use step to plot the responses of a MIMO model, it generates an array of plots representing all the I/O channels of the model. For instance, create a random state-space model with five states, three inputs, and two outputs, and plot its step response.
```

sys = rss(5,2,3);
step(sys)

```


In a MATLAB figure window, you can restrict the plot to a subset of channels by right-clicking on the plot and selecting I/O Selector.

\section*{Compare Responses of Multiple Systems}
step allows you to plot the responses of multiple dynamic systems on the same axis. For instance, compare the closed-loop response of a system with a PI controller and a PID controller. Create a transfer function of the system and tune the controllers.
```

H = tf(4,[1 2 10]);
C1 = pidtune(H,'PI');
C2 = pidtune(H,'PID');

```

Form the closed-loop systems and plot their step responses.
```

sys1 = feedback(H*C1,1);
sys2 = feedback(H*C2,1);
step(sys1,sys2)
legend('PI','PID','Location','SouthEast')

```


By default, step chooses distinct colors for each system that you plot. You can specify colors and line styles using the LineSpec input argument.
```

step(sys1,'r--',sys2,'b')
legend('PI','PID','Location','SouthEast')

```


The first LineSpec 'r-- ' specifies a dashed red line for the response with the PI controller. The second LineSpec 'b' specifies a solid blue line for the response with the PID controller. The legend reflects the specified colors and linestyles. For more plot customization options, use stepplot.

\section*{Step Response of Systems in a Model Array}

The example Compare Responses of Multiple Systems shows how to plot responses of several individual systems on a single axis. When you have multiple dynamic systems arranged in a model array, step plots all their responses at once.

Create a model array. For this example, use a one-dimensional array of second-order transfer functions having different natural frequencies. First, preallocate memory for the model array. The following command creates a 1-by-5 row of zero-gain SISO transfer functions. The first two dimensions represent the model outputs and inputs. The remaining dimensions are the array dimensions.
```

sys = tf(zeros(1,1,1,5));

```

Populate the array.
```

w0 = 1.5:1:5.5; % natural frequencies
zeta = 0.5; % damping constant
for i = 1:length(w0)

```
```

 sys(:,:,1,i) = tf(w0(i)^2,[1 2*zeta*w0(i) w0(i)^2]);
 end

```
(For more information about model arrays and how to create them, see "Model Arrays".) Plot the step responses of all models in the array.
step(sys)

step uses the same linestyle for the responses of all entries in the array. One way to distinguish among entries is to use the SamplingGrid property of dynamic system models to associate each entry in the array with the corresponding \(w 0\) value.
```

sys.SamplingGrid = struct('frequency',w0);

```

Now, when you plot the responses in a MATLAB figure window, you can click a trace to see which frequency value it corresponds to.

\section*{Step Response Data}

When you give it an output argument, step returns an array of response data. For a SISO system, the response data is returned as a column vector of length equal to the number of time points at which the response is sampled. You can provide the vector \(t\) of time points, or allow step to select time points for you based on system dynamics. For instance, extract the step response of a SISO system at 101 time points between \(t=0\) and \(t=5 \mathrm{~s}\).
```

sys = tf(4,[1 2 10]);
t = 0:0.05:5;
y = step(sys,t);
size(y)
ans = 1\times2
101 1

```

For a MIMO system, the response data is returned in an array of dimensions \(N\)-by- Ny -by- Nu , where \(N y\) and \(N u\) are the number of outputs and inputs of the dynamic system. For instance, consider the following state-space model, representing a two-input, one-output system.
```

A = [-0.5572,-0.7814;0.7814,0];
B = [1,-1;0,2];
C = [1.9691,6.4493];
sys = ss(A,B,C,0);

```

Extract the step response of this system at 200 time points between \(t=0\) and \(t=20 \mathrm{~s}\).
```

t = linspace(0,20,200);
y = step(sys,t);
size(y)
ans = 1\times3
200 1 2

```
\(y(:, i, j)\) is a column vector containing the step response from the \(j\) th input to the ith output at the times \(t\). For instance, extract the step response from the second input to the output.
```

y12 = y(:,1,2);
plot(t,y12)

```


\section*{Step Response Plot of Feedback Loop with Delay}

Create a feedback loop with delay and plot its step response.
```

s = tf('s');
G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);
sys = feedback(ss(G),1);
step(sys)

```


The system step response displayed is chaotic. The step response of systems with internal delays may exhibit odd behavior, such as recurring jumps. Such behavior is a feature of the system and not software anomalies.

\section*{Response to Custom Step Input}

By default, step applies an input signal that changes from 0 to 1 at \(t=0\). To customize the amplitude and offset, use RespConfig. For instance, compute the response of a SISO state-space model to a signal that changes from 1 to -1 to at \(t=0\).
```

A = [1.6 -0.7;
1 0];
B = [0.5; 0];
C = [0.1 0.1];
D = 0;
sys = ss(A,B,C,D,0.2);
opt = RespConfig;
opt.InputOffset = 1;
opt.Amplitude = -2;
step(sys,opt)

```


For responses to arbitrary input signals, use lsim.

\section*{Step Responses of Identified Models with Confidence Regions}

Compare the step response of a parametric identified model to a non-parametric (empirical) model. Also view their \(3 \sigma\) confidence regions.

Load the data.
load iddatal z1
Estimate a parametric model.
sys1 = ssest(z1,4);
Estimate a non-parametric model.
sys2 = impulseest(z1);
Plot the step responses for comparison.
t = (0:0.1:10)';
[y1, ~, ~, ysd1] = step(sys1,t);
[y2, ~, ~, ysd2] = step(sys2,t);
plot(t, y1, 'b', t, y1+3*ysd1, 'b:', t, y1-3*ysd1, 'b:')
hold on
plot(t, y2, 'g', t, y2+3*ysd2, 'g:', t, y2-3*ysd2, 'g:')


\section*{Step Response of Identified Time-Series Model}

Compute the step response of an identified time-series model.
A time-series model, also called a signal model, is one without measured input signals. The step plot of this model uses its (unmeasured) noise channel as the input channel to which the step signal is applied.

Load the data.
load iddata9;
Estimate a time-series model.
sys = ar(z9, 4);
sys is a model of the form \(A y(t)=e(t)\), where \(e(t)\) represents the noise channel. For computation of step response, \(\mathrm{e}(\mathrm{t})\) is treated as an input channel, and is named e@y1.

Plot the step response.
```

step(sys)

```

Step Response


\section*{Validate Linearization of Identified Nonlinear ARX Model}

Validate the linearization of a nonlinear ARX model by comparing the small amplitude step responses of the linear and nonlinear models.

Load the data.
load iddata2 z2;
Estimate a nonlinear ARX model.
nlsys = nlarx(z2,[4 3 10],idTreePartition,'custom',...
\{'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
'y1(t-5)*y1(t-5)*y1(t-1)'\},'nlr',[1:5, 7 9]);
Determine an equilibrium operating point for \(n l\) sys corresponding to a steady-state input value of 1 .
u0 = 1;
[X,~,r] = findop(nlsys, 'steady', 1);
y0 = r.SignalLevels.Output;
Obtain a linear approximation of nlsys at this operating point.
sys = linearize(nlsys,u0, X);
Validate the usefulness of sys by comparing its small-amplitude step response to that of \(n l\) sys.

The nonlinear system nl sys is operating at an equilibrium level dictated by ( \(u 0, y 0\) ). Introduce a step perturbation of size 0.1 about this steady-state and compute the corresponding response.
```

opt = RespConfig;
opt.InputOffset = u0;
opt.Amplitude = 0.1;
t = (0:0.1:10)';
ynl = step(nlsys, t, opt);

```

The linear system sys expresses the relationship between the perturbations in input to the corresponding perturbation in output. It is unaware of the nonlinear system's equilibrium values.

Plot the step response of the linear system.
```

opt = RespConfig;
opt.Amplitude = 0.1;
yl = step(sys, t, opt);

```

Add the steady-state offset, y 0 , to the response of the linear system and plot the responses.
plot(t, ynl, t, yl+y0)
legend('Nonlinear', 'Linear with offset')


\section*{Step Response of LPV Model}

This example shows how to simulate the step response of an LPV model. This example simulates the closed-loop step response of a levitating ball model defined in fcnMaglev.m to a disturbance \(d u\).


Create the model and discretize it.
```

hmin = 0.05;
hmax = 0.25;
h0 = (hmin+hmax)/2;
Ts = 0.01;
Glpv = lpvss("h",@fcnMaglev,0,0,h0);
Glpvd = c2d(Glpv,Ts,'tustin');

```

Sample the LPV model for three height values and tune a PID controller.
```

hpid = linspace(hmin,hmax,3);
[Ga,Goffset] = sample(Glpvd,[],hpid);
wc = 50;
Ka = pidtune(Ga,'pidf',wc);
Ka.Tf = 0.01;

```

Create the gain-scheduled PID controller.
```

Ka.SamplingGrid = struct('h',hpid);
Koffset = struct('y',{Goffset.u});
Clpv = ssInterpolant(ss(Ka),Koffset);

```

Create the closed-loop model.
```

CL = feedback(Glpvd*[1,Clpv],1,2,1);
CL.InputName = {'du';'href'};
CL.OutputName = 'h';

```

Get steady-state current for \(h=h_{0}\) to size the disturbance
[~,~,~,~,~,~,~,u0] = Glpv.DataFunction (0,h0);
Step response to input disturbance and step change in reference. Set the input offset \(d u=0\) and \(h=\) \(h_{0}\) to specify the starting steady-state condition.
```

t = 0:Ts:2;
pFcn = @(k,x,u) x(1);

```
```

Config = RespConfig('Input0ffset',[0;h0],'Amplitude',0.2*[u0;h0]*Ts,'Delay',0.5,'InitialParamete
step(CL,t,pFcn,Config)
title('Step Disturbance in Current and Step Change in Height')

```

\section*{Step Disturbance in Current and Step Change in Height}


\section*{Input Arguments}

\section*{sys - Dynamic system}
dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:
- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value for both plotting and returning response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model. When you use output arguments, the function returns response data for the nominal model only.
- Sparse state-space models such as sparss and mechss models.
- Identified LTI models, such as idtf, idss, or idproc models. For such models, the function can also plot confidence intervals and return standard deviations of the frequency response. See "Step

Responses of Identified Models with Confidence Regions" on page 2-1360. (Using identified models requires System Identification Toolbox software.)
- Linear time-varying (ltvss) and linear parameter-varying (lpvss) models.
step does not support frequency-response data models such as frd , genfrd, or idfrd models.
If sys is an array of models, the function plots the responses of all models in the array on the same axes. See "Step Response of Systems in a Model Array" on page 2-1355.

\section*{tFinal - End time for step response}
positive scalar
End time for the step response, specified as a positive scalar value. step simulates the step response from \(\mathrm{t}=0\) to \(\mathrm{t}=\mathrm{tFinal}\).
- For continuous-time systems, the function determines the step size and number of points automatically from system dynamics. Express tFinal in the system time units, specified in the TimeUnit property of sys.
- For discrete-time systems, the function uses the sample time of sys as the step size. Express tFinal in the system time units, specified in the TimeUnit property of sys.
- For discrete-time systems with unspecified sample time (Ts = -1), step interprets tFinal as the number of sampling periods to simulate.

\section*{t - Time vector}
vector
Time vector at which to compute the step response, specified as a vector of positive scalar values. Express \(t\) in the system time units, specified in the TimeUnit property of sys.
- For continuous-time models, specify t in the form T0:dt:Tf. To obtain the response at each time step, the function uses dt as the sample time of a discrete approximation to the continuous system (see "Algorithms" on page 2-1368). The simulation starts at T0 and ends at Tf.
- For discrete-time models, specify t in the form T0:Ts:Tf, where Ts is the sample time of sys.

\section*{LineSpec - Line style, marker, and color}
character vector | string
Line style, marker, and color, specified as a string or vector of one, two, or three characters. The characters can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line. For more information about configuring this argument, see the LineSpec input argument of the plot function.

Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line
p - LPV model parameter trajectory
matrix | function handle
Parameter trajectory of the LPV model, specified as a matrix or a function handle.
- For exogenous or explicit trajectories, specify p as a matrix with dimensions \(N\)-by- \(N p\), where \(N\) is the number of time samples and \(N p\) is the number of parameters.

Thus, the row vector \(p(i,:)\) contains the parameter values at the ith time step.
- For endogenous or implicit trajectories, specify p as a function handle of the form \(p=F(t, x, u)\) in continuous time and \(p=F(k, x, u)\) in discrete time that gives parameters as a function of time \(t\) or time sample \(k\), state \(x\), and input \(u\).

This option is useful when you want to simulate quasi-LPV models. For an example, see "Step Response of LPV Model" on page 2-1363.

\section*{config - Response configuration}

RespConfig options set
Configuration of the applied signal, specified as a RespConfig option set. By default, step applies an input that goes from 0 to 1 at time \(t=0\). Use this input argument to change the configuration of the step input. See "Response to Custom Step Input" on page 2-1359 for an example.

For lpvss and ltvss models with offsets ( \(x_{0}(t), u_{0}(t)\) ), you can use RespConfig to define the input relative to \(u_{0}(t, p)\) and initialize the simulation with the state \(x_{0}(t, p)\).

\section*{Output Arguments}

\section*{y - Step response data}
array
Step response data, returned as an array.
- For SISO systems, \(y\) is a column vector of the same length as \(t\) (if provided) or tOut (if you do not provide t).
- For single-input, multi-output systems, y is a matrix with as many rows as there are time samples and as many columns as there are outputs. Thus, the \(j\) th column of \(y\), or \(y(:, j)\), contains the step response of from the input to the \(j\) th output.
- For MIMO systems, the step responses of each input channel are stacked up along the third dimension of y . The dimensions of y are then N -by- Ny -by- Nu , where:
- \(N\) is the number of time samples.
- \(N y\) is the number of system outputs.
- \(N u\) is the number of system inputs.

Thus, \(y(:, i, j)\) is a column vector containing the step response from the \(j\) th input to the \(i\) th output at the times specified in \(t\) or tOut.

\section*{tOut - Times at which step response is computed}
vector
Times at which step response is computed, returned as a vector. When you do not provide a specific vector \(t\) of times, step chooses this time vector based on the system dynamics. The times are expressed in the time units of sys.

\section*{x - State trajectories}
array

State trajectories, returned as an array. When sys is a state-space model, x contains the evolution of the states of sys at each time in \(t\) or t0ut. The dimensions of \(x\) are \(N\)-by- \(N x\)-by- \(N u\), where:
- \(N\) is the number of time samples.
- \(N x\) is the number of states.
- \(N u\) is the number of system inputs.

Thus, the evolution of the states in response to a step injected at the \(k\) th input is given by the array \(x(:,:, k)\). The row vector \(x(i,:, k)\) contains the state values at the ith time step.

\section*{ysd - Standard deviation of step response array}

Standard deviation of the step response of an identified model, returned as an array of the same dimensions as \(y\). If sys does not contain parameter covariance information, then ysd is empty.

\section*{pOut - Parameter trajectories}
array
Parameter trajectories, returned as an array. When sys is a linear-parameter varying model, p0ut contains the evolution of the parameters of sys at each time in \(t\) or tOut. The dimensions of pOut are \(N\)-by- \(N p\)-by- \(N u\), where:
- \(N\) is the number of time samples.
- \(N p\) is the number of parameters.
- \(N u\) is the number of system inputs.

Thus, the evolution of the parameters in response to a step injected at the \(k\) th input is given by the array pOut (: , : , k). The row vector pOut ( \(\mathrm{i},:, \mathrm{k}\) ) contains the parameter values at the \(i\) th time step.

\section*{Tips}
- When you need additional plot customization options, use stepplot instead.
- To simulate system responses to arbitrary input signals, use lsim.

\section*{Algorithms}

To obtain samples of continuous-time models without internal delays, step converts such models to state-space models and discretizes them using a zero-order hold on the inputs. step chooses the sampling time for this discretization automatically based on the system dynamics, except when you supply the input time vector \(t\) in the form \(t=T 0: d t: T f\). In that case, step uses \(d t\) as the sampling time. The resulting simulation time steps tOut are equisampled with spacing dt .

For systems with internal delays, Control System Toolbox software uses variable step solvers. As a result, the time steps tOut are not equisampled.

\section*{Version History}

\section*{Introduced before R2006a}

\section*{R2023a: Support for nonzero start time}

Behavior changed in R2023a
You can now specify a nonzero start time for the step command using a time vector input of the form Ti:dt:Tf. Previously, the command always applied the input at \(t=0\), regardless of Ti .

\section*{References}
[1] L.F. Shampine and P. Gahinet, "Delay-differential-algebraic equations in control theory," Applied Numerical Mathematics, Vol. 56, Issues 3-4, pp. 574-588.

\section*{See Also}

\section*{Functions}
```

impulse|RespConfig|initial| lsim| stepplot

```

\section*{Apps}

Linear System Analyzer

\section*{External Websites}

Transfer Function Analysis of Dynamic Systems (MathWorks Teaching Resources)

\section*{stepDataOptions}
(Not recommended) Options for the step command

Note stepData0ptions is not recommended. Use RespConfig instead.

\section*{Syntax}
opt = stepDataOptions
opt = stepDataOptions(Name,Value)

\section*{Description}
opt \(=\) stepData0ptions creates the default options for step.
opt \(=\) stepDataOptions(Name, Value) creates an options set with the options specified by one or more Name, Value pair arguments.

\section*{Examples}

\section*{Specify Input Offset and Step Amplitude Level for Step Response}

Create a transfer function model.
sys = tf(1,[1,1]);
Create an option set for step to specify input offset and step amplitude level.
opt = stepDataOptions('InputOffset',-1,'StepAmplitude',2);
Calculate the step response using the specified options.
[y,t] = step(sys,opt);

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ...,'Input0ffset' , 2

\section*{InputOffset - Input signal offset level}

0 (default) | scalar

Input signal offset level, specified as the comma-separated pair consisting of 'InputOffset' and a scalar, for all time \(\mathrm{t}<0\), as shown in the following figure.


\section*{StepAmplitude - Change of input signal offset}

1 (default) | scalar
Change of input signal offset level, specified as the comma-separated pair consisting of 'StepAmplitude' and a scalar, which occurs at time \(t=0\), as shown in the previous figure.

\section*{Output Arguments}

\section*{opt - Options for the step command}
step options set
Options for the step command, returned as a step options set.

\section*{Version History}

\section*{Introduced in R2012a}

\section*{R2023a: stepDataOptions is not recommended}

Not recommended starting in R2023a
Beginning in R2023a, stepData0ptions is not recommended. Use RespConfig to specify a response configuration for the step command instead.

If you create an options set using stepData0ptions to specify the InputOffset and Amplitude properties, the software now creates a RespConfig object instead, setting those properties. The remaining RespConfig properties are set to default values.

\section*{See Also}
step

\section*{stepinfo}

Rise time, settling time, and other step-response characteristics

\section*{Syntax}
```

S = stepinfo(sys)
S = stepinfo(y,t)
S = stepinfo(y,t,yfinal)
S = stepinfo(y,t,yfinal,yinit)
S = stepinfo(__,'SettlingTimeThreshold',ST)
S = stepinfo(__,'RiseTimeLimits',RT)

```

\section*{Description}
stepinfo lets you compute step-response characteristics for a dynamic system model or for an array of step-response data. For a step response \(y(t)\), stepinfo computes characteristics relative to \(y_{\text {init }}\) and \(y_{\text {fnal }}\), where \(y_{\text {init }}\) is the initial offset, that is, the value before the step is applied, and \(y_{\text {fnal }}\) is the steady-state value of the response. These values depend on the syntax you use.
- For a dynamic system model sys, stepinfo uses \(y_{\text {init }}=0\) and \(y_{f \text { final }}=\) steady-state value.
- For an array of step-response data [ \(\mathrm{y}, \mathrm{t}\) ], stepinfo uses \(y_{\text {init }}=0\) and \(y_{\text {fnal }}=\) last sample value of \(y\), unless you explicitly specify these values.

For more information on how stepinfo computes the step-response characteristics, see "Algorithms" on page 2-1385.

The following figure illustrates some of the characteristics stepinfo computes for a step response. For this response, assume that \(y(t)=0\) for \(t<0\), so \(y_{\text {init }}=0\).

\(\mathrm{S}=\) stepinfo(sys) computes the step-response characteristics for a dynamic system model sys. This syntax uses \(y_{\text {init }}=0\) and \(y_{\text {final }}=\) steady-state value for computing the characteristics that depend on these values.
\(S=s t e p i n f o(y, t)\) computes step-response characteristics from an array of step-response data y and a corresponding time vector \(t\). For SISO system responses, \(y\) is a vector with the same number of entries as \(t\). For MIMO response data, \(y\) is an array containing the responses of each I/O channel. This syntax uses \(y_{\text {init }}=0\) and the last value in \(y\) (or the last value in each channel's corresponding response data) as \(y_{\text {final }}\).
\(S=\) stepinfo(y,t,yfinal) computes step-response characteristics relative to the steady-state value yfinal. This syntax is useful when you know that the expected steady-state system response differs from the last value in \(y\) for reasons such as measurement noise. This syntax uses \(y_{i n i t}=0\).

For SISO responses, \(t\) and y are vectors with the same length NS. For systems with NU inputs and NY outputs, you can specify y as an NS-by-NY-by-NU array (see step) and yfinal as an NY-by-NU array. stepinfo then returns a NY-by-NU structure array S of response characteristics corresponding to each I/O pair.
\(S=s t e p i n f o(y, t, y f i n a l, y i n i t)\) computes step-response characteristics relative to the response initial value yinit. This syntax is useful when your y data has an initial offset; that is, y is nonzero before the step occurs.

For SISO responses, t and y are vectors with the same length NS. For systems with NU inputs and NY outputs, you can specify y as an NS-by-NY-by-NU array and yinit as an NY-by-NU array. stepinfo then returns a NY-by-NU structure array S of response characteristics corresponding to each I/O pair.

S = stepinfo( \(\qquad\) , 'SettlingTimeThreshold', ST) lets you specify the threshold ST used in the definition of settling and transient times. The default value is ST \(=0.02\) ( \(2 \%\) ). You can use this syntax with any of the previous input-argument combinations.

S = stepinfo( \(\qquad\) ,'RiseTimeLimits' ,RT) lets you specify the lower and upper thresholds used in the definition of rise time. By default, the rise time is the time the response takes to rise from \(10 \%\) to \(90 \%\) of the way from the initial value to the steady-state value ( \(\mathrm{RT}=\) [0.1 0.9]). The upper threshold RT(2) is also used to calculate SettlingMin and SettlingMax. These values are the minimum and maximum values of the response occurring after the response reaches the upper threshold. You can use this syntax with any of the previous input-argument combinations.

\section*{Examples}

\section*{Step-Response Characteristics of Dynamic System}

Compute step-response characteristics, such as rise time, settling time, and overshoot, for a dynamic system model. For this example, use a continuous-time transfer function:
\[
\text { sys }=\frac{s^{2}+5 s+5}{s^{4}+1.65 s^{3}+5 s^{2}+6.5 s+2}
\]

Create the transfer function and examine its step response.
```

sys = tf([1 5 5],[1 1.65 5 6.5 2]);
step(sys)

```


The plot shows that the response rises in a few seconds, and then rings down to a steady-state value of about 2.5. Compute the characteristics of this response using stepinfo.
```

S = stepinfo(sys)
S = struct with fields:
RiseTime: 3.8456
TransientTime: 27.9762
SettlingTime: 27.9762
SettlingMin: 2.0689
SettlingMax: 2.6873
Overshoot: 7.4915
Undershoot: 0
Peak: 2.6873
PeakTime: 8.0530

```

Here, the function uses \(y_{\text {init }}=0\) to compute characteristics for the dynamic system model sys.
By default, the settling time is the time it takes for the error to stay below \(2 \%\) of \(\left|y_{\text {init }}-y_{\text {final }}\right|\). The result S. SettlingTime shows that for sys, this condition occurs after about 28 seconds. The default definition of rise time is the time it takes for the response to go from \(10 \%\) to \(90 \%\) of the way from \(y_{\text {init }}=0\) to \(y_{\text {final }}\). S.RiseTime shows that for sys, this rise occurs in less than 4 seconds. The maximum overshoot is returned in S.Overshoot. For this system, the peak value S. Peak, which occurs at the time S. PeakTime, overshoots by about \(7.5 \%\) of the steady-state value.

\section*{Step-Response Characteristics of MIMO System}

For a MIMO system, stepinfo returns a structure array in which each entry contains the response characteristics of the corresponding I/O channel of the system. For this example, use a two-output, two-input discrete-time system. Compute the step-response characteristics.
```

A = [0.68 -0.34; 0.34 0.68];
B = [0.18 -0.05; 0.04 0.11];
C = [0 -1.53; -1.12 -1.10];
D = [0 0; 0.06 -0.37];
sys = ss(A,B,C,D,0.2);
S = stepinfo(sys)
S=2\times2 struct array with fields:
RiseTime
TransientTime
SettlingTime
SettlingMin
SettlingMax
Overshoot
Undershoot
Peak
PeakTime

```

Access the response characteristics for a particular I/0 channel by indexing into S. For instance, examine the response characteristics for the response from the first input to the second output of sys, corresponding to \(S(2,1)\).
```

S(2,1)
ans = struct with fields:
RiseTime: 0.4000
TransientTime: 2.8000
SettlingTime: 3
SettlingMin: -0.6724
SettlingMax: -0.5188
Overshoot: 24.6476
Undershoot: 11.1224
Peak: 0.6724
PeakTime: 1

```

To access a particular value, use dot notation. For instance, extract the rise time of the \((2,1)\) channel.
```

rt21 = S(2,1).RiseTime
rt21 = 0.4000

```

\section*{Specify Percentage for Settling Time or Rise Time}

You can use SettlingTimeThreshold and RiseTimeThreshold to change the default percentage for settling and rise times, respectively, as described in the "Algorithms" on page 2-1385 section. For this example, use the system given by:
\[
\text { sys }=\frac{s^{2}+5 s+5}{s^{4}+1.65 s^{3}+6.5 s+2}
\]

Create the transfer function.
```

sys = tf([1 5 5],[1 1.65 5 6.5 2]);

```

Compute the time it takes for the error in the response of sys to stay below \(0.5 \%\) of the gap \(\mid y_{\text {final }}\) - \(y_{\text {init }} \mid\). To do so, set SettlingTimeThreshold to \(0.5 \%\), or 0.005 .
```

S1 = stepinfo(sys,'SettlingTimeThreshold',0.005);
st1 = S1.SettlingTime
st1 = 46.1325

```

Compute the time it takes the response of sys to rise from \(5 \%\) to \(95 \%\) of the way from \(y_{\text {init }}\) to \(y_{\text {final }}\) To do so, set RiseTimeThreshold to a vector containing those bounds.
```

S2 = stepinfo(sys,'RiseTimeThreshold',[0.05 0.95]);
rt2 = S2.RiseTime
rt2 = 4.1690

```

You can define percentages for both settling time and rise time in the same computation.
```

S3 = stepinfo(sys,'SettlingTimeThreshold',0.005,'RiseTimeThreshold',[0.05 0.95])
S3 = struct with fields:
RiseTime: 4.1690
TransientTime: 46.1325
SettlingTime: 46.1325
SettlingMin: 2.0689
SettlingMax: 2.6873
Overshoot: 7.4915
Undershoot: 0
Peak: 2.6873
PeakTime: 8.0530

```

\section*{Step-Response Characteristics from Response Data}

You can extract step-response characteristics from step-response data even if you do not have a model of your system. For instance, suppose you have measured the response of your system to a step input and saved the resulting response data in a vector \(y\) of response values at the times stored in another vector \(t\). Load the response data and examine it.
```

load StepInfoData t y
plot(t,y)

```


Compute step-response characteristics from this response data using stepinfo. If you do not specify the steady-state response value yfinal, then stepinfo assumes that the last value in the response vector y is the steady-state response. Because the data has some noise, the last value in y is likely not the true steady-state response value. When you know what the steady-state value should be, you can provide it to stepinfo. For this example, suppose that the steady-state response is 2.4.
```

S1 = stepinfo(y,t,2.4)
S1 = struct with fields:
RiseTime: 1.2897
TransientTime: 19.6478
SettlingTime: 19.6439
SettlingMin: 2.0219
SettlingMax: 3.3302
Overshoot: 38.7575
Undershoot: 0
Peak: 3.3302
PeakTime: 3.4000

```

Because of the noise in the data, the default definition of the settling time is too stringent, resulting in an arbitrary value of almost 20 seconds. To allow for the noise, increase the settling-time threshold from the default \(2 \%\) to \(5 \%\).

S2 = stepinfo(y,t,2.4,'SettlingTimeThreshold', 0.05)
S2 = struct with fields:
RiseTime: 1.2897
```

TransientTime: 10.4201
SettlingTime: 10.4149
SettlingMin: 2.0219
SettlingMax: 3.3302
Overshoot: 38.7575
Undershoot: 0
Peak: 3.3302
PeakTime: 3.4000

```

\section*{Difference Between Transient Time and Settling Time for Step Responses}

Settling time and transient time are equal when the peak error \(e_{\text {max }}\) is equal to the gap \(\left|y_{\text {final }}-y_{\text {init }}\right|\) (see "Algorithms" on page 2-1385), which is the case for models with no undershoot or feedthrough and with less than \(100 \%\) overshoot. They tend to differ for models with feedthrough, zeros at the origin, unstable zeros (undershoot), or large overshoot.

Consider the following models.
```

s = tf('s');
sys1 = 1+tf(1,[1 1]); % feedthrough
sys2 = tf([1 0],[1 1]); % zero at the origin
sys3 = tf([-3 1],[1 2 1]); % non-minimum phase with undershoot
sys4 = (s/0.5 + 1)/(s^2 + 0.2*s + 1); % large overshoot
step(sys1,sys2,sys3,sys4)
grid on
legend('Feedthrough','Zero at origin','Non-minimum phase with undershoot','Large overshoot')

```


Compute the step-response characteristics.
```

S1 = stepinfo(sys1)
S1 = struct with fields:
RiseTime: 1.6095
TransientTime: 3.9121
SettlingTime: 3.2190
SettlingMin: 1.8005
SettlingMax: 1.9993
Overshoot: 0
Undershoot: 0
Peak: 1.9993
PeakTime: 7.3222
S2 = stepinfo(sys2)
S2 = struct with fields:
RiseTime: 0
TransientTime: 3.9121
SettlingTime: NaN
SettlingMin: 6.6069e-04
SettlingMax: 1
Overshoot: Inf
Undershoot: 0
Peak: 1

```
```

 PeakTime: 0
 S3 = stepinfo(sys3)
S3 = struct with fields:
RiseTime: 2.9198
TransientTime: 6.5839
SettlingTime: 7.3229
SettlingMin: 0.9004
SettlingMax: 0.9991
Overshoot: 0
Undershoot: 88.9466
Peak: 0.9991
PeakTime: 10.7900
S4 = stepinfo(sys4)
S4 = struct with fields:
RiseTime: 0.3896
TransientTime: 40.3317
SettlingTime: 46.5052
SettlingMin: -0.2796
SettlingMax: 2.7571
Overshoot: 175.7137
Undershoot: 27.9629
Peak: 2.7571
PeakTime: 1.8850

```

Examine the plots and characteristics. For these models, the settling time and transient time differ because the peak error exceeds the gap between the initial and the final value. For models such as sys2, the settling time is returned as NaN because the steady-state value is zero.

\section*{Step Response Characteristics for Data with Initial Offset}

In this example, you compute the step-response characteristics from step-response data that has an initial offset. This means that the value of the response data is nonzero before the step occurs.

Load the step-response data and examine the plot.
```

load stepDataOffset.mat
plot(stepOffset.Time,stepOffset.Data)

```


If you do not specify yfinal and yinit, then stepinfo assumes that yfinal is the last value in the response vector y and yinit is zero. When you know what the steady-state and initial values are, you can provide them to stepinfo. Here, the steady state of the response yfinal is 0.9 and the initial offset yinit is 0.2 .

Compute step-response characteristics from this response data.
```

S = stepinfo(step0ffset.Data,stepOffset.Time,0.9,0.2)
S = struct with fields:
RiseTime: 0.0084
TransientTime: 1.0662
SettlingTime: 1.0662
SettlingMin: 0.8461
SettlingMax: 1.0878
Overshoot: 26.8259
Undershoot: 0.0429
Peak: 0.8878
PeakTime: 1.0225

```

Here, the peak value of this response is 0.8878 because stepinfo measures the maximum deviation from yinit.

\section*{Input Arguments}

\section*{sys - Dynamic system}
dynamic system model
Dynamic system, specified as a SISO or MIMO dynamic system model. Dynamic systems that you can use include:
- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.) For generalized models, stepinfo computes the stepresponse characteristics using the current value of tunable blocks and the nominal value of uncertain blocks.
- Identified LTI models, such as idtf, idss, or idproc models. (Using identified models requires System Identification Toolbox software.)

\section*{y - Step-response data}
vector | array
Step-response data, specified as one of the following:
- For SISO response data, a vector of length Ns, where Ns is the number of samples in the response data
- For MIMO response data, an Ns-by-Ny-by-Nu array, where Ny is the number of system outputs and Nu is the number of system inputs

\section*{t - Time vector}

\section*{vector}

Time vector corresponding to the response data in y , specified as a vector of length Ns .

\section*{yfinal - Steady-state value}

\section*{scalar | array}

Steady-state value, specified as a scalar or an array.
- For SISO response data, specify a scalar value.
- For MIMO response data, specify an Ny-by-Nu array, where each entry provides the steady-state response value for the corresponding system channel.

If you do not provide yfinal, then stepinfo uses the last value in the corresponding channel of \(y\) as the steady-state response value.

This argument is only supported when you provide step-response data as an input. For a dynamic system model sys as an input, stepinfo uses \(y_{\text {fnal }}=\) steady-state value to compute the characteristics that depend on this value.

\section*{yinit - Initial value \\ scalar | array}

Value of \(y\) before the step occurs, specified as a scalar or an array.
- For SISO response data, specify a scalar value.
- For MIMO response data, specify an Ny-by-Nu array, where each entry provides the response initial value for the corresponding system channel.

If you do not provide yinit, then stepinfo uses zero as the response initial value.
The response \(y(0)\) at \(t=0\) is equal to \(y_{\text {init }}\) for systems without feedthrough. However, the two quantities differ in the presence of feedthrough because of the discontinuity at \(t=0\).

For example, the following figure shows the step response of a system with feedthrough sys = tf([-1 0.21\(],\left[\begin{array}{lll}1 & 0.7 & 1\end{array}\right]\) ).


Here, \(y_{i n i t}\) is zero and the feedthrough value is -1 .
This argument is only supported when you provide step-response data as an input. For a dynamic system model sys as an input, stepinfo uses \(y_{\text {init }}=0\) to compute the characteristics that depend on this value.

\section*{ST - Settling time threshold}
0.02 (default) | scalar between 0 and 1

Threshold for defining settling and transient times, specified as a scalar value between 0 and 1 . To change the default settling and transient time definitions (see "Algorithms" on page 2-1385), set ST to a different value. For instance, to measure when the error falls below 5\%, set ST to 0.05.

\section*{RT - Rise time thresholds}
[0.1 0.9] (default)| 2 -element row vector
Threshold for defining rise time, specified as a 2 -element row vector of nondescending values between 0 and 1. To change the default rise time definition (see "Algorithms" on page 2-1385), set RT to a different value. For instance, to define the rise time as the time it takes for the response to rise from \(5 \%\) to \(95 \%\) from the initial value to the steady-state value, set RT to [0.05 0.95].

\section*{Output Arguments}

\section*{S - Step-response characteristics}
structure
Step-response characteristics, returned as a structure containing the fields:
- RiseTime
- TransientTime
- SettlingTime
- SettlingMin
- SettlingMax
- Overshoot
- Undershoot
- Peak
- PeakTime

For more information on how stepinfo defines these characteristics, see "Algorithms" on page 21385.

For MIMO models or responses data, S is a structure array in which each entry contains the stepresponse characteristics of the corresponding I/O channel. For instance, if you provide a 3 -input, 3output model or an array of response data, then \(S(2,3)\) contains the characteristics of the response from the third input to the second output. For an example, see "Step-Response Characteristics of MIMO System" on page 2-1376.

If sys is unstable, then all step-response characteristics are NaN, except for Peak and PeakTime, which are Inf.

\section*{Algorithms}

For a step response \(y(t)\), stepinfo computes characteristics relative to \(y_{\text {init }}\) and \(y_{\text {fnal }}\). For a dynamic system model sys, stepinfo uses \(y_{\text {init }}=0\) and \(y_{f i n a l}=\) steady-state value.

This table shows how stepinfo computes each characteristic.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Step-Response \\
Characteristic
\end{tabular} & Description \\
\hline RiseTime & \begin{tabular}{l} 
Time it takes for the response to rise from \(10 \%\) to \(90 \%\) of the way from \(y_{\text {init }}\) \\
to \(y_{\text {fnal }}\)
\end{tabular} \\
\hline TransientTime & \begin{tabular}{l} 
The first time \(T\) such that the error \(\left|y(t)-y_{\text {fnal }}\right| \leq\) SettlingTimeThreshold \(\times\) \\
\(e_{m a x}\) for \(t \geq T\), where \(e_{m a x}\) is the maximum error \(\mid y(t)-y_{\text {final }}\) for \(t \geq 0\). \\
By default, SettlingTimeThreshold \(=0.02(2 \%\) of the peak error). Transient \\
time measures how quickly the transient dynamics die off.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Step-Response \\
Characteristic
\end{tabular} & Description \\
\hline SettlingTime & \begin{tabular}{l} 
The first time \(T\) such that the error \(\mid y(t)-y_{\text {fnal }} \leq\) SettlingTimeThreshold \(\times\) \\
\\
\(l y_{\text {fnal }}-y_{\text {init }} \mid\) for \(t \geq T\). \\
By default, SettlingTime measures the time it takes for the error to stay \\
below \(2 \%\) of \(\left|y_{\text {fnal }}-y_{\text {init }}\right|\)
\end{tabular} \\
\hline SettlingMin & Minimum value of \(y(t)\) once the response has risen \\
\hline SettlingMax & Maximum value of \(y(t)\) once the response has risen \\
\hline Overshoot & \begin{tabular}{l} 
Percentage overshoot. Relative to the normalized response \(y_{\text {norm }}(t)=(y(t)-\) \\
\(\left.y_{\text {init }}\right) /\left(y_{\text {final }}-y_{\text {init }}\right)\), the overshoot is the larger of zero and \(100 \times \max \left(y_{\text {norm }}(t)\right.\) \\
\(-1)\).
\end{tabular} \\
\hline Undershoot & \begin{tabular}{l} 
Percentage undershoot. Relative to the normalized response \(y_{\text {norm }}(t)\), the \\
undershoot is the smaller of zero and \(-100 \times \max \left(y_{\text {norm }}(t)-1\right)\).
\end{tabular} \\
\hline Peak & Peak value of \(\left|y(t)-y_{\text {init }}\right|\) \\
\hline PeakTime & Time at which the peak value occurs \\
\hline
\end{tabular}

\section*{Version History \\ Introduced in R2006a}

\section*{R2021b: Response characteristics computation changes \\ Behavior changed in R2021b}

The computation method of some response characteristics has changed. Additionally, the settling time calculation is now based on how quickly the response stays below a specified threshold of the gap between the initial and the final value.

The following table summarizes the changes to the fields of the structure returned by stepinfo.
\begin{tabular}{|c|c|}
\hline Before R2021b & R2021b \\
\hline RiseTime - Time it takes for the response to rise from \(10 \%\) to \(90 \%\) of the way from \(y(1)\) to \(y_{\text {final }}\). & RiseTime - Time it takes to go from 10\% to \(90 \%\) of the way from \(y_{\text {init }}\) to \(y_{\text {final }}\). \\
\hline \begin{tabular}{l}
SettlingTime - The first time \(T\) such that the error \(\mid y(t)-y_{\text {fnal }} \leq\) SettlingTimeThreshold \(\times e_{\text {max }}\) for \(t \geq T\), where \(e_{\max }\) is the maximum error \(\mid y(t)\) \(y_{\text {final }}\) for \(t \geq 0\). \\
By default, SettlingTimeThreshold \(=0.02\) (2\% of the peak error). SettlingTime measures the time for the error to fall below \(2 \%\) of the peak value of the error.
\end{tabular} & \begin{tabular}{l}
SettlingTime - The first time \(T\) such that the error \(\left|y(t)-y_{\text {final }}\right| \leq\) SettlingTimeThreshold \(\times\left|y_{\text {final }}\right|\) - \(y_{\text {init }} \mid\) for \(t \geq T\). \\
By default, SettlingTime measures the time it takes for the error to stay below \(2 \%\) of \(\mid y_{\text {final }}-\) \(y_{\text {init }}\).
\end{tabular} \\
\hline Peak - Peak absolute value of \(y(t)\). & Peak - Peak absolute value of \(y(t)-y_{\text {init }}\). \\
\hline
\end{tabular}

Additionally, the output structure S now contains a TransientTime field. This characteristic contains the peak-error-based settling time calculation used in releases before R2021b. Transient time measures how quickly the transient dynamics die off.

These changes also apply to the characteristics of step, impulse, and initial plots. Additionally:
- For step plots, \(y_{i n i t}\) is always assumed to be zero and \(y_{\text {final }}\) is the steady-state value.
- For the step response, transient time and settling time tend to differ for models with feedthrough, zeros at the origin, unstable zeros (undershoot), or large overshoot. They match for models with no undershoot or feedthrough, and with less than \(100 \%\) overshoot. For an example, see "Difference Between Transient Time and Settling Time for Step Responses" on page 2-1379.
- For the step response of models with feedthrough, the new RiseTime value can differ because \(y(1)\) is nonzero whereas \(y_{i n i t}\) is zero by default. Before R2021b, the rise time computed was the time it takes to go from \(10 \%\) to \(90 \%\) of the way from \(y(1)\) to \(y_{\text {final }}\), instead of \(y_{\text {init }}\) to \(y_{\text {final }}\) now.

\section*{See Also}
step|lsiminfo

\section*{stepplot}

Plot step response with additional plot customization options

\section*{Syntax}
h = stepplot(sys)
h = stepplot(sys1,sys2,...,sysN)
h = stepplot(sys1,LineSpec1,...,sysN,LineSpecN)
h = stepplot( ,tFinal)
h = stepplot ,t)
h = stepplot ( \(\overline{\mathrm{AX}}\),
h = stepplot (__, , plotoptions)
h = stepplot(__, dataoptions)

\section*{Description}
stepplot lets you plot dynamic system step responses with a broader range of plot customization options than step. You can use stepplot to obtain the plot handle and use it to customize the plot, such as modify the axes labels, limits and units. You can also use stepplot to draw a step response plot on an existing set of axes represented by an axes handle. To customize an existing step plot using the plot handle:

1 Obtain the plot handle
2 Use getoptions to obtain the option set
3 Update the plot using setoptions to modify the required options
For more information, see "Customizing Response Plots from the Command Line". To create step plots with default options or to extract step response data, use step.
\(\mathrm{h}=\) stepplot(sys) plots the step response of the dynamic system model sys and returns the plot handle \(h\) to the plot. You can use this handle \(h\) to customize the plot with the getoptions and setoptions commands.
h = stepplot(sys1,sys2,...,sysN) plots the step response of multiple dynamic systems sys1, sys \(2, \ldots\), sysN on the same plot. All systems must have the same number of inputs and outputs to use this syntax.
h = stepplot(sys1,LineSpec1,...,sysN,LineSpecN) sets the line style, marker type, and color for the step response of each system. All systems must have the same number of inputs and outputs to use this syntax.
\(\mathrm{h}=\) stepplot (__, tFinal) simulates the step response from \(\mathrm{t}=0\) to the final time \(\mathrm{t}=\) tFinal. Specify tFinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sample time ( \(\mathrm{Ts}=-1\) ), stepplot interprets tFinal as the number of sampling intervals to simulate.
h = stepplot( \(\qquad\) , \(t\) ) simulates the step response using the time vector \(t\). Specify \(t\) in the system time units, specified in the TimeUnit property of sys.
h = stepplot (AX, \(\qquad\) ) plots the step response on the Axes object in the current figure with the handle AX.
h = stepplot ( \(\qquad\) , plotoptions ) plots the step response with the options set specified in plotoptions. You can use these options to customize the step plot appearance using the command line. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run stepplot. Therefore, this syntax is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.
h = stepplot ( \(\qquad\) , dataoptions) plots the step response with the options set specified in dataoptions. You can use this syntax to specify options such as the step amplitude and input offset using the options set dataoptions. This syntax is useful when you want to write a script to generate multiple plots with the same option set. Use stepData0ptions to create the options set.

\section*{Examples}

\section*{Customize Step Plot using Plot Handle}

For this example, use the plot handle to change the time units to minutes and turn on the grid.
Generate a random state-space model with 5 states and create the step response plot with plot handle h.
```

rng("default")
sys = rss(5);
h = stepplot(sys);

```

Change the time units to minutes and turn on the grid. To do so, edit properties of the plot handle, \(h\) using setoptions.
```

setoptions(h,'TimeUnits','minutes','Grid','on');

```


The step plot automatically updates when you call setoptions.
Alternatively, you can also use the timeoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.
```

plotoptions = timeoptions('cstprefs');

```

Change properties of the options set by setting the time units to minutes and enabling the grid.
plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on'; stepplot(sys,plotoptions);


You can use the same option set to create multiple step plots with the same customization. Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example TimeUnits and Grid, override the toolbox preferences.

\section*{Display Normalized Response on Step Plot}

Generate a step response plot for two dynamic systems.
```

sys1 = rss(3);
sys2 = rss(3);
h = stepplot(sys1,sys2);

```


Each step response settles at a different steady-state value. Use the plot handle to normalize the plotted response.
```

setoptions(h,'Normalize','on')

```


Now, the responses settle at the same value expressed in arbitrary units.

\section*{Plot Step Responses of Identified Models with Confidence Region}

Compare the step response of a parametric identified model to a nonparametric (empirical) model, and view their 3- \(\sigma\) confidence regions. (Identified models require System Identification Toolbox \({ }^{\mathrm{TM}}\) software.)

Identify a parametric and a nonparametric model from sample data.
```

load iddata1 z1
sys1 = ssest(z1,4);
sys2 = impulseest(z1);

```

Plot the step responses of both identified models. Use the plot handle to display the 3-б confidence regions.
```

t = -1:0.1:5;
h = stepplot(sys1,'r',sys2,'b',t);
showConfidence(h,3)
legend('parametric','nonparametric')

```

\section*{Step Response}


The nonparametric model sys 2 shows higher uncertainty.

\section*{Customized Step Response Plot at Specified Time}

For this example, examine the step response of the following zero-pole-gain model and limit the step plot to tFinal \(=15 \mathrm{~s}\). Use 15 -point blue text for the title. This plot should look the same, regardless of the preferences of the MATLAB session in which it is generated.
```

sys = zpk(-1,[-0.2+3j,-0.2-3j],1)*tf([1 1],[1 0.05]);

```
tFinal = 15;

First, create a default options set using timeoptions.
```

plotoptions = timeoptions;

```

Next change the required properties of the options set plotoptions.
```

plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];

```

Now, create the step response plot using the options set plotoptions.
h = stepplot(sys,tFinal,plotoptions);

\section*{Time Response}


Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

\section*{Plot Step Response of Nonlinear Identified Model}

Load data for estimating a nonlinear Hammerstein-Wiener model.
load(fullfile(matlabroot,'toolbox','ident','iddemos','data','twotankdata'));
z = iddata(y,u,0.2,'Name','Two tank system');
z is an iddata object that stores the input-output estimation data.
Estimate a Hammerstein-Wiener Model of order [15 3] using the estimation data. Specify the input nonlinearity as piecewise linear and output nonlinearity as one-dimensional polynomial.
sys = nlhw(z,[1 5 3],idPiecewiseLinear,idPolynomial1D);
Create an option set to specify input offset and step amplitude level.
```

opt = stepDataOptions('InputOffset',2,'StepAmplitude',0.5);

```

Plot the step response until 60 seconds using the specified options.
```

stepplot(sys,60,opt);

```

\section*{Step Response}


\section*{Input Arguments}

\section*{sys - Dynamic system}
dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:
- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
- Sparse state-space models, such as sparss or mechss models. Final time tFinal must be specified when using sparse models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)
- For tunable control design blocks, the function evaluates the model at its current value to plot the step response data.
- For uncertain control design blocks, the function plots the nominal value and random samples of the model.
- Identified LTI models, such as idtf, idss, or idproc models. (Using identified models requires System Identification Toolbox software.)

If sys is an array of models, the function plots the step response of all models in the array on the same axes.

\section*{LineSpec - Line style, marker, and color}
character vector \(\mid\) string
Line style, marker, and color, specified as a character vector or string containing symbols. The symbols can appear in any order. You do not need to specify all three characteristics (line style, marker, and color). For example, if you omit the line style and specify the marker, then the plot shows only the marker and no line.
Example: ' - or' is a red dashed line with circle markers
\begin{tabular}{|l|l|}
\hline Line Style & Description \\
\hline- & Solid line \\
\hline-- & Dashed line \\
\hline\(:\) & Dotted line \\
\hline.- & Dash-dot line \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Marker & Description \\
\hline '0' & Circle \\
\hline '+' & Plus sign \\
\hline '*' & Asterisk \\
\hline '.' & Point \\
\hline 'x' & Cross \\
\hline ' _' & Horizontal line \\
\hline '|' & Vertical line \\
\hline 's' & Square \\
\hline 'd' & Diamond \\
\hline '^' & Upward-pointing triangle \\
\hline 'v' & Downward-pointing triangle \\
\hline '>' & Right-pointing triangle \\
\hline '<' & Left-pointing triangle \\
\hline 'p' & Pentagram \\
\hline 'h' & Hexagram \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Color & Description \\
\hline y & yellow \\
\hline m & magenta \\
\hline c & cyan \\
\hline r & red \\
\hline g & green \\
\hline b & blue \\
\hline W & white \\
\hline k & black \\
\hline
\end{tabular}

\section*{tFinal - Final time for step response computation \\ scalar}

Final time for step response computation, specified as a scalar. Specify tFinal in the system time units, specified in the TimeUnit property of sys. For discrete-time systems with unspecified sample time (Ts \(=-1\) ), stepplot interprets tFinal as the number of sampling intervals to simulate.

\section*{t - Time for step response simulation}
vector
Time for step response simulation, specified as a vector. Specify the time vector \(t\) in the system time units, specified in the TimeUnit property of sys. The time vector must be real, finite, and must contain monotonically increasing and evenly spaced time samples.

The time vector \(t\) is:
- \(t=T_{\text {initial }}: T_{\text {sample }}: T_{\text {final }}\), for discrete-time systems.
- \(\quad t=T_{\text {initial }}: d t: T_{\text {final }}\), for continuous-time systems. Here, \(d t\) is the sample time of a discrete approximation of the continuous-time system.

\section*{AX - Target axes}

Axes object
Target axes, specified as an Axes object. If you do not specify the axes and if the current axes are Cartesian axes, then stepplot plots on the current axes. Use AX to plot into specific axes when creating a step plot.

\section*{plotoptions - Step plot options set}

TimePlot0ptions object
Step plot options set, specified as a TimePlotOptions object. You can use this option set to customize the step plot appearance. Use timeoptions to create the option set. Settings you specify in plotoptions overrides the preference settings in the MATLAB session in which you run stepplot. Therefore, plotoptions is useful when you want to write a script to generate multiple plots that look the same regardless of the local preferences.

For the list of available options, see timeoptions.

\section*{dataoptions - Step response data options set \\ step object}

Step response data options set, specified as a step object. Specify options such as the step amplitude and input offset using the options set dataoptions. This is useful when you want to write a script to generate multiple plots with the same step amplitude and input offset values. Use stepDataOptions to create the options set.

\section*{Output Arguments}

\section*{h - Plot handle}
handle object
Plot handle, returned as a handle object. Use the handle \(h\) to get and set the properties of the step plot using getoptions and setoptions. For the list of available options, see the Properties and Values Reference section in "Customizing Response Plots from the Command Line".

\section*{Version History}

Introduced before R2006a

\section*{See Also}
getoptions| setoptions| step| stepData0ptions|timeoptions

\section*{Topics}
"Customizing Response Plots from the Command Line"

\section*{strseq}

Create sequence of indexed character vectors

\section*{Syntax}
txtarray = strseq(TXT,INDICES)

\section*{Description}
txtarray \(=\) strseq(TXT,INDICES) creates a sequence of indexed character vectors in the cell array txtarray by appending the integer values INDICES to the character vector TXT.

Note You can use strvec to aid in system interconnection. For an example, see the sumblk reference page.

\section*{Examples}

\section*{Create a Cell Array of Indexed Text}

Index the text 'e' with the numbers 1,2 , and 4 .
```

txtarray = strseq('e',[1 2 4])
txtarray = 3x1 cell
{'e1'}
{'e2'}
{'e4'}

```

\title{
Version History
}

Introduced in R2008b

\section*{See Also \\ strcat|connect}

\section*{sumblk}

Summing junction for name-based interconnections

\section*{Syntax}

S = sumblk(formula)
S = sumblk(formula, signalsize)
S = sumblk(formula,signames1,...,signamesN)

\section*{Description}

S = sumblk(formula) creates the summing junction described by formula in the form of a transfer function (tf) model, S. The string formula specifies an equation that relates the scalar input and output signals of \(S\), such as "e =r-y". The function sets the InputName and OutputName properties of \(S\) based on formula. Use \(S\) in conjunction with connect to interconnect dynamic system models and derive aggregate models for block diagrams.

S = sumblk(formula, signalsize) returns a vector-valued summing junction. The input and output signals are vectors with signalsize elements. sumblk sets the InputName and OutputName properties by vector expansion of the signal names in formula.

S = sumblk(formula, signames1,..., signamesN) replaces placeholders in formula by the signal names signames. Indicate a placeholder in formula by using a signal name beginning with \(\%\). The number of signames arguments must match the number of placeholders in formula. The first placeholder in formula is replaced by signames1, the second by signames2, and so on.

\section*{Examples}

\section*{Summing Junction with Scalar-Valued Signals}

Create the summing junction of the following illustration. All signals are scalar-valued.


This summing junction has the formula \(u=u 1+u 2+u 3\). Use this formula with sumblk to create the summing junction.
```

S = sumblk('u = u1 + u2 + u3');

```
\(S\) is the transfer function (tf) representation of the sum \(u=u 1+u 2+u 3\). That is, \(S\) is a staticgain \(t f\) with three inputs and one output, which is equal to the sum of the inputs. The transfer function \(S\) gets its input and output names from the formula.
S.OutputName
```

ans = 1x1 cell array
{'u'}

```
S. InputName
```

ans = 3x1 cell
{'u1'}
{'u2'}
{'u3'}

```

Therefore, you can use \(S\) with the name-based syntax of the connect command to build aggregate models such as the system of the following block diagram.


To do so, create LTI models for \(\mathrm{H} 1, \mathrm{H} 2\), and H 3 , and name their inputs and outputs according to the diagram. For this example, use transfer functions.
```

H1 = tf(1,[1 2],"InputName","z1","OutputName","u1");
H2 = tf([1 -2],[1 1],"InputName","z2","OutputName","u2");
H3 = tf(2,[2 1],"InputName","u","OutputName","u3");

```

Connect the models and the summing junction to create an aggregate model with inputs \(z 1\) and \(z 2\) and output \(u\). The connect command automatically connects the outputs of the components to inputs with matching names.
```

T = connect(H1,H2,H3,S,{"z1","z2"},{"u"});
T.InputName
ans = 2x1 cell
{'z1'}
{'z2'}

```
T.OutputName
```

ans = 1x1 cell array
{'u'}

```

\section*{Summing Junction with Vector-Valued Signals}

Create the summing junction \(v=u-d\) where \(u, d, v\) are vector-valued signals of length 2 . This summing junction is shown in the following diagram, where each arrow represents two signals.


This summing junction outputs \(v(1)=u(1)-d(1)\) and \(v(2)=u(2)-d(2)\). To create this junction using sumblk, specify both the formula and the signal length.
```

S = sumblk('v = u - d',2);
size(S)
Transfer function with 2 outputs and 4 inputs.

```

The result is a transfer function with four inputs and two outputs: two inputs each for \(d\) and \(u\), and two outputs for v. sumblk automatically performs vector expansion of the signal names and assigns them to S.InputName and S.OutputName.

\section*{S.InputName}
```

ans = 4xl cell
{'u(1)'}
{'u(2)'}
{'d(1)'}
{'d(2)'}

```

\section*{S.OutputName}
```

ans = 2x1 cell
{'v(1)'}
{'v(2)'}

```

You can connect \(S\) to other dynamic system models to build aggregate models, as you would use any other MIMO transfer function. For instance, suppose that you want to create a model representing the following two-channel feedback loop, that is, a feedback loop in which each line in the diagram represents two signals.


Create two-input, two-output models for H 1 and H 2 , and set their InputName and OutputName properties as indicated by the diagram. For this example, use random state-space models.
```

H1 = rss(3,2,2);
H1.InputName = 'v';
H1.OutputName = 'w';
H2 = rss(3,2,2);
H2.InputName = 'w';
H2.OutputName = 'd';

```

Note that the signal names in the dynamic system models are automatically expanded, just as sumblk expands the signal names of S. For instance, examine the outputs of H 1 .
```

H1.OutputName
ans = 2x1 cell
{'w(1)'}
{'w(2)'}

```

The connect command also performs this expansion. Thus, you can assemble the aggregate system with the following command.
```

T = connect(S,H1,H2,'u','W');
size(T)
State-space model with 2 outputs, 2 inputs, and 6 states.

```

\section*{Specify Individual Names in Summing Junction with Vector-Valued Signals}

As shown in the example "Summing Junction with Vector-Valued Signals" on page 2-1402, when you create a summing junction for vector signals, by default sumblk appends an index to the signal names that you provide. If you need to specify distinct signal names instead of this vector expansion, use a placeholder in the summing-junction formula to represent the signals you want to name. Then, use the signames input argument to provide the specific names to substitute for the placeholder in creating the summing junction.

For instance, create a summing junction having the following formula.
\[
\begin{aligned}
& \mathrm{e}(1)=\text { setpoint }(1)-\text { alpha } \\
& \mathrm{e}(2)=\operatorname{setpoint}(2)-\mathrm{q}
\end{aligned}
\]

This formula is the summing junction shown in the following diagram, where setpoint represents two inputs and e represents two outputs.


To create this summing junction, allow sumblk to expand e and setpoint, but use a signal name beginning with \% as a placeholder for the specific signal names you provide in the signames argument.
```

formula = 'e = setpoint - %y';
signames = ["alpha","q"];
S = sumblk(formula,signames);

```
sumblk replaces the placeholder \%y with the signal names alpha and q and expands the other signal names. Note that sumblk takes the size of the vector signals from the number of signals in signames. Thus, the setpoint input and e output of \(S\) each contain two signals.
```

S.InputName
ans = 4x1 cell
{'setpoint(1)'}
{'setpoint(2)'}
{'alpha' }
{'q' }

```
S.OutputName
ans \(=2 \times 1\) cell
    \{'e(1)'\}
    \{'e(2)'\}

This syntax is particularly useful when you want to create a summing junction to connect existing models whose InputName or OutputName properties are already set. For instance, consider the following two-input, two-output state-space model.
\(A=[-0.0040 .03 ; 0.03-0.19] ;\)
\(B=[0.30 .2 ;-0.060] ;\)
\(C=[0.990 .5 ; 00] ;\)
D = 0;
G = ss(A,B,C,D);
G.InputName = \{'angle','rate'\};
G.OutputName = \{'current','temp'\};

Create a summing junction that subtracts the outputs of G from a pair of reference inputs, such that
\[
\begin{aligned}
& e(1)=\operatorname{ref}(1)-\text { current } \\
& e(2)=\operatorname{ref}(2)-\text { temp }
\end{aligned}
\]

To do so, use a placeholder for these signals in the formula. Then, use G. OutputName as the signames input.
```

S = sumblk('e = ref - %outputs',G.OutputName);
S.InputName
ans = 4xl cell
{'ref(1)' }
{'ref(2)' }
{'current'}
{'temp' }

```

You can use multiple placeholders to replace multiple elements of the formula. sumblk replaces the placeholders in the order you provide them. For instance, give the reference signals specific names instead of \(\operatorname{ref}(1)\) and \(\operatorname{ref}(2)\).
```

refnames = ["refcur","reftemp"];
S = sumblk('e = %refs - %outputs',refnames,G.OutputName);
S.InputName
ans = 4xl cell
{'refcur' }
{'reftemp'}
{'current'}

```
\{'temp' \}

\section*{Input Arguments}

\section*{formula - Equation relating input and output signals of summing junction}
string | character vector
Equation that relates the input and output signals of the summing junction transfer function S , specified as a string or character vector. For example, consider the summing junction of the following diagram.


To represent this summing junction as a three-input, one-output transfer function, use the following commands.
```

formula = "e = r + d - y";
S = sumblk(formula);

```

For vector-valued signals, you can optionally use one or more placeholders in formula to control the names that sumblk assigns to S. InputName and S.OutputName. To put a placeholder in formula, use a signal name that begins with \(\%\). When assigning signal names to \(S\), the sumblk command replaces each placeholder with the names you provide in the signames argument.

Such placeholders are particularly useful for creating summing junctions for connecting existing models that have named signals. For example, if C and G are dynamic system models with nonempty InputName and OutputName properties, respectively, you can create a summing junction using the following expression.

S = sumblk("\%e = r-\%y",C.InputName, G.OutputName)
sumblk uses the values of C. InputName and G. OutputName in place of \(\% e\) and \(\% y\), respectively. The vector dimension of \(C\). InputName and G.OutputName must match. sumblk assigns the signal \(r\) the same dimension. For an example, see "Specify Individual Names in Summing Junction with VectorValued Signals" on page 2-1404.

\section*{signalsize - Number of elements in each signal \\ 1 (default) | positive integer}

Number of elements in each input and output signal of S, specified as a positive integer. Setting signalsize greater than 1 lets you specify a summing junction that operates on vector-valued signals. For instance, \(S=\operatorname{sumblk}(" e=r-y ", 2)\) creates a summing junction where each of the inputs \(r\) and \(y\) and the output \(e\) is a vector signal with two elements. See "Summing Junction with Vector-Valued Signals" on page 2-1402.

\section*{signames - Substitute signal names for a placeholder}
string array | cell array of character vectors

Substitute signal names for a placeholder (signal name beginning with \%) in the argument formula, specified as a string array or a cell array of character vectors. Provide one signames argument for each placeholder in formula.

Specify signames as:
- A string array, such as ["alpha", "q"].
- A cell array of signal names, such as \{'alpha', 'q'\}.
- The InputName or OutputName property of a model in the MATLAB workspace. For example:
```

S = sumblk("%e = r - y",C.InputName)

```

This command creates a summing junction whose outputs have the same name as the inputs of the model C in the MATLAB workspace. For an example showing how to use signames, see "Specify Individual Names in Summing Junction with Vector-Valued Signals" on page 2-1404.

If you use placeholders and the signames argument, then sumblk sets the vector length of the signals of S . If you use multiple placeholders, then all signames arguments must have the same number of signals.

\section*{Output Arguments}

\section*{S - Transfer function for summing junction}
tf model
Transfer function for the summing junction, returned as a tf model.
sumblk sets the InputName and OutputName properties of S using the signal names in formula. For instance, if you enter \(S=\operatorname{sumblk}(" e=r+d-y ")\), then sumblk creates \(S\) with S.InputName = \{'r';'d';'y'\} and S.OutputName = \{'e'\}. Use these input and output names to interconnect \(S\) with other dynamic system models to build composite systems. For an example, see "Summing Junction with Scalar-Valued Signals" on page 2-1401.

If signalsize is greater than 1 , then S has signalsize inputs (or outputs) per signal name in formula. The function sets S. InputName and S.OutputName by applying vector expansion to the signal name specified in formula, such as \{'e(1)', 'e(2)',...\}. For an example, see "Summing Junction with Vector-Valued Signals" on page 2-1402.

If you use placeholders in formula, then sumblk sets the InputName and OutputName properties of S using the names you provide in signames. For an example, see "Specify Individual Names in Summing Junction with Vector-Valued Signals" on page 2-1404.

\section*{Version History}

\section*{Introduced in R2008a}

\section*{See Also}
connect | series | parallel

\section*{Topics}
"Multi-Loop Control System"
"MIMO Control System"

\section*{systune}

Tune fixed-structure control systems modeled in MATLAB

\section*{Syntax}
[CL,fSoft] = systune(CL0,SoftReqs)
[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs)
[CL,fSoft,gHard] = systune(CL0, SoftReqs, HardReqs,options)
[CL,fSoft,gHard,info] = systune( \(\qquad\)

\section*{Description}
systune tunes fixed-structure control systems subject to both soft and hard design goals. systune can tune multiple fixed-order, fixed-structure control elements distributed over one or more feedback loops. For an overview of the tuning workflow, see "Automated Tuning Workflow".

This command tunes control systems modeled in MATLAB. For tuning Simulink models, use slTuner to create an interface to your Simulink model. You can then tune the control system with systune for slTuner.
[CL,fSoft] = systune(CL0,SoftReqs) tunes the free parameters of the control system model, CL0, to best meet the soft tuning requirements. The best achieved soft constraint values are returned as fSoft. For robust tuning against real parameter uncertainty, use a control system model with uncertain real parameters. For robust tuning against a set of plant models, use an array of control system models CL0. (See "Input Arguments" on page 2-1417.)
[CL,fSoft, gHard] = systune(CL0, SoftReqs,HardReqs) tunes the control system to best meet the soft tuning requirements subject to satisfying the hard tuning requirements (constraints). It returns the best achieved values for the soft and hard constraints.
[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs,options) specifies options for the optimization.
[CL,fSoft,gHard,info] = systune( __ ) also returns detailed information about each optimization run. All input arguments described for the previous syntaxes also apply here.

\section*{Examples}

\section*{Tune Control System to Soft Requirements}

Tune a cascaded control system to meet requirements of reference tracking and disturbance rejection.

The cascaded control system of the following illustration includes two tunable controllers, the PI controller for the inner loop, \(C_{2}\), and the PID controller for the outer loop, \(C_{1}\).


The blocks \(x_{1}\) and \(x_{2}\) mark analysis-point locations. These are locations at which loops can be opened or signals injected for the purpose of specifying requirements for tuning the system.

Tune the free parameters of this control system to meet the following requirements:
- The output signal, \(y_{1}\), tracks the reference signal, \(r\), with a response time of 10 seconds and a steady-state error of \(1 \%\).
- A disturbance injected at \(x_{2}\) is suppressed at \(y_{1}\) by a factor of 10 .

Create tunable Control Design Blocks to represent the controllers, and numeric LTI models to represent the plants. Also, create AnalysisPoint blocks to mark the points of interest in each feedback loop.
```

G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);
C20 = tunablePID('C2','pi');
C10 = tunablePID('C1','pid');
X1 = AnalysisPoint('X1');
X2 = AnalysisPoint('X2');

```

Connect these components to build a model of the entire closed-loop control system.
```

InnerLoop = feedback(X2*G2*C20,1);
CL0 = feedback(G1*InnerLoop*C10,X1);
CL0.InputName = 'r';
CL0.OutputName = 'y';

```

CL0 is a tunable genss model. Specifying names for the input and output channels allows you to identify them when you specify tuning requirements for the system.

Specify tuning requirements for reference tracking and disturbance rejection.
```

Rtrack = TuningGoal.Tracking('r','y',10,0.01);
Rreject = TuningGoal.Gain('X2','y',0.1);

```

The TuningGoal. Tracking requirement specifies that the signal at ' \(y\) ' track the signal at ' \(r\) ' with a response time of 10 seconds and a tracking error of \(1 \%\).

The TuningGoal. Gain requirement limits the gain from the implicit input associated with the AnalysisPoint block, X 2 , to ' y '. (See AnalysisPoint.) Limiting this gain to a value less than 1 ensures that a disturbance injected at X 2 is suppressed at the output.

Tune the control system.
```

[CL,fSoft] = systune(CL0,[Rtrack,Rreject]);
Final: Soft = 1.24, Hard = -Inf, Iterations = 106

```
systune converts each tuning requirement into a normalized scalar value, \(f\). The command adjusts the tunable parameters of CL0 to minimize the \(f\) values. For each requirement, the requirement is satisfied if \(f<1\) and violated if \(f>1\). fSoft is the vector of minimized \(f\) values. The largest of the minimized \(f\) values is displayed as Soft.

The output model CL is the tuned version of CL0. CL contains the same Control Design Blocks as CL0, with current values equal to the tuned parameter values.

Validate that the tuned control system meets the tracking requirement by examining the step response from ' \(r\) ' to ' \(y\) '.
stepplot(CL)


The step plot shows that in the tuned control system, CL, the output tracks the input with approximately the desired response time.

Validate the tuned system against the disturbance rejection requirement by examining the closedloop response to a signal injected at X2.
```

CLdist = getIOTransfer(CL,'X2','y');
stepplot(CLdist);

```

\section*{Step Response}

getIOTransfer extracts the closed-loop response from the specified inputs to outputs. In general, getIOTransfer and getLoopTransfer are useful for validating a control system tuned with systune.

You can also use viewGoal to compare the responses of the tuned control system directly against the tuning requirements, Rtrack and Rreject.
```

viewGoal([Rtrack,Rreject],CL)

```

Requirement 1: Tracking error as a function of frequency


Requirement 2: Maximum gain as a function of frequency


\section*{Tune Control System to Both Hard and Soft Requirements}

Tune a cascaded control system to meet requirements of reference tracking and disturbance rejection. These requirements are subject to a hard constraint on the stability margins of the inner and outer loops.

The cascaded control system of the following illustration includes two tunable controllers, the PI controller for the inner loop, \(C_{2}\), and the PID controller for the outer loop, \(C_{1}\).


The blocks \(x_{1}\) and \(x_{2}\) mark analysis-point locations. These are locations at which you can open loops or inject signals for the purpose of specifying requirements for tuning the system.

Tune the free parameters of this control system to meet the following requirements:
- The output signal, \(y_{1}\), tracks the reference signal at \(r\) with a response time of 5 seconds and a steady-state error of \(1 \%\).
- A disturbance injected at \(x_{2}\) is suppressed at the output, \(y_{1}\), by a factor of 10 .

Impose these tuning requirements subject to hard constraints on the stability margins of both loops.
Create tunable Control Design Blocks to represent the controllers and numeric LTI models to represent the plants. Also, create AnalysisPoint blocks to mark the points of interest in each feedback loop.
```

G2 = zpk([],-2,3);
G1 = zpk([],[-1 -1 -1],10);
C20 = tunablePID('C2','pi');
C10 = tunablePID('C1','pid');
X1 = AnalysisPoint('X1');
X2 = AnalysisPoint('X2');

```

Connect these components to build a model of the entire closed-loop control system.
```

InnerLoop = feedback(X2*G2*C20,1);
CL0 = feedback(G1*InnerLoop*C10,X1);
CL0.InputName = 'r';
CL0.OutputName = 'y';

```

CL0 is a tunable genss model. Specifying names for the input and output channels allows you to identify them when you specify tuning requirements for the system.

Specify tuning requirements for reference tracking and disturbance rejection.
```

Rtrack = TuningGoal.Tracking('r','y',5,0.01);
Rreject = TuningGoal.Gain('X2','y',0.1);

```

The TuningGoal.Tracking requirement specifies that the signal at ' \(y\) ' tracks the signal at ' \(r\) ' with a response time of 5 seconds and a tracking error of \(1 \%\).

The TuningGoal. Gain requirement limits the gain from the implicit input associated with the AnalysisPoint block X2 to the output, ' \(y\) ' . (See AnalysisPoint.) Limiting this gain to a value less than 1 ensures that a disturbance injected at X2 is suppressed at the output.

Specify tuning requirements for the gain and phase margins.
```

RmargOut = TuningGoal.Margins('X1',18,60);
RmargIn = TuningGoal.Margins('X2',18,60);
RmargIn.Openings = 'X1';

```

RmargOut imposes a minimum gain margin of 18 dB and a minimum phase margin of 60 degrees. Specifying X1 imposes that requirement on the outer loop. Similarly, RmargIn imposes the same requirements on the inner loop, identified by X 2 . To ensure that the inner-loop margins are evaluated with the outer loop open, include the outer-loop analysis-point location, X1, in RmargIn.Openings.

Tune the control system to meet the soft requirements of tracking and disturbance rejection, subject to the hard constraints of the stability margins.
```

SoftReqs = [Rtrack,Rreject];
HardReqs = [RmargIn,Rmarg0ut];
[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs);
Final: Soft = 1.13, Hard = 0.97769, Iterations = 111

```
systune converts each tuning requirement into a normalized scalar value, \(f\) for the soft constraints and \(g\) for the hard constraints. The command adjusts the tunable parameters of CL0 to minimize the \(f\) values, subject to the constraint that each \(g<1\).

The displayed value Hard is the largest of the minimized \(g\) values in gHard. This value is less than 1 , indicating that both the hard constraints are satisfied.

Validate the tuned control system against the stability margin requirements.
figure;
viewGoal(HardReqs,CL)


The viewGoal plot confirms that the stability margin requirements for both loops are satisfied by the tuned control system at all frequencies. The blue lines show the margin used in the optimization calculation, which is an upper bound on the actual margin of the tuned control system.

Examine whether the tuned control system meets the tracking requirement by examining the step response from ' \(r\) ' to ' \(y\) '.
figure;
stepplot(CL,20)

\section*{Step Response}


The step plot shows that in the tuned control system, CL , the output tracks the input but the response is somewhat slower than desired and the tracking error may be larger than desired. For further information, examine the tracking requirement directly with viewGoal.
figure;
viewGoal(Rtrack,CL)


The actual tracking error crosses into the shaded area between 1 and \(10 \mathrm{rad} / \mathrm{s}\), indicating that the requirement is not met in this regime. Thus, the tuned control system cannot meet the soft tracking requirement, time subject to the hard constraints of the stability margins. To achieve the desired performance, you may need to relax one of your requirements or convert one or more hard constraints to soft constraints.

\section*{Input Arguments}

\section*{CL0 - Control system to tune}
generalized state-space model | model array
Control system to tune, specified as a generalized state-space (genss) model or array of models with tunable parameters. To construct CL0:

1 Parameterize the tunable elements of your control system. You can use predefined structures, such as tunablePID, tunableGain, and tunableTF. Alternatively, you can create your own structure from elementary tunable parameters (realp).
2 Build a closed-loop model of the overall control system as an interconnection of fixed and tunable components. To do so, use model interconnection commands such as feedback and connect. Use AnalysisPoint blocks to mark additional signals of interest for specifying and assessing tuning requirements.

For more information about creating models to tune, see "Setup for Tuning Control System Modeled in MATLAB".

For robust tuning of a control system against a set of plant models (requires Robust Control Toolbox), specify an array of tunable genss models that have the same tunable parameters. To make the controller robust against parameter uncertainty, use a model with uncertain real parameters defined with ureal or uss. In this case, CL0 is a genss model that contains both tunable and uncertain control design blocks. For more information about robust tuning, see "Robust Tuning Approaches" (Robust Control Toolbox).

\section*{SoftReqs - Soft tuning goals (objectives)}
vector of TuningGoal objects
Soft tuning goals (objectives) for tuning the control system, specified as a vector of TuningGoal objects. These objects capture your design requirements, such as TuningGoal.Tracking, TuningGoal.StepTracking, or TuningGoal. Margins.
systune tunes the tunable parameters of the control system to minimize the soft tuning goals. This tuning is subject to satisfying the hard tuning goals (if any).

For more information about available tuning goals, see "Tuning Goals".

\section*{HardReqs - Hard tuning goals (constraints)}

\section*{[] (default) | vector of TuningGoal objects}

Hard tuning goals (constraints) for tuning the control system, specified as a vector of TuningGoal objects. These objects capture your design requirements, such as TuningGoal.Tracking, TuningGoal.StepTracking, or TuningGoal.Margins.
systune converts each hard tuning goal to a normalized scalar value. systune then optimizes the free parameters to minimize those normalized values. A hard goal is satisfied if the normalized value is less than 1.

For more information about available tuning goals, see "Tuning Goals".

\section*{options - Options for tuning algorithm}
systuneOptions object
Options for the tuning algorithm, specified as an options set you create with systuneOptions. Available options include:
- Number of additional optimizations to run. Each optimization starts from random initial values of the free parameters.
- Tolerance for terminating the optimization.
- Flag for using parallel processing.

See the systuneOptions reference page for more details about all available options.

\section*{Output Arguments}

\section*{CL - Tuned control system}
generalized state-space model
Tuned control system, returned as a generalized state-space (genss) model. This model has the same number and type of tunable elements (Control Design Blocks) as CL0. The current values of these elements are the tuned parameters. Use getBlockValue or showTunable to access values of the tuned elements.

If you provide an array of control system models to tune as the input argument, CL0, systune tunes the parameters of all the models simultaneously. In this case, CL is an array of tuned genss models. For more information, see "Robust Tuning Approaches" (Robust Control Toolbox).

\section*{fSoft - Best achieved soft constraint values}
vector
Best achieved soft constraint values, returned as a vector. systune converts the soft requirements to a function of the free parameters of the control system. The command then tunes the parameters to minimize that function subject to the hard constraints. (See "Algorithms" on page 2-1421.) fSoft contains the best achieved value for each of the soft constraints. These values appear in fSoft in the same order that the constraints are specified in SoftReqs. fSoft values are meaningful only when the hard constraints are satisfied.

\section*{gHard - Best achieved hard constraint values \\ vector}

Best achieved hard constraint values, returned as a vector. systune converts the hard requirements to a function of the free parameters of the control system. The command then tunes the parameters to drive those values below 1. (See "Algorithms" on page 2-1421.) gHard contains the best achieved value for each of the hard constraints. These values appear in gHard in the same order that the constraints are specified in HardReqs. If all values are less than 1, then the hard constraints are satisfied.

\section*{info - Detailed information about optimization runs}
structure
Detailed information about each optimization run, returned as a data structure. The fields of info are summarized in the following table.
\begin{tabular}{|l|l|}
\hline Field & Value \\
\hline Run & \begin{tabular}{l} 
Run number, returned as a scalar. If you use the RandomStart \\
option of systuneOptions to perform multiple optimization runs, \\
info is a structure array, and info. Run is the index.
\end{tabular} \\
\hline Iterations & \begin{tabular}{l} 
Total number of iterations performed during the run, returned as a \\
scalar. If you use RandomStart, info. Iterations (j ) is the \\
number of iterations performed in the jth run before termination.
\end{tabular} \\
\hline f & \begin{tabular}{l} 
Best overall soft constraint value, returned as a scalar. systune \\
converts the soft tuning goals to a function of the free parameters \\
of the control system. The command then tunes the parameters to \\
minimize that function subject to the hard goals. (See "Algorithms" \\
on page 2-1421.) info.f is the maximum soft goal value at the \\
final iteration. This value is meaningful only when the hard goals \\
are satisfied. If the value is less than 1, then the soft goals are also \\
attained.
\end{tabular} \\
\hline g & \begin{tabular}{l} 
Best overall hard constraint value, returned as a scalar. systune \\
converts the hard tuning goals to a function of the free parameters \\
of the control system. The command then tunes the parameters to \\
drive those values below 1. (See "Algorithms" on page 2-1421.) \\
info.g is the largest hard goal value at the final iteration. If this \\
inalue is less than 1, then the hard goals are satisfied.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|}\hline \text { Field } & \text { Value } \\
\hline \text { X } & \begin{array}{l}\text { Tuned parameter values, returned as a vector. This vector contains } \\
\text { the values of the tunable parameters at the end of the run. info. } \\
\text { can also include the values of additional variables such as loop } \\
\text { scalings, if systune uses them (see info. LoopScaling). }\end{array} \\
\hline \text { MinDecay } & \begin{array}{l}\text { Minimum decay rate of tuned system dynamics, returned as a two- } \\
\text { element row vector. } \\
\text { info.MinDecay (1) is the minimum decay rate of the closed-loop } \\
\text { poles. }\end{array} \\
\hline \text { fSoft } & \begin{array}{l}\text { info. MinDecay (2) is the minimum decay rate of the dynamics of } \\
\text { tuned blocks with stability constraints. For more information about } \\
\text { stabilized dynamics and decay rates, see the MinDecay option of } \\
\text { systune0ptions. }\end{array} \\
\hline \begin{array}{l}\text { Individual soft constraint values, returned as a vector. systune } \\
\text { converts each soft tuning goal to a normalized value that is a } \\
\text { function of the free parameters of the control system. The } \\
\text { command then tunes the parameters to minimize that value } \\
\text { subject to the hard goals. (See "Algorithms" on page 2-1421.) } \\
\text { info. fSoft contains the individual values of the soft goals at the } \\
\text { end of each run. These values appear in fSoft in the same order } \\
\text { in which you specify goals in the SoftReqs input argument to } \\
\text { systune. }\end{array} \\
\hline \text { gHard } & \begin{array}{l}\text { Individual hard constraint values, returned as a vector. systune } \\
\text { converts each hard tuning goal to a normalized value that is a } \\
\text { function of the free parameters of the control system. The } \\
\text { command then tunes the parameters to minimize those values. A } \\
\text { hard goal is satisfied if its value is less than 1. (See "Algorithms" on } \\
\text { page 2-1421.) info.gHard contains the individual values of the } \\
\text { hard goals at the end of each run. These values appear in gHard in } \\
\text { the same order in which you specify goals in the HardReqs input } \\
\text { argument to systune. }\end{array} \\
\hline \text { Blocks } & \begin{array}{l}\text { Tuned values of tunable blocks and parameters in the tuned } \\
\text { control system, returned as a structure whose fields are the names } \\
\text { of tunable elements and whose values are the corresponding tuned } \\
\text { values. }\end{array} \\
\text { When you perform multiple runs by setting the RandomStart }\end{array}\right\}\)\begin{tabular}{l} 
option to a positive value, you can use this field to examine control \\
system performance with the results from other runs. For instance, \\
use the following code to apply the tuned values from the jth run. \\
cLj = setBlockValue(CL0, info(j) .Blocks)
\end{tabular}\(|\)
\begin{tabular}{|c|c|}
\hline Field & Value \\
\hline LoopScaling & \begin{tabular}{l}
Optimal diagonal scaling for evaluating MIMO tuning requirements, returned as a state-space model. \\
When applied to multiloop control systems, tuning goals that involve an open-loop response can be sensitive to the scaling of the loop transfer functions to which they apply. This sensitivity can lead to poor optimization results. systune automatically corrects scaling issues and returns the optimal diagonal scaling matrix D as a state-space model in info. LoopScaling. \\
The loop channels associated with each diagonal entry of \(D\) are listed in info.LoopScaling. InputName. The scaled loop transfer is \(D \backslash L^{*} \mathrm{D}\), where L is the open-loop transfer measured at the locations info.LoopScaling.InputName. \\
Tuning goals affected by such loop scaling include: \\
- TuningGoal.LoopShape \\
- TuningGoal.MinLoopGain and TuningGoal.MaxLoopGain \\
- TuningGoal.Sensitivity \\
- TuningGoal.Rejection \\
- TuningGoal.Margins
\end{tabular} \\
\hline
\end{tabular}
info also contains the following fields, whose entries are meaningful when you use systune for robust tuning of control systems with uncertainty.
\begin{tabular}{|l|l|}
\hline Field & Value \\
\hline wcPert & \begin{tabular}{l} 
Worst combinations of uncertain parameters, returned as a \\
structure array. Each structure contains one set of uncertain \\
parameter values. The perturbations with the worst performance \\
are listed first.
\end{tabular} \\
\hline wcf & \begin{tabular}{l} 
Worst soft-goal value, returned as a scalar. This value is the largest \\
soft goal value (f) over the uncertainty range when using the \\
tuned controller.
\end{tabular} \\
\hline wcg & \begin{tabular}{l} 
Worst hard-goal value, returned as a scalar. This value is the \\
largest hard goal value (g) over the uncertainty range when using \\
the tuned controller.
\end{tabular} \\
\hline wcDecay & \begin{tabular}{l} 
Smallest closed-loop decay rate over the uncertainty range when \\
using the tuned controller, returned as a scalar. A positive value \\
indicates robust stability. For more information about stabilized \\
dynamics and decay rates, see the MinDecay option of \\
systune0ptions.
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithms}
\(x\) is the vector of tunable parameters in the control system to tune. systune converts each soft and hard tuning requirement SoftReqs(i) and HardReqs ( j ) into normalized values \(f_{i}(x)\) and \(g_{j}(x)\), respectively. systune then solves the constrained minimization problem:

Minimize \(\max _{i} f_{i}(x)\) subject to \(\max _{j} g_{j}(x)<1\), for \(x_{\min }<x<x_{\text {max }}\).
\(x_{\min }\) and \(x_{\max }\) are the minimum and maximum values of the free parameters of the control system.
When you use both soft and hard tuning goals, the software approaches this optimization problem by solving a sequence of unconstrained subproblems of the form:
\[
\min _{x} \max (\alpha f(x), g(x)) .
\]

The software adjusts the multiplier \(\alpha\) so that the solution of the subproblems converges to the solution of the original constrained optimization problem.
systune returns the control system with parameters tuned to the values that best solve the minimization problem. systune also returns the best achieved values of \(f_{i}(x)\) and \(g_{j}(x)\), as fSoft and gHard respectively.

For information about the functions \(f_{i}(x)\) and \(g_{j}(x)\) for each type of constraint, see the reference pages for each TuningGoal requirement object.
systune uses the nonsmooth optimization algorithms described in [1],[2],[3],[4]
systune computes the \(H_{\infty}\) norm using the algorithm of [5]and structure-preserving eigensolvers from the SLICOT library. For more information about the SLICOT library, see http://slicot.org.

\section*{Alternative Functionality}

\section*{App}

The Control System Tuner app provides a graphical interface to control system tuning.

\section*{Version History \\ Introduced in R2016a}

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

\section*{References}
[1] Apkarian, P. and D. Noll, "Nonsmooth H-infinity Synthesis," IEEE Transactions on Automatic Control, Vol. 51, No. 1, (2006), pp. 71-86.
[2] Apkarian, P. and D. Noll, "Nonsmooth Optimization for Multiband Frequency-Domain Control Design," Automatica, 43 (2007), pp. 724-731.
[3] Apkarian, P., P. Gahinet, and C. Buhr, "Multi-model, multi-objective tuning of fixed-structure controllers," Proceedings ECC (2014), pp. 856-861.
[4] Apkarian, P., M.-N. Dao, and D. Noll, "Parametric Robust Structured Control Design," IEEE Transactions on Automatic Control, 2015.
[5] Bruinsma, N.A., and M. Steinbuch. "A Fast Algorithm to Compute the \(\mathrm{H}_{\infty}\) Norm of a Transfer Function Matrix." Systems \& Control Letters, 14, no. 4 (April 1990): 287-93.

\section*{Extended Capabilities}

\section*{Automatic Parallel Support}

Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox \({ }^{\mathrm{TM}}\).
To run in parallel, set 'UseParallel' to true using systune0ptions.
For more information, see "Speed Up Tuning with Parallel Computing Toolbox Software".

\section*{See Also}
systuneOptions |viewGoal|genss|slTuner|systune (for slTuner)| looptune|
looptune (for slTuner)|AnalysisPoint|TuningGoal.Tracking|TuningGoal.Gain|
TuningGoal.Margins
Topics
"Tune Control Systems Using systune"
"Building Tunable Models"
"Programmatic Tuning"
"Generalized Models"
"Robust Tuning Approaches" (Robust Control Toolbox)

\section*{systuneOptions}

Set options for systune

\section*{Syntax}
options = systuneOptions
options = systuneOptions(Name,Value)

\section*{Description}
options = systuneOptions returns the default option set for the systune command.
options = systuneOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
systuneOptions takes the following Name arguments:

\section*{Display}

Amount of information to display during systune runs.
Display takes the following values:
- 'final ' - Display a one-line summary at the end of each optimization run. The display includes the best achieved values for the soft and hard constraints, fSoft and gHard. The display also includes the number of iterations for each run.

Example:
Final: Soft \(=1.09\), Hard \(=0.68927\), Iterations \(=58\)
- ' sub ' - Display the result of each optimization subproblem.

When you use both soft and hard tuning goals, the software solves the optimization as a sequence of subproblems of the form:
\[
\min _{x} \max (\alpha f(x), g(x)) .
\]

Here, \(x\) is the vector of tunable parameters, \(f(x)\) is the largest normalized soft-constraint value, and \(g(x)\) is the largest normalized hard-constraint value. (See the "Algorithms" section of the systune reference page for more information.) The software adjusts the multiplier \(\alpha\) so that the
solution of the subproblems converges to the solution of the original constrained optimization problem. When you select 'sub', the report includes the results of each of these subproblems.

\section*{Example:}
```

alpha=0.1: Soft = 3.97, Hard = 0.68927, Iterations = 8
alpha=0.5036: Soft = 1.36, Hard = 0.68927, Iterations = 8
alpha=1.47: Soft = 1.09, Hard = 0.68927, Iterations = 42
Final: Soft = 1.09, Hard = 0.68927, Iterations = 58

```
- 'iter' - Display optimization progress after each iteration. The display includes the value after each iteration of the objective parameter being minimized. The objective parameter is whichever is larger of \(\alpha f(x)\) and \(g(x)\). The display also includes a progress value that indicates the percent change in the constraints from the previous iteration.

Example:
```

Iter 1: Objective = 4.664, Progress = 93%
Iter 2: Objective = 2.265, Progress = 51.4%
Iter 3: Objective = 0.7936, Progress = 65%
Iter 4: Objective = 0.7183, Progress = 9.48%
Iter 5: Objective = 0.6893, Progress = 4.04%
Iter 6: Objective = 0.6893, Progress = 0%
Iter 7: Objective = 0.6893, Progress = 0%
Iter 8: Objective = 0.6893, Progress = 0%
alpha=0.1: Soft = 3.97, Hard = 0.68927, Iterations = 8
Iter 1: Objective = 1.146, Progress = 42.7%
Iter 2: Objective = 1.01, Progress = 11.9%
alpha=1.47: Soft = 1.09, Hard = 0.68927, Iterations = 42
Final: Soft = 1.09, Hard = 0.68927, Iterations = 58

```
- 'off ' - Run in silent mode, displaying no information during or after the run.

Default: 'final'

\section*{MaxIter}

Maximum number of iterations in each optimization run, when the run does not converge to within tolerance.

Default: 300

\section*{RandomStart}

Number of additional optimizations starting from random values of the free parameters in the controller.

If RandomStart = 0, systune performs a single optimization run starting from the initial values of the tunable parameters. Setting RandomStart \(=\mathrm{N}>0\) runs \(N\) additional optimizations starting from \(N\) randomly generated parameter values.
systune tunes by finding a local minimum of a gain minimization problem. To increase the likelihood of finding parameter values that meet your design requirements, set RandomStart >0. You can then use the best design that results from the multiple optimization runs.

Use with UseParallel = true to distribute independent optimization runs among MATLAB workers (requires Parallel Computing Toolbox software).

\section*{Default: 0}

UseParallel
Parallel processing flag.
When you use the RandomStart option to run multiple randomized optimization starts, you can also use parallel computing to speed up tuning by distributing the optimization runs among workers in a parallel pool. Set this flag to true to enable parallel processing. If there is an available parallel pool, then the software performs independent optimization runs concurrently among workers in that pool. If no parallel pool is available, one of the following occurs:
- If Automatically create a parallel pool is selected in your Parallel Computing Toolbox preferences (Parallel Computing Toolbox), then the software starts a parallel pool using the settings in those preferences.
- If Automatically create a parallel pool is not selected in your preferences, then the software performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can manually start a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.

\section*{Default: false}

\section*{SkipModels}

Models or design points to ignore, specified as an array of linear indices.
Use this option to skip specific models or ignore portions of the design space when tuning gainscheduled control systems. For example, you might want to skip grid points outside the flight envelope of an airplane model, or points outside the operating range for tuning. Identify the models to skip by absolute index in the array of models to tune. Using SkipModels lets you narrow the scope of tuning without reconfiguring each tuning goal. For more information, see "Change Requirements with Operating Condition".

\section*{Default: []}

\section*{SoftTarget}

Target value for soft constraints.
The optimization stops when the largest soft constraint value falls below the specified SoftTarget value. The default value SoftTarget \(=0\) minimizes the soft constrains subject to satisfying the hard constraints.

\section*{Default: 0}

\section*{Softtol}

Relative tolerance for termination.
The optimization terminates when the relative decrease in the soft constraint value decreases by less than SoftTol over 10 consecutive iterations. Increasing SoftTol speeds up termination, and decreasing SoftTol yields tighter final values.

Default: 0.001

\section*{SoftScale}

A priori estimate of best soft constraint value.
For problems that mix soft and hard constraints, providing a rough estimate of the optimal value of the soft constraints (subject to the hard constraints) helps to speed up the optimization.

\section*{Default: 1}

\section*{MinDecay}

Minimum decay rate for stabilized dynamics.
Most tuning goals carry an implicit closed-loop stability or minimum-phase constraint. Stabilized dynamics refers to the poles and zeros affected by these constraints. The MinDecay option constrains all stabilized poles and zeros to satisfy:
- \(\operatorname{Re}(s)\) < -MinDecay (continuous time).
- \(\log (|z|)<-M i n D e c a y(d i s c r e t e ~ t i m e) . ~\)

Adjust the minimum value if the optimization fails to meet the default value, or if the default value conflicts with other requirements. Alternatively, use TuningGoal. Poles to control the decay rate of a specific feedback loop.

For more information about implicit constraints for a particular tuning goal, see the reference page for that tuning goal.

\section*{Default: 1e-7}

\section*{MaxRadius}

Maximum spectral radius for stabilized dynamics.
This option constrains all stabilized poles and zeros to satisfy \(|\mathrm{s}|<\) MaxRadius. Stabilized dynamics are those poles and zeros affected by implicit stability or minimum-phase constraints of the tuning goals. The MaxRadius constraint is useful to prevent these poles and zeros from going to infinity as a result of algebraic loops becoming singular or control effort growing unbounded. Adjust the maximum radius if the optimization fails to meet the default value, or if the default value conflicts with other requirements.

MaxRadius is ignored for discrete-time tuning, where stability constraints already impose \(|\mathrm{z}|<1\).
For more information about implicit constraints for a particular tuning goal, see the reference page for that tuning goal.

\section*{Default: 1e8}

\section*{Output Arguments}
options
Option set containing the specified options for the systune command.

\section*{Examples}

\section*{Create Options Set for systune}

Create an options set for a systune run using five random restarts. Also, set the display level to show the progress of each iteration, and increase the relative tolerance of the soft constraint value to 0.01.
```

options = systuneOptions('RandomStart',5,'Display','iter',...
'SoftTol',0.01);

```

Alternatively, use dot notation to set the values of options.
```

options = systuneOptions;
options.RandomStart = 5;
options.Display = 'iter';
options.SoftTol = 0.01;

```

\section*{Configure Option Set for Parallel Optimization Runs}

Configure an option set for a systune run using 20 random restarts. Execute these independent optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel computing to speed up systune tuning of fixed-structure control systems. When you run multiple randomized systune optimization starts, parallel computing speeds up tuning by distributing the optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing Toolbox preferences (Parallel Computing Toolbox), manually start a parallel pool using parpool. For example:
parpool;
If Automatically create a parallel pool is selected in your preferences, you do not need to manually start a pool.

Create a systuneOptions set that specifies 20 random restarts to run in parallel.
options = systuneOptions('RandomStart',20,'UseParallel',true);
Setting UseParallel to true enables parallel processing by distributing the randomized starts among available workers in the parallel pool.

Use the systuneOptions set when you call systune. For example, suppose you have already created a tunable control system model, CLO. For tuning this system, you have created vectors SoftReqs and HardReqs of TuningGoal requirements objects. These vectors represent your soft and hard constraints, respectively. In that case, the following command uses parallel computing to tune the control system of CL0.
[CL,fSoft,gHard] = systune(CL0,SoftReqs,HardReqs,options);

\section*{Version History}

Introduced in R2016a
R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a
Prior to R2016a, this functionality required a Robust Control Toolbox license.

\section*{See Also}
systune|systune (for slTuner)

\section*{tf}

Transfer function model

\section*{Description}

Use \(t f\) to create real-valued or complex-valued transfer function models, or to convert dynamic system models to transfer function form.

Transfer functions are a frequency-domain representation of linear time-invariant systems. For instance, consider a continuous-time SISO dynamic system represented by the transfer function sys \((s)=N(s) / D(s)\), where \(s=j w\) and \(N(s)\) and \(D(s)\) are called the numerator and denominator polynomials, respectively. The tf model object can represent SISO or MIMO transfer functions in continuous time or discrete time.

You can create a transfer function model object either by specifying its coefficients directly, or by converting a model of another type (such as a state-space model ss) to transfer-function form. For more information, see "Transfer Functions".

You can also use tf to create generalized state-space (genss) models or uncertain state-space (uss) models.

\section*{Creation}

\section*{Syntax}
```

sys = tf(numerator,denominator)
sys = tf(numerator,denominator,ts)
sys = tf(numerator,denominator,ltiSys)
sys = tf(m)
sys = tf(

```
\(\qquad\)
``` ,Name, Value)
sys = tf(ltiSys)
sys = tf(ltiSys,component)
s = tf('s')
z = tf('z',ts)
```


## Description

sys = tf(numerator, denominator) creates a continuous-time transfer function model, setting the Numerator and Denominator properties. For instance, consider a continuous-time SISO dynamic system represented by the transfer function sys $(s)=N(s) / D(s)$, the input arguments numerator and denominator are the coefficients of $N(s)$ and $D(s)$, respectively.
sys $=\mathrm{tf}($ numerator, denominator, ts$)$ creates a discrete-time transfer function model, setting the Numerator, Denominator, and Ts properties. For instance, consider a discrete-time SISO
dynamic system represented by the transfer function sys $(z)=N(z) / D(z)$, the input arguments numerator and denominator are the coefficients of $N(z)$ and $D(z)$, respectively. To leave the sample time unspecified, set ts input argument to -1.
sys $=\mathrm{tf}$ (numerator, denominator,ltiSys) creates a transfer function model with properties inherited from the dynamic system model ltiSys, including the sample time.
sys $=\mathrm{tf}(\mathrm{m})$ creates a transfer function model that represents the static gain, m .
sys $=$ tf( $\qquad$ , Name, Value) sets properties of the transfer function model using one or more Name, Value pair arguments for any of the previous input-argument combinations.
sys $=\mathrm{tf}(l \mathrm{tiSys})$ converts the dynamic system model ltiSys to a transfer function model.
sys $=$ tf(ltiSys, component) converts the specified component of ltiSys to transfer function form. Use this syntax only when ltiSys is an identified linear time-invariant (LTI) model.
$s=t f(' s ')$ creates special variable $s$ that you can use in a rational expression to create a continuous-time transfer function model. Using a rational expression can sometimes be easier and more intuitive than specifying polynomial coefficients.
$z=t f\left(z^{\prime}, t s\right)$ creates special variable $z$ that you can use in a rational expression to create a discrete-time transfer function model. To leave the sample time unspecified, set ts input argument to - 1.

## Input Arguments

## numerator - Numerator coefficients of the transfer function <br> row vector | Ny-by-Nu cell array of row vectors

Numerator coefficients of the transfer function, specified as:

- A row vector of polynomial coefficients.
- An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs, and Nu is the number of inputs.

When you create the transfer function, specify the numerator coefficients in order of descending power. For instance, if the transfer function numerator is $3 s^{\wedge} 2-4 s+5$, then specify numerator as [ 3 -4 5]. For a discrete-time transfer function with numerator $2 z-1$, set numerator to [2-1].

Also a property of the tf object. For more information, see Numerator.
denominator - Denominator coefficients of the transfer function
row vector | Ny-by-Nu cell array of row vectors
Denominator coefficients, specified as:

- A row vector of polynomial coefficients.
- An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs and Nu is the number of inputs.

When you create the transfer function, specify the denominator coefficients in order of descending power. For instance, if the transfer function denominator is $7 s^{\wedge} 2+8 s-9$, then specify denominator as $\left[\begin{array}{ccc}7 & 8 & -9\end{array}\right]$. For a discrete-time transfer function with denominator $2 z^{\wedge} 2+1$, set denominator to [2 0 1].

Also a property of the tf object. For more information, see Denominator.

## ts - Sample time

scalar
Sample time, specified as a scalar. Also a property of the tf object. For more information, see Ts.

## LtiSys - Dynamic system

dynamic system model \| model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pid models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires Robust Control Toolbox software.)

The resulting transfer function assumes

- current values of the tunable components for tunable control design blocks.
- nominal model values for uncertain control design blocks.
- Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models. To select the component of the identified model to convert, specify component. If you do not specify component, tf converts the measured component of the identified model by default. (Using identified models requires System Identification Toolbox software.)


## m - Static gain

scalar | matrix
Static gain, specified as a scalar or matrix. Static gain or steady state gain of a system represents the ratio of the output to the input under steady state condition.

```
component - Component of identified model
'measured' (default)| 'noise' | 'augmented'
```

Component of identified model to convert, specified as one of the following:

- 'measured ' - Convert the measured component of sys.
- 'noise' - Convert the noise component of sys
- 'augmented ' - Convert both the measured and noise components of sys.
component only applies when sys is an identified LTI model.
For more information on identified LTI models and their measured and noise components, see "Identified LTI Models".


## Output Arguments

sys - Output system model
tf model object | genss model object | uss model object
Output system model, returned as:

- A transfer function ( tf ) model object, when numerator and denominator input arguments are numeric arrays.
- A generalized state-space model (genss) object, when the numerator or denominator input arguments includes tunable parameters, such as realp parameters or generalized matrices (genmat). For an example, see "Tunable Low-Pass Filter" on page 2-1449.
- An uncertain state-space model (uss) object, when the numerator or denominator input arguments includes uncertain parameters. Using uncertain models requires Robust Control Toolbox software. For an example, see "Transfer Function with Uncertain Coefficients" (Robust Control Toolbox).


## Properties

## Numerator - Numerator coefficients

row vector | Ny-by-Nu cell array of row vectors
Numerator coefficients, specified as:

- A row vector of polynomial coefficients in order of descending power (for Variable values 's', $'^{\prime}$ ' , ' $^{\prime}$ ', or ' $q^{\prime}$ ) or in order of ascending power (for Variable values ' $z^{\wedge}-1$ ' or ' $q^{\wedge}-1$ ').
- An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs and Nu is the number of inputs. Each element of the cell array specifies the numerator coefficients for a given input/output pair. If you specify both Numerator and Denominator as cell arrays, they must have the same dimensions.

The coefficients of Numerator can be either real-valued or complex-valued.

## Denominator - Denominator coefficients

row vector | Ny-by-Nu cell array of row vectors
Denominator coefficients, specified as:

- A row vector of polynomial coefficients in order of descending power (for values Variable values 's', 'z', 'p', or 'q') or in order of ascending power (for Variable values 'z^-1' or 'q^-1').
- An Ny-by-Nu cell array of row vectors to specify a MIMO transfer function, where Ny is the number of outputs and Nu is the number of inputs. Each element of the cell array specifies the numerator coefficients for a given input/ output pair. If you specify both Numerator and Denominator as cell arrays, they must have the same dimensions.

If all SISO entries of a MIMO transfer function have the same denominator, you can specify Denominator as the row vector while specifying Numerator as a cell array.

The coefficients of Denominator can be either real-valued or complex-valued.

## Variable - Transfer function display variable

's' (default) | 'z'|'p'|'q'|'z^-1'|'q^-1'
Transfer function display variable, specified as one of the following:

- 's' - Default for continuous-time models
- 'z' - Default for discrete-time models
- 'p' - Equivalent to 's'
- ' $q$ ' - Equivalent to ' $z$ '
- ' $z^{\wedge}-1^{\prime}$ - Inverse of ' $z^{\prime}$
- ' $q^{\wedge}-1^{\prime}-$ Equivalent to ${ }^{\prime} z^{\wedge}-1$ '

The value of Variable is reflected in the display, and also affects the interpretation of the Numerator and Denominator coefficient vectors for discrete-time models.

- For Variable values 's', 'z', ' p ', or ' $\mathrm{q}^{\prime}$, the coefficients are ordered in descending powers of the variable. For example, consider the row vector [ak ... a1 a0]. The polynomial order is specified as $a_{k} z^{k}+\ldots+a_{1} z+a_{0}$.
- For Variable values ' $z^{\wedge}-1^{\prime}$ or ' $q^{\wedge}-1$ ', the coefficients are ordered in ascending powers of the variable. For example, consider the row vector [b0 b1 ... bk]. The polynomial order is specified as $b_{0}+b_{1} z^{-1}+\ldots+b_{k} z^{-k}$.

For examples, see "Specify Polynomial Ordering in Discrete-Time Transfer Function" on page 2-1448, "Transfer Function Model Using Rational Expression" on page 2-1443, and "Discrete-Time Transfer Function Model Using Rational Expression" on page 2-1444.

## IODelay - Transport delay

0 (default) | scalar | Ny-by-Nu array
Transport delay, specified as one of the following:

- Scalar - Specify the transport delay for a SISO system or the same transport delay for all input/ output pairs of a MIMO system.
- Ny-by-Nu array - Specify separate transport delays for each input/output pair of a MIMO system. Here, Ny is the number of outputs and Nu is the number of inputs.

For continuous-time systems, specify transport delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify transport delays in integer multiples of the sample time, Ts.

## InputDelay - Input delay

0 (default) | scalar | Nu-by-1 vector
Input delay for each input channel, specified as one of the following:

- Scalar - Specify the input delay for a SISO system or the same delay for all inputs of a multi-input system.
- Nu-by-1 vector - Specify separate input delays for input of a multi-input system, where Nu is the number of inputs.

For continuous-time systems, specify input delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

## OutputDelay - Output delay

0 (default) | scalar | Ny-by-1 vector
Output delay for each output channel, specified as one of the following:

- Scalar - Specify the output delay for a SISO system or the same delay for all outputs of a multioutput system.
- Ny-by-1 vector - Specify separate output delays for output of a multi-output system, where Ny is the number of outputs.

For continuous-time systems, specify output delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify output delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

## Ts - Sample time

0 (default) | positive scalar | - 1
Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.
-     - 1 for a discrete-time system with an unspecified sample time.

Note Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

## TimeUnit - Time variable units

```
'seconds' (default)|'nanoseconds'|'microseconds' | 'milliseconds' |'minutes'|
'hours' | 'days'| 'weeks' | 'months'| 'years' |...
```

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

## InputName - Input channel names

' ' (default) | character vector | cell array of character vectors
Input channel names, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no names specified, for any input channels.

Alternatively, you can assign input names for multi-input models using automatic vector expansion. For example, if sys is a two-input model, enter the following:

```
sys.InputName = 'controls';
```

The input names automatically expand to \{'controls(1)'; controls(2)'\}.
You can use the shorthand notation $u$ to refer to the InputName property. For example, sys. u is equivalent to sys.InputName.

Use InputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## InputUnit - Input channel units

' ' (default) | character vector | cell array of character vectors
Input channel units, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no units specified, for any input channels.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.

## InputGroup - Input channel groups

## structure

Input channel groups, specified as a structure. Use InputGroup to assign the input channels of MIMO systems into groups and refer to each group by name. The field names of InputGroup are the group names and the field values are the input channels of each group. For example, enter the following to create input groups named controls and noise that include input channels 1 and 2, and 3 and 5, respectively.

```
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
```

You can then extract the subsystem from the controls inputs to all outputs using the following.

```
sys(:,'controls')
```

By default, InputGroup is a structure with no fields.

## OutputName - Output channel names

' ' (default) | character vector | cell array of character vectors
Output channel names, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no names specified, for any output channels.

Alternatively, you can assign output names for multi-output models using automatic vector expansion. For example, if sys is a two-output model, enter the following.

```
sys.OutputName = 'measurements';
```

The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can also use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## OutputUnit - Output channel units

' ' (default) | character vector | cell array of character vectors
Output channel units, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no units specified, for any output channels.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.

## OutputGroup - Output channel groups

## structure

Output channel groups, specified as a structure. Use OutputGroupto assign the output channels of MIMO systems into groups and refer to each group by name. The field names of OutputGroup are the group names and the field values are the output channels of each group. For example, create output groups named temperature and measurement that include output channels 1 , and 3 and 5, respectively.

```
sys.OutputGroup.temperature = [1];
```

sys.OutputGroup.measurement = [3 5];

You can then extract the subsystem from all inputs to the measurement outputs using the following.

```
sys('measurement',:)
```

By default, OutputGroup is a structure with no fields.

## Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, 'system_1'.

## Notes - User-specified text

## \{\} (default) | character vector | cell array of character vectors

User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

## UserData - User-specified data

[ ] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

## SamplingGrid - Sampling grid for model arrays

structure array
Sampling grid for model arrays, specified as a structure array.
Use SamplingGrid to track the variable values associated with each model in a model array, including identified linear time-invariant (IDLTI) model arrays.

Set the field names of the structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables must be numeric scalars, and all arrays of sampled values must match the dimensions of the model array.

For example, you can create an 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, you can create a 6-by-9 model array, M, by independently sampling two variables, zeta and w . The following code maps the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display $M$, each entry in the array includes the corresponding zeta and $w$ values.

```
M
M(:,:,1,1) [zeta=0.3, w=5] =
 25
 s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
 25
 s^2 + 3.5s+25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that
correspond to each entry in the array. For instance, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid automatically.

By default, SamplingGrid is a structure with no fields.

## Object Functions

The following lists contain a representative subset of the functions you can use with tf models. In general, any function applicable to "Dynamic System Models" is applicable to a tf object.

## Linear Analysis

step Step response plot of dynamic system; step response data
impulse Impulse response plot of dynamic system; impulse response data
lsim Plot simulated time response of dynamic system to arbitrary inputs; simulated response data
bode Bode plot of frequency response, or magnitude and phase data
nyquist Nyquist plot of frequency response
nichols Nichols chart of frequency response
bandwidth Frequency response bandwidth

## Stability Analysis

pole Poles of dynamic system
zero Zeros and gain of SISO dynamic system
pzplot Pole-zero plot of dynamic system model with additional plot customization options
margin Gain margin, phase margin, and crossover frequencies

## Model Transformation

zpk Zero-pole-gain model
ss State-space model
c2d Convert model from continuous to discrete time
d2c Convert model from discrete to continuous time
d2d Resample discrete-time model

## Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

## Controller Design

pidtune PID tuning algorithm for linear plant model
rlocus Root locus plot of dynamic system
lqr Linear-Quadratic Regulator (LQR) design
lqg Linear-Quadratic-Gaussian (LQG) design
lqi Linear-Quadratic-Integral control
kalman Design Kalman filter for state estimation

## Examples

## SISO Transfer Function Model

For this example, consider the following SISO transfer function model:

$$
\operatorname{sys}(s)=\frac{1}{2 s^{2}+3 s+4} .
$$

Specify the numerator and denominator coefficients ordered in descending powers of $s$, and create the transfer function model.

```
numerator = 1;
denominator = [2,3,4];
sys = tf(numerator,denominator)
sys =
 1
 2 s^2 + 3s + 4
Continuous-time transfer function.
```


## Discrete-Time SISO Transfer Function Model

For this example, consider the following discrete-time SISO transfer function model:

$$
\operatorname{sys}(z)=\frac{2 z}{4 z^{3}+3 z-1} .
$$

Specify the numerator and denominator coefficients ordered in descending powers of $z$ and the sample time of 0.1 seconds. Create the discrete-time transfer function model.

```
numerator = [2,0];
denominator = [4,0,3,-1];
ts = 0.1;
sys = tf(numerator,denominator,ts)
sys =
 2 z
 4 z^3 + 3 z - 1
Sample time: 0.1 seconds
Discrete-time transfer function.
```


## Second-Order Transfer Function from Damping Ratio and Natural Frequency

For this example, consider a transfer function model that represents a second-order system with known natural frequency and damping ratio.

The transfer function of a second-order system, expressed in terms of its damping ratio $\zeta$ and natural frequency $\omega_{0}$, is:

$$
\operatorname{sys}(s)=\frac{\omega_{0}^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}} .
$$

Assuming a damping ratio, $\zeta=0.25$ and natural frequency, $\omega_{0}=3 \mathrm{rad} / \mathrm{s}$, create the second order transfer function.

```
zeta = 0.25;
w0 = 3;
numerator = w0^2;
denominator = [1,2*zeta*w0,w0^2];
sys = tf(numerator,denominator)
sys =
 9
 s^2 + 1.5 s + 9
Continuous-time transfer function.
```

Examine the response of this transfer function to a step input.

```
stepplot(sys)
```



The plot shows the ringdown expected of a second-order system with a low damping ratio.

## Discrete-Time MIMO Transfer Function Model

Create a transfer function for the discrete-time, multi-input, multi-output model:

$$
\operatorname{sys}(z)=\left[\begin{array}{cc}
\frac{1}{z+0.3} & \frac{z}{z+0.3} \\
\frac{-z+2}{z+0.3} & \frac{3}{z+0.3}
\end{array}\right]
$$

with sample time ts $=0.2$ seconds.
Specify the numerator coefficients as a 2-by-2 matrix.
numerators = \{1 [1 0]; [-1 2] 3\};
Specify the coefficients of the common denominator as a row vector.

```
denominator = [1 0.3];
```

Create the discrete-time MIMO transfer function model.

```
ts = 0.2;
sys = tf(numerators,denominator,ts)
sys =
 From input 1 to output...
 1
 1: -------
 z + 0.3
 -z + 2
 2: -------
 z + 0.3
 From input 2 to output...
 z
 1: -------
 z + 0.3
 3
 2: -------
 z + 0.3
Sample time: 0.2 seconds
Discrete-time transfer function.
```

For more information on creating MIMO transfer functions, see "MIMO Transfer Functions".

## Concatenate SISO Transfer Functions into MIMO Transfer Function ModeI

In this example, you create a MIMO transfer function model by concatenating SISO transfer function models. Consider the following single-input, two-output transfer function:

$$
\operatorname{sys}(s)=\left[\begin{array}{c}
\frac{s-1}{s+1} \\
\frac{s+2}{s^{2}+4 s+5}
\end{array}\right]
$$

Specify the MIMO transfer function model by concatenating the SISO entries.

```
sys1 = tf([1 -1],[1 1]);
sys2 = tf([[1 2],[llll);
sys = [sys1;sys2]
sys =
 From input to output...
 s - 1
 1: -----
 s + 1
 s + 2
 2: ------------
 s^2 + 4 s + 5
Continuous-time transfer function.
```

For more information on creating MIMO transfer functions, see "MIMO Transfer Functions".

## Transfer Function Model Using Rational Expression

For this example, create a continuous-time transfer function model using rational expressions. Using a rational expression can sometimes be easier and more intuitive than specifying polynomial coefficients of the numerator and denominator.

Consider the following system:

$$
\operatorname{sys}(s)=\frac{s}{s^{2}+2 s+10} .
$$

To create the transfer function model, first specify s as a tf object.

```
s = tf('s')
S =
 S
Continuous-time transfer function.
```

Create the transfer function model using s in the rational expression.

```
sys = s/(s^2 + 2*s + 10)
```

```
sys =
 S
 s^2 + 2 s + 10
Continuous-time transfer function.
```


## Discrete-Time Transfer Function Model Using Rational Expression

For this example, create a discrete-time transfer function model using a rational expression. Using a rational expression can sometimes be easier and more intuitive than specifying polynomial coefficients.

Consider the following system:

$$
\operatorname{sys}(z)=\frac{z-1}{z^{2}-1.85 z+0.9} .
$$

To create the transfer function model, first specify $z$ as a $t f$ object and the sample time Ts.

```
ts = 0.1;
z = tf('z',ts)
z =
 z
```

Sample time: 0.1 seconds
Discrete-time transfer function.

Create the transfer function model using $z$ in the rational expression.

```
sys = (z - 1) / (z^2 - 1.85*z + 0.9)
sys =
 z - 1
 z^2 - 1.85 z + 0.9
Sample time: 0.1 seconds
Discrete-time transfer function.
```


## Transfer Function Model with Inherited Properties

For this example, create a transfer function model with properties inherited from another transfer function model. Consider the following two transfer functions:

$$
\operatorname{sys} 1(s)=\frac{2 s}{s^{2}+8 s} \quad \text { and } \quad \operatorname{sys} 2(s)=\frac{s-1}{7 s^{4}+2 s^{3}+9} .
$$

For this example, create sys1 with the TimeUnit and InputDelay property set to 'minutes'.

```
numerator1 = [2,0];
denominator1 = [1,8,0];
sys1 = tf(numerator1,denominator1,'TimeUnit','minutes','InputUnit','minutes')
sys1 =
 2 s

 s^2 + 8 s
Continuous-time transfer function.
propValues1 = [sys1.TimeUnit,sys1.InputUnit]
propValues1 = 1x2 cell
 {'minutes'} {'minutes'}
```

Create the second transfer function model with properties inherited from sys1.

```
numerator2 = [1,-1];
denominator2 = [7,2,0,0,9];
sys2 = tf(numerator2,denominator2,sys1)
sys2 =
 s - 1

 7 s^4 + 2 s^3 + 9
Continuous-time transfer function.
propValues2 = [sys2.TimeUnit,sys2.InputUnit]
propValues2 = 1x2 cell
 {'minutes'} {'minutes'}
```

Observe that the transfer function model sys2 has that same properties as sys1.

## Array of Transfer Function Models

You can use a for loop to specify an array of transfer function models.
First, pre-allocate the transfer function array with zeros.

```
sys = tf(zeros(1,1,3));
```

The first two indices represent the number of outputs and inputs for the models, while the third index is the number of models in the array.

Create the transfer function model array using a rational expression in the for loop.
$s=t f(' s ') ;$
for $k=1: 3$

```
 sys(:,:,k) = k/(s^2+s+k);
end
sys
sys(:,:,1,1) =
 1
 s^2 + s + 1
sys(:,:,2,1) =
 2
 s^2 + s + 2
sys(:,:,3,1) =
 3

 s^2 + s + 3
3x1 array of continuous-time transfer functions.
```


## Convert State-Space Model to Transfer Function

For this example, compute the transfer function of the following state-space model:

$$
A=\left[\begin{array}{cc}
-2 & -1 \\
1 & -2
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
$$

Create the state-space model using the state-space matrices.

```
A = [-2 -1;1 -2];
B = [1 1;2 -1];
C = [1 0];
D = [0 1];
ltiSys = ss(A,B,C,D);
```

Convert the state-space model ltiSys to a transfer function.

```
sys = tf(ltiSys)
sys =
 From input 1 to output:
 S
 s^2 + 4 s + 5
 From input 2 to output:
 s^2 + 5 s + 8
```

```
 s^2 + 4 s + 5
Continuous-time transfer function.
```


## Extract Transfer Functions from Identified Model

For this example, extract the measured and noise components of an identified polynomial model into two separate transfer functions.

Load the Box-Jenkins polynomial model ltiSys in identifiedModel.mat.
load('identifiedModel.mat','ltiSys');
ltiSys is an identified discrete-time model of the form: $y(t)=\frac{B}{F} u(t)+\frac{C}{D} e(t)$, where $\frac{B}{F}$ represents the measured component and $\frac{C}{D}$ the noise component.

Extract the measured and noise components as transfer functions.

```
sysMeas = tf(ltiSys,'measured')
sysMeas =
 From input "u1" to output "y1":
 -0.1426 z^-1 + 0.1958 z^-2
 z^(-2) * ----------------------------
 1 - 1.575 z^-1 + 0.6115 z^-2
```

Sample time: 0.04 seconds
Discrete-time transfer function.
sysNoise $=$ tf(ltiSys,'noise')
sysNoise =
From input "v@y1" to output "y1":
$0.04556+0.03301 z^{\wedge}-1$
1.1 .026
Input groups:
Name Channels
Noise 1
Sample time: 0.04 seconds
Discrete-time transfer function.

The measured component can serve as a plant model, while the noise component can be used as a disturbance model for control system design.

## Specify Input and Output Names for MIMO Transfer Function Model

Transfer function model objects include model data that helps you keep track of what the model represents. For instance, you can assign names to the inputs and outputs of your model.

Consider the following continuous-time MIMO transfer function model:

$$
\operatorname{sys}(s)=\left[\begin{array}{c}
\frac{s+1}{s^{2}+2 s+2} \\
\frac{1}{s}
\end{array}\right]
$$

The model has one input - Current, and two outputs - Torque and Angular velocity.
First, specify the numerator and denominator coefficients of the model.

```
numerators = {[1 1] ; 1};
denominators = {[ll 2 2] ; [1 0]};
```

Create the transfer function model, specifying the input name and output names.

```
sys = tf(numerators,denominators,'InputName','Current',...
 'OutputName',{'Torque' 'Angular Velocity'})
sys =
 From input "Current" to output...
 s + 1
 Torque: ------------
 s^2 + 2 s + 2
 1
 Angular Velocity:
 S
Continuous-time transfer function.
```


## Specify Polynomial Ordering in Discrete-Time Transfer Function

For this example, specify polynomial ordering in discrete-time transfer function models using the 'Variable' property.

Consider the following discrete-time transfer functions with sample time 0.1 seconds:

$$
\operatorname{sys} 1(z)=\frac{z^{2}}{z^{2}+2 z+3} \quad \operatorname{sys} 2\left(z^{-1}\right)=\frac{1}{1+2 z^{-1}+3 z^{-2}} .
$$

Create the first discrete-time transfer function by specifying the $z$ coefficients.

```
numerator = [1,0,0];
denominator = [1,2,3];
ts = 0.1;
sys1 = tf(numerator,denominator,ts)
```

```
sys1 =
 z^2
 z^2 + 2 z + 3
Sample time: 0.1 seconds
Discrete-time transfer function.
```

The coefficients of sys1 are ordered in descending powers of $z$.
tf switches convention based on the value of the 'Variable' property. Since sys2 is the inverse transfer function model of sys1, specify 'Variable' as 'z^-1' and use the same numerator and denominator coefficients.

```
sys2 = tf(numerator,denominator,ts,'Variable','z^-1')
sys2 =
```

    1
    \(1+2 z^{\wedge}-1+3 z^{\wedge}-2\)
    Sample time: 0.1 seconds
Discrete-time transfer function.

The coefficients of sys2 are now ordered in ascending powers of $z^{\wedge}-1$.
Based on different conventions, you can specify polynomial ordering in transfer function models using the 'Variable' property.

## Tunable Low-Pass Filter

In this example, you will create a low-pass filter with one tunable parameter $a$ :

$$
F=\frac{a}{s+a}
$$

Since the numerator and denominator coefficients of a tunableTF block are independent, you cannot use tunableTF to represent F. Instead, construct F using the tunable real parameter object realp.

Create a real tunable parameter with an initial value of 10.

```
a = realp('a',10)
a =
 Name: 'a'
 Value: 10
 Minimum: -Inf
 Maximum: Inf
 Free: 1
Real scalar parameter.
```

Use $t f$ to create the tunable low-pass filter $F$.

```
numerator = a;
denominator = [1,a];
F = tf(numerator,denominator)
Generalized continuous-time state-space model with 1 outputs, 1 inputs, 1 states, and the follow.
 a: Scalar parameter, 2 occurrences.
Type "ss(F)" to see the current value and "F.Blocks" to interact with the blocks.
```

$F$ is a genss object which has the tunable parameter a in its Blocks property. You can connect $F$ with other tunable or numeric models to create more complex control system models. For an example, see "Control System with Tunable Components".

## Static Gain MIMO Transfer Function Model

In this example, you will create a static gain MIMO transfer function model.
Consider the following two-input, two-output static gain matrix m:

$$
m=\left[\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right]
$$

Specify the gain matrix and create the static gain transfer function model.

```
m = [2,4;...
 3,5];
sys1 = tf(m)
sys1 =
 From input 1 to output...
 1: 2
 2: 3
 From input 2 to output...
 1: 4
 2: 5
Static gain.
```

You can use static gain transfer function model sys1 obtained above to cascade it with another transfer function model.

For this example, create another two-input, two-output discrete transfer function model and use the series function to connect the two models.

```
numerators = {1,[1,0];[-1,2],3};
denominator = [1,0.3];
ts = 0.2;
sys2 = tf(numerators,denominator,ts)
sys2 =
```

```
 From input 1 to output...
 1
 1: -------
 z + 0.3
 -z + 2
 2: -------
 z + 0.3
From input 2 to output...
 z
 1: -------
 z + 0.3
 3
 2: -------
 z + 0.3
Sample time: 0.2 seconds
Discrete-time transfer function.
sys = series(sys1,sys2)
sys =
 From input 1 to output...
 3 z^2 + 2.9 z + 0.6
 1: ------------------
 z^2 + 0.6 z + 0.09
 -2 z^2 + 12.4 z + 3.9
 2: --------------------
 z^2 + 0.6 z + 0.09
 From input 2 to output...
 5 z^2 + 5.5 z + 1.2
 1: ------------------
 z^2 + 0.6 z + 0.09
 -4 z^2 + 21.8 z + 6.9
 2: -------------------
 z^2 + 0.6 z + 0.09
Sample time: 0.2 seconds
Discrete-time transfer function.
```


## Limitations

- Transfer function models are ill-suited for numerical computations. Once created, convert them to state-space form before combining them with other models or performing model transformations. You can then convert the resulting models back to transfer function form for inspection purposes
- An identified nonlinear model cannot be directly converted into a transfer function model using tf . To obtain a transfer function model:

1 Convert the nonlinear identified model to an identified LTI model using linapp, idnlarx/ linearize, or idnlhw/linearize.

2 Then, convert the resulting model to a transfer function model using tf .

## Version History

## Introduced before R2006a

## See Also

filt|frd|get|set|ss|tfdata|zpk|genss|realp|genmat|tunableTF

## Topics

"What Are Model Objects?"
"Transfer Functions"
"Discrete-Time Numeric Models"
"MIMO Transfer Functions"
"Using the Right Model Representation"
"Using FEEDBACK to Close Feedback Loops"
External Websites
Transfer Function Analysis of Dynamic Systems (MathWorks Teaching Resources)

## tfdata

Access transfer function data

## Syntax

```
[num,den] = tfdata(sys)
[num,den,ts] = tfdata(sys)
[num,den,ts,sdnum,sdden] = tfdata(sys)
 = tfdata(sys,J1,...,JN)
[num,den] = tfdata(sys,'v')
```


## Description

[num,den] = tfdata(sys) returns the numerator and denominator coefficients of the transfer function for the tf , ss and zpk model objects or the array of model objects represented by sys.

The outputs num and den are two-dimensional cell arrays if sys contains a single LTI model. When sys is an array of models, num and den are returned as multidimensional cell arrays.
[num,den,ts] = tfdata(sys) also returns the sample time ts.
[num,den,ts,sdnum,sdden] = tfdata(sys) also returns the uncertainties in the numerator and denominator coefficients of identified system sys. $\operatorname{sdnum\{ i}, \mathrm{j}\}(\mathrm{k})$ is the 1 standard uncertainty in the value num $\{\mathrm{i}, \mathrm{j}\}(\mathrm{k})$ and $\operatorname{sdden}\{\mathrm{i}, \mathrm{j}\}(\mathrm{k})$ is the 1 standard uncertainty in the value den $\{\mathrm{i}, \mathrm{j}\}$ $(k)$. If sys does not contain uncertainty information, sdnum and sdden are empty [].
$\ldots \quad$ tfdata (sys $, \mathrm{J} 1, \ldots, \mathrm{JN}$ ) extracts the data for the $\mathrm{J} 1, \ldots, \mathrm{JN}$ entry in the model array sys.
[num,den] = tfdata(sys, 'v') returns the numerator and denominator coefficients as row vectors rather than cell arrays for a SISO transfer function represented by sys.

## Examples

## Extract Numerator and Denominator Coefficients from Transfer Function

For this example, consider tfData.mat which contains a continuous-time SISO transfer function sys1.

Load the data and use tfdata to extract the numerator and denominator coefficients.

```
load('tfData.mat','sys1');
[num,den] = tfdata(sys1);
```

num and den are returned as cell arrays. To display data, use celldisp.

```
celldisp(num)
```

num $\{1\}=$

```
 0
celldisp(den)
den{1} =
 7 4 2 1
```

You can also extract the numerator and denominator coefficients as row vectors with the following syntax.
[num,den] = tfdata(sys1,'v');

## Extract Discrete-Time Transfer Function Data

For this example, consider tfData.mat which contains a discrete-time SISO transfer function sys2.
Load the data and use tfdata to extract the numerator and denominator coefficients along with the sample time.

```
load('tfData.mat','sys2');
[num,den,ts] = tfdata(sys2)
num = 1x1 cell array
 {[0 0 2 0]}}
den = 1x1 cell array
 {[4 0 3 -1]}
```

$\mathrm{ts}=0.1000$
num and den are returned as cell arrays. To display data, use celldisp.
celldisp(num)
num $\{1\}=$
$0 \quad 0 \quad 20$
celldisp(den)
$\operatorname{den}\{1\}=$
$\begin{array}{llll}4 & 0 & 3 & -1\end{array}$

## Extract Identified Transfer Function Data

For this example, estimate a transfer function with 2 poles and 1 zero from identified data contained in iddata7.mat with an input delay value.

Load the identified data and estimate the transfer function.

```
load('iddata7.mat');
sys = tfest(z7,2,1,'InputDelay',[1 0]);
```

Extract the numerator, denominator and their standard deviations for the 2 -input, 1 output identified transfer function.

```
[num,den,~,sdnum,sdden] = tfdata(sys)
num=1\times2 cell array
 {[0 -0.5212 1.1886]} {[0 0.0552 -0.0013]}
den=1\times2 cell array
 {[1 0.3390 0.2353]} {[1 0.0360 0.0314]}
sdnum=1\times2 cell array
 {[0 0.1311 0.0494]} {[0 0.0246 0.0033]}
sdden=1\times2 cell array
 {[0 0.0183 0.0085]} {[0 0.0278 0.0048]}
```


## Extract Data from Specific Model in Transfer Function Array

For this example, extract numerator and denominator coefficients for a specific transfer function contained in the $3 x 1$ array of continuous-time transfer functions sys.

Load the data and extract the numerator and denominator coefficients of the second model in the array.

```
load('tfArray.mat','sys');
[num,den] = tfdata(sys,2);
```

Use celldisp to visualize the data in the cell array num and den.

```
celldisp(num)
```

num $\{1\}=$
$0 \quad 0 \quad 2$

```
celldisp(den)
den{1} =
 1 1 2
```


## Input Arguments

sys - Dynamic system
dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model, or an array of SISO or MIMO dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as tf, ss and zpk models.

If sys is a state-space or zero-pole-gain model, it is first converted to transfer function form using tf. For more information on the format of transfer function model data, see the $t f$ reference page.

For SISO transfer functions, use the following syntax to return the numerator and denominator coefficients directly as row vectors rather than as cell arrays:
[num,den] = tfdata(sys,'v')
J1, ..., JN - Indices of models in array whose data you want to access positive integer

Indices of models in array whose data you want to access, specified as a positive integer. You can provide as many indices as there are array dimensions in sys. For example, if sys is a 4-by-5 array of transfer functions, the following command accesses the data for entry $(2,3)$ in the array.
[num,den] = tfdata(sys,2,3);

## Output Arguments

## num - Coefficients of the numerator

cell array | row vector
Coefficients of the numerator of the transfer function, returned as a cell array or row vector.
When sys contains a single LTI model, the output num is returned as a cell array with the following characteristics:

- num has as many rows as outputs and as many columns as inputs of sys.
- The ( $i, j$ ) entries in num $\{i, j\}$ are row vectors specifying the numerator coefficients of the transfer function from input $j$ to output $i$. tfdata orders these coefficients in descending powers of $s$ or $z$.

When sys contains an array of LTI models, num is returned as a multidimensional cell array of the same size as sys.

## den - Coefficients of the denominator

cell array | row vector
Coefficients of the denominator of the transfer function, returned as a cell array or row vector.
When sys contains a single LTI model, the output den is returned as a cell array with the following characteristics:

- den has as many rows as outputs and as many columns as inputs of sys.
- The ( $\mathrm{i}, \mathrm{j}$ ) entries in den $\{\mathrm{i}, \mathrm{j}\}$ are row vectors specifying the denominator coefficients of the transfer function from input $j$ to output i. tfdata orders these coefficients in descending powers of $s$ or $z$.

When sys contains an array of LTI models, den is returned as a multidimensional cell array of the same size as sys.

## ts - Sample time

non-negative scalar
Sample time, returned as a non-negative scalar.

## sdnum - Standard uncertainty of the numerator coefficients

cell array
Standard uncertainty of the numerator coefficients of the identified system sys, returned as a cell array of the same size as num. $\operatorname{sdnum}\{i, j\}(k)$ is the 1 standard uncertainty in the value num $\{i, j\}$ $(k)$. If sys does not contain uncertainty information, sdnum is empty [ ].

## sdden - Standard uncertainty the denominator coefficients

cell array
Standard uncertainty of the denominator coefficients of the identified system sys, returned as a cell array of the same size as den. $\operatorname{sdden}\{\mathrm{i}, \mathrm{j}\}(\mathrm{k})$ is the 1 standard uncertainty in the value den $\{\mathrm{i}, \mathrm{j}\}$ $(k)$. If sys does not contain uncertainty information, sdden is empty [ ].

## Version History

## Introduced before R2006a

## See Also

tf|ss|zpk|get|ssdata|zpkdata

## thiran

Generate fractional delay filter based on Thiran approximation

## Syntax

sys = thiran(tau,Ts)

## Description

sys $=$ thiran(tau,Ts) discretizes the continuous-time delay tau using a Thiran filter to approximate the fractional part of the delay. Ts specifies the sample time of the filter, which is returned as a discrete-time transfer function model. The Thiran fractional-delay filter has the following form:

$$
H(z)=\frac{a_{N} z^{N}+a_{N-1} z^{N-1}+\cdots+a_{0}}{a_{0} z^{N}+a_{1} z^{N-1}+\cdots+a_{N}} .
$$

The coefficients $a_{0}, \ldots, a_{N}$ are given by:

$$
\begin{aligned}
& a_{k}=(-1)^{k}\binom{N}{k} \prod_{i=0}^{N} \frac{D-N+i}{D-N+k+i}, \quad \forall k: 1,2, \ldots, N \\
& a_{0}=1
\end{aligned}
$$

where $D=\tau / T_{s}$ and $N=\operatorname{ceil}(D)$ is the filter order. See [1].

## Examples

## Approximate and Discretize Time Delay

Approximate and discretize a time delay of 2.4 s with a sample time of 1 s .

```
sys = thiran(2.4,1)
sys =
 0.004159 z^3 - 0.04813 z^2 + 0.5294 z + 1
 z^3 + 0.5294 z^2 - 0.04813 z + 0.004159
```

Sample time: 1 seconds
Discrete-time transfer function.

The time delay is not an integer multiple of the sample time. Therefore, the approximation sys is a discrete-time transfer function of order 3.

## Time Delay of Integer Multiple of Sample Time

Discretize a time delay of 2.5 s with a sample time of 0.5 s .

```
sys = thiran(2.5,0.5)
```

sys $=$
1
$z^{\wedge} 5$

Sample time: 0.5 seconds
Discrete-time transfer function.
Here, the time delay is an exactly five times the target sample time. Therefore, sys is a pure discrete delay of order 5.

## Input Arguments

## tau - Time delay

positive scalar
Time delay to discretize, specified as a positive scalar value. thiran assumes that tau is in seconds.

## Ts - Sample time

positive scalar
Sample time of discretized approximation of time delay, specified as a positive scalar value. thiran assumes that Ts is in seconds.

## Output Arguments

## sys - Discretized approximation of time delay tf model

Discretized approximation of time delay, returned as a discrete-time transfer function (tf) model with sample time Ts.

- If tau is an integer multiple of Ts, then sys represents the pure discrete delay $z^{-N}$, with $N=$ tau/Ts.
- Otherwise, sys is a discrete-time, all-pass, infinite impulse response (IIR) filter of order ceil(tau/Ts).

The filter is a discrete-time, all-pass, infinite impulse response (IIR) filter of order ceil(tau/Ts). The unit sys.TimeUnit is 'seconds'.

## Tips

- thi ran approximates and discretizes a pure time delay. To approximate a pure continuous-time time delay without discretizing, use pade. To discretize continuous-time models having time delays, use c2d.


## Version History

Introduced in R2010a

## References

[1] T. Laakso, V. Valimaki, "Splitting the Unit Delay", IEEE Signal Processing Magazine, Vol. 13, No. 1, p.30-60, 1996.

## See Also

c2d | pade \| tf

## timeoptions

Create list of time plot options

## Description

Use the timeoptions command to create a TimeOptions object to customize time plot appearance. You can also use the command to override the plot preference settings in the MATLAB session in which you create the time plots.

## Creation

## Syntax

plotoptions = timeoptions
plotoptions = timeoptions('cstprefs')
Description
plotoptions = timeoptions returns a list of available options for time plots with default values set. You can use these options to customize the time plot appearance from the command line.
plotoptions = timeoptions('cstprefs') initializes the plot options with options you selected in the Control System Toolbox and System Identification Toolbox Preferences Editor. For more information about the editor, see "Toolbox Preferences Editor". This syntax is useful when you want to change a few plot options but otherwise use your default preferences. A script that uses this syntax may generate results that look different when run in a session with different preferences.

## Properties

## Normalize - Toggle response normalization <br> 'off' (default) | 'on'

Toggle response normalization, specified as either 'on' or 'off'.

## SettleTimeThreshold - Settling time threshold

0.02 (default) | positive scalar

Settling time threshold, specified as a positive scalar between values 0 and 1 .

## RiseTimeLimits - Rise time limits

[0.1,0.9] (default)| two-element vector of the form [min, max]
Rise time limits between the values of 0 and 1 , specified as a two-element vector of the form [min, max].

TimeUnits - Time units
'seconds' (default)

Time units, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

You can also specify ' auto' which uses time units specified in the TimeUnit property of the input system. For multiple systems with different time units, the units of the first system is used.

ConfidenceRegionNumberSD - Number of standard deviations to use to plot the confidence region
1 (default) | scalar
Number of standard deviations to use to plot the confidence region, specified as a scalar. This is applicable to identified models only.

## IOGrouping - Grouping of input-output pairs

'none' (default) | 'inputs' | 'outputs' | 'all'
Grouping of input-output (I/O) pairs, specified as one of the following:

- 'none' - No input-output grouping.
- 'inputs' - Group only the inputs.
- 'outputs' - Group only the outputs.
- 'all' - Group all the I/O pairs.


## InputLabels - Input label style

structure (default)
Input label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## OutputLabels - Output label style

structure (default)
Output label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is dark grey with the RGB triplet [0.4,0.4,0.4].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## InputVisible - Toggle display of inputs

\{'on'\} (default) |\{'off'\}
Toggle display of inputs, specified as either \{'on'\} or \{'off'\}.

## OutputVisible - Toggle display of outputs

\{'on'\} (default)| \{'off'\}
Toggle display of outputs, specified as either \{ 'on'\} or \{'off'\}.

## Title - Title text and style

structure (default)
Title text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the plot is titled 'Time Response'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0, 0, 0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## XLabel - X-axis label text and style

## structure (default)

X-axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a character vector. By default, the axis is titled 'Time'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## YLabel - Y-axis label text and style

structure (default)
Y -axis label text and style, specified as a structure with the following fields:

- String - Label text, specified as a cell array of character vectors. By default, the axis is titled 'Amplitude'.
- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].
- Interpreter - Text interpreter, specified as one of these values:
- 'tex' - Interpret characters using a subset of TeX markup. This is the default value of Interpreter.
- 'latex' - Interpret characters using LaTeX markup.
- 'none' - Display literal characters.


## TickLabel - Tick label style

## structure (default)

Tick label style, specified as a structure with the following fields:

- FontSize - Font size, specified as a scalar value greater than zero in point units. The default font size depends on the specific operating system and locale. One point equals $1 / 72$ inch.
- FontWeight - Character thickness, specified as 'Normal' or 'bold'. MATLAB uses the FontWeight property to select a font from those available on your system. Not all fonts have a bold weight. Therefore, specifying a bold font weight can still result in the normal font weight.
- FontAngle - Character slant, specified as 'Normal' or 'italic'. Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
- Color - Text color, specified as an RGB triplet. The default color is black specified by the RGB triplet [0,0,0].


## Grid - Toggle grid display

'off' (default) | 'on'
Toggle grid display on the plot, specified as either 'off' or 'on'.

## GridColor - Color of the grid lines

[0.15,0.15, 0.15] (default) | RGB triplet
Color of the grid lines, specified as an RGB triplet. The default color is light grey specified by the RGB triplet [0.15, 0.15, 0.15].

## XLimMode - X-axis limit selection mode

'auto' (default) | 'manual'
Selection mode for the x -axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the XLim property.


## YLimMode - Y-axis limit selection mode

'auto' (default) | 'manual'
Selection mode for the y-axis limits, specified as one of these values:

- 'auto' - Enable automatic limit selection, which is based on the total span of the plotted data.
- 'manual' - Manually specify the axis limits. To specify the axis limits, set the YLim property.


## XLim - X-axis limits

' \{[1,10]\}' (default) | cell array of two-element vector of the form [min, max]
X -axis limits, specified as a cell array of two-element vector of the form [min, max].

## YLim - $\mathbf{Y}$-axis limits

' \{[1,10]\}' (default) | cell array of two-element vector of the form [min, max]
Y-axis limits, specified as a cell array of two-element vector of the form [min, max].

## Object Functions

getoptions Return plot options handle or plot options property
impulseplot Plot impulse response with additional plot customization options
initialplot Plot initial condition response with additional plot customization options
lsimplot Plot simulated time response of dynamic system to arbitrary inputs with additional plot customization options
setoptions Set plot options handle or plot options property
stepplot Plot step response with additional plot customization options

## Examples

Plot Normalized Step Response
Create a default time options set.

```
opt = timeoptions;
```

Enable plotting of normalized responses.
opt.Normalize = 'on';
Plot the step response of two transfer function models using the specified options.

```
sys1 = tf(10,[1,1]);
sys2 = tf(5,[1,5]);
stepplot(sys1,sys2,opt);
```



The plot shows the normalized step response for the two transfer function models.

## Customize Step Plot using Plot Handle

For this example, use the plot handle to change the time units to minutes and turn on the grid.
Generate a random state-space model with 5 states and create the step response plot with plot handle h.

```
rng("default")
sys = rss(5);
h = stepplot(sys);
```

Change the time units to minutes and turn on the grid. To do so, edit properties of the plot handle, $h$ using setoptions.

```
setoptions(h,'TimeUnits','minutes','Grid','on');
```



The step plot automatically updates when you call setoptions.
Alternatively, you can also use the timeoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.

```
plotoptions = timeoptions('cstprefs');
```

Change properties of the options set by setting the time units to minutes and enabling the grid.

```
plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on';
stepplot(sys,plotoptions);
```



You can use the same option set to create multiple step plots with the same customization. Depending on your own toolbox preferences, the plot you obtain might look different from this plot. Only the properties that you set explicitly, in this example TimeUnits and Grid, override the toolbox preferences.

## Customized Step Response Plot at Specified Time

For this example, examine the step response of the following zero-pole-gain model and limit the step plot to tFinal $=15 \mathrm{~s}$. Use 15 -point blue text for the title. This plot should look the same, regardless of the preferences of the MATLAB session in which it is generated.

```
sys = zpk(-1,[-0.2+3j,-0.2-3j],1)*tf([1 1],[1 0.05]);
```

tFinal = 15;

First, create a default options set using timeoptions.
plotoptions = timeoptions;
Next change the required properties of the options set plotoptions.
plotoptions.Title.FontSize $=15$;
plotoptions.Title.Color = [0 0 1];
Now, create the step response plot using the options set plotoptions.
h = stepplot(sys,tFinal,plotoptions);


Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

## Custom Plot of System Evolution from Initial Condition

By default, l simplot simulates the model assuming all states are zero at the start of the simulation. When simulating the response of a state-space model, use the optional x0 input argument to specify nonzero initial state values. Consider the following two-state SISO state-space model.

```
A = [-1.5 -3;
3 -1];
B = [1.3; 0];
C = [1.15 2.3];
D = 0;
sys = ss(A,B,C,D);
```

Suppose that you want to allow the system to evolve from a known set of initial states with no input for 2 s , and then apply a unit step change. Specify the vector $x 0$ of initial state values, and create the input vector.

```
x0 = [-0.2 0.3];
t = 0:0.05:8;
u = zeros(length(t),1);
u(t>=2) = 1;
```

First, create a default options set using timeoptions.

```
plotoptions = timeoptions;
```

Next change the required properties of the options set plotoptions and plot the simulated response with the zero order hold option.

```
plotoptions.Title.FontSize = 15;
plotoptions.Title.Color = [0 0 1];
plotoptions.Grid = 'on';
h = lsimplot(sys,u,t,x0,plotoptions,'zoh');
hold on
title('Simulated Time Response with Initial Conditions')
```

Simulated Time Response with Initial Conditions


The first half of the plot shows the free evolution of the system from the initial state values [-0.2 $0.3]$. At $t=2$ there is a step change to the input, and the plot shows the system response to this new signal beginning from the state values at that time. Because plotoptions begins with a fixed set of options, the plot result is independent of the toolbox preferences of the MATLAB session.

## Customized Plot of Simulated Response to Arbitrary Input Signal

For this example, change time units to minutes and turn the grid on for the simulated response plot. Consider the following transfer function.
sys $=t f\left(3,\left[\begin{array}{lll}1 & 2 & 3\end{array}\right) ;\right.$
To compute the response of this system to an arbitrary input signal, provide lsimplot with a vector of the times $t$ at which you want to compute the response and a vector $u$ containing the corresponding signal values. For instance, plot the system response to a ramping step signal that starts at 0 at time $t=0$, ramps from 0 at $t=1$ to 1 at $t=2$, and then holds steady at 1 . Define $t$ and compute the values of $u$.
$t=0: 0.04: 8 ;$
$u=\max (0, \min (t-1,1))$;
Use lsimplot plot the system response to the signal with a plot handle $h$.
h = lsimplot(sys,u,t);


The plot shows the applied input ( $u, t$ ) in gray and the system response in blue.
Use the plot handle to change the time units to minutes and to turn the grid on. To do so, edit properties of the plot handle, h using setoptions.

```
setoptions(h,'TimeUnits','minutes','Grid','on')
```



The plot automatically updates when you call setoptions.
Alternatively, you can also use the timeoptions command to specify the required plot options. First, create an options set based on the toolbox preferences.
plotoptions = timeoptions('cstprefs');
Change properties of the options set by setting the time units to minutes and enabling the grid.

```
plotoptions.TimeUnits = 'minutes';
plotoptions.Grid = 'on';
lsimplot(sys,u,t,plotoptions);
```



## Version History

Introduced in R2008a

```
See Also
getoptions|impulseplot|initialplot|lsimplot| setoptions| stepplot
Topics
"Toolbox Preferences Editor"
```


## totaldelay

Total combined I/O delays for LTI model

## Syntax

td = totaldelay(sys)

## Description

td $=$ totaldelay(sys) returns the total combined I/O delays for an LTI model sys. The matrix td combines contributions from the InputDelay, OutputDelay, and ioDelayMatrix properties.

Delays are expressed in seconds for continuous-time models, and as integer multiples of the sample period for discrete-time models. To obtain the delay times in seconds, multiply td by the sample time sys.Ts.

## Examples

## Compute Combined Input-Output Delay for Transfer Function

Create the transfer function model, $1 / \mathrm{s}$.
sys = tf(1,[10]);
Specify a 2 second input delay, and a 1.5 second output delay.
sys.InputDelay $=2$;
sys.Outputdelay = 1.5;
Compute the combined input-output delay for sys.
td $=$ totaldelay(sys)
td $=3.5000$
The resulting transfer function has the following form:

$$
e^{-2 s} \times \frac{1}{s} e^{-1.5 s}=e^{-3.5 s} \frac{1}{s}
$$

This result is equivalent to specifying an input-output delay of 3.5 seconds for the original transfer function, $1 / \mathrm{s}$.

## Version History

## Introduced before R2006a

## See Also

absorbDelay | hasdelay

## tunableGain

Tunable static gain block

## Syntax

blk = tunableGain(name, $\mathrm{Ny}, \mathrm{Nu}$ )
blk = tunableGain(name, G)

## Description

Model object for creating tunable static gains. tunableGain lets you parametrize tunable static gains for parameter studies or for automatic tuning with tuning commands such as systune or looptune.
tunableGain is part of the Control Design Block family of parametric models. Other Control Design Blocks include tunablePID, tunableSS, and tunableTF.

## Construction

blk = tunableGain(name, Ny,Nu) creates a parametric static gain block named name. This block has Ny outputs and Nu inputs. The tunable parameters are the gains across each of the Ny-by-Nu I/O channels.
blk = tunableGain(name, $G$ ) uses the double array $G$ to dimension the block and initialize the tunable parameters.

## Input Arguments

## name

Block Name, specified as a character vector such as 'K' or 'gain1'. (See "Properties" on page 21477.)

## Ny

Non-negative integer specifying the number of outputs of the parametric static gain block blk.

## Nu

Non-negative integer specifying the number of inputs of the parametric static gain block blk.

## G

Double array of static gain values. The number of rows and columns of $G$ determine the number of inputs and outputs of $b l k$. The entries $G$ are the initial values of the parametric gain block parameters.

## Properties

## Gain

Parametrization of the tunable gain.
blk.Gain is a param. Continuous object. For general information about the properties of the param.Continuous object blk.Gain, see the param. Continuous object reference page.

The following fields of blk. Gain are used when you tune blk using hinfstruct:

Field	Description
Value	Current value of the gain matrix. For a block that   has Ny outputs and Nu inputs, blk. Gain. Value   is a Ny-by-Nu matrix.   If you use the G input argument to create blk,   blk. Gain.Value initializes to the values of G.   Otherwise, all entries of blk. Gain. Value   initialize to zero.   hinfstruct tunes all entries in   blk. Gain. Value except those whose values are   fixed by blk. Gain. Free.
Free	
Default: Array of zero values	


Field
Maximum

## Description <br> Maximum value of the parameter. This property places an upper bound on the tuned value of the parameter. For example, setting <br> blk. Gain. Maximum $=100$ ensures that all entries in the gain matrix have gain less than 100. <br> Default: Inf

## Ts

Sample time. For continuous-time models, $\mathrm{Ts}=0$. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sample time, set Ts =-1.

Changing this property does not discretize or resample the model.
Default: 0 (continuous time)

## TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

## Default: 'seconds'

## InputName

Input channel names, specified as one of the following:

- Character vector - For single-input models, for example, ' controls'.
- Cell array of character vectors - For multi-input models.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)';'controls(2)'\}.
You can use the shorthand notation $u$ to refer to the InputName property. For example, sys. u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all input channels

## InputUnit

Input channel units, specified as one of the following:

- Character vector - For single-input models, for example, ' seconds ' .
- Cell array of character vectors - For multi-input models.

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.
Default: ' ' for all input channels

## InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
creates input groups named controls and noise that include input channels 1, 2 and 3, 5, respectively. You can then extract the subsystem from the controls inputs to all outputs using:

```
sys(:,'controls')
```

Default: Struct with no fields

## OutputName

Output channel names, specified as one of the following:

- Character vector - For single-output models. For example, 'measurements '.
- Cell array of character vectors - For multi-output models.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
sys.OutputName = 'measurements';
The output names automatically expand to \{'measurements (1)' ; 'measurements (2)' \}.

You can use the shorthand notation $y$ to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all output channels

## OutputUnit

Output channel units, specified as one of the following:

- Character vector - For single-output models. For example, ' seconds ' .
- Cell array of character vectors - For multi-output models.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.
Default: ' ' for all output channels

## OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];
```

creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:

```
sys('measurement',:)
```

Default: Struct with no fields

## Name

System name, specified as a character vector. For example, ' system_1'.

## Default: '

## Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
```

```
ans =
 "sys1 has a string."
ans =
 'sys2 has a character vector.'
```

Default: [ $0 \times 1$ string]

## UserData

Any type of data you want to associate with system, specified as any MATLAB data type.
Default: []

## Examples

Create a 2-by-2 parametric gain block of the form

$$
\left[\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right]
$$

where $g_{1}$ and $g_{2}$ are tunable parameters, and the off-diagonal elements are fixed to zero.

```
blk = tunableGain('gainblock',2,2); % 2 outputs, 2 inputs
```

blk.Gain.Free = [1 0; 0 1]; \% fix off-diagonal entries to zero

All entries in blk. Gain. Value initialize to zero. Initialize the diagonal values to 1 as follows.

```
blk.Gain.Value = eye(2); % set diagonals to 1
```

Create a two-input, three-output parametric gain block and initialize all the parameter values to 1.
To do so, create a matrix to dimension the parametric gain block and initialize the parameter values.
G = ones $(3,2)$;
blk = tunableGain('gainblock',G);
Create a 2-by-2 parametric gain block and assign names to the inputs.

```
blk = tunableGain('gainblock',2,2) % 2 outputs, 2 inputs
```

blk.InputName = \{'Xerror','Yerror'\} \% assign input names

## Tips

- Use the blk.Gain. Free field of blk to specify additional structure or fix the values of specific entries in the block. To fix the gain value from input $i$ to output $j$, set blk.Gain.Free(i,j) = 0. To allow hinfstruct to tune this gain value, set blk.Gain.Free(i,j) = 1 .
- To convert a tunableGain parametric model to a numeric (non-tunable) model object, use model commands such as $\mathrm{tf}, \mathrm{zpk}$, or ss.


## Version History

Introduced in R2016a
R2016a: Name changed from Itiblock.gain
Behavior changed in R2016a
Prior to R2016a, tunableGain was called ltiblock.gain.

## See Also

tunablePID|tunablePID2 | tunableTF|tunableSS | systune |looptune | genss |
hinfstruct

## Topics

"Control Design Blocks"
"Models with Tunable Coefficients"

## tunablePID

Tunable PID controller

## Syntax

```
blk = tunablePID(name,type)
blk = tunablePID(name,type,Ts)
blk = tunablePID(name,sys)
```


## Description

Model object for creating tunable one-degree-of-freedom PID controllers. tunablePID lets you parametrize a tunable SISO PID controller for parameter studies or for automatic tuning with tuning commands such as systune, looptune, or the Robust Control Toolbox command, hinfstruct.
tunablePID is part of the family of parametric Control Design Blocks. Other parametric Control Design Blocks include tunableGain, tunableSS, and tunableTF.

## Construction

blk = tunablePID(name,type) creates the one-degree-of-freedom continuous-time PID controller:

$$
b l k=K_{p}+\frac{K_{i}}{s}+\frac{K_{d} s}{1+T_{f} s^{\prime}},
$$

with tunable parameters $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$, and Tf . The type argument sets the controller type by fixing some of these values to zero (see "Input Arguments" on page 2-1483).
blk = tunablePID(name, type,Ts) creates a discrete-time PID controller with sample time Ts:

$$
b l k=K_{p}+K_{i} I F(z)+\frac{K_{d}}{T_{f}+D F(z)^{\prime}}
$$

where $I F(z)$ and $D F(z)$ are the discrete integrator formulas for the integral and derivative terms, respectively. The values of the IFormula and DFormula properties set the discrete integrator formulas (see "Properties" on page 2-1484).
blk = tunablePID(name, sys) uses the dynamic system model, sys, to set the sample time, Ts, and the initial values of the parameters $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$, and Tf .

## Input Arguments

name
PID controller Name, specified as a character vector such as 'C' or 'PI1'. (See "Properties" on page 2-1484.)

## type

Controller type, specified as one of the values in the following table. Specifying a controller type fixes up to three of the PID controller parameters.

Value for type	Controller Type	Effect on PID Parameters
' $\mathrm{P}^{\prime}$	Proportional only	Ki and Kd are fixed to zero; Tf   is fixed to 1; Kp is free
' $\operatorname{PI}$ '	Proportional-integral	Kd is fixed to zero; Tf is fixed to   $1 ; \mathrm{Kp}$ and Ki are free
'PD '	Proportional-derivative with   first-order filter on derivative   action	Ki is fixed to zero; Kp, Kd, and   Tf are free
' PID'	Proportional-integral-derivative   with first-order filter on   derivative action	$\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$, and Tf are free

## Ts

Sample time, specified as a scalar.

## sys

Dynamic system model representing a PID controller.

## Properties

Kp, Ki, Kd, Tf
Parametrization of the PID gains $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$, and filter time constant Tf of the tunable PID controller blk.

The following fields of $b l k . K p, b l k . K i, b l k . K d$, and $b l k . T f$ are used when you tune $b l k$ using $a$ tuning command such as systune:

Field	Description
Value	Current value of the parameter.
Free	Logical value determining whether the parameter   is fixed or tunable. For example,
(If blk.Kp. Free $=1$, then blk.Kp. Value is   tunable.   If blk.Kp. Free $=0$, then blk.Kp.Value is   fixed.	


Field	Description
Minimum	Minimum value of the parameter. This property   places a lower bound on the tuned value of the   parameter. For example, setting   blk. Kp.Minimum = 0 ensures that Kp remains   positive.   blk.Tf. Minimum must always be positive.
Maximum	Maximum value of the parameter. This property   places an upper bound on the tuned value of the   parameter. For example, setting   blk. Tf. Maximum = 100 ensures that the filter   time constant does not exceed 100.

blk.Kp, blk.Ki, blk.Kd, and blk.Tf are param. Continuous objects. For general information about the properties of these param. Continuous objects, see the param. Continuous object reference page.

## IFormula, DFormula

Discrete integrator formulas $\operatorname{IF}(z)$ and $D F(z)$ for the integral and derivative terms, respectively, specified as one of the values in the following table.

Value	$\mathbf{I F}(\mathbf{z})$ or $\mathbf{D F}(\mathbf{z})$ Formula
'ForwardEuler'	$\frac{T_{s}}{z-1}$
'BackwardEuler'	$\frac{T_{s} z}{z-1}$
'Trapezoidal'	$\frac{T_{s} z+1}{2} \frac{z-1}{z-1}$

## Default: ' ForwardEuler'

## Ts

Sample time. For continuous-time models, Ts $=0$. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. Unspecified sample time ( $\mathrm{Ts}=-1$ ) is not supported for PID blocks.

Changing this property does not discretize or resample the model.
Default: 0 (continuous time)

## TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

## InputName

Input channel name, specified as a character vector. Use this property to name the input channel of the controller model. For example, assign the name error to the input of a controller model C as follows.
C. InputName = 'error';

You can use the shorthand notation $u$ to refer to the InputName property. For example, $\mathrm{C} . \mathrm{u}$ is equivalent to C. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Specifying connection points when interconnecting models

Default: Empty character vector, ' '

## InputUnit

Input channel units, specified as a character vector. Use this property to track input signal units. For example, assign the concentration units $\mathrm{mol} / \mathrm{m}^{\wedge} 3$ to the input of a controller model C as follows.
C. InputUnit = 'mol/m^3';

InputUnit has no effect on system behavior.
Default: Empty character vector, ' '

## InputGroup

Input channel groups. This property is not needed for PID controller models.
Default: struct with no fields

## OutputName

Output channel name, specified as a character vector. Use this property to name the output channel of the controller model. For example, assign the name control to the output of a controller model C as follows.

## C.OutputName = 'control';

You can use the shorthand notation $y$ to refer to the OutputName property. For example, C.y is equivalent to C.OutputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Specifying connection points when interconnecting models

Default: Empty character vector, ' '

## OutputUnit

Output channel units, specified as a character vector. Use this property to track output signal units. For example, assign the unit Volts to the output of a controller model C as follows.
C.OutputUnit = 'Volts';

OutputUnit has no effect on system behavior.
Default: Empty character vector, ' '

## OutputGroup

Output channel groups. This property is not needed for PID controller models.
Default: struct with no fields

## Name

System name, specified as a character vector. For example, 'system_1'.

## Default: ''

## Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans =
 "sys1 has a string."
ans =
 'sys2 has a character vector.'
```

Default: [0×1 string]

## UserData

Any type of data you want to associate with system, specified as any MATLAB data type.

## Default: []

## Examples

## Tunable Controller with a Fixed Parameter

Create a tunable PD controller. Then, initialize the parameter values, and fix the filter time constant.

```
blk = tunablePID('pdblock','PD');
blk.Kp.Value = 4; % initialize Kp to 4
blk.Kd.Value = 0.7; % initialize Kd to 0.7
blk.Tf.Value = 0.01; % set parameter Tf to 0.01
blk.Tf.Free = false; % fix parameter Tf to this value
blk
blk =
 Parametric continuous-time PID controller "pdblock" with formula:
 Kp + Kd** co-- col
 and tunable parameters Kp, Kd.
Type "pid(blk)" to see the current value and "get(blk)" to see all properties.
```


## Controller Initialized by Dynamic System Model

Create a tunable discrete-time PI controller. Use a pid object to initialize the parameters and other properties.

```
C = pid(5,2.2,'Ts',0.1,'IFormula','BackwardEuler');
blk = tunablePID('piblock',C)
blk =
 Parametric discrete-time PID controller "piblock" with formula:
 Kp + Ki* % % % - ---
 and tunable parameters Kp, Ki.
Type "pid(blk)" to see the current value and "get(blk)" to see all properties.
```

blk takes the value of properties, such as Ts and IFormula, from C.

## Controller with Named Input and Output

Create a tunable PID controller, and assign names to the input and output.

```
blk = tunablePID('pidblock','pid')
blk.InputName = {'error'} % assign input name
blk.OutputName = {'control'} % assign output name
```


## Tips

- You can modify the PID structure by fixing or freeing any of the parameters Kp, Ki, Kd, and Tf. For example, blk.Tf.Free = false fixes Tf to its current value.
- To convert a tunablePID parametric model to a numeric (nontunable) model object, use model commands such as pid, pidstd, tf , or ss. You can also use getValue to obtain the current value of a tunable model.


## Version History

Introduced in R2016a

## R2016a: Name changed from Itiblock.pid

Behavior changed in R2016a
Prior to R2016a, tunablePID was called ltiblock.pid.

## See Also

tunablePID2|tunableGain|tunableTF|tunableSS| systune|looptune|genss|
hinfstruct

## Topics

"Control Design Blocks"
"Models with Tunable Coefficients"

## tunablePID2

Tunable two-degree-of-freedom PID controller

## Syntax

blk = tunablePID2(name,type)
blk = tunablePID2(name,type,Ts)
blk = tunablePID2(name,sys)

## Description

Model object for creating tunable two-degree-of-freedom PID controllers. tunablePID2 lets you parametrize a tunable SISO two-degree-of-freedom PID controller. You can use this parametrized controller for parameter studies or for automatic tuning with tuning commands such as systune, looptune, or the Robust Control Toolbox command hinfstruct.
tunablePID2 is part of the family of parametric Control Design Blocks. Other parametric Control Design Blocks include tunableGain, tunableSS, and tunableTF.

## Construction

blk = tunablePID2 (name,type) creates the two-degree-of-freedom continuous-time PID controller described by the equation:

$$
u=K_{p}(b r-y)+\frac{K_{i}}{s}(r-y)+\frac{K_{d} S}{1+T_{f} S}(c r-y) .
$$

$r$ is the setpoint command, $y$ is the measured response to that setpoint, and $u$ is the control signal, as shown in the following illustration.


The tunable parameters of the block are:

- Scalar gains Kp, Ki, and Kd
- Filter time constant Tf
- Scalar weights band c

The type argument sets the controller type by fixing some of these values to zero (see "Input Arguments" on page 2-1491).
blk = tunablePID2 (name, type,Ts) creates a discrete-time PID controller with sample time Ts. The equation describing this controller is:

$$
u=K_{p}(b r-y)+K_{i} I F(z)(r-y)+\frac{K_{d}}{T_{f}+D F(z)}(c r-y) .
$$

$I F(z)$ and $D F(z)$ are the discrete integrator formulas for the integral and derivative terms, respectively. The values of the IFormula and DFormula properties set the discrete integrator formulas (see "Properties" on page 2-1491).
blk = tunablePID2 (name, sys) uses the dynamic system model, sys, to set the sample time, Ts, and the initial values of all the tunable parameters. The model sys must be compatible with the equation of a two-degree-of-freedom PID controller.

## Input Arguments

## name

PID controller Name, specified as a character vector such as 'C' or '2D0FPID1'. (See "Properties" on page 2-1491.)

## type

Controller type, specified as one of the values in the following table. Specifying a controller type fixes up to three of the PID controller parameters.

Value for type	Controller Type	Effect on PID Parameters
' $P^{\prime}$	Proportional only	Ki and Kd are fixed to zero; Tf   is fixed to 1; Kp is free
'PI'	Proportional-integral	Kd is fixed to zero; Tf is fixed to   $1 ;$ Kp and Ki are free
'PD '	Proportional-derivative with   first-order filter on derivative   action	Ki is fixed to zero; Kp, Kd, and   Tf are free
'PID'	Proportional-integral-derivative   with first-order filter on   derivative action	Kp, Ki, Kd, and Tf are free

## Ts

Sample time, specified as a scalar.

## sys

Dynamic system model representing a two-degree-of-freedom PID controller.

## Properties

## Kp,Ki,Kd,Tf, b, c

Parametrization of the PID gains $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$, the filter time constant, Tf , and the scalar gains, b and c.
 tune blk using a tuning command such as systune:

Field	Description
Value	Current value of the parameter. blk.b.Value, and $b l k . c . V a l u e ~ a r e ~ a l w a y s ~ n o n n e g a t i v e . ~$
Free	Logical value determining whether the parameter is fixed or tunable. For example:   - If blk.Kp. Free $=1$, then blk.Kp.Value is tunable.   - If blk.Kp. Free $=0$, then blk.Kp.Value is fixed.
Minimum	Minimum value of the parameter. This property places a lower bound on the tuned value of the parameter. For example, setting blk.Kp.Minimum $=0$ ensures that Kp remains positive.   blk.Tf.Minimum must always be positive.
Maximum	Maximum value of the parameter. This property places an upper bound on the tuned value of the parameter. For example, setting blk.c.Maximum = 1 ensures that c does not exceed unity.

blk.Kp, blk.Ki, blk.Kd, blk.Tf, blk.b, and blk.c are param. Continuous objects. For more information about the properties of these param. Continuous objects, see the param. Continuous object reference page.

## IFormula, DFormula

Discrete integrator formulas $I F(z)$ and $D F(z)$ for the integral and derivative terms, respectively, specified as one of the values in the following table.

Value	IF(z) or DF(z) Formula
'ForwardEuler'	$\frac{T_{S}}{z-1}$
'BackwardEuler'	$\frac{T_{S} z}{z-1}$
'Trapezoidal'	$\frac{T_{s} z+1}{2} \frac{z-1}{z}$

## Default: 'ForwardEuler'

## Ts

Sample time. For continuous-time models, Ts $=0$. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. Unspecified sample time (Ts =-1) is not supported for PID blocks.

Changing this property does not discretize or resample the model.
Default: 0 (continuous time)

## TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

## InputName

Input channel name, specified as a character vector or a 2-by-1 cell array of character vectors. Use this property to name the input channels of the controller model. For example, assign the names setpoint and measurement to the inputs of a 2-DOF PID controller model C as follows.
C.InputName = \{'setpoint';'measurement'\};

Alternatively, use automatic vector expansion to assign both input names. For example:
C.InputName = 'C-input';

The input names automatically expand to $\left\{{ }^{\prime} \mathrm{C}\right.$-input(1)' ; 'C-input(2)' $\}$.
You can use the shorthand notation $u$ to refer to the InputName property. For example, C. u is equivalent to C. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Specifying connection points when interconnecting models

Default: \{' ' ; ' $\}$

## InputUnit

Input channel units, specified as a 2-by-1 cell array of character vectors. Use this property to track input signal units. For example, assign the units Volts to the reference input and the concentration units $\mathrm{mol} / \mathrm{m}^{\wedge} 3$ to the measurement input of a 2-DOF PID controller model C as follows.
C. InputUnit = \{'Volts';'mol/m^3'\};

InputUnit has no effect on system behavior.
Default: \{' ';''\}

## InputGroup

Input channel groups. This property is not needed for PID controller models.
Default: struct with no fields

## OutputName

Output channel name, specified as a character vector. Use this property to name the output channel of the controller model. For example, assign the name control to the output of a controller model C as follows.

## C.OutputName = 'control';

You can use the shorthand notation y to refer to the OutputName property. For example, C.y is equivalent to C.OutputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Specifying connection points when interconnecting models

Default: Empty character vector, ' '

## OutputUnit

Output channel units, specified as a character vector. Use this property to track output signal units. For example, assign the unit Volts to the output of a controller model C as follows.

## C.OutputUnit = 'Volts';

OutputUnit has no effect on system behavior.
Default: Empty character vector, ' '

## OutputGroup

Output channel groups. This property is not needed for PID controller models.
Default: struct with no fields

## Name

System name, specified as a character vector. For example, 'system_1'.

## Default: ' '

## Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sysl.Notes
sys2.Notes
ans =
 "sys1 has a string."
ans =
 'sys2 has a character vector.'
```

Default: [ $0 \times 1$ string]
UserData
Any type of data you want to associate with system, specified as any MATLAB data type.

## Default: []

## Examples

## Tunable Two-Degree-of-Freedom Controller with a Fixed Parameter

Create a tunable two-degree-of-freedom PD controller. Then, initialize the parameter values, and fix the filter time constant.

```
blk = tunablePID2('pdblock','PD');
blk.b.Value = 1;
blk.c.Value = 0.5;
blk.Tf.Value = 0.01;
blk.Tf.Free = false;
blk
blk =
 Parametric continuous-time 2-DOF PID controller "pdblock" with equation:
 u=Kp (b*r-y) +Kd
 where r,y are the controller inputs and Kp, Kd, b, c are tunable gains.
Type "showBlockValue(blk)" to see the current value and "get(blk)" to see all
properties.
```


## Controller Initialized by Dynamic System Model

Create a tunable two-degree-of-freedom PI controller. Use a two-input, one-output tf model to initialize the parameters and other properties.

```
s = tf('s');
Kp = 10;
Ki = 0.1;
b = 0.7;
```

```
sys = [(b*Kp + Ki/s), (-Kp - Ki/s)];
blk = tunablePID2('PI2dof',sys)
blk =
 Parametric continuous-time 2-DOF PID controller "PI2dof" with equation:
 u=Kp (b*r-y) +Ki
 where r,y are the controller inputs and Kp, Ki, b are tunable gains.
```

Type "showBlockValue(blk)" to see the current value and "get(blk)" to see all
properties.
blk takes initial parameter values from sys.
If sys is a discrete-time system, blk takes the value of properties, such as Ts and IFormula, from sys.

## Controller with Named Inputs and Output

Create a tunable PID controller, and assign names to the inputs and output.

```
blk = tunablePID2('pidblock','pid');
blk.InputName = {'reference','measurement'};
blk.OutputName = {'control'};
```

blk. InputName is a cell array containing two names, because a two-degree-of-freedom PID controller has two inputs.

## Tips

- You can modify the PID structure by fixing or freeing any of the parameters. For example, blk.Tf.Free = false fixes Tf to its current value.
- To convert a tunablePID2 parametric model to a numeric (nontunable) model object, use model commands such as tf or ss. You can also use getValue to obtain the current value of a tunable model.


## Version History

## Introduced in R2016a

## R2016a: Name changed from Itiblock.pid2

Behavior changed in R2016a
Prior to R2016a, tunablePID2 was called ltiblock.pid2.

## See Also

tunablePID|tunableGain | tunableTF|tunableSS| systune |looptune | genss |
hinfstruct

## Topics

"Control Design Blocks"
"Models with Tunable Coefficients"

## tunableSS

Tunable fixed-order state-space model

## Syntax

blk = tunableSS(name, Nx,Ny,Nu)
blk = tunableSS(name, Nx,Ny,Nu,Ts)
blk = tunableSS(name,sys)
blk = tunableSS(...,Astruct)

## Description

Model object for creating tunable fixed-order state-space models. tunableSS lets you parametrize a state-space model of a given order for parameter studies or for automatic tuning with tuning commands such as systune or looptune.
tunableSS is part of the Control Design Block family of parametric models. Other Control Design Blocks include tunablePID, tunableGain, and tunableTF.

## Construction

blk = tunableSS(name, $\mathrm{Nx}, \mathrm{Ny}, \mathrm{Nu}$ ) creates the continuous-time parametric state-space model named name. The state-space model blk has $N x$ states, $N y$ outputs, and $N u$ inputs. The tunable parameters are the entries in the $A, B, C$, and $D$ matrices of the state-space model.
blk = tunableSS(name, $\mathrm{Nx}, \mathrm{Ny}, \mathrm{Nu}, \mathrm{Ts}$ ) creates a discrete-time parametric state-space model with sample time Ts.
blk = tunableSS(name, sys) uses the dynamic system sys to dimension the parametric statespace model, set its sample time, and initialize the tunable parameters.
blk = tunableSS(..., Astruct) creates a parametric state-space model whose A matrix is restricted to the structure specified in Astruct.

Input Arguments
name
Parametric state-space model Name, specified as a character vector such as ' C0 ' . (See "Properties" on page 2-1498.)

Nx
Nonnegative integer specifying the number of states (order) of the parametric state-space model blk.

## Ny

Nonnegative integer specifying the number of outputs of the parametric state-space model blk.

## Nu

Nonnegative integer specifying the number of inputs of the parametric state-space model blk.

## Ts

Scalar sample time.

## Astruct

Constraints on the form of the A matrix of the parametric state-space model blk, specified as one of the following values:

Value for Astruct	Structure of A matrix
'tridiag '	A is tridiagonal. In tridiagonal form, A has free   elements only in the main diagonal, the first   diagonal below the main diagonal, and the first   diagonal above the main diagonal. The remaining   elements of A are fixed to zero.
'full'	A is full (every entry in A is a free parameter).
'companion '	A is in companion form. In companion form, the   characteristic polynomial of the system appears   explicitly in the rightmost column of the A matrix.   See canon for more information.

If you do not specify Astruct, blk defaults to 'tridiag' form.

## sys

Dynamic system model providing number of states, number of inputs and outputs, sample time, and initial values of the parameters of blk. To obtain the dimensions and initial parameter values, tunableSS converts sys to a state-space model with the structure specified in Astruct. If you omit Astruct, tunableSS converts sys into tridiagonal state-space form.

## Properties

## A, B, C, D

Parametrization of the state-space matrices $A, B, C$, and $D$ of the tunable state-space model blk .
blk.A, blk.B, blk.C, and blk.D are param. Continuous objects. For general information about the properties of these param. Continuous objects, see the param. Continuous object reference page.

The following fields of $b l k . A, b l k . B, b l k . C$, and $b l k . D$ are used when you tune $b l k$ using hinfstruct:

Field	Description
Value	Current values of the entries in the parametrized state-space matrix. For example, blk.A.Value contains the values of the A matrix of blk.   hinfstruct tunes all entries in blk.A.Value, blk.B.Value, blk.C.Value, and blk.D.Value except those whose values are fixed by blk. Gain. Free.
Free	2-D array of logical values determining whether the corresponding state-space matrix parameters are fixed or free parameters. For example:   - If blk.A.Free(i,j) = 1, then blk.A.Value( $i, j)$ is a tunable parameter.   - If blk.A.Free(i,j) = 0, then blk.A.Value( $i, j$ ) is fixed.   Defaults: By default, all entries in B, C, and D are tunable. The default free entries in $A$ depend upon the value of Astruct:   - 'tridiag' - entries on the three diagonals of blk.A.Free are 1 ; the rest are 0 .   'full' - all entries in blk.A. Free are 0.   'companion' - blk.A.Free(1,:) = 1 and blk.A.Free(j,j-1) = 1; all other entries are 0.
Minimum	Minimum value of the parameter. This property places a lower bound on the tuned value of the parameter. For example, setting blk.A.Minimum $(1,1)=0$ ensures that the first entry in the A matrix remains positive.   Default: - Inf
Maximum	Maximum value of the parameter. This property places an upper bound on the tuned value of the parameter. For example, setting blk.A.Maximum $(1,1)=0$ ensures that the first entry in the A matrix remains negative.   Default: Inf

## StateName

State names, specified as one of the following:

- Character vector - For first-order models, for example, ' velocity '.
- Cell array of character vectors - For models with two or more states
- ' ' - For unnamed states.

Default: ' ' for all states

## StateUnit

State units, specified as one of the following:

- Character vector - For first-order models, for example, ' velocity '
- Cell array of character vectors - For models with two or more states
- ' ' - For states without specified units

Use StateUnit to keep track of the units each state is expressed in. StateUnit has no effect on system behavior.

Default: ' ' for all states

## Ts

Sample time. For continuous-time models, Ts = 0. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sample time, set Ts =-1.

Changing this property does not discretize or resample the model.
Default: 0 (continuous time)

## TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

## InputName

Input channel names, specified as one of the following:

- Character vector - For single-input models, for example, ' controls '.
- Cell array of character vectors - For multi-input models.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)'; 'controls(2)'\}.
You can use the shorthand notation $u$ to refer to the InputName property. For example, sys. $u$ is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all input channels

## InputUnit

Input channel units, specified as one of the following:

- Character vector - For single-input models, for example, ' seconds '.
- Cell array of character vectors - For multi-input models.

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.
Default: ' ' for all input channels

## InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
creates input groups named controls and noise that include input channels 1,2 and 3,5 , respectively. You can then extract the subsystem from the controls inputs to all outputs using:
sys(:,'controls')
Default: Struct with no fields

## OutputName

Output channel names, specified as one of the following:

- Character vector - For single-output models. For example, 'measurements ' .
- Cell array of character vectors - For multi-output models.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
sys.OutputName = 'measurements';
The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can use the shorthand notation $y$ to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all output channels

## OutputUnit

Output channel units, specified as one of the following:

- Character vector - For single-output models. For example, ' seconds ' .
- Cell array of character vectors - For multi-output models.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.
Default: ' ' for all output channels

## OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:
sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];
creates output groups named temperature and measurement that include output channels 1, and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:

```
sys('measurement',:)
```

Default: Struct with no fields

## Name

System name, specified as a character vector. For example, 'system_1'.

## Default: ' '

## Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans =
 "sys1 has a string."
ans =
 'sys2 has a character vector.'
```

Default: [0×1 string]
UserData
Any type of data you want to associate with system, specified as any MATLAB data type.
Default: []

## Examples

Create a parametrized 5th-order SISO model with zero D matrix.

```
blk = tunableSS('ssblock',5,1,1);
blk.D.Value = 0; % set D = 0
blk.D.Free = false; % fix D to zero
```

By default, the A matrix is in tridiagonal form. To parametrize the model in companion form, use the ' companion ' input argument:

```
blk = tunableSS('ssblock',5,1,1,'companion');
blk.D.Value = 0; % set D = 0
blk.D.Free = false; % fix D to zero
```

Create a parametric state-space model, and assign names to the inputs.

```
blk = tunableSS('ssblock',5,2,2) % 5 states, 2 outputs, 2 inputs
```

blk.InputName = \{'Xerror','Yerror'\} \% assign input names

## Tips

- Use the Astruct input argument to constrain the structure of the A matrix of the parametric state-space model. To impose additional structure constrains on the state-space matrices, use the fields $b l k$.A.Free, $b l k$.B.Free, $b l k$. C. Free, and blk.D.Free to fix the values of specific entries in the parameter matrices.

For example, to fix the value of $b l k . B(i, j)$, set $b l k . B . F r e e(i, j)=0$. To allow hinfstruct to tune blk.B(i,j), set blk.B.Free(i,j) = 1 .

- To convert a tunableSS parametric model to a numeric (non-tunable) model object, use model commands such as ss, tf , or zpk.


## Version History

Introduced in R2016a

## R2016a: Name changed from Itiblock.ss

Behavior changed in R2016a
Prior to R2016a, tunableSS was called ltiblock.ss.

## See Also

tunablePID|tunablePID2 | tunableGain | tunableTF | systune |looptune | genss |
hinfstruct

## Topics

"Control Design Blocks"
"Models with Tunable Coefficients"

## tunableSurface

Create tunable gain surface for gain scheduling

## Syntax

K = tunableSurface(name,K0init,domain,shapefen)
K = tunableSurface(name,K0init,domain)

## Description

tunableSurface lets you parameterize and tune gain schedules, which are gains that vary as a function of one or more scheduling variables.

For tuning purposes, it is convenient to parameterize a variable gain as a smooth gain surface of the form:

$$
K(n(\sigma))=\gamma\left[K_{0}+K_{1} F_{1}(n(\sigma))+\ldots+K_{M} F_{M}(n(\sigma))\right],
$$

where

- $\sigma$ is a vector of scheduling variables.
- $n(\sigma)$ is a normalization function (see the Normalization property of the output argument K).
- $\quad \gamma$ is a scaling factor (see the Normalization property of the output argument K).
- $F_{1}, \ldots, F_{M}$ are user-selected basis functions.
- $K_{0}, \ldots, K_{M}$ are the coefficients to be tuned

You can use terms in a generic polynomial expansion as basis functions. Or, when the expected shape of $K(\sigma)$ is known, you can use more specific functions. You can then use systune to tune the coefficients $K_{0}, \ldots, K_{M}$, subject to your design requirements, over the range of scheduling-variable values.

K = tunableSurface(name,K0init,domain, shapefcn) creates the tunable gain surface:

$$
K(n(\sigma))=\gamma\left[K_{0}+K_{1} F_{1}(n(\sigma))+\ldots+K_{M} F_{M}(n(\sigma))\right] .
$$

The tunable surface K stores the basis functions specified by shapefen and a discrete set of $\sigma$ values (the design points) given by domain. The tunable gain surface has tunable coefficients $K_{0}, \ldots, K_{M}$. The gain value is initialized to the constant gain K0init. You can combine K with other static or dynamic elements to construct a closed-loop model of your gain-scheduled control system. Or, use K to parameterize a lookup table in an slTuner interface to a Simulink model. Then, use systune to tune $K_{0}, \ldots, K_{M}$ so that the closed-loop system meets your design requirements at the selected design points.
$K$ = tunableSurface(name,K0init,domain) creates a flat surface with constant, tunable gain. This syntax is equivalent to tunableGain(name,K0init).

## Examples

## Tunable Gain With One Scheduling Variable

Create a scalar gain $K$ that varies as a quadratic function of $t$ :

$$
K(t)=K_{0}+K_{1} n(t)+K_{2}(n(t))^{2} .
$$

This gain surface can represent a gain that varies with time. The coefficients $K_{0}, K_{1}$, and $K_{2}$ are the tunable parameters of this time-varying gain. For this example, suppose that $t$ varies from 0 to 40 . In that case, the normalization function is $n(t)=(t-20) / 20$.

To represent the tunable gain surface $K(t)$ in MATLAB®, first choose a vector of $t$ values that are the design points of your system. For example, if your design points are snapshots of a time-varying system every 5 seconds from times $t=0$ to $t=40$, use the following sampling grid:

```
t = 0:5:40;
domain = struct('t',t);
```

Specify a quadratic function for the variable gain.

```
shapefcn = @(x) [x, x^2];
```

shapefen is the handle to an anonymous vector function. Each entry in the vector gives a term in the polynomial expansion that describes the variable gain. tunableSurface implicitly assumes the constant function $f_{0}(t)=1$, so it need not be included in shapefcn.

Create the tunable gain surface $K(t)$.

```
K = tunableSurface('K',1,domain,shapefcn)
Tunable surface "K" of scalar gains with:
 * Scheduling variables: t
 * Basis functions: t,t^2
 * Design points: 1x9 grid of t values
 * Normalization: default (from design points)
```

The display summarizes the characteristics of the gain surface, including the design points and the basis functions. Examine the properties of K.
get (K)

```
BasisFunctions: @(x)[x, x^2]
 Coefficients: [1x3 realp]
 SamplingGrid: [1x1 struct]
 Normalization: [1x1 struct]
 Name: 'K'
```

The Coefficients property of the tunable surface is the array of tunable coefficients, [ $K_{0}, K_{1}, K_{2}$ ], stored as an array-valued realp block.

You can now use the tunable surface in a control system model. For tuning in MATLAB, interconnect K with other control system elements just as you would use a Control Design Block to create a tunable control system model. For tuning in Simulink $\circledR$, use setBlockParam to make K the parameterization of a tunable block in an slTuner interface. When you tune the model or slTuner interface using systune, the resulting model or interface contains tuned values for the coefficients $K_{0}, K_{1}$, and $K_{2}$.

After you tune the coefficients, you can view the shape of the resulting gain curve using the viewSurf command. For this example, instead of tuning, manually set the coefficients to non-zero values. View the resulting gain as a function of time.

Ktuned = setData(K,[12.1,4.2,2]);
viewSurf(Ktuned)

viewSurf displays the gain as a function of the scheduling variable, for the range of schedulingvariable values specified by domain and stored in the SamplingGrid property of the gain surface.

## Tunable Gain with Two Independent Scheduling Variables

This example shows how to model a scalar gain $K$ with a bilinear dependence on two scheduling variables. You do so by creating a grid of design points representing the independent dependence of the two variables.

Suppose that the first variable $\alpha$ is an angle of incidence that ranges from 0 to 15 degrees, and the second variable $V$ is a speed that ranges from 300 to $600 \mathrm{~m} / \mathrm{s}$. By default, the normalized variables are:

$$
x=\frac{\alpha-7.5}{7.5}, \quad y=\frac{V-450}{150} .
$$

The gain surface is modeled as:

$$
K(\alpha, V)=K_{0}+K_{1} x+K_{2} y+K_{3} x y,
$$

where $K_{0}, \ldots, K_{3}$ are the tunable parameters.
Create a grid of design points, $(\alpha, V)$, that are linearly spaced in $\alpha$ and $V$. These design points are the scheduling-variable values used for tuning the gain-surface coefficients. They must correspond to parameter values at which you have sampled the plant.
[alpha,V] = ndgrid(0:3:15,300:50:600);
These arrays, alpha and V, represent the independent variation of the two scheduling variables, each across its full range. Put them into a structure to define the design points for the tunable surface.
domain = struct('alpha',alpha, 'V', V);
Create the basis functions that describe the bilinear expansion.

```
shapefcn = @(x,y) [x,y, x*y]; % or use polyBasis('canonical',1,2)
```

In the array returned by shapefon, the basis functions are:

$$
\begin{gathered}
F_{1}(x, y)=x \\
F_{2}(x, y)=y \\
F_{3}(x, y)=x y .
\end{gathered}
$$

Create the tunable gain surface.
K = tunableSurface('K',1,domain,shapefen);
You can use the tunable surface as the parameterization for a lookup table block or a MATLAB Function block in a Simulink model. Or, use model interconnection commands to incorporate it as a tunable element in a control system modeled in MATLAB. After you tune the coefficients, you can examine the resulting gain surface using the viewSurf command. For this example, instead of tuning, manually set the coefficients to non-zero values and view the resulting gain.

Ktuned $=$ setData(K, [100, 28, 40, 10]);
viewSurf(Ktuned)

viewSurf displays the gain surface as a function of the scheduling variables, for the ranges of values specified by domain and stored in the SamplingGrid property of the gain surface.

## Gain Surface Over Nonregular Grid

Create a gain surface using design points that do not form a regular grid in the operating domain. The gain surface varies as a bilinear function of normalized scheduling variables $\alpha_{N}$ and $\beta_{N}$ :

$$
K\left(\alpha_{N}, \beta_{N}\right)=K_{0}+K_{1} \alpha_{N}+K_{2} \beta_{N}+K_{3} \alpha_{N} \beta_{N} .
$$

Suppose that the values of interest of the scheduling variables are the following $(\alpha, \beta)$ pairs.

$$
(\alpha, \beta)=\left\{\begin{array}{l}
(-0.9,0.05) \\
(-1.5,0.6) \\
(-1.5,0.95) \\
(-2.5,0.5) \\
(-3.2,0.7) \\
(-3.9,0.3)
\end{array} .\right.
$$

Specify the $(\alpha, \beta)$ sample values as vectors.

```
alpha = [-0.9;-1.5;-1.5;-2.5;-3.2;-3.9];
beta = [0.05;0.6;0.95;0.5;0.7;0.3];
domain = struct('alpha',alpha,'beta',beta);
Instead of a regular grid of \((\alpha, \beta)\) values, here the system is sampled at irregularly spaced points on \((\alpha, \beta)\)-space.
```

```
plot(alpha,beta,'o')
```

```
plot(alpha,beta,'o')
```



Specify the basis functions.

```
shapefcn = @(x,y) [x,y,x*y];
```

Create the tunable model of the gain surface using these sampled function values.

```
K = tunableSurface('K',1,domain,shapefcn)
```

```
Tunable surface "K" of scalar gains with:
 * Scheduling variables: alpha,beta
 * Basis functions: alpha,beta,alpha*beta
 * Design points: 6x1 grid of (alpha,beta) values
 * Normalization: default (from design points)
```

The domain is the list of six $(\alpha, \beta)$ pairs. The normalization, by default, shifts $\alpha$ and $\beta$ so that the center of the range of each variable is zero, and scales them so that they range from -1 to 1 .

## K.Normalization

```
ans = struct with fields:
 InputOffset: [-2.4000 0.5000]
 InputScaling: [1.5000 0.4500]
 OutputScaling: 1
```


## Matrix-Valued Tunable Surface

Create a tunable gain surface that takes two scheduling variables and returns a 3-by-3 gain matrix. Each entry in the gain matrix is an independent function of the two scheduling variables.

Create a grid of design points (alpha, V ).

```
[alpha,V] = ndgrid(0:3:15,300:50:600);
domain = struct('alpha',alpha,'V',V);
```

Create the basis function that describes how the surface varies with the scheduling variables. Use a basis that describes a bilinear expansion in alpha and V.

```
shapefcn = polyBasis('canonical',1,2);
```

To create the tunable surface, specify the initial value of the matrix-valued gain surface. This value sets the value of the gain surface when the normalized scheduling variables are both zero. tunableSurface takes the dimensions of the gain surface from the initial value you specify. Thus, to create a 3-by-3 gain matrix, use a 3-by-3 initial value.

```
K0init = diag([0.05 0.05 -0.05]);
K0 = tunableSurface('K',K0init,domain,shapefcn)
```

Tunable surface "K" of $3 \times 3$ gain matrices with:
* Scheduling variables: alpha,V
* Basis functions: @(x1,x2)utFcnBasisOuterProduct(FDATA_,x1,x2)
* Design points: 6x7 grid of (alpha,V) values
* Normalization: default (from design points)

## Input Arguments

name - Identifying label for the tunable gain
character vector
Identifying label for the tunable gain surface, specified as a character vector. tunableSurface uses this name for the realp block that represents the tunable coefficients of the surface. Therefore, you can use this name to refer to the tunable gain coefficients within a genss model of a control system or an slTuner interface.

## K0init - Initial value of constant term <br> scalar | array

Initial value of the constant term in the tunable gain surface, specified as a scalar or an array. The dimensions of K0init determine the I/O dimensions of the gain surface. For example, if the gain surface represents a two-input, two-output gain, you can set K0init = ones(2). The remaining coefficients K1, K2 , . . always have the same size as K0. The tunable coefficients automatically expand so that the gains in each I/O channel are tuned independently.

For example, for a two-input, two-output surface, there is a set of expansion coefficients for each entry in the gain matrix.


Each entry $K_{i j}$ in the tunable gain matrix $K(n(\sigma))$ is given by:

$$
K_{i j}(n(\sigma))=K_{i j_{0}}+K_{i j_{1}} F_{1}(n(\sigma))+\ldots+K_{i j_{M}} F_{M}(n(\sigma)) .
$$

## domain - Design points

## structure

Design points at which the gain surface is tuned, specified as a structure. The structure has fields containing the scheduling variables values at which you sample the plant for gain-scheduled tuning. For example, suppose that you want to tune a gain that varies as a function of two scheduling variables, $\alpha$ and $V$. You linearize the plant at a grid of $\alpha$ and $V$ values, with $\alpha=[0.5,0.10,0.15]$ and $V$ $=[700,800,900,1000]$
. Specify the design points as follows:
[alpha, V] $=\operatorname{ndgrid}([0.5,0.10,0.15],[700,800,900,1000])$;
domain = struct('alpha',alpha,'V',V);
The design points do not have to lie on a rectangular or regularly spaced grid (see "Gain Surface Over Nonregular Grid" on page 2-1509). However, for best results use design points that cover the full range of operating conditions. Since tuning only considers these design points, the validity of the tuned gain schedule is questionable at operating conditions far from the design points.

## shapefen - Basis functions

function handle
Basis functions used to model the gain surface in terms of the scheduling variables, specified as a function handle. The function associated with the handle takes normalized values of the scheduling variables as inputs and returns a vector of basis-function values. The basis functions always operate on the normalized range $[-1,1]$. tunableSurface implicitly normalizes the scheduling variables to this interval.

For example, consider the scheduling-variable values $\alpha=[0.5,0.10,0.15]$ and $V=[700,800,900,1000]$. The following expression creates basis functions for a gain surface that is bilinear in these variables:

```
shapefcn = @(x,y) [x y x*y];
```

shapefcn is an anonymous function of two variables. The basis functions describe a parameterized gain $G(\alpha, V)=G_{0}+G_{1} \alpha_{N}+G_{2} V_{N}+G_{3} \alpha_{N} V_{N}$ where $\alpha_{N}$ and $V_{N}$ are the normalized scheduling variables (see the Normalization property of K).

You can use anonymous functions to specify any set of basis functions that you need to describe the variable gain. Alternatively, you can use helper functions to generate basis functions automatically for commonly used expansions:

- polyBasis - Power series expansion and Chebyshev expansion.
- fourierBasis - Periodic Fourier series expansion. The basis functions generated by fourierBasis are periodic such that a gain surface $K$ defined by those functions satisfies $K(-1)$ $=K(1)$. When you create a gain surface using tunableSurface, the software normalizes the scheduling-variable range that you specify with domain to the interval $[-1,1]$. Therefore, if you use periodic basis functions, then the sampled range of the corresponding scheduling variable must be exactly one period. This restriction ensures that the periodicity of the basis function matches that of the scheduling variable. For example, if the periodically varying scheduling variable is an angle that ranges from 0 to $2 \pi$, then the corresponding values in domain must also range from 0 to $2 \pi$.
- ndBasis - Build multidimensional expansions from lower-dimensional expansions. This function is useful when you want to use different basis functions for different scheduling variables.

See the reference pages for those functions for more information about the basis functions they generate.

## Output Arguments

## K - Tunable gain surface

tunableSurface object
Tunable gain surface, returned as a tunableSurface object. This object has the following properties that store the coefficients, basis functions, and other information about the gain surface:

- BasisFunctions - Basis functions, specified as a function handle. When you create the gain surface, the shapefen input argument sets the initial value of this property.
- Coefficients - Tunable coefficients of the gain surface, specified as an array-valued realp tunable parameter. The dimensions of K0init and the number of basis functions in shapefon determine the dimensions of K. Coefficients.

For scalar gains, K. Coefficients has dimensions [1, $\mathrm{M}+1$ ], where M is the number of basis functions. The entries in K. Coefficients correspond to the tunable coefficients $K_{0}, \ldots, K_{M}$.

For array-valued gains, each coefficient expands to the dimension of K0init. These expanded coefficients are concatenated horizontally in K. Coefficients. Therefore, for example, for a twoinput, two-output gain surface, K. Coefficients has dimensions [2,2(M+1)].


Each entry $K_{i j}$ in the tunable gain matrix $K(n(\sigma))$ is given by:

$$
K_{i j}(n(\sigma))=K_{i j_{0}}+K_{i j_{1}} F_{1}(n(\sigma))+\ldots+K_{i j_{M}} F_{M}(n(\sigma)) .
$$

- SamplingGrid - Grid of design points, specified as a data structure. When you create the gain surface, the domain input argument sets the initial value of this property.
- Normalization - Normalization offset and scaling, specified as a structure with fields:
- InputOffset - Vector of offsets for each scheduling variable.
- InputScaling - Vector of scaling factors for each scheduling variable.
- OutputScaling - Scaling factor for overall gain.

In general, the tunableSurface parameterization takes the form:

$$
K(\sigma)=\text { OutputScaling }\left[K_{0}+K_{1} F_{1}(n(\sigma))+\cdots+K_{m} F_{m}(n(\sigma))\right],
$$

where $n(\sigma)$ is the normalized scheduling variable, given by:

$$
n(\sigma)=\frac{\sigma-\text { InputOffset }}{\text { InputScaling }}
$$

tunableSurface normalizes the scheduling variables to compress their numerical range and improve the numerical stability of the optimization process. By default, OutputScaling =1, and tunableSurface computes values for InputOffset and InputScaling that map the SamplingGrid domain of each scheduling variable to $[-1,1]$. Thus, $n=0$ at the center of the design-point range.

You can change the default normalization by adjusting the values of these fields. For example:

- If you have a known gain value for a particular design point, you can set Normalization. Input0ffset so that $n=0$ at that design point. You can then set K0init to the known gain value.
- If you want to restrict a scheduling variable to nonnegative values, set Normalization. InputOffset to the minimum value of that variable in your design grid. This restriction is useful, for example, when your basis function includes $\sqrt{\sigma}$.
- Name - Name of the gain surface, specified as a character vector. When you create the gain surface, the name input argument sets the initial value of this property.


## Tips

- To tune a gain surface in a control system modeled in MATLAB: Connect the gain surface with an array of plant models corresponding to the design points in domain. For example, suppose $G$ is such an array, and K represents a variable integration time. The following command builds a closed-loop model that you can tune with the systune command.

C0 = tf(K,[10]);
T0 = feedback(C0*G,1);

- To tune a gain surface in a control system modeled in Simulink: Use the gain surface to parameterize a lookup-table, matrix interpolation, or MATLAB function block in the Simulink model. For example, suppose ST0 is an slTuner interface to a Simulink model, and GainTable is the name of a tuned block in the interface. The following command sets the parameterization of GainTable to the tunable gain surface.

ST0 = setBlockParam(ST0,'GainTable',K);
See "Parameterize Gain Schedules" for more information.

- When you use writeBlockValue to write a tuned gain surface back to a Simulink model, the software uses codegen to generate MATLAB code for the gain surface. You can use codegen yourself to examine this code.


## Version History <br> Introduced in R2015b

## See Also

## Functions

codegen | ndgrid | viewSurf|evalSurf| systune | polyBasis|fourierBasis|ndBasis

## Topics

"Parameterize Gain Schedules"
"Gain Scheduling Basics"
"Tuning of Gain-Scheduled Three-Loop Autopilot"

## tunableTF

Tunable transfer function with fixed number of poles and zeros

## Syntax

blk = tunableTF (name, Nz,Np)
blk = tunableTF (name, Nz,Np,Ts)
blk = tunableTF (name,sys)

## Description

Model object for creating tunable SISO transfer function models of fixed order. tunableTF lets you parameterize a transfer function of a given order for parameter studies or for automatic tuning with tuning commands such as systune or looptune.
tunableTF is part of the Control Design Block family of parametric models. Other Control Design Blocks include tunablePID, tunableSS, and tunableGain.

## Construction

blk = tunableTF (name, $\mathrm{Nz}, \mathrm{Np}$ ) creates the parametric SISO transfer function:

$$
b l k=\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\ldots+a_{1} s+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\ldots+b_{1} s+b_{0}} .
$$

$n=N p$ is the maximum number of poles of $b l k$, and $m=N z$ is the maximum number of zeros. The tunable parameters are the numerator and denominator coefficients $a_{0}, \ldots, a_{m}$ and $b_{0}, \ldots, b_{n-1}$. The leading coefficient of the denominator is fixed to 1 .
blk = tunableTF (name, Nz,Np,Ts) creates a discrete-time parametric transfer function with sample time Ts.
blk = tunableTF (name,sys) uses the tf model sys to set the number of poles, number of zeros, sample time, and initial parameter values.

## Input Arguments

## name

Parametric transfer function Name, specified as a character vector such as 'filt' or 'DM'. (See "Properties" on page 2-1517.)

## Nz

Nonnegative integer specifying the number of zeros of the parametric transfer function $b l k$.

## Np

Nonnegative integer specifying the number of poles of the parametric transfer function $b l k$.

## Ts

Scalar sample time.

## sys

tf model providing number of poles, number of zeros, sample time, and initial values of the parameters of blk.

## Properties

## Numerator, Denominator

Parameterization of the numerator coefficients $a_{m}, \ldots, a_{0}$ and the denominator coefficients $1, b_{n-1}, \ldots, b_{0}$ of the tunable transfer function blk.
blk. Numerator and blk.Denominator are param. Continuous objects. For general information about the properties of these param. Continuous objects, see the param. Continuous object reference page.

The following fields of blk. Numerator and blk. Denominator are used when you tune blk using hinfstruct:

Field	Description
Value	Array of current values of the numerator $a_{m}, \ldots, a_{0}$ or the denominator coefficients $1, b_{n-}$ ${ }_{1}, \ldots, b_{0}$. blk. Numerator. Value has length Nz   + 1. blk. Denominator. Value has length Np +   1. The leading coefficient of the denominator (blk.Denominator.Value(1)) is always fixed to 1.   By default, the coefficients initialize to values that yield a stable, strictly proper transfer function. Use the input sys to initialize the coefficients to different values.   hinfstruct tunes all values except those whose Free field is zero.
Free	Array of logical values determining whether the coefficients are fixed or tunable. For example:   - If blk.Numerator.Free(j) = 1 , then blk.Numerator.Value( j ) is tunable.   - If blk.Numerator.Free( $j$ ) $=0$, then blk.Numerator.Value( $j$ ) is fixed.   Default: blk.Denominator.Free(1) = 0; all other entries are 1.


Field	Description
Minimum	Minimum value of the parameter. This property   places a lower bound on the tuned value of the   parameter. For example, setting   blk. Numerator. Minimum (1) $=0$ ensures that   the leading coefficient of the numerator remains   positive.   Default: - Inf
Maximum	Maximum value of the parameter. This property   places an upper bound on the tuned value of the   parameter. For example, setting   blk. Numerator. Maximum (1) $=1$ ensures that   the leading coefficient of the numerator does not   exceed 1.   Default: Inf

## Ts

Sample time. For continuous-time models, Ts $=0$. For discrete-time models, Ts is a positive scalar representing the sampling period. This value is expressed in the unit specified by the TimeUnit property of the model. To denote a discrete-time model with unspecified sample time, set Ts =-1.

Changing this property does not discretize or resample the model.
Default: 0 (continuous time)

## TimeUnit

Units for the time variable, the sample time Ts, and any time delays in the model, specified as one of the following values:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing this property has no effect on other properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

Default: 'seconds'

## InputName

Input channel names, specified as one of the following:

- Character vector - For single-input models, for example, ' controls '.
- Cell array of character vectors - For multi-input models.

Alternatively, use automatic vector expansion to assign input names for multi-input models. For example, if sys is a two-input model, enter:
sys.InputName = 'controls';
The input names automatically expand to \{'controls(1)'; 'controls(2)'\}.
You can use the shorthand notation $u$ to refer to the InputName property. For example, sys. u is equivalent to sys. InputName.

Input channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all input channels

## InputUnit

Input channel units, specified as one of the following:

- Character vector - For single-input models, for example, ' seconds '.
- Cell array of character vectors - For multi-input models.

Use InputUnit to keep track of input signal units. InputUnit has no effect on system behavior.
Default: ' ' for all input channels

## InputGroup

Input channel groups. The InputGroup property lets you assign the input channels of MIMO systems into groups and refer to each group by name. Specify input groups as a structure. In this structure, field names are the group names, and field values are the input channels belonging to each group. For example:
sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];
creates input groups named controls and noise that include input channels 1, 2 and 3,5, respectively. You can then extract the subsystem from the controls inputs to all outputs using:
sys(:,'controls')
Default: Struct with no fields

## OutputName

Output channel names, specified as one of the following:

- Character vector - For single-output models. For example, 'measurements ' .
- Cell array of character vectors - For multi-output models.

Alternatively, use automatic vector expansion to assign output names for multi-output models. For example, if sys is a two-output model, enter:
sys.OutputName = 'measurements';
The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can use the shorthand notation $y$ to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

- Identifying channels on model display and plots
- Extracting subsystems of MIMO systems
- Specifying connection points when interconnecting models

Default: ' ' for all output channels

## OutputUnit

Output channel units, specified as one of the following:

- Character vector - For single-output models. For example, ' seconds ' .
- Cell array of character vectors - For multi-output models.

Use OutputUnit to keep track of output signal units. OutputUnit has no effect on system behavior.
Default: ' ' for all output channels

## OutputGroup

Output channel groups. The OutputGroup property lets you assign the output channels of MIMO systems into groups and refer to each group by name. Specify output groups as a structure. In this structure, field names are the group names, and field values are the output channels belonging to each group. For example:

```
sys.OutputGroup.temperature = [1];
```

sys.OutputGroup.measurement = [3 5];
creates output groups named temperature and measurement that include output channels 1 , and 3,5 , respectively. You can then extract the subsystem from all inputs to the measurement outputs using:
sys('measurement',:)
Default: Struct with no fields

## Name

System name, specified as a character vector. For example, 'system_1'.

## Default: ' '

## Notes

Any text that you want to associate with the system, stored as a string or a cell array of character vectors. The property stores whichever data type you provide. For instance, if sys1 and sys2 are dynamic system models, you can set their Notes properties as follows:

```
sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes
ans =
 "sys1 has a string."
ans =
 'sys2 has a character vector.'
```

Default: [0×1 string]
UserData

Any type of data you want to associate with system, specified as any MATLAB data type.
Default: []

## Examples

Create a parametric SISO transfer function with two zeros, four poles, and at least one integrator.
A transfer function with an integrator includes a factor of $1 / s$. Therefore, to ensure that a parameterized transfer function has at least one integrator regardless of the parameter values, fix the lowest-order coefficient of the denominator to zero.

```
blk = tunableTF('tfblock',2,4); % two zeros, four poles
blk.Denominator.Value(end) = 0; % set last denominator entry to zero
blk.Denominator.Free(end) = 0; % fix it to zero
```

Create a parametric transfer function, and assign names to the input and output.

```
blk = tunableTF('tfblock',2,3);
blk.InputName = {'error'}; % assign input name
blk.OutputName = {'control'}; % assign output name
```


## Tips

- To convert a tunableTF parametric model to a numeric (non-tunable) model object, use model commands such as $\mathrm{tf}, \mathrm{zpk}$, or ss.


## Version History

## Introduced in R2016a

## R2016a: Name changed from Itiblock.tf

Behavior changed in R2016a
Prior to R2016a, tunableTF was called ltiblock.tf

## See Also <br> tunablePID|tunablePID2 | tunableGain | tunableSS | systune | looptune | genss | <br> hinfstruct <br> Topics <br> "Control Design Blocks" <br> "Models with Tunable Coefficients"

## tzero

Invariant zeros of linear system

## Syntax

```
z = tzero(sys)
z = tzero(A,B,C,D,E)
z = tzero(___,tol)
[z,nrank] = tzero(___)
```


## Description

$z=$ tzero(sys) returns the invariant zeros on page 2-1526 of the multi-input, multi-output (MIMO) dynamic system, sys. If sys is a minimal realization, the invariant zeros coincide with the transmission zeros on page 2-1526 of sys.
$z=\operatorname{tzero}(A, B, C, D, E)$ returns the invariant zeros on page 2-1526 of the state-space model
$E \frac{d x}{d t}=A x+B u$
$y=C x+D u$.
Omit E for an explicit state-space model $(E=I)$.
$z=$ tzero (__, tol) specifies the relative tolerance, tol, controlling rank decisions.
[z, nrank] = tzero (__ ) also returns the normal rank of the transfer function of sys or of the transfer function $H(s)=\bar{D}+C(s E-A)^{-1} B$.

## Input Arguments

## sys

MIMO dynamic system model. If sys is not a state-space model, then tzero computes tzero(ss(sys)).

## A,B,C,D,E

State-space matrices describing the linear system

$$
\begin{gathered}
E \frac{d x}{d t}=A x+B u \\
y=C x+D u .
\end{gathered}
$$

tzero does not scale the state-space matrices when you use the syntax $z=$ tzero(A,B,C,D,E). Use prescale if you want to scale the matrices before using tzero.

Omit E to use $E=I$.

## tol

Relative tolerance controlling rank decisions. Increasing tolerance helps detect nonminimal modes and eliminate very large zeros (near infinity). However, increased tolerance might artificially inflate the number of transmission zeros.

Default: eps^(3/4)

## Output Arguments

## z

Column vector containing the invariant zeros on page 2-1526 of sys or the state-space model described by A, B, C, D, E.

## nrank

Normal rank of the transfer function of sys or of the transfer function $H(s)=D+C(s E-A)^{-1} B$. The normal rank is the rank for values of $s$ other than the transmission zeros on page 2-1526.

To obtain a meaningful result for nrank, the matrix s*E-A must be regular (invertible for most values of $s$ ). In other words, sys or the system described by A , B , C , D, E must have a finite number of poles.

## Examples

## Find Transmission Zeros of MIMO Transfer Function

Create a MIMO transfer function, and locate its invariant zeros.

```
s = tf('s');
H = [1/(s+1) 1/(s+2);1/(s+3) 2/(s+4)];
z = tzero(H)
z = 2x1 complex
 -2.5000 + 1.3229i
 -2.5000 - 1.3229i
```

The output is a column vector listing the locations of the invariant zeros of H . This output shows that H a has complex pair of invariant zeros. Confirm that the invariant zeros coincide with the transmission zeros.

Check whether the first invariant zero is a transmission zero of H .
If $\mathrm{z}(1)$ is a transmission zero of H , then H drops rank at $\mathrm{s}=\mathrm{z}(1)$.

```
H1 = evalfr(H,z(1));
svd(H1)
ans = 2\times1

H 1 is the transfer function, H , evaluated at \(\mathrm{s}=\mathrm{z}(1) . \mathrm{H} 1\) has a zero singular value, indicating that H drops rank at that value of s . Therefore, \(\mathrm{z}(1)\) is a transmission zero of H .

A similar analysis shows that \(\mathrm{z}(2)\) is also a transmission zero.

\section*{Identify Unobservable and Uncontrollable Modes of MIMO Model}

Obtain a MIMO model.
```

load ltiexamples gasf
size(gasf)
State-space model with 4 outputs, 6 inputs, and 25 states.

```
gasf is a MIMO model that might contain uncontrollable or unobservable states.
To identify the unobservable and uncontrollable modes of gasf, you need the state-space matrices A, B, C, and D of the model. tzero does not scale state-space matrices. Therefore, use prescale with ssdata to scale the state-space matrices of gasf.
```

[A,B,C,D] = ssdata(prescale(gasf));

```

Identify the uncontrollable states of gasf.
```

uncon = tzero(A,B,[],[])
uncon = 6x1
-0.0568
-0.0568
-0.0568
-0.0568
-0.0568
-0.0568

```

When you provide \(A\) and \(B\) matrices to tzero, but no \(C\) and \(D\) matrices, the command returns the eigenvalues of the uncontrollable modes of gasf. The output shows that there are six degenerate uncontrollable modes.

Identify the unobservable states of gasf.
```

unobs = tzero(A,[],C,[])
unobs =
0x1 empty double column vector

```

When you provide A and C matrices, but no B and D matrices, the command returns the eigenvalues of the unobservable modes. The empty result shows that gasf contains no unobservable states.

\section*{More About}

\section*{Invariant zeros}

For a MIMO state-space model
\[
\begin{gathered}
E \frac{d x}{d t}=A x+B u \\
y=C x+D u,
\end{gathered}
\]
the invariant zeros are the complex values of \(s\) for which the rank of the system matrix
\[
\left[\begin{array}{cc}
A-s E & B \\
C & D
\end{array}\right]
\]
drops from its normal value. (For explicit state-space models, \(E=I\)).

\section*{Transmission zeros}

For a MIMO state-space model
\[
\begin{gathered}
E \frac{d x}{d t}=A x+B u \\
y=C x+D u,
\end{gathered}
\]
the transmission zeros are the complex values of \(s\) for which the rank of the equivalent transfer function \(H(s)=D+C(s E-A)^{-1} B\) drops from its normal value. (For explicit state-space models, \(E=I\).)

Transmission zeros are a subset of the invariant zeros on page 2-1526. For minimal realizations, the transmission zeros and invariant zeros are identical.

\section*{Tips}
- You can use the syntax \(z=\) tzero (\(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\)) to find the uncontrollable or unobservable modes of a state-space model. When C and D are empty or zero, tzero returns the uncontrollable modes of (\(\mathrm{A}-\mathrm{SE}, \mathrm{B}\)). Similarly, when B and D are empty or zero, tzero returns the unobservable modes of (\(\mathrm{C}, \mathrm{A}-\mathrm{sE}\)). See "Identify Unobservable and Uncontrollable Modes of MIMO Model" on page 2-1525 for an example.

\section*{Algorithms}
tzero is based on SLICOT routines AB08ND, AB08NZ, AG08BD, and AG08BZ. tzero implements the algorithms in [1] and [2].

\section*{Alternatives}

To calculate the zeros and gain of a single-input, single-output (SISO) system, use zero.

\section*{Version History}

Introduced in R2012a

\section*{References}
[1] Emami-Naeini, A. and P. Van Dooren, "Computation of Zeros of Linear Multivariable Systems," Automatica, 18 (1982), pp. 415-430.
[2] Misra, P, P. Van Dooren, and A. Varga, "Computation of Structural Invariants of Generalized StateSpace Systems," Automatica, 30 (1994), pp. 1921-1936.

\section*{See Also}
pole|pzmap|zero

\section*{unscentedKalmanFilter}

Create unscented Kalman filter object for online state estimation

\section*{Description}
unscentedKalmanFilter creates an object for online state estimation of a discrete-time nonlinear system using the discrete-time unscented Kalman filter algorithm.

When you perform online state estimation, you first create the nonlinear state transition function \(f\) and measurement function \(h\). You then construct the unscentedKalmanFilter object using these nonlinear functions, and specify whether the noise terms are additive or nonadditive.

After you create the object, you use the predict command to predict state estimates at the next time step, and correct to correct state estimates using the unscented Kalman filter algorithm and realtime data. For information about the algorithm, see "Algorithms" on page 2-1536.

\section*{Creation}

\section*{Syntax}
```

obj = unscentedKalmanFilter(stateTransitionFcn,measurementFcn,initialState)
obj = unscentedKalmanFilter(

```
\(\qquad\)
``` ,Name, Value)
Description
```

obj = unscentedKalmanFilter(stateTransitionFcn,measurementFcn,initialState) creates an unscented Kalman filter object for online state estimation of a discrete-time nonlinear system.

- stateTransitionFcn is a function that calculates the state of the system at time k, given the state vector at time $k-1$. This function is stored in the StateTransitionFcn property of the object.
- measurementFcn is a function that calculates the output measurement of the system at time k, given the state at time k. This function is stored in the MeasurementFcn property of the object.
- initialState specifies the initial value of the state estimates. This value is stored in the State property of the object.

After creating the object, use the correct and predict functions to update state estimates and state estimation error covariance values using a discrete-time unscented Kalman filter algorithm and real-time data.

- predict updates obj. State and obj.StateCovariance with the predicted value at time step k using the state value at time step $k-1$.
- correct updates obj.State and obj.StateCovariance with the estimated values at time step k using measured data at time step k.
obj = unscentedKalmanFilter(\qquad ,Name, Value) additionally sets properties on page 2-1529 using name-value arguments. If you do not specify the state transition function, measurement
function, and initial state values during creation, specify them using dot notation. For example, for a two-state system with initial state values [1;0], to specify the these values after creation, use obj.State = [1;0].

Properties

unscentedKalmanFilter object properties are of three types:

- Tunable properties that you can specify multiple times, either during object construction using Name, Value arguments, or any time afterwards during state estimation. After object creation, use dot notation to modify the tunable properties.
obj = unscentedKalmanFilter(StateTransitionFcn,MeasurementFcn,InitialState); obj.ProcessNoise = 0.01;

The tunable properties are State, StateCovariance, ProcessNoise, MeasurementNoise, Alpha, Beta, and Kappa.

- Nontunable properties that you can specify once, either during object construction or afterward using dot notion. Specify these properties before state estimation using correct and predict. The StateTransitionFcn and MeasurementFcn properties belong to this category.
- Nontunable properties that you must specify during object construction. The HasAdditiveProcessNoise and HasAdditiveMeasurementNoise properties belong to this category.

Alpha - Spread of sigma points

1e-3 (default) | scalar value between 0 and 1
Spread of sigma points around mean state value, specified as a scalar value between 0 and 1 ($0<$ Alpha <= 1).

The unscented Kalman filter algorithm treats the state of the system as a random variable with mean value State and variance StateCovariance. To compute the state and its statistical properties at the next time step, the algorithm first generates a set of state values distributed around the mean State value by using the unscented transformation. These generated state values are called sigma points. The algorithm uses each of the sigma points as an input to the state transition and measurement functions to get a new set of transformed state points and measurements. The transformed points are used to compute the state and state estimation error covariance value at the next time step.

The spread of the sigma points around the mean state value is controlled by two parameters Alpha and Kappa. A third parameter, Beta, impacts the weights of the transformed points during state and measurement covariance calculations:

- Alpha - Determines the spread of the sigma points around the mean state value. It is usually a small positive value. The spread of sigma points is proportional to Alpha. Smaller values correspond to sigma points closer to the mean state.
- Kappa - A second scaling parameter that is usually set to 0 . Smaller values correspond to sigma points closer to the mean state. The spread is proportional to the square-root of Kappa.
- Beta - Incorporates prior knowledge of the distribution of the state. For Gaussian distributions, Beta $=2$ is optimal.

If you know the distribution of state and state covariance, you can adjust these parameters to capture the transformation of higher-order moments of the distribution. The algorithm can track only a single
peak in the probability distribution of the state. If there are multiple peaks in the state distribution of your system, you can adjust these parameters so that the sigma points stay around a single peak. For example, choose a small Alpha to generate sigma points close to the mean state value.

For more information, see "Unscented Kalman Filter Algorithm".
Alpha is a tunable property. You can change it using dot notation.

Beta - Characterization of state distribution

2 (default) | scalar value greater than or equal to 0
Characterization of the state distribution that is used to adjust weights of transformed sigma points, specified as a scalar value greater than or equal to 0 . For Gaussian distributions, Beta $=2$ is an optimal choice.

For more information, see the Alpha property description.
Beta is a tunable property. You can change it using dot notation.

HasAdditiveMeasurementNoise - Measurement noise characteristics

true (default) | false
Measurement noise characteristics, specified as one of the following values:

- true - Measurement noise v is additive. The measurement function h that is specified in MeasurementFcn has the following form:
$y(k)=h(x(k), U m 1, \ldots, U m n)$
Where $y(k)$ and $x(k)$ are the estimated output and estimated state at time k, and Um1, ..., Umn are any optional input arguments required by your measurement function.
- false - Measurement noise is nonadditive. The measurement function specifies how the output measurement evolves as a function of the state and measurement noise:

$$
y(k)=h(x(k), v(k), U m 1, \ldots, U m n)
$$

HasAdditiveMeasurementNoise is a nontunable property, and you can specify it only during object construction. You cannot change it using dot notation.

HasAdditiveProcessNoise - Process noise characteristics

true (default) | false
Process noise characteristics, specified as one of the following values:

- true - Process noise w is additive. The state transition function f specified in StateTransitionFcn has the following form:
$x(k)=f(x(k-1), U s 1, \ldots, U s n)$
Where $x(k)$ is the estimated state at time k, and Us $1, \ldots$, Usn are any additional input arguments required by your state transition function.
- false - Process noise is nonadditive. The state transition function specifies how the states evolve as a function of the state and process noise at the previous time step:
$x(k)=f(x(k-1), w(k-1), U s 1, \ldots, U s n)$

HasAdditiveProcessNoise is a nontunable property, and you can specify it only during object construction. You cannot change it using dot notation.

Kappa - Spread of sigma points

0 (default) | scalar value between 0 and 3
Spread of sigma points around mean state value, specified as a scalar value between 0 and 3 ($0<=$ Kappa <= 3). Kappa is typically specified as 0 . Smaller values correspond to sigma points closer to the mean state. The spread is proportional to the square-root of Kappa. For more information, see the Alpha property description.

Kappa is a tunable property. You can change it using dot notation.

MeasurementFcn - Measurement function

function handle

Measurement function h, specified as a function handle. The function calculates the N-element output measurement vector of the nonlinear system at time step k, given the state vector at time step $k . N$ is the number of measurements of the system. You write and save the measurement function and use it to construct the object. For example, if vdpMeasurementFcn.m is the measurement function, specify MeasurementFcn as @vdpMeasurementFcn. You can also specify MeasurementFcn as a function handle to an anonymous function.

The inputs to the function depend on whether you specify the measurement noise as additive or nonadditive in the HasAdditiveMeasurementNoise property of the object:

- HasAdditiveMeasurementNoise is true - The measurement noise vis additive, and the measurement function specifies how the measurements evolve as a function of state values:
$y(k)=h(x(k), U m 1, \ldots, U m n)$
Where $y(k)$ and $x(k)$ are the estimated output and estimated state at time k, and Um1, ..., Umn are any optional input arguments required by your measurement function. For example, if you are using multiple sensors for tracking an object, an additional input could be the sensor position. During estimation, you pass these additional arguments to the correct command which in turn passes them to the measurement function.
- HasAdditiveMeasurementNoise is false - The measurement noise is nonadditive, and the measurement function also specifies how the output measurement evolves as a function of the measurement noise:

$$
y(k)=h(x(k), v(k), U m 1, \ldots, U m n)
$$

When you have the HasMeasurementWrapping property enabled, then the output for the measurement function must also include the wrapping bounds, specified as an N-by- 2 matrix, where the first column provides the minimum measurement bound and the second column provides the maximum measurement bound. N is the number of measurements of the system.

To see an example of a measurement function with additive process noise, enter edit vdpMeasurementFcn at the command line. To see an example of a measurement function with nonadditive process noise, enter edit vdpMeasurementNonAdditiveNoiseFcn.

MeasurementFcn is a nontunable property. You can specify it once before you use the correct command, either during object construction or using dot notation after object construction. You cannot change it after using the correct command.

MeasurementNoise - Measurement noise covariance

1 (default) | scalar | matrix
Measurement noise covariance, specified as a scalar or matrix depending on the value of the HasAdditiveMeasurementNoise property:

- HasAdditiveMeasurementNoise is true - Specify the covariance as a scalar or an N-by- N matrix, where N is the number of measurements of the system. Specify a scalar if there is no cross-correlation between measurement noise terms and all the terms have the same variance. The software uses the scalar value to create an N-by- N diagonal matrix.
- HasAdditiveMeasurementNoise is false - Specify the covariance as a V-by- V matrix, where V is the number of measurement noise terms. MeasurementNoise must be specified before using correct. After you specify MeasurementNoise as a matrix for the first time, to then change MeasurementNoise you can also specify it as a scalar. Specify as a scalar if there is no crosscorrelation between the measurement noise terms and all the terms have the same variance. The software extends the scalar to a V-by- V diagonal matrix with the scalar on the diagonals.

MeasurementNoise is a tunable property. You can change it using dot notation.

ProcessNoise - Process noise covariance

1 (default) | scalar | matrix
Process noise covariance, specified as a scalar or matrix depending on the value of the HasAdditiveProcessNoise property:

- HasAdditiveProcessNoise is true - Specify the covariance as a scalar or an Ns-by-Ns matrix, where $N s$ is the number of states of the system. Specify a scalar if there is no cross-correlation between process noise terms, and all the terms have the same variance. The software uses the scalar value to create an Ns -by-Ns diagonal matrix.
- HasAdditiveProcessNoise is false - Specify the covariance as a W-by- W matrix, where W is the number of process noise terms. ProcessNoise must be specified before using predict. After you specify ProcessNoise as a matrix for the first time, to then change ProcessNoise you can also specify it as a scalar. Specify as a scalar if there is no cross-correlation between the process noise terms and all the terms have the same variance. The software extends the scalar to a W-by- W diagonal matrix.

ProcessNoise is a tunable property. You can change it using dot notation.

State - State of nonlinear system

[] (default) | vector
State of the nonlinear system, specified as a vector of size $N s$, where $N s$ is the number of states of the system.

When you use the predict command, State is updated with the predicted value at time step k using the state value at time step $k-1$. When you use the correct command, State is updated with the estimated value at time step k using measured data at time step k.

The initial value of State is the value you specify in the InitialState input argument during object creation. If you specify InitialState as a column vector, then State is also a column vector, and the predict and correct commands return state estimates as a column vector. Otherwise, a row vector is returned. If you want a filter with single-precision floating-point variables, you must specify State as a single-precision variable during object construction using the InitialState input argument.

State is a tunable property. You can change it using dot notation.

StateCovariance - State estimation error covariance

1 (default) | scalar | matrix
State estimation error covariance, specified as a scalar or an Ns-by-Ns matrix, where Ns is the number of states of the system. If you specify a scalar, the software uses the scalar value to create an $N s$-by-Ns diagonal matrix.

Specify a high value for the covariance when you do not have confidence in the initial state values that you specify in the InitialState input argument.

When you use the predict command, StateCovariance is updated with the predicted value at time step k using the state value at time step $k-1$. When you use the correct command, StateCovariance is updated with the estimated value at time step k using measured data at time step k.

StateCovariance is a tunable property. You can change it using dot notation after you use the correct or predict commands.

StateTransitionFcn - State transition function

function handle
State transition function f, specified as a function handle. The function calculates the $N s$-element state vector of the system at time step k, given the state vector at time step $k-1$. Ns is the number of states of the nonlinear system.

You write and save the state transition function for your nonlinear system and use it to construct the object. For example, if vdpStateFcn.m is the state transition function, specify StateTransitionFcn as @vdpStateFcn. You can also specify StateTransitionFcn as a function handle to an anonymous function.

The inputs to the function you write depend on whether you specify the process noise as additive or nonadditive in the HasAdditiveProcessNoise property of the object:

- HasAdditiveProcessNoise is true - The process noise w is additive, and the state transition function specifies how the states evolve as a function of state values at previous time step:

```
x(k) = f(x(k-1),Us1,...,Usn)
```

Where $\mathrm{x}(\mathrm{k})$ is the estimated state at time k , and Us $1, \ldots$, Usn are any additional input arguments required by your state transition function, such as system inputs or the sample time. During estimation, you pass these additional arguments to the predict command, which in turn passes them to the state transition function.

- HasAdditiveProcessNoise is false - The process noise is nonadditive, and the state transition function also specifies how the states evolve as a function of the process noise:

$$
x(k)=f(x(k-1), w(k-1), U s 1, \ldots, U s n)
$$

To see an example of a state transition function with additive process noise, enter edit vdpStateFcn at the command line.

StateTransitionFcn is a nontunable property. You can specify it once before you use the predict command, either during object construction or using dot notation after object construction. You cannot change it after using the predict command.

HasMeasurementWrapping - Enable measurement wrapping

0 (default) | 1
Enable measurement wrapping, specified as either 0 or 1 . You can enable measurement wrapping to estimate states when you have circular measurements that are independent of your model states. If you select this parameter, then the measurement function you specify must include the following two outputs:

1 The measurement, specified as a N-element output measurement vector of the nonlinear system at time step k, given the state vector at time step $k . N$ is the number of measurements of the system.
2 The measurement wrapping bounds, specified as an N-by- 2 matrix where, the first column provides the minimum measurement bound and the second column provides the maximum measurement bound.

Enabling the HasMeasurementWrapping property wraps the measurement residuals in a defined bound, which helps to prevent the filter from divergence due to incorrect measurement residual values. For an example, see "State Estimation with Wrapped Measurements Using Extended Kalman Filter".

HasMeasurementWrapping is a nontunable property. You can specify it once during the object construction. You cannot change it after creating the state estimation object.

Object Functions

correct Correct state and state estimation error covariance using extended or unscented Kalman filter, or particle filter and measurements
predict Predict state and state estimation error covariance at next time step using extended or unscented Kalman filter, or particle filter
residual Return measurement residual and residual covariance when using extended or unscented Kalman filter
clone Copy online state estimation object

Examples

Create Unscented Kalman Filter Object for Online State Estimation

To define an unscented Kalman filter object for estimating the states of your system, you write and save the state transition function and measurement function for the system.

In this example, use the previously written and saved state transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m. These functions describe a discrete-approximation to van der Pol oscillator with nonlinearity parameter, mu, equal to 1 . The oscillator has two states.

Specify an initial guess for the two states. You specify the initial state guess as an M-element row or column vector, where M is the number of states.
initialStateGuess = [1;0];
Create the unscented Kalman filter object. Use function handles to provide the state transition and measurement functions to the object.
obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,initialStateGuess);

The object has a default structure where the process and measurement noise are additive.
To estimate the states and state estimation error covariance from the constructed object, use the correct and predict commands and real-time data.

Specify Process and Measurement Noise Covariances in Unscented Kalman Filter Object

Create an unscented Kalman filter object for a van der Pol oscillator with two states and one output. Use the previously written and saved state transition and measurement functions, vdpStateFcn.m and $v d p M e a s u r e m e n t F c n . m$. These functions are written for additive process and measurement noise terms. Specify the initial state values for the two states as [2;0].

Since the system has two states and the process noise is additive, the process noise is a 2 -element vector and the process noise covariance is a 2-by-2 matrix. Assume there is no cross-correlation between process noise terms, and both the terms have the same variance 0.01 . You can specify the process noise covariance as a scalar. The software uses the scalar value to create a 2 -by- 2 diagonal matrix with 0.01 on the diagonals.

Specify the process noise covariance during object construction.
obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0],...
'ProcessNoise',0.01);
Alternatively, you can specify noise covariances after object construction using dot notation. For example, specify the measurement noise covariance as 0.2 .
obj. MeasurementNoise $=0.2$;
Since the system has only one output, the measurement noise is a 1 -element vector and the MeasurementNoise property denotes the variance of the measurement noise.

Specify Nonadditive Measurement Noise in Unscented Kalman Filter Object

Create an unscented Kalman filter object for a van der Pol oscillator with two states and one output. Assume that the process noise terms in the state transition function are additive. That is, there is a linear relation between the state and process noise. Also assume that the measurement noise terms are nonadditive. That is, there is a nonlinear relation between the measurement and measurement noise.
obj = unscentedKalmanFilter('HasAdditiveMeasurementNoise',false);
Specify the state transition function and measurement functions. Use the previously written and saved functions, vdpStateFcn.m and vdpMeasurementNonAdditiveNoiseFcn.m.

The state transition function is written assuming the process noise is additive. The measurement function is written assuming the measurement noise is nonadditive.
obj.StateTransitionFcn = @vdpStateFcn;
obj.MeasurementFcn = @vdpMeasurementNonAdditiveNoiseFcn;
Specify the initial state values for the two states as [2;0].
obj.State = [2;0];
You can now use the correct and predict commands to estimate the state and state estimation error covariance values from the constructed object.

Specify Additional Inputs in State Transition and Measurement Functions

Consider a nonlinear system with input u whose state x and measurement y evolve according to the following state transition and measurement equations:

$$
\begin{aligned}
& x[k]=\sqrt{x[k-1]+u[k-1]}+w[k-1] \\
& y[k]=x[k]+2 * u[k]+v[k]^{2}
\end{aligned}
$$

The process noise w of the system is additive while the measurement noise v is nonadditive.
Create the state transition function and measurement function for the system. Specify the functions with an additional input u.

```
f = @(x,u)(sqrt(x+u));
h = @(x,v,u)(x+2*u+v^2);
```

f and h are function handles to the anonymous functions that store the state transition and measurement functions, respectively. In the measurement function, because the measurement noise is nonadditive, v is also specified as an input. Note that v is specified as an input before the additional input u.

Create an unscented Kalman filter object for estimating the state of the nonlinear system using the specified functions. Specify the initial value of the state as 1 , and the measurement noise as nonadditive.
obj = unscentedKalmanFilter(f,h,1,'HasAdditiveMeasurementNoise',false);
Specify the measurement noise covariance.
obj. MeasurementNoise $=0.01$;
You can now estimate the state of the system using the predict and correct commands. You pass the values of u to predict and correct, which in turn pass them to the state transition and measurement functions, respectively.

Correct the state estimate with measurement $\mathrm{y}[\mathrm{k}]=0.8$ and input $\mathrm{u}[\mathrm{k}]=0.2$ at time step k .
correct (obj, 0.8, 0.2)
Predict the state at next time step, given $u[k]=0.2$.
predict(obj,0.2)

Algorithms

The discrete-time unscented Kalman filter algorithm performs online state estimation of a discretetime nonlinear system.

Consider a plant with states x, input u, output y, process noise w, and measurement noise v. Assume that you can represent the plant as a nonlinear system.

The algorithm computes the state estimates \widehat{x} of the nonlinear system using state transition and measurement functions specified by you. The software lets you specify the noise in these functions as additive or nonadditive:

- Additive Noise Terms - The state transition and measurements equations have the following form:

$$
\begin{aligned}
& x[k]=f\left(x[k-1], u_{s}[k-1]\right)+w[k-1] \\
& y[k]=h\left(x[k], u_{m}[k]\right)+v[k]
\end{aligned}
$$

Here f is a nonlinear state transition function that describes the evolution of states x from one time step to the next. The nonlinear measurement function h relates x to the measurements y at time step k. w and v are the zero-mean, uncorrelated process and measurement noises, respectively. These functions can also have additional input arguments that are denoted by u_{s} and u_{m} in the equations. For example, the additional arguments could be time step k or the inputs u to the nonlinear system. There can be multiple such arguments.

Note that the noise terms in both equations are additive. That is, $x(k)$ is linearly related to the process noise $w(k-1)$, and $y(k)$ is linearly related to the measurement noise $v(k)$.

- Nonadditive Noise Terms - The software also supports more complex state transition and measurement functions where the state $x[k]$ and measurement $y[k]$ are nonlinear functions of the process noise and measurement noise, respectively. When the noise terms are nonadditive, the state transition and measurements equation have the following form:

$$
\begin{aligned}
& x[k]=f\left(x[k-1], w[k-1], u_{S}[k-1]\right) \\
& y[k]=h\left(x[k], v[k], u_{m}[k]\right)
\end{aligned}
$$

When you perform online state estimation, you first create the nonlinear state transition function f and measurement function h. You then construct the unscentedKalmanFilter object using these nonlinear functions and specify whether the noise terms are additive or nonadditive.

After you create the object, you use the predict command to predict state estimates at the next time step, and correct to correct state estimates using the unscented Kalman filter algorithm and realtime data. For additional details about the algorithm, see "Extended and Unscented Kalman Filter Algorithms for Online State Estimation".

Version History

Introduced in R2016b
R2020b: Numerical Changes
Behavior changed in R2020b

Starting in R2020b, numerical improvements in the unscentedKalmanFilter algorithm might produce results that are different from the results you obtained in previous versions.

Extended Capabilities

C/C++ Code Generation

Generate C and $\mathrm{C}++$ code using MATLAB® Coder $^{\mathrm{TM}}$.
Usage notes and limitations:
For more information, see "Generate Code for Online State Estimation in MATLAB".
Generated code uses an algorithm that is different from the algorithm that the unscentedKalmanFilter function uses. You might see some numerical differences in the results obtained using the two methods.

Supports MATLAB Function block: No

See Also

Functions

predict | correct | residual|clone|extendedKalmanFilter|kalman|kalmd

Blocks

Kalman Filter | Extended Kalman Filter | Unscented Kalman Filter
Topics
"Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter"
"Generate Code for Online State Estimation in MATLAB"
"Extended and Unscented Kalman Filter Algorithms for Online State Estimation"
"Validate Online State Estimation at the Command Line"
"Troubleshoot Online State Estimation"

External Websites

Understanding Kalman Filters: Nonlinear State Estimators - MATLAB Video Series

Tune PID Controller

Tune PID Controller for LTI plant in the Live Editor

Description

The Tune PID Controller Live Editor task lets you interactively tune a PID controller for a plant. The task automatically generates MATLAB code for your live script. For more information about Live Editor tasks generally, see "Add Interactive Tasks to a Live Script".

Tune PID Controller automatically tunes the gains of a PID controller for a SISO plant to achieve a balance between performance and robustness. You can specify the controller type, such as PI, PD, or PID with or without a derivative filter. By default, Tune PID Controller assumes the following standard unit-feedback control configuration.

You can also use Tune PID Controller to design a 2-DOF PID controller for the feedback configuration of this illustration:

Tune PID Controller generates analysis plots that let you examine controller performance in the time and frequency domains. You can interactively refine the performance of the controller to adjust response time, loop bandwidth, or phase margin, or to favor setpoint tracking or disturbance rejection.

To get started with the Tune PID Controller task, select the plant model and specify the type of controller you want to design. Experiment with the sliders and observe their effect on the closed-loop system response. For an example, see "PID Controller Design in the Live Editor".

Related Functionality

- Tune PID Controller generates code using pidtune and pidtuneOptions.
- To perform interactive PID tuning in a standalone app, use PID Tuner.

```
Tune PID Controller O :
c., pidInfo = PIDF controller in Parallel form tuned for model G with response time of 1.67572 S
- Select plant
    Plant G
- Specify controller settings
    Form Parallel v Degrees of Freedom 1DOF * Controller Type PIDF *
- Specify system performance goals
```



```
, Specify optional parameters
- Display results
    Output Plot Step Plot.Reference tracking v 洂tem response characteristics
    Baseline controler Select from workspace v C0 *
```


Description (collapsed portion)

Related Functionality

- Tune PID Controller generates code using pidtune and pidtuneOptions.
- To perform interactive PID tuning in a standalone app, use PID Tuner.

Open the Task

To add the Tune PID Controller task to a live script in the MATLAB Editor:

- On the Live Editor tab, select Task > Tune PID Controller.
- In a code block in your script, type a relevant keyword, such as tune or PID. Select Tune PID Controller from the suggested command completions.

Parameters

Plant and Controller Settings
Plant - Current plant
LTI model
Choose a plant for which to design a controller. The list contains continuous-time or discrete-time SISO LTI models present in the MATLAB workspace, such as:

- State-space (ss), transfer function (tf), and zero-pole-gain (zpk) models.
- For frequency-response data ($f r d$) models. For such plants, only frequency-domain design goals and response plots are available.
- Generalized state-space (genss) or uncertain state-space (uss) models. For such models, Tune PID Controllers uses the current, nominal value of the tunable and uncertain components.
- Identified models, such as idss and idtf models.

Form - Controller form
'Parallel' | 'Standard'
Specify the controller form. The two forms differ in the parameters used to express the proportional, integral, and derivative actions and the filter on the derivative term. For information about parallel and standard forms, see:

- "Proportional-Integral-Derivative (PID) Controllers"
- "Discrete-Time Proportional-Integral-Derivative (PID) Controllers"
- "Two-Degree-of-Freedom PID Controllers"

Degrees of Freedom - Specify 1-DOF or 2-DOF controller
1D0F (default) | 2D0F
By default, Tune PID Controller designs a one-degree-of-freedom (1-DOF) controller. Such a controller has up to four coefficients (see "Proportional-Integral-Derivative (PID) Controllers").

You can instead design a two-degree-of-freedom (2-DOF) PID controller. Such controllers include setpoint weighting on the proportional and derivative terms. A 2-DOF PID controller is capable of fast disturbance rejection without significant increase of overshoot in setpoint tracking. You can also use 2-DOF PID controllers to mitigate the influence of changes in the reference signal on the control signal. For more information, see "Two-Degree-of-Freedom PID Controllers".

Controller Type - Specify the terms the controller has
'PI' (default)| 'PIDF'|'PID2'|...
The controller type specifies which terms are present in the PID controller. For instance, a PI controller has a proportional and an integral term. A PDF controller has a proportional term and a filtered derivative term. For details on available controller types, see "PID Controller Types for Tuning".

System Performance Goals

Domain - Domain for specifying performance targets
'Time' (default) | 'Frequency'
Choose the domain in which the task displays the target performance parameters.

- Time - Use the sliders to set performance goals in terms of response time and transient behavior. Time-domain tuning is not available for frequency-response data plants such as frd plants.
- Frequency - Use the sliders to set performance goals in terms of loop bandwidth and phase margin.

The choice of domain does not affect the underlying controller design or the results. You can use whichever is more convenient for you or more appropriate for your application. For instance, if your design goals include a target rise time, you might find it convenient to work in the time domain. If you
have a target loop bandwidth, you might prefer working in the frequency domain. In both domains, there is a trade-off between reference tracking and disturbance rejection performance.

Response Time, Transient Behavior - Time-domain performance goals

 slidersWhen you set Domain to Time, use these sliders to adjust the responsiveness and robustness of the controller.

- Use the Response Time slider to make the closed-loop response of the control system faster or slower. To change the limits of the slider, drag the slider to the left or right end. To decrease or increase the response time by a factor of 10 , click \lll or \gg.
- Use the Transient Behavior slider to make the controller more aggressive at disturbance rejection (smaller values) or more robust against plant uncertainty (larger values).

Time-domain tuning is not available for frequency-response data plants such as frd plants.
Bandwidth, Phase Margin - Frequency-domain performance goals
sliders
When you set Domain to Frequency, use these sliders to adjust the bandwidth and phase margin of the control system.

- Use the Bandwidth slider to make the closed-loop response of the control system faster or slower (the response time is $2 / w_{c}$, where w_{c} is the bandwidth). To change the limits of the slider, drag the slider to the left or right end. To decrease or increase the bandwidth by a factor of 10, click \ll
or \gg.
For discrete-time controllers, Tune PID Controller limits the maximum bandwidth to pi/Ts, where Ts is the sample time of the selected plant.
- Use the Phase Margin slider to make the controller more aggressive at disturbance rejection (smaller values) or more robust against plant uncertainty (larger values).

Optional Parameters

Design focus - Closed-loop performance objective to favor
Balanced (default)|Reference tracking|Input disturbance rejection
For a given target phase margin, Tune PID Controller chooses a controller design that balances the two measures of performance, reference tracking and disturbance rejection. When you change the Design focus option, the tuning algorithm attempts to adjust the PID gains to favor either reference tracking or disturbance rejection while achieving the same target phase margin.

The Design focus options follow:

- Balanced - For a given robustness, tune the controller to balance reference tracking and disturbance rejection.
- Reference tracking - Tune the controller to favor reference tracking, if possible.
- Input disturbance rejection - Tune the controller to favor disturbance rejection, if possible.

The more tunable parameters there are in the system, the more likely it is that the PID algorithm can achieve the desired design focus without sacrificing robustness. For example, setting the design focus is more likely to be effective for PID controllers than for P or PI controllers.

In all cases, how much you can fine-tune the performance of the system depends strongly on the properties of your plant. For some plants, changing the Design Focus option might have little or no effect.

Integral formula, Filter formula - Formula for discrete integral and derivative terms Forward Euler (default)|Backward Euler|Trapezoidal

For discrete-time PID controllers, there are different ways to implement the integrator and filter terms. For instance, for a parallel-form discrete-time PID controller, the controller transfer function is

$$
C=K_{p}+K_{i} I F(z)+\frac{K_{d}}{T_{f}+D F(z)} .
$$

$\operatorname{IF}(z)$ and $D F(z)$ are the discrete integrator formulas for the integrator and derivative filter. (To see how $I F(z)$ and $D F(z)$ affect other controller forms, including standard form and 2-DOF controllers, see "Discrete-Time Proportional-Integral-Derivative (PID) Controllers".)

Use Integral formula and Filter formula to select the values of $\operatorname{IF}(z)$ and $D F(z)$, respectively.

- Forward Euler $-I F(z)$ or $D F(z)=\frac{T_{S}}{z-1}$.

This formula is best for small sample times, where the Nyquist limit is large compared to the bandwidth of the controller. For larger sample times, the Forward Euler formula can result in instability, even when you discretize a system that is stable in continuous time.

- Backward Euler $-I F(z)$ or $D F(z)=\frac{T_{S} z}{z-1}$.

An advantage of the Backward Euler formula is that discretizing a stable continuous-time system using this formula always yields a stable discrete-time result.

- Trapezoidal $-I F(z)$ or $D F(z)=\frac{T_{S}}{2} \frac{z+1}{z-1}$.

An advantage of the Trapezoidal formula is that discretizing a stable continuous-time system using this method always yields a stable discrete-time result. Of all available discrete integrator formulas, Trapezoidal yields the closest match between the frequency-domain properties of the discretized system and the corresponding continuous-time system.

Display

Output Plot - System response plot to generate
Step Plot: Reference tracking (default)|Step Plot: Input disturbance rejection| Bode Plot: Open-loop|...

Specify a response plot for observing the effect of the PID controller on system performance. You can specify a time-domain step response plot or a frequency-domain Bode plot for different system responses. The code that Tune PID Controller generates in your live script includes code for generating the plot you select.

Available System Responses

For 1-DOF PID controller types such as PI, PIDF, and PDF, the software computes system responses based upon the following single-loop control architecture, where G is your specified plant and C is the PID controller:

For 2-DOF PID controller types such as PI2, PIDF2, and I-PD, the software computes responses based upon the following architecture:

The system responses are based on the decomposition of the 2-DOF PID controller, C, into a setpoint component $C r$ and a feedback component $C y$, as described in "Two-Degree-of-Freedom PID Controllers".

The following table summarizes the available responses for analysis plots. (For frequency-responsedata plants such as frd models, time-domain response plots are not available.)

Response	Plotted System (1-DOF)	Plotted System (2-DOF)	Description
Plant	G	G	Plant response. Use to examine plant dynamics.

Response	Plotted System (1-DOF)	Plotted System (2-DOF)	Description
Open-loop	GC	$-G C_{y}$	Response of the open-loop controller-plant system. Use for frequency-domain design. Use when your design specifications include robustness criteria such as open-loop gain margin and phase margin.
Reference tracking	$\frac{G C}{1+G C}(\text { from } r \text { to } y)$	$\frac{G C_{r}}{1-G C_{y}} \text { (from } r \text { to } y \text {) }$	Closed-loop system response to a step change in setpoint. Use when your design specifications include setpoint tracking.
Controller effort	$\frac{C}{1+G C}(\text { from } r \text { to } u)$	$\left.\frac{C_{r}}{1-G C_{y}} \text { (from } r \text { to } u\right)$	Closed-loop controller output response to a step change in setpoint. Use when your design is limited by practical constraints, such as controller saturation.
Input disturbance rejection	$\frac{G}{1+G C}\left(\text { from } d_{1} \text { to } y\right)$	$\frac{G}{1-G C_{y}}\left(\text { from } d_{1} \text { to } y\right)$	Closed-loop system response to load disturbance (a step disturbance at the plant input). Use when your design specifications include input disturbance rejection.
Output disturbance rejection	$\frac{1}{1+G C}\left(\text { from } d_{2} \text { to } y\right)$	$\frac{1}{1-G C_{y}}\left(\text { from } d_{2} \text { to } y\right)$	Closed-loop system response to a step disturbance at plant output. Use when you want to analyze sensitivity to modeling errors.

System response characteristics - Display numeric characteristics of closed-loop response off (default) | on

Select this option to generate a display of numeric characteristics of the closed-loop or open-loop response.

- When Output Plot is a step plot, the display includes characteristics such as rise time, settling time, and percent overshoot. These values are always those of the closed-loop step response from the control system input r to output y, regardless of which specific step response you choose for the plot. Tune PID Controller uses stepinfo to compute the step-response characteristics. For details about how to interpret these values, see the stepinfo reference page.
- When Output Plot is a Bode plot, the display includes characteristics such as gain margin and phase margin. These values are always those of the open-loop system response $G C$, regardless of
which specific Bode plot you choose. Tune PID Controller uses allmargin to compute the frequency-response characteristics. For details about how to interpret these values, see the allmargin reference page.

Baseline controller - Controller for performance comparison
None (default) | Select from workspace
Use this option when you want to compare the performance of the tuned controller to another PID controller in the MATLAB workspace. To do so, choose Select from workspace. Another menu appears containing PID model objects that are currently in the workspace. The list includes PID model objects of all types (pid, pidstd, pid2, or pidstd2) that are of the same time domain as the currently specified plant. For instance, if the plant is a discrete-time state-space model, then any discrete-time PID model object in the workspace is available as a baseline controller.

When you specify a baseline controller, the response plot updates to include a dotted-line plot of the system response with the baseline controller.

- Display results

| Output Plot | Step Plot: Reference tracking | \square System response characteristics |
| :--- | :--- | :--- | :--- |
| Baseline controller | Select from workspace | v |

Store Controller for Comparison

You can store a design to use as a baseline while you experiment further with controller types, performance goals, and other settings. To do so, when you find the design that you want to use as a baseline:

1 Note the name of the controller workspace variable in the task summary line (see "Tips" on page $2-1548$). For instance, if the name is C, then the current controller is in the MATLAB workspace as C .
2 Change the name of the controller variable in the task summary line. For instance, change it to Cnew.
3 Select Baseline Controller and specify the stored controller C as the baseline.

When you experiment further with the controller design, the task stores changes to the controller in the workspace as Cnew. The plot shows you the baseline response using C and the tuned response using Cnew.

Tips

- After you select a plant, the task creates the controller and stores it in the MATLAB workspace. The stored controller is a pid, pidstd, pid2, or pidstd2 model object, as specified by your selections for Form and Degrees of Freedom.

The default variable name for the stored controller is C. You can change the variable name by typing a new name into the task summary line.

PI controller in Parallel form tuned for model G with response time of 1.8 s

- The task also provides information about the performance and robustness of the closed-loop system in a structure called pidInfo by default. For information about this structure, see the info output argument on the pidtune reference page.

Algorithms

Tune PID Controller uses the algorithm discussed in "PID Tuning Algorithm".

Version History

Introduced in R2019b

See Also

Apps

PID Tuner

Functions

pidtune | pidtuneOptions

Objects

pid | pidstd| pid2 | pidstd2

Topics

"PID Controller Design in the Live Editor"
"Choosing a PID Controller Design Tool"

updateSystem

Update dynamic system data in a response plot

Syntax

```
updateSystem(h,sys)
updateSystem(h,sys,N)
```


Description

updateSystem (h,sys) replaces the dynamic system used to compute a response plot with the dynamic system model or model array sys, and updates the plot. If the plot with handle h contains more than one system response, this syntax replaces the first response in the plot. updateSystem is useful, for example, to cause a plot in a GUI to update in response to interactive input. See "Build GUI With Interactive Response-Plot Updates".
updateSystem (h, sys, N) replaces the data used to compute the Nth response in the plot.

Examples

Update System Data in Response Plot

Replace step response data in an existing plot with data computed from a different dynamic system model.

Suppose you have a plant model and pure integrator controller that you designed for that plant. Plot the step responses of the plant and the closed-loop system.

```
w = 2;
zeta = 0.5;
G = tf(w^2,[1,2*zeta*w,w^2]);
C1 = pid(0,0.621);
CL1 = feedback(G*C1,1);
h = stepplot(G,CL1);
```


h is the plot handle that identifies the plot created by stepplot. In this figure, G is used to compute the first response, and CL1 is used to compute the second response. This ordering corresponds to the order of inputs to stepplot.

Suppose you also have a PID controller design that you want to analyze. Create a model of the closedloop system using this alternate controller.
$C 2=\operatorname{pid}(2,2.6,0.4,0.002) ;$
CL2 = feedback(G*C2,1);
Update the step plot to display the second closed-loop system instead of the first. The closed-loop system is the second response in the plot, so specify the index value 2 .
updateSystem (h, CL2,2) ;

The updateSystem command replaces the system used to compute the second response displayed in the plot. Instead of displaying response data derived from CL1, the plot now shows data derived from CL2.

When you build a GUI that displays a response plot, use updateSystem in GUI control callbacks to cause those GUI controls to update the response plot. For an example showing how to implement such a GUI control, see "Build GUI With Interactive Response-Plot Updates".

Input Arguments

h - Plot to update

plot handle
Plot to update with new system data, specified as a plot handle. Typically, you obtain the plot handle as an output argument of a response plotting command such as stepplot or bodeplot. For example, the command $h=$ bodeplot (G) returns a handle to a plot containing the Bode response of a dynamic system, G .
sys - System for new response data
dynamic system model \| model array
System from which to compute new response data for the response plot, specified as a dynamic system model or model array.
sys must match the plotted system that it replaces in both I/O dimensions and array dimensions. For example, suppose h refers to a plot that displays the step responses of a 5 -element vector of 2 -input, 2 -output systems. In this case, sys must also be a 5 -element vector of 2-input, 2-output systems. The number of states in the elements of sys need not match the number of states in the plotted systems.

N - Index of system to replace

1 (default) | positive integer
Index of system to replace in the plot, specified as a positive integer. For example, suppose you create a plot using the following command.
h = impulseplot(G1,G2,G3,G4);
To replace the impulse data of G 3 with data from a new system, sys, use the following command.

```
updateSystem(h,sys,3);
```


Version History

Introduced in R2013b

See Also

Topics

"Build GUI With Interactive Response-Plot Updates"

upsample

Upsample discrete-time models

Syntax

sysl = upsample(sys,L)

Description

sysl = upsample(sys,L) resamples the discrete-time dynamic system model sys at a sampling rate that is L-times faster than the sample time of sys $\left(T s_{0}\right)$. L must be a positive integer. When sys is a TF model, $H(z)$, upsample returns sysl as $H\left(z^{L}\right)$ with the sample time $T s_{0} / \mathrm{L}$.

The responses of models sys and sysl have the following similarities:

- The time responses of sys and sysl match at multiples of $T s_{0}$.
- The frequency responses of sys and sysl match up to the Nyquist frequency п / $T s_{0}$.

Note sysl has L times as many states as sys.

Examples

Upsample Discrete-Time Transfer Function

Create a transfer function with sample time 2.25 seconds.

```
sys = tf(0.75,[1 10 2],2.25)
sys =
    0.75
    z^2 + 10 z + 2
Sample time: 2.25 seconds
Discrete-time transfer function.
```

Create a transfer function with a sample time that is 14 times faster than sys.

```
L = 14;
```

sys1 = upsample(sys,L)
sys1 =
0.75
$z^{\wedge} 28+10 z^{\wedge} 14+2$
Sample time: 0. 16071 seconds
Discrete-time transfer function.

The sample time of sys 1 is 0.16071 seconds, which is 14 times faster than the sample time of sys.

Version History

Introduced in R2008b

See Also

d2d \| d2c | c2d

varyingGoal

Variable tuning goal for gain-scheduled controllers

Syntax

```
VG = varyingGoal(FH,par1,par2,...)
VG = varyingGoal(
```

\qquad

``` ,Name, Value)
```


Description

When tuning fixed or gain-scheduled controllers at multiple design points (operating conditions), you might need to adjust the tuning goals as a function of operating condition, for example, to relax performance in some regions of the operating range. Use varyingGoal to construct tuning goals that depend implicitly or explicitly on the design point.

VG = varyingGoal(FH, par1, par2, ...) specifies a varying goal using a template and sets of goal-parameter values. The template FH is a function handle that specifies a function, $\mathrm{TG}=$ $\mathrm{FH}(\mathrm{p} 1, \mathrm{p} 2, \ldots)$, that evaluates to one of the TuningGoal objects. The arrays par1, par2,... specify the values of the tuning-goal parameters $\mathrm{p} 1, \mathrm{p} 2, \ldots$ at each design point. Use VG as you would use any TuningGoal object in an input to systune.

VG = varyingGoal(__ , Name, Value) configures additional properties of the tuning goal.

Examples

Varying Tuning Goal

Create a tuning goal that specifies variable gain and phase margins across a grid of design points.
Suppose you use the following 5-by-5 grid of design points to tune your controller.

```
[alpha,V] = ndgrid(linspace(0,20,5),linspace(700,1300,5));
```

Suppose further that you have 5-by-5 arrays of target gain margins and target phase margins corresponding to each of the design points, such as the following.
[GM, PM] = ndgrid(linspace(7,20,5),linspace(45,70,5));
To enforce the specified margins at each design point, first create a template for the margins goal. The template is a function that takes gain and phase margin values and returns a TuningGoal.Margins object with those margins.

FH = @(gm,pm) TuningGoal.Margins('u',gm,pm);
Use the template and the margin arrays to create the varying goal.

```
VG = varyingGoal(FH,GM,PM);
```

To make it easier to trace which goal applies to which design point, use the SamplingGrid property to attach the design-point information to VG.

VG.SamplingGrid = struct('alpha',alpha,'V',V);
Use VG with systune as you would use any other tuning goal. Use viewGoal to visualize the tuning goal and identify design points that fail to meet the target margins.

Varying Tuning Goal With LTI Parameter

Create a tuning goal that specifies a loop shape that varies with one scheduling variable, a.
Suppose you want to specify a loop shape with a crossover frequency that varies as $2 *$ a over three design points. To enforce this requirement, first create a template for the loop-shape goal. The template is a function that takes a numeric scalar input parameter and returns a TuningGoal. LoopShape object. The function input must be scalar, so the function constructs the LTI models representing the loop shapes.

```
a = [5;10;15];
s = tf('s');
FH = @(A) TuningGoal.LoopShape('u',2*A/s);
```

Here, ' u ' is an Analysis Point in the system, the location at which you want to impose the loop-shape requirements.

Use the template and the array to create the varying goal.
VG = varyingGoal(FH,a);
Attach the design-point information to VG.

```
VG.SamplingGrid = struct('a',a);
```

Now each value of a is associated with a tuning goal that enforces the corresponding loop shape. For example, confirm that the third entry in $\mathrm{a}, \mathrm{a}=15$, is associated with the third loop shape, $30 / \mathrm{s}$.

```
LS3 = getGoal(VG,'index',3);
tf(LS3.LoopGain)
ans =
    30
    s
```

Continuous-time transfer function.

Varying Tuning Goal With Frequency Focus and Loop Opening

Create a tuning goal that specifies variable gain and phase margins across a grid of design points. Configure the tuning goal to be evaluated with a loop opening at a location 'LO' and to apply only in the frequency range between 1 and $100 \mathrm{rad} / \mathrm{s}$.

Specify the grid of design points and the corresponding grid of target gain margins and phase margins. Also, create the template function for the varying margins goal.

```
[alpha,V] = ndgrid(linspace(0,20,5),linspace(700,1300,5));
[GM,PM] = ndgrid(linspace(7,20,5),linspace(45,70,5));
FH = @(gm,pm) TuningGoal.Margins('u',gm,pm);
```

Use the template function and the margin arrays to create the varying goal. Also, use Name, Value pairs to specify:

- The location at which the loop is opened for evaluating the tuning goal (Openings property).
- The frequency range in which the varying goal applies (Focus property).

The property names and values that you specify for the underlying tuning goal are stored in the Settings property of the varying goal.

```
VG = varyingGoal(FH,GM,PM,'Openings','LO','Focus',[1, 100])
VG =
    varyingGoal with properties:
            Template: @(gm,pm)TuningGoal.Margins('u',gm,pm)
            Parameters: {[5\times5 double] [5x5 double]}
            Settings: {'Openings' 'LO' 'Focus' [1 100]}
        SamplingGrid: [1x1 struct]
                        Name:
    Variable tuning goal acting over a 5x5 grid of (gm,pm) values.
```

To make it easier to trace which goal applies to which design point, use the SamplingGrid property to attach the design-point information to VG.

```
VG.SamplingGrid = struct('alpha',alpha,'V',V);
```


Input Arguments

FH - Template for varying goal

function handle

Template for varying goal, specified as a function handle. FH specifies a function of one or more parameters that evaluates to one of the TuningGoal objects. For example, suppose you want to constrain the overshoot in the step response from an input r to an output y in your system, and you want to allow the constraint to vary across different design points. Specify the template as a function that returns a TuningGoal. Overshoot object. For example, you can specify FH as an anonymous function.

FH = @(os) TuningGoal.Overshoot('r','y',os);
Because TuningGoal. Overshoot has only one parameter besides the input and output signals, FH is a handle to a function of one argument. For other tuning goals, use more arguments. For example, TuningGoal. Margins has two parameters, the gain margin and phase margin. Therefore, for a variable margin goal, FH has two arguments.

FH = @(gm, pm) TuningGoal. Margins('u',gm,pm);
The template function allows great flexibility in constructing the design goals. For example, you can write a function, goalspec (a,b), that constructs the tuning goal specification as a nontrivial
function of the parameters (a, b), and save the function in a MATLAB file. Your template function then calls goalspec as follows.

FH = @(a,b) TuningGoal.Margins('u',goalspec(a, b));
Similarly, if the tuning-goal parameters do not fit in numeric arrays, you can use the design-point index as input to FH. For example, suppose the gain and phase margin data is stored in a struct array, S, with fields GM and PM, you can use the following.

FH = @(idx) TuningGoal.Margins('u',S(idx).GM,S(idx).PM);
idx is an absolute index into the grid of design points.

par - Tuning goal parameters

numerical array
Tuning goal parameters, specified as a numerical array with the same dimensions as the model array used for gain-scheduled tuning. Provide an array for each parameter in the tuning goal, where each entry in the array is the parameter value you want to apply to the corresponding design point. For example, the TuningGoal.Overshoot goal has only one parameter, the maximum overshoot. Therefore, specify the parameters as follows.

```
par = osvals;
```

osvals is an array of overshoot values to enforce at each design point.
The TuningGoal.Margins goal has two parameters, the gain margin and phase margin. Therefore, for a variable margin goal, specify the parameters as follows:

```
par1 = GM;
par2 = PM;
```

Here, GM is an array of gain-margin values and PM is an array of phase-margin values to enforce at each design point.

To make the variable tuning goal inactive at a particular design point, set the corresponding entry of the par array (or arrays) to NaN .

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1, . . . NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Use Name, Value pairs to specify properties of the underlying tuning goal. For instance, suppose you want to create a varying gain goal that specifies a variable gain profile between points ' L ' and ' V '. You also want to enforce the gain goal only in the frequency band [$0 \mathrm{pi} / \mathrm{Ts}$], with a loop opening at an analysis point labeled OuterLoop. You use Name, Value pairs to specify these properties for the gain goal.

```
FH = @(w) TuningGoal.Gain('F','V',tf(w,[1 w]));
VG = varyingGoal(FH,wdata,'Focus',[0 pi/Ts],'Openings','OuterLoop');
```

Which properties you can set depends on which of the TuningGoal objects your function FH evaluates to. For instance, for most varying tuning goals, you can set properties such as Openings,

Models, and Focus. For a variable TuningGoal. Gain goal, you can also use Name, Value pairs to set properties such as Stabilize, InputScaling, and OutputScaling. See the individual TuningGoal object reference pages for a list of the properties of each tuning goal.

Output Arguments

VG - Variable tuning goal

varyingGoal object
Variable tuning goal, returned as a varyingGoal object. This object captures the tuning goal and its variation across design points in a MATLAB variable. Use VG in an input argument to systune just as you would use any TuningGoal object.

VG has the following properties.

Property	Description			
Template	Template for the varying goal, stored as a function handle to a function of one or more parameters whose values change over the operating range for tuning. The initial value of this property is set by the FH input argument.			
Parameters	Tuning goal parameters at each design point, stored as a cell array. Each entry in the cell array is a numeric array containing the parameter values at each design point. For example, for a variable margins goal with template			
FG = FH = @(gm, pm) TuningGoal. Margins (' u',$~$ gm, pm) ;				
the value of this property is \{GM, PM\}, where GM				
and PM are arrays containing the desired gain				
and phase margins at each design point.				
The initial value of this property is set by the				
input arguments par1, par2, ...		$	$	Property names and values to be applied to each
:---				
goal instance in the varying goal, stored as a cell				
array.				
Default: \{\}				

Property	Description
SamplingGrid	Design points, stored as a structure containing an array of values for each sampling variable. The design points need not lie on a rectangular grid and can be scattered throughout the operating range. The sizes of the arrays in the SamplingGrid and Pa rameters properties must match. For more information about sampling grids, see the SamplingGrid property description on the ss reference page. Default: struct with no fields
Name	Name for the variable goal. Set Name to a string to label the goal.
Default: ' '	

Tips

- Use viewGoal to visualize tuning goals. For varying tuning goals, the tuning-goal plot generated by viewGoal lets you examine the tuning goal at each design point. For more information, see "Validate Gain-Scheduled Control Systems".

Version History

Introduced in R2017b

See Also

tunableSurface | getGoal| viewGoal| systune

Topics

"Change Requirements with Operating Condition"
"Validate Gain-Scheduled Control Systems"

viewGoal

View tuning goals; validate design against tuning goals

Syntax

```
viewGoal(Req)
viewGoal(Req,T)
```


Description

viewGoal (Req) displays a graphical view of a tuning goal or vector of tuning goals, specified as TuningGoal objects. The form of the tuning-goal plot depends on the specific tuning goals you use. Plots for time-domain tuning goals typically show the target time-domain response specified in the tuning goal. Plots for frequency-domain tuning goals typically show a shaded area that represents the region in which the tuning goal is violated.

When you provide a vector of tuning goals, viewGoal plots each tuning goal on separate axes in a single figure window.
viewGoal (Req, T) plots the performance of a tuned control system against the tuning goal or goals. The form of the tuning-goal plot depends on the specific tuning goals you use. Typically, the plot shows both the target response specified in the tuning goal and the corresponding response of the control system represented by T. For more information about interpreting tuning-goal plots, see "Visualize Tuning Goals".

Examples

Visualize Tuning Goal as Function of Frequency

Create a tuning goal that constrains the response from a signal ' d ' to another signal ' y ' to roll off at $20 \mathrm{~dB} /$ decade at frequencies greater than 1 . The tuning goal also imposes disturbance rejection (maximum gain of 1) in the frequency range [0,1].

```
gmax = frd([1 1 0.01],[0 1 100]);
```

Req = TuningGoal.MaxGain('du','u',gmax);
When you use a frequency response data (frd) model to sketch the bounds of a gain constraint or loop shape, the tuning goal interpolates the constraint. This interpolation converts the constraint to a smooth function of frequency. Examine the interpolated gain constraint using viewGoal.
viewGoal(Req)

Requirement 1: Maximum gain as a function of frequency

The dotted line shows the gain profile specified in the tuning goal. The shaded region represents gain values that violate the tuning requirement. For more information about interpreting tuning-goal plots, see "Visualize Tuning Goals".

Visualize Tuned Responses Against Tuning Goals

Examine the tuned response of a control system against tuning goals, to determine where and by how much the tuning goals are violated. This visualization helps you determine whether the tuned control system comes satisfactorily close to meeting your soft requirements.

Open a Simulink ${ }^{\circledR}$ model of a control system to tune.

```
open_system('rct_airframe2')
```


Two-loop autopilot for controlling the vertical acceleration of an airframe

Copyright 2014 The MathWorks, Inc.

Create tuning goals. For this example, use tracking, roll-off, stability margin, and disturbancerejection tuning goals.

```
Req1 = TuningGoal.Tracking('az ref','az',1);
Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));
Req3 = TuningGoal.Margins('delta fin',7,45);
MaxGain = frd([2 200 200],[0.02 2 200]);
Req4 = TuningGoal.Gain('delta fin','az',MaxGain);
```

Create an slTuner interface, and tune the model with these tuning goals designated as soft goals.

```
ST0 = slTuner('rct_airframe2','MIMO Controller');
addPoint(ST0,'delta fin');
rng('default');
[ST1,fSoft] = systune(ST0,[Req1,Req2,Req3,Req4]);
Final: Soft = 1.13, Hard = -Inf, Iterations = 94
```

Verify that the tuned system satisfies the margin requirement.
figure;
viewGoal(Req3,ST1)

The shaded region corresponds to margins falling short of the target of 7 dB gain margin and 45 degrees phase margin. The solid line shows that the margin requirement is satisfied at all frequencies.

Examine system responses compared to the tracking and disturbance-rejection tuning goals. When you provide a vector of tuning goals, viewGoal plots them on separate axes in a single figure.
figure
viewGoal([Req1,Req4],ST1)

The first plot shows that the tuned system response very nearly satisfies the tracking requirement. The slight violation suggests that setpoint tracking will perform close to expectations.

The second plot shows that the gain requirement is satisfied except at low frequency. For this tuning goal, the shaded region, which represents the effective tuning constraint, diverges from the specified maximum gain profile at low frequency. This modification to the gain profile is to avoid a pole at $\mathrm{s}=0$ in the weighting function used to normalize the goal (see Tips on this page). While the tuned gain exceeds the specified gain below $0.001 \mathrm{rad} / \mathrm{s}$, it is still about 60 dB less than the peak value, which is typically enough in practice.

To further examine the responses of the tuned system, use getIOTransfer to extract the relevant transfer functions for analysis with time-domain commands such as step.

Input Arguments

Req - Tuning goal to view or validate

TuningGoal object | vector of TuningGoal objects
Tuning goal to view or validate, specified as a TuningGoal object or vector of TuningGoal objects. For a list of all TuningGoal objects, see "Tuning Goals".

T - Tuned control system

generalized state-space model \| slTuner interface object

Tuned control system, specified as a generalized state-space (genss) model or an slTuner interface to a Simulink model. T is typically the result of using the tuning goal to tune control system parameters with systune.
Example: [T,fSoft,gHard] = systune(T0,SoftReq,HardReq), where T0 is a tunable genss model
Example: [T,fSoft,gHard] = systune(ST0,SoftReq,HardReq), where ST0 is a slTuner interface object

Tips

- For general information about how to interpret tuning-goal plots, see "Visualize Tuning Goals". For information about interpreting margin-goal plots in particular, see "Stability Margins in Control System Tuning".
- For varying tuning goals that you create with varyingGoal, the tuning-goal plot generated by viewGoal lets you examine the tuning goal at each design point. For more information, see "Validate Gain-Scheduled Control Systems".
- With some frequency-domain tuning goals, there might be a difference between the gain profile you specify in the tuning goal (dashed line), and the profile the software uses for tuning (shaded region). In this case, the shaded region of the plot reflects the profile that the software uses for tuning. The gain profile you specify and the gain profile used for tuning might differ if:
- You tune a control system in discrete time, but specify the gain profile in continuous time.
- The software modifies the asymptotes of the specified gain profile to improve numeric stability.

For more information about how an enforced tuning goal might differ from the goal, see "Visualize Tuning Goals".

- For MIMO feedback loops, the LoopShape, MinLoopGain, MaxLoopGain, Margins, Sensitivity, and Rejection goals are sensitive to the relative scaling of each SISO loop. systune tries to balance the overall loop-transfer matrix while enforcing such goals. The optimal loop scaling is stored in the tuned closed-loop model or slTuner interface T returned by systune. For consistency, viewGoal (R, T) takes this scaling into account, and plots the scaled open-loop response or sensitivity. To omit this scaling, use viewGoal (R,clearTuningInfo(T)).

Modifying T might compromise the validity of the stored scaling. Therefore, if you make significant modifications to T , retuning is recommended to update the scaling data.

Version History

Introduced in R2012b

See Also

systune|genss|evalGoal|systune (for slTuner)

Topics

"Visualize Tuning Goals"
"Stability Margins in Control System Tuning"
"Tuning Goals"

viewSpec

(Not recommended) View tuning goals; validate design against tuning goals

Note viewSpec is not recommended. Use viewGoal instead.

Syntax

viewSpec (Req)
viewSpec (Req,T)
viewSpec(Req,T,[])

Description

viewSpec (Req) displays a graphical view of a tuning goal or vector of tuning goals, specified as TuningGoal objects. The form of the tuning-goal plot depends on the specific tuning goals you use. Plots for time-domain tuning goals typically show the target time-domain response specified in the tuning goal. Plots for frequency-domain tuning goals typically show a shaded area that represents the region in which the tuning goal is violated.

When you provide a vector of tuning goals, viewSpec plots each tuning goal on separate axes in a single figure window.
viewSpec (Req, T) plots the performance of a tuned control system against the tuning goal or goals. The form of the tuning-goal plot depends on the specific tuning goals you use. Typically, the plot shows both the target response specified in the tuning goal and the corresponding response of the control system represented by T. For more information about interpreting tuning-goal plots, see "Visualize Tuning Goals".
viewSpec (Req, T, []) disregards scaling information stored with the tuned control system T when computing system responses. For more information, see "Tips" on page 2-1572.

Examples

Visualize Tuning Goal as Function of Frequency

Create a tuning goal that constrains the response from a signal ' d ' to another signal ' y ' to roll off at $20 \mathrm{~dB} /$ decade at frequencies greater than 1 . The tuning goal also imposes disturbance rejection (maximum gain of 1) in the frequency range [0,1].

```
gmax = frd([1 1 0.01],[0 1 100]);
Req = TuningGoal.MaxGain('du','u',gmax);
```

When you use a frequency response data (frd) model to sketch the bounds of a gain constraint or loop shape, the tuning goal interpolates the constraint. This interpolation converts the constraint to a smooth function of frequency. Examine the interpolated gain constraint using viewSpec.

```
viewSpec(Req)
```


The dotted line shows the gain profile specified in the tuning goal. The shaded region represents gain values that violate the tuning requirement. For more information about interpreting tuning-goal plots, see "Visualize Tuning Goals".

Visualize Tuned Responses Against Tuning Goals

Examine the tuned response of a control system against tuning goals, to determine where and by how much the tuning goals are violated. This visualization helps you determine whether the tuned control system comes satisfactorily close to meeting your soft requirements.

Open a Simulink $\circledR_{\circledR ~ m o d e l ~ o f ~ a ~ c o n t r o l ~ s y s t e m ~ t o ~ t u n e . ~}^{\text {a }}$

```
open_system('rct_airframe2')
```


Two-loop autopilot for controlling the vertical acceleration of an airframe

Create tuning goals. For this example, use tracking, roll-off, stability margin, and disturbancerejection tuning goals.

```
Req1 \(=\) TuningGoal.Tracking('az ref','az',1);
Req2 = TuningGoal.Gain('delta fin','delta fin',tf(25,[1 0]));
Req3 = TuningGoal.Margins('delta fin',7,45);
MaxGain = frd([2 200 200],[0.02 2 200]);
Req4 = TuningGoal.Gain('delta fin','az',MaxGain);
```

Create an slTuner interface, and tune the model with these tuning goals designated as soft goals.

```
ST0 = slTuner('rct_airframe2','MIMO Controller');
addPoint(ST0,'delta fin');
rng('default');
[ST1,fSoft] = systune(ST0,[Req1,Req2,Req3,Req4]);
Final: Soft = 1.13, Hard = -Inf, Iterations = 68
```

Verify that the tuned system satisfies the margin requirement.
figure;
viewSpec(Req3,ST1)

Requirement 1: Stability margins

The shaded region corresponds to margins falling short of the target of 7 dB gain margin and 45 degrees phase margin. The solid line shows that the margin requirement is satisfied at all frequencies.

Examine system responses compared to the tracking and disturbance-rejection tuning goals. When you provide a vector of tuning goals, viewSpec plots them on separate axes in a single figure.
figure
viewSpec([Req1,Req4],ST1)

The first plot shows that the tuned system response very nearly satisfies the tracking requirement. The slight violation suggests that setpoint tracking will perform close to expectations.

The second plot shows that the gain requirement is satisfied except at low frequency. For this tuning goal, the shaded region, which represents the effective tuning constraint, diverges from the specified maximum gain profile at low frequency. This modification to the gain profile is to avoid a pole at $\mathrm{s}=0$ in the weighting function used to normalize the goal (see "Tips" on page 2-1572). While the tuned gain exceeds the specified gain below $0.001 \mathrm{rad} / \mathrm{s}$, it is still about 60 dB less than the peak value, which is typically enough in practice.

To further examine the responses of the tuned system, use getIOTransfer to extract the relevant transfer functions for analysis with time-domain commands such as step.

Input Arguments

Req - Tuning goal to view or validate

TuningGoal object | vector of TuningGoal objects
Tuning goal to view or validate, specified as a TuningGoal object or vector of TuningGoal objects. For a list of all TuningGoal objects, see "Tuning Goals".

T - Tuned control system

generalized state-space model | slTuner interface object

Tuned control system, specified as a generalized state-space (genss) model or an slTuner interface to a Simulink model. T is typically the result of using the tuning goal to tune control system parameters with systune.
Example: [T,fSoft,gHard] = systune(T0,SoftReq,HardReq), where T0 is a tunable genss model

Example: [T,fSoft,gHard] = systune(ST0,SoftReq,HardReq), where ST0 is a slTuner interface object

Tips

- With some frequency-domain tuning goals, there might be a difference between the gain profile you specify in the tuning goal (dashed line), and the profile the software uses for tuning (shaded region). In this case, the shaded region of the plot reflects the profile that the software uses for tuning. The gain profile you specify and the gain profile used for tuning might differ if:
- You tune a control system in discrete time, but specify the gain profile in continuous time.
- The software modifies the asymptotes of the specified gain profile to improve numeric stability.

For more information about how an enforced tuning goal might differ from the goal, see "Visualize Tuning Goals".

- For MIMO feedback loops, the LoopShape, MinLoopGain, MaxLoopGain, Margins, Sensitivity, and Rejection goals are sensitive to the relative scaling of each SISO loop. systune tries to balance the overall loop-transfer matrix while enforcing such goals. The optimal loop scaling is stored in the tuned closed-loop model CL returned by systune. For consistency, viewSpec ($R, C L$) takes this scaling into account, and plots the scaled open-loop response or sensitivity. To omit this scaling, use viewSpec (R,CL, []).

Modifying CL might compromise the validity of the stored scaling. Therefore, if you make significant modifications to CL , retuning is recommended to update the scaling data.

Version History

Introduced in R2012b

R2017b: viewSpec is not recommended

Not recommended starting in R2017b
Beginning in R2017b, viewSpec is not recommended. Use viewGoal instead.

See Also

systune|genss|evalGoal|viewGoal|systune (for slTuner)

Topics

"Visualize Tuning Goals"
"Tuning Goals"

viewSurf

Visualize gain surface as a function of scheduling variables

Syntax

viewSurf(GS)
viewSurf(GS,xvar,xdata)
viewSurf(GS, xvar, xdata, yvar,ydata)

Description

viewSurf(GS) plots the values of a 1-D or 2-D gain surface as a function of the scheduling variables. GS is a tunable gain surface that you create with tunableSurface. The plot uses the independent variable values specified in GS. SamplingGrid. For 2-D gain surfaces, the design points in GS. SamplingGrid must lie on a rectangular grid.
viewSurf(GS, xvar, xdata) plots the gain surface GS at the scheduling-variable values listed in xdata. The variable name xvar must match a scheduling variable name in GS. SamplingGrid. However, the values in xdata need not match design points in GS. SamplingGrid.

For a 2-D gain surface, the plot shows a parametric family of curves with one curve per value of the other scheduling variable. In the 2-D case, the design points in GS. SamplingGrid must lie on a rectangular grid.
viewSurf(GS, xvar, xdata, yvar, ydata) creates a surface plot of a 2-D gain surface evaluated over a grid of scheduling variable values given by ndgrid (xdata, ydata). In this case, the design points of GS do not need to lie on a rectangular grid, and xdata and ydata do not need to match the design points.

Examples

View Gain Surface

Display a tunable gain surface that depends on two independent variables.
Model a scalar gain K with a bilinear dependence on two scheduling variables, α and V, as follows:

$$
K(\alpha, V)=K_{0}+K_{1} x+K_{2} y+K_{3} x y .
$$

Here, x and y are the normalized scheduling variables. Suppose that α is an angle of incidence that ranges from 0 degrees to 15 degrees, and V is a speed that ranges from $300 \mathrm{~m} / \mathrm{s}$ to $600 \mathrm{~m} / \mathrm{s}$. Then, x and y are given by:

$$
x=\frac{\alpha-7.5}{7.5}, \quad y=\frac{V-450}{150} .
$$

The coefficients K_{0}, \ldots, K_{3} are the tunable parameters of this variable gain. Use tunableSurface to model this variable gain.
[alpha, V] = ndgrid(0:1.5:15,300:30:600);
domain = struct('alpha',alpha,'V',V);
shapefon $=@(x, y)$ [$\left.x, y, x^{*} y\right]$;
K = tunableSurface('K',1,domain,shapefcn);
Typically, you would tune the coefficients as part of a control system. You would then use setBlockValue or setData to write the tuned coefficients back to K , and view the tuned gain surface. For this example, instead of tuning, manually set the coefficients to non-zero values and view the resulting gain.

Ktuned $=$ setData(K, $[100,28,40,10])$;
viewSurf(Ktuned)

viewSurf displays the gain surface as a function of the scheduling variables, for the ranges of values specified by domain and stored in Ktuned. SamplingGrid.

Plot Gain Surface for Specified Breakpoints

View a 1-D gain surface evaluated at different design points from the points specified in the gain surface.

When you create a gain surface using tunableSurface, you specify design points at which the gain coefficients are tuned. These points are the typically the scheduling-variable values at which you have sampled or linearized the plant. However, you might want to implement the gain surface as a lookup
table with breakpoints that are different from the specified design points. In this example, you create a gain surface with a set of design points and then view the surface using a different set of scheduling variable values.

Create a scalar gain that varies as a quadratic function of one scheduling variable, t. Suppose that you have linearized your plant every five seconds from $t=0$ to $t=40$.
$\mathrm{t}=0: 5: 40$;
domain = struct('t',t);
shapefcn = @(x) [x, $\left.x^{\wedge} 2\right]$;
GS = tunableSurface('GS',1,domain,shapefcn);
Typically, you would tune the coefficients as part of a control system. For this example, instead of tuning, manually set the coefficients to non-zero values.

GS = setData(GS,[12.1,4.2,2]);
Plot the gain surface evaluated at a different set of time values.
tvals $=[0,4,11,18,25,32,39,42]$;
viewSurf(GS,'t',tvals)

The plot shows that the gain curve bends at the points specified in tvals, rather than the design points specified in domain. Also, tvals includes values outside of the scheduling-variable range of domain. If you attempt to extrapolate too far out of the range of values used for tuning, the software issues a warning.

View 1-Dimensional Projections of 2-D Gain Surface

Plot gain surface values as a function of one independent variable, for a gain surface that depends on two independent variables.

Create a gain surface that is a bilinear function of two independent variables, α and V.

```
[alpha,V] = ndgrid(0:1.5:15,300:30:600);
domain = struct('alpha',alpha,'V',V);
shapefcn = @(x,y) [x,y,x*y];
GS = tunableSurface('GS',1,domain,shapefcn);
```

Typically, you would tune the coefficients as part of a control system. For this example, instead of tuning, manually set the coefficients to non-zero values.

GS = setData(GS,[100,28,40,10]);
Plot the gain at selected values of V.
Vplot $=$ [300:50:600];
viewSurf(GS,'V',Vplot);

viewSurf evaluates the gain surface at the specified values of V, and plots the dependence on V for all values of α in domain. Clicking any of the lines in the plot displays the corresponding α value. This plot is useful to visualize the full range of gain variation due to one independent variable.

Plot 2-D Gain Surface for Specified Breakpoints

View a 2-D gain surface evaluated at different scheduling-variable values from the design points specified in the gain surface.

When you create a gain surface using tunableSurface, you specify design points at which the gain coefficients are tuned. These points are the typically the scheduling-variable values at which you have sampled or linearized the plant. However, you might want to implement the gain surface as a lookup table with breakpoints that are different from the specified design points. In this example, you create a gain surface with a set of design points and then view the surface using a different set of scheduling-variable values.

Create a gain surface that is a bilinear function of two independent variables, α and V.

```
[alpha,V] = ndgrid(0:1.5:15,300:30:600);
domain = struct('alpha',alpha,'V',V);
shapefcn = @(x,y) [x,y,x*y];
GS = tunableSurface('GS',1,domain,shapefcn);
```

Typically, you would tune the coefficients as part of a control system. For this example, instead of tuning, manually set the coefficients to non-zero values.

```
GS = setData(GS,[100,28,40,10]);
```

Plot the gain at selected values of α and V.

```
alpha_vec = [7:1:13];
V_vec = [500:25:625];
v\overline{i}ewSurf(GS,'alpha',alpha_vec,'V',V_vec);
```

Gain GS(alpha,V)

The breakpoints at which you evaluate the gain surface need not fall within the range specified by domain. However, if you attempt to evaluate the gain too far outside the range used for tuning, the software issues a warning.

The breakpoints also need not be regularly spaced. In addition, you can specify the scheduling variables in any order to get a different perspective on the shape of the surface. The variable that you specify first is used as the X-axis in the plot.
alpha_vec2 = [1,3,6,10,15];
V_vec 2 = [300,350,425,575];
vīewSurf(GS,'V',V_vec2,'alpha',alpha_vec2);

Input Arguments

GS - Gain surface

tunableSurface object
Gain surface to plot, specified as a tunableSurface object. GS can depend on one or two scheduling variables, and must be scalar-valued.

xvar - X-axis variable

character vector
X -axis variable in the plot, specified as a character vector. The variable name xvar must match a scheduling variable name in GS. SamplingGrid.

xdata - X-axis-variable values

numeric vector
X -axis-variable values at which to evaluate and plot the gain surface, specified as a numeric vector.

yvar - Y-axis variable

character vector
Y-axis variable in the plot, specified as a character vector. The variable name yvar must match a scheduling variable name in GS. SamplingGrid.

ydata - Y-axis-variable values

numeric vector
Y-axis-variable values at which to evaluate and plot the gain surface, specified as a numeric vector.

Version History

Introduced in R2015b

See Also

tunableSurface|evalSurf

voidModel

Mark missing or irrelevant models in model array

Syntax

Mout $=$ voidModel(M,void)

Description

Mout $=$ voidModel (M, void) sets the models specified by void to NaN static gains. When working with model arrays defined on a multidimensional grid of design points, use voidModel to indicate that no model is available at specific grid points. For example, when using systune to tune controller parameters for a model array, remove models at points outside the design envelope or points to be ignored during analysis or design.

- If void is a vector of integers, then voidModel sets M(: , : , void) to NaN.
- If void is a logical array, then voidModel sets the models selected by void to NaN.

Examples

Mark Unneeded Models in Array

Generate an array of tunable genss models. To do so, first create an array of plant models by varying parameters in a second-order transfer function. Then, interconnect the resulting array of plant models with a tunable controller element.

```
G = tf(zeros(1,1,3,3));
zeta = [0.66,0.71,0.75];
w = [1.0,1.2,1.5];
for i = 1:length(zeta)
    for j = 1:length(w)
        G(:,:,i,j) = tf(w(j)^2,[1 2*zeta(i)*w(j) w(j)^2]);
    end
end
C = tunablePID('C','PID');
M = feedback(C*G,1)
3x3 array of generalized continuous-time state-space models.
Each model has 1 outputs, 1 inputs, 3 states, and the following blocks:
    C: Tunable PID controller, 1 occurrences.
Type "ss(M)" to see the current value and "M.Blocks" to interact with the blocks.
```

Suppose that you want to tune the PID controller gains for all of the models in M, but that the parameter combinations (zeta,w) $=(0.66,1.0)$ and $(z e t a, w)=(0.75,1.5)$ do not occur in your physical system. Void these models so that they do not contribute to any tuning or analysis of the model array. These models are the first and last models in the 3-by-3 array, with linear indices 1 and 9.

```
void = [1,9]
void = 1\times2
    1 9
Mout = voidModel(M,void)
3x3 array of generalized continuous-time state-space models.
Each model has 1 outputs, 1 inputs, between 0 and 3 states, and between 0 and 1 blocks.
Type "ss(Mout)" to see the current value and "Mout.Blocks" to interact with the blocks.
```

The display indicates that the models in Mout have 0-3 states and 0-1 blocks. The 0-state, 0-block models are the voided entries in Mout. For instance, examine the first entry and confirm that it is a NaN static gain.

```
tf(Mout(:,:,1,1))
ans =
    NaN
Static gain.
```

Instead of using linear indices to specify the models to void, you can use a logical array.

```
void = logical([1 0 0;0 0 0;0 0 1]);
Mout1 = voidModel(M,void);
```

Confirm that the first and last models in Moutl are NaN.

```
tf(Mout1(:,:,1,1))
ans =
    NaN
Static gain.
tf(Mout1(:,:,3,3))
ans =
    NaN
Static gain.
```


Input Arguments

M - Model array

LTI model array
Model array, specified as an LTI model array such as an array of genss models.

void - Models to void

vector | logical array

Models to void, specified as a vector of integer values or a logical array.

- If void is a vector of integers, then voidModel sets M(: , : , void) to NaN. For instance, using Void $=[1,10]$ voids $M(:,:,[110])$, the 1st and 10th models in M determined by linear indexing, regardless of the array dimensions of M .
- If void is a logical array, then voidModel sets the models selected by void to NaN. For instance, if M is a 2 -by- 2 array of models, then using void $=\operatorname{logical}([0,1 ; 0,0])$ voids the second model in the first row of M.

Output Arguments

Mout - Array with voided models

LTI model array
Array with voided models set to NaN , returned as an LTI model array of the same type and size as M.

Version History

Introduced in R2017b

xperm

Reorder states in state-space models

Syntax

sys $=$ xperm(sys, P)

Description

sys $=$ xperm(sys, P) reorders the states of the state-space model sys according to the permutation P . The vector P is a permutation of 1:NX, where $N X$ is the number of states in sys. For information about creating state-space models, see ss and dss.

Examples

Alphabetically Order States of State-Space Model

Load a previously saved state space model ssF8 with four states.

```
load ltiexamples
ssF8
ssF8 =
    A =
\begin{tabular}{lrrrr} 
& PitchRate & Velocity & AOA & PitchAngle \\
PitchRate & -0.7 & -0.0458 & -12.2 & 0 \\
Velocity & 0 & -0.014 & -0.2904 & -0.562 \\
A0A & 1 & -0.0057 & -1.4 & 0 \\
PitchAngle & 1 & 0 & 0 & 0
\end{tabular}
    B =
\begin{tabular}{lrr} 
& Elevator & Flaperon \\
PitchRate & -19.1 & -3.1 \\
Velocity & -0.0119 & -0.0096 \\
A0A & -0.14 & -0.72 \\
PitchAngle & 0 & 0
\end{tabular}
    C =
\begin{tabular}{lrrrr} 
& PitchRate & Velocity & AOA & PitchAngle \\
FlightPath & 0 & 0 & -1 & 1 \\
Acceleration & 0 & 0 & 0.733 & 0
\end{tabular}
    D =
\begin{tabular}{lrr} 
& Elevator & Flaperon \\
FlightPath & 0 & 0 \\
Acceleration & 0.0768 & 0.1134
\end{tabular}
Continuous-time state-space model.
```

Order the states in alphabetical order.

```
[y,P] = sort(ssF8.StateName);
sys = xperm(ssF8,P)
sys =
    A =
\begin{tabular}{lrrrr} 
& AOA & PitchAngle & PitchRate & Velocity \\
AOA & -1.4 & 0 & 1 & -0.0057 \\
PitchAngle & 0 & 0 & 1 & 0 \\
PitchRate & -12.2 & 0 & -0.7 & -0.0458 \\
Velocity & -0.2904 & -0.562 & 0 & -0.014
\end{tabular}
    B =
\begin{tabular}{lrr} 
& Elevator & Flaperon \\
A0A & -0.14 & -0.72 \\
PitchAngle & 0 & 0 \\
PitchRate & -19.1 & -3.1 \\
Velocity & -0.0119 & -0.0096
\end{tabular}
    C =
    FlightPath
    Acceleration
                            AOA PitchAngle
                PitchRate Velocity
                        0.733
    D =
\begin{tabular}{lrr} 
& Elevator & Flaperon \\
FlightPath & 0 & 0 \\
Acceleration & 0.0768 & 0.1134
\end{tabular}
Continuous-time state-space model.
```

The states in ssF8 now appear in alphabetical order.

Version History

Introduced in R2008b

See Also

ss \| dss

xsort

Sort states based on state partition

Syntax

xsys = xsort(sys)

Description

xsys $=$ xsort(sys) sorts the x or q vector based on the state partition. Signal-based connections and physical interfaces between model components gives rise to differential algebraic equation (DAE) models where some internal signals and forces become extra states. The StateInfo property of sparss and mechss model objects keeps track of the state partition into sub-components, interface variables, and signal variables.

Examples

Sparse Second-Order Model in a Feedback Loop

For this example, consider sparseSOSignal .mat that contains a sparse second-order model. Define an actuator, sensor, and controller and connect them together with the plant in a feedback loop.

Load the sparse matrices and create the mechss object.
load sparseSOSignal.mat
plant = mechss(M,C,K,B,F,[],[],'Name','Plant');
Next, create an actuator and sensor using transfer functions.

```
act = tf(1,[1 0.5 3],'Name','Actuator');
sen = tf(1,[0.02 7],'Name','Sensor');
```

Create a PID controller object for the plant.
con $=$ pid(1,1,0.1,0.01,'Name','Controller');
Use the feedback command to connect the plant, sensor, actuator, and controller in a feedback loop.
sys $=$ feedback(sen*plant*act*con,1)
Sparse continuous-time second-order model with 1 outputs, 1 inputs, and 7111 degrees of freedom.
Use "spy" and "showStateInfo" to inspect model structure.
Type "help mechssOptions" for available solver options for this model.
The resultant system sys is a mechss object since mechss objects take precedence over all other model object types.

Use showStateInfo to view the component and signal groups.
showStateInfo(sys)

Type	Name	Size
Component	Sensor	1
Component	Plant	7102
Signal		1
Component	Actuator	2
Signal		1
Component	Controller	2
Signal		1
Signal		1

Use xsort to sort the components and signals, and then view the component and signal groups.

```sysSort = xsort(sys); showStateInfo(sysSort)```		
The state groups are:		
Type	Name	Size
Component	Sensor	1
Component	Plant	7102
Component	Actuator	2
Component	Controller	2
Signal		4

Observe that the components are now ordered before the signal partition. The signals are now sorted and grouped together in a single partition.

You can also visualize the sparsity pattern of the resultant system using spy.
spy(sysSort)


## Physical Connections Between Components in Sparse Second-Order Model

For this example, consider a structural model that consists of two square plates connected with pillars at each vertex as depicted in the figure below. The lower plate is attached rigidly to the ground while the pillars are attached rigidly to each vertex of the square plate.


Load the finite element model matrices contained in platePillarModel.mat and create the sparse second-order model representing the above system.

```
load('platePillarModel.mat')
model = ...
 mechss(M1,[],K1,B1,F1,'Name','Plate1') + ...
 mechss(M2,[],K2,B2,F2,'Name','Plate2') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar3') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar4') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar5') + ...
 mechss(Mp,[],Kp,Bp,Fp,'Name','Pillar6');
sys = model;
```

Use showStateInfo to examine the components of the mechss model object.

```
showStateInfo(sys)
```

The state groups are:

Type	Name	Size
Component	Plate1	2646
Component	Plate2	2646
Component	Pillar3	132
Component	Pillar4	132
Component	Pillar5	132
Component	Pillar6	132

Now, load the interfaced degree of freedom (DOF) index data from dofData.mat and use interface to create the physical connections between the two plates and the four pillars. dofs is a $6 \times 7$ cell array where the first two rows contain DOF index data for the first and second plates while the remaining four rows contain index data for the four pillars. By default, the function uses dualassembly method of physical coupling.

```
load('dofData.mat','dofs')
for i=3:6
 sys = interface(sys,"Plate1",dofs{1,i},"Pillar"+i,dofs{i,1});
 sys = interface(sys,"Plate2",dofs{2,i},"Pillar"+i,dofs{i,2});
end
```

Specify connection between the bottom plate and the ground.

```
sysConDual = interface(sys,"Plate2",dofs{2,7});
```

Use showStateInfo to confirm the physical interfaces.

showStateInfo(sysConDual)		
The state groups are:		
Type	Name	Size
Component	Plate1	2646
Component	Plate2	2646
Component	Pillar3	132
Component	Pillar4	132
Component	Pillar5	132
Component	Pillar6	132
Interface	Plate1-Pillar3	12
Interface	Plate2-Pillar3	12
Interface	Plate1-Pillar4	12
Interface	Plate2-Pillar4	12
Interface	Plate1-Pillar5	12
Interface	Plate2-Pillar5	12
Interface	Plate1-Pillar6	12
Interface	Plate2-Pillar6	12
Interface	Plate2-Ground	6

You can use spy to visualize the sparse matrices in the final model.

```
spy(sysConDual)
```



Now, specify physical connections using the primal-assembly method.

```
sys = model;
for i=3:6
 sys = interface(sys,"Plate1",dofs{1,i},"Pillar"+i,dofs{i,1},'primal');
 sys = interface(sys,"Plate2",dofs{2,i},"Pillar"+i,dofs{i,2},'primal');
end
sysConPrimal = interface(sys,"Plate2",dofs{2,7},'primal');
```

Use showStateInfo to confirm the physical interfaces.

```
showStateInfo(sysConPrimal)
```

The state groups are:

Type	Name	Size
------------------------		
Component	Plate1	2646
Component	Plate2	2640
Component	Pillar3	108
Component	Pillar4	108
Component	Pillar5	108
Component	Pillar6	108

Primal assembly eliminates half of the redundant DOFs associated with the shared set of DOFs in the global finite element mesh.

You can use spy to visualize the sparse matrices in the final model.
spy(sysConPrimal)


The data set for this example was provided by Victor Dolk from ASML.

## Input Arguments

sys - Sparse state-space model
sparss model object | mechss model object
Sparse state-space model, specified as a sparss or mechss model object.

## Output Arguments

xsys - Sparse state-space model with sorted components
sparss model object | mechss model object
Sparse state-space model with sorted components, returned as a sparss or mechss model object. In the sorted xsys, all components appear first, followed by the interfaces, and then followed by a single group of all internal signals. The matrices $s \mathrm{E}-\mathrm{A}$ and $\mathrm{M} s^{2}+\mathrm{C} s+\mathrm{K}$ have the following block arrow structure:


Here, each diagonal block is a sub-component of sys. The last row and column combines the Interface and Signal groups to capture all couplings and connections between components.

## Version History

Introduced in R2020b

## See Also

sparss|mechss |interface| showStateInfo

## Topics

"Sparse Model Basics"
"Rigid Assembly of Model Components"

## zero

Zeros and gain of SISO dynamic system

## Syntax

Z = zero(sys)
[Z,gain] = zero(sys)
[Z, gain] = zero(sys,J1,...,JN)

## Description

$Z=z e r o(s y s)$ returns the zeros of the single-input, single-output (SISO) dynamic system model, sys. The output is expressed as the reciprocal of the time units specified in sys.TimeUnit.
[Z,gain] = zero(sys) also returns the zero-pole-gain of sys.
[Z,gain] = zero(sys, J1, ...,JN) returns the zeros and gain of the entries in the model array sys with subscripts J1, ..., JN.

## Examples

## Zeros of Transfer Function

Compute the zeros of the following transfer function:

$$
\operatorname{sys}(s)=\frac{4.2 s^{2}+0.25 s-0.004}{s^{2}+9.6 s+17}
$$

sys $=t f([4.2,0.25,-0.004],[1,9.6,17])$;
Z = zero(sys)
Z $=2 \times 1$
$-0.0726$
0.0131

## Zeros and Gain of Transfer Function

Calculate the zero locations and zero-pole gain of the following transfer function:

$$
\operatorname{sys}(s)=\frac{4.2 s^{2}+0.25 s-0.004}{s^{2}+9.6 s+17}
$$

sys $=\operatorname{tf}([4.2,0.25,-0.004],[1,9.6,17])$;
[z,gain] = zero(sys)

```
z = 2×1
```

    -0.0726
    0.0131
    gain $=4.2000$
The zero locations are expressed in second ${ }^{-1}$, because the time unit of the transfer function (H.TimeUnit) is seconds.

## Zeros and Gain of Models in an Array

For this example, load a 3-by-1 array of transfer function models.

```
load('tfArray.mat','sys');
size(sys)
3x1 array of transfer functions.
Each model has 1 outputs and 1 inputs.
```

Find the zeros and gain values of the models in the array.

```
[Z, gain] = zero(sys);
Z(:,:,1,1)
ans =
 0x1 empty double column vector
gain(:,:,1,1)
ans = 1
```

zero returns an array each for the zeros and the gain values respectively. Here, $Z(:,:, 1,1)$ and gain (:,:,1,1) corresponds to the zero and the gain value of the first model in the array, that is, sys(:,:,1,1).

## Input Arguments

## sys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO dynamic system model, or an array of SISO dynamic system models. Dynamic systems that you can use include continuous-time or discrete-time numeric LTI models such as tf , zpk , or ss models.

If sys is a generalized state-space model genss or an uncertain state-space model uss, zero returns the zeros of the current or nominal value of sys. If sys is an array of models, zero returns the zeros of the model corresponding to its subscript J1, ..., JN in sys. For more information on model arrays, see "Model Arrays".

## J - Indices of models in array whose zeros you want to extract <br> positive integer

Indices of models in array whose zeros you want to extract, specified as a positive integer. You can provide as many indices as there are array dimensions in sys. For example, if sys is a 4 -by- 5 array of dynamic system models, the following command extracts the zeros for entry $(2,3)$ in the array.

Z = zero(sys,2,3);

## Output Arguments

## Z - Zeros of the dynamic system

column vector | array
Zeros of the dynamic system, returned as a column vector or an array. If sys is:

- A single model, then $Z$ is a column vector of zeros of the dynamic system model sys
- A model array, then $Z$ is an array containing the zeros of each model in sys
$Z$ is expressed as the reciprocal of the time units specified in sys.TimeUnit. For example, zero is expressed in $1 /$ minute if sys.TimeUnit $=$ 'minutes ${ }^{\prime}$.


## gain - Zero-pole-gain of the dynamic system

scalar
Zero-pole-gain of the dynamic system, returned as a scalar. In other words, gain is the value of K when the model is written in zpk form.

## Tips

- If sys has internal delays, zero sets all internal delays to zero, creating a zero-order Padé approximation. This approximation ensures that the system has a finite number of zeros. zero returns an error if setting internal delays to zero creates singular algebraic loops. To assess the stability of models with internal delays, use step or impulse.
- To calculate the transmission zeros of a multi-input, multi-output (MIMO) system, use tzero.


## Version History

## Introduced before R2006a

## See Also

pole | pzmap| tzero| step | impulse | pzplot
Topics
"Pole and Zero Locations"

## zgrid

Generate z-plane grid of constant damping factors and natural frequencies

## Syntax

```
zgrid
zgrid(T)
zgrid(zeta,wn)
zgrid(zeta,wn,T)
zgrid(__,'new')
zgrid(AX,
```

$\qquad$

## Description

zgrid generates a grid of constant damping factors from 0 to 1 in steps of 0.1 and natural frequencies from 0 to $\pi / T$ in steps of $0.1 * \pi / T$ for root locus and pole-zero maps. The default steps of $0.1 * \pi / T$ represent fractions of the Nyquist frequencies. zgrid then plots the grid over the current axis. zgrid creates the grid over the plot without altering the current axis limits if the current axis contains a discrete z-plane root locus diagram or pole-zero map. Use this syntax to plot multiple systems with different sample times.

Alternatively, you can select Grid from the context menu in the plot window to generate the same zplane grid.
zgrid ( $T$ ) generates the z-plane grid by using default values for damping factor and natural frequency relative to the sample time $T$.
zgrid(zeta,wn) plots a grid of constant damping factor and natural frequency lines for the damping factors and normalized natural frequencies in the vectors zeta and wn, respectively. When the sample time is not specified, the frequency values in wn are interpreted as normalized values, that is, wn/T.
zgrid(zeta, wn, T ) plots a grid of constant damping factor and natural frequency lines for the damping factors and natural frequencies in the vectors zeta and wn, relative to sample time T. zeta lines are independent for T but the wn lines depend on the sample time value. Use this syntax to create the z -plane grid with specific values of wn .
zgrid (__, 'new') clears the current axes first and sets hold on.
zgrid(AX, $\qquad$ ) plots the z-plane grid on the Axes or UIAxes object in the current figure with the handle AX. Use this syntax when creating apps with zgrid in the App Designer.

## Examples

## Plot z-plane Grid Lines on the Root Locus

To see the z-plane grid on the root locus plot, type

```
H=tf([[2 -3.4 1.5],[1 -1.6 0.8],-1)
H =
 2 z^2 - 3.4 z + 1.5

Sample time: unspecified
Discrete-time transfer function.
rlocus(H)
zgrid
axis equal
```



## Normalized and True z-plane Grid Lines on the Pole-Zero Map

For this example, consider a discrete-time transfer function sys with a sample time of 0.1 s. Now plot the pole-zero map of sys and visualize the default z-plane grid without specifying the sample time.

```
sys = tf([2 -3.4 1.5],[1 -1.6 0.8],0.1);
Ts = 0.1;
figure()
pzmap(sys)
zgrid()
axis equal
```



Observe that the frequencies on the z-plane grid are normalized in terms of $\frac{\Pi}{T}$. To obtain the true frequency values on the grid, specify the sample time with the zgrid command.

```
figure()
```

pzmap(sys)
zgrid(Ts)
axis equal


Now, observe that the frequency values on the plot are true values, that is, they are non-normalized.

## Input Arguments

zeta - Damping ratio
vector
Damping ratio, specified as a vector in the same order as wn.

## wn - Natural frequency values

vector
Natural frequency values, specified as a vector. Natural frequencies are plotted as true values when $T$ is specified. When the sample time is not specified, zgrid normalizes the values as wn/T.

## T - Sample time

positive scalar |-1
Sample time, specified as:

- A positive scalar representing the sampling period of a discrete-time system. The actual frequency values are displayed on the frequency grid.
-     - 1 for a discrete-time system with an unspecified sample time. The frequency values are displayed as normalized values $f * \pi / T$ for the default grid.
zeta lines are independent of T while wn lines are dependent on the sample time. You must specify T to plot specific values of wn. When the sample time T is not specified, the required wn values are interpreted as normalized values, that is, wn/T.


## AX - Object handle

Axes object | UIAxes object
Object handle, specified as an Axes or UIAxes object. Use AX to create apps with zgrid in the App Designer.

## Version History <br> Introduced before R2006a

## See Also

pzmap|rlocus | sgrid

## zpk

Zero-pole-gain model

## Description

Use zpk to create zero-pole-gain models, or to convert dynamic system models to zero-pole-gain form.

Zero-pole-gain models are a representation of transfer functions in factorized form. For example, consider the following continuous-time SISO transfer function:

$$
G(s)=\frac{s^{2}-3 s-4}{s^{2}+5 s+6}
$$

$\mathrm{G}(\mathrm{s})$ can be factorized into the zero-pole-gain form as:

$$
G(s)=\frac{(s+1)(s-4)}{(s+2)(s+3)}
$$

A more general representation of the SISO zero-pole-gain model is as follows:

$$
h(s)=k \frac{(s-z(1))(s-z(2)) \ldots(s-z(m))}{(s-p(1))(s-p(2)) \ldots(s-p(n))}
$$

Here, $z$ and $p$ are the vectors of real-valued or complex-valued zeros and poles, and $K$ is the realvalued or complex-valued scalar gain

You can create a zero-pole-gain model object either by specifying the poles, zeros and gains directly, or by converting a model of another type (such as a state-space model ss) to zero-pole-gain form.

You can also use zpk to create generalized state-space (genss) models or uncertain state-space (uss) models.

## Creation

## Syntax

```
sys = zpk(zeros,poles,gain)
sys = zpk(zeros,poles,gain,ts)
sys = zpk(zeros,poles,gain,ltiSys)
sys = zpk(m)
sys = zpk(
```

$\qquad$

``` ,Name, Value)
sys = zpk(ltiSys)
sys = zpk(ltiSys,component)
s = zpk('s')
```

$z=z p k(' z ', t s)$

## Description

sys $=$ zpk(zeros, poles,gain) creates a continuous-time zero-pole-gain model with zeros and poles specified as vectors and the scalar value of gain. The output sys is a zpk model object storing the model data. Set zeros or poles to [] for systems without zeros or poles. These two inputs need not have equal length and the model need not be proper (that is, have an excess of poles).
sys $=$ zpk(zeros,poles,gain,ts) creates a discrete-time zero-pole-gain model with sample time ts. Set ts to -1 or [] to leave the sample time unspecified.
sys $=$ zpk(zeros,poles,gain,ltiSys) creates a zero-pole-gain model with properties inherited from the dynamic system model ltiSys, including the sample time.
sys $=$ zpk(m) creates a zero-pole-gain model that represents the static gain, m.
sys = zpk( __ , Name, Value) sets "Properties" on page 2-1605 of the zero-pole-gain model using one or more name-value pair arguments for any of the previous input-argument combinations.
sys $=$ zpk(ltiSys) converts the dynamic system model ltiSys to a zero-pole-gain model.
sys = zpk(ltiSys, component) converts the specified component of ltiSys to zero-pole-gain model form. Use this syntax only when ltiSys is an identified linear time-invariant (LTI) model such as an idss or an idtf model.
$s=z p k(' s ')$ creates a special variable $s$ that you can use in a rational expression to create a continuous-time zero-pole-gain model. Using a rational expression can sometimes be easier and more intuitive than specifying polynomial coefficients.
$z=z p k(' z ', t s)$ creates special variable $z$ that you can use in a rational expression to create a discrete-time zero-pole-gain model. To leave the sample time unspecified, set ts input argument to - 1 .

Input Arguments

## zeros - Zeros of the zero-pole-gain model

row vector | Ny-by-Nu cell array of row vectors
Zeros of the zero-pole-gain model, specified as:

- A row vector for SISO models. For instance, use [1,2+i, 2-1] to create a model with zeros at s $=1, s=2+i$, and $s=2-i$. For an example, see "Continuous-Time SISO Zero-Pole-Gain Model" on page 2-1613.
- An Ny-by-Nu cell array of row vectors to specify a MIMO zero-pole-gain model, where Ny is the number of outputs, and Nu is the number of inputs. For an example, see "Discrete-Time MIMO Zero-Pole-Gain Model" on page 2-1614.

For instance, if a is realp tunable parameter with nominal value 3, then you can use zeros $=$ [1 2 a] to create a genss model with zeros at $s=1$ and $s=2$ and a tunable zero at $s=3$.

Also a property of the zpk object. This input argument sets the initial value of property $Z$.

## poles - Poles of the zero-pole-gain model

row vector | Ny-by-Nu cell array of row vectors
Poles of the zero-pole-gain model, specified as:

- A row vector for SISO models. For an example, see "Continuous-Time SISO Zero-Pole-Gain Model" on page 2-1613.
- An Ny-by-Nu cell array of row vectors to specify a MIMO zero-pole-gain model, where Ny is the number of outputs and Nu is the number of inputs. For an example, see "Discrete-Time MIMO Zero-Pole-Gain Model" on page 2-1614.

Also a property of the zpk object. This input argument sets the initial value of property $P$.

## gain - Gain of the zero-pole-gain model

scalar | Ny-by-Nu cell array of row vectors
Gain of the zero-pole-gain model, specified as:

- A scalar for SISO models. For an example, see "Continuous-Time SISO Zero-Pole-Gain Model" on page 2-1613.
- An Ny-by-Nu matrix to specify a MIMO zero-pole-gain model, where Ny is the number of outputs and Nu is the number of inputs. For an example, see "Discrete-Time MIMO Zero-Pole-Gain Model" on page 2-1614.

Also a property of the zpk object. This input argument sets the initial value of property K.

## ts - Sample time

## scalar

Sample time, specified as a scalar. Also a property of the zpk object. This input argument sets the initial value of property Ts.

## LtiSys - Dynamic system

dynamic system model | model array
Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system models. Dynamic systems that you can use include:

- Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pid models.
- Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models requires a Robust Control Toolbox license.)

The resulting zero-pole-gain model assumes

- current values of the tunable components for tunable control design blocks.
- nominal model values for uncertain control design blocks.
- Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models. To select the component of the identified model to convert, specify component. If you do not specify component, tf converts the measured component of the identified model by default. (Using identified models requires System Identification Toolbox software.)

An identified nonlinear model cannot be converted into a zpk model object. You may first use linear approximation functions such as linearize and linapp (This functionality requires System Identification Toolbox software.)

## m - Static gain

scalar | matrix
Static gain, specified as a scalar or matrix. Static gain or steady state gain of a system represents the ratio of the output to the input under steady state condition.

## component - Component of identified model

'measured ' (default)|'noise' | 'augmented'
Component of identified model to convert, specified as one of the following:

- 'measured ' - Convert the measured component of sys.
- 'noise' - Convert the noise component of sys
- 'augmented ' - Convert both the measured and noise components of sys.
component only applies when sys is an identified LTI model.
For more information on identified LTI models and their measured and noise components, see "Identified LTI Models".


## Output Arguments

## sys - Output system model

zpk model object | genss model object | uss model object
Output system model, returned as:

- A zero-pole-gain (zpk) model object, when the zeros, poles and gain input arguments contain numeric values.
- A generalized state-space model (genss) object, when the zeros, poles and gain input arguments includes tunable parameters, such as realp parameters or generalized matrices (genmat).
- An uncertain state-space model (uss) object, when the zeros, poles and gain input arguments includes uncertain parameters. Using uncertain models requires a Robust Control Toolbox license.


## Properties

## Z - System zeros

cell array | Ny-by-Nu cell array of row vectors
System zeros, specified as:

- A cell array of transfer function zeros or the numerator roots for SISO models.
- An Ny-by-Nu cell array of row vectors of the zeros for each I/O pair in a MIMO model, where Ny is the number of outputs and Nu is the number of inputs.

The values of $Z$ can be either real-valued or complex-valued.

## P - System poles

cell array | Ny-by-Nu cell array of row vectors
System poles, specified as:

- A cell array of transfer function poles or the denominator roots for SISO models.
- An Ny-by-Nu cell array of row vectors of the poles for each I/O pair in a MIMO model, where Ny is the number of outputs and Nu is the number of inputs.

The values of P can be either real-valued or complex-valued.

## K - System gains

scalar | Ny-by-Nu matrix
System gains, specified as:

- A scalar value for SISO models.
- An Ny-by-Nu matrix storing the gain values for each I/O pair of the MIMO model, where Ny is the number of outputs and Nu is the number of inputs.

The values of $K$ can be either real-valued or complex-valued.

## DisplayFormat - Specifies how the numerator and denominator polynomials are factorized for display

'roots' (default)|'frequency'|'time constant'
Specifies how the numerator and denominator polynomials are factorized for display, specified as one of the following:

- ' roots ' - Display factors in terms of the location of the polynomial roots. ' roots ' is the default value of DisplayFormat
- 'frequency ' - Display factors in terms of root natural frequencies $\omega_{0}$ and damping ratios $\zeta$.

The 'frequency ' display format is not available for discrete-time models with Variable value 'z^-1' or ' $q^{\wedge}-1$ '.

- 'time constant' - Display factors in terms of root time constants $\tau$ and damping ratios $\zeta$.

The 'time constant ' display format is not available for discrete-time models with Variable value ' $z^{\wedge}-1$ ' or ' $q^{\wedge}-1$ '.

For continuous-time models, the following table shows how the polynomial factors are arranged in each display format.

DisplayName Value	First-Order Factor (Real Root $R$ )	Second-Order Factor (Complex   Root pair $R=a \pm j b)$
'roots'	$(s-R)$	$\left(s^{2}-\alpha s+\beta\right)$, where   $\alpha=2 a, \beta=a^{2}+b^{2}$
'frequency'	$\left(1-\frac{s}{\omega_{0}}\right)$, where $\omega_{0}=R$	$1-2 \zeta\left(\frac{s}{\omega_{0}}\right)+\left(\frac{s}{\omega_{0}}\right)^{2}$, where   $\omega_{0} 2=a^{2}+b^{2}, \zeta=\frac{a}{\omega_{0}}$
'time constant'	$(1-\tau s)$, where $\tau=\frac{1}{R}$	$1-2 \zeta(\tau s)+(\tau s)^{2}$, where   $\tau=\frac{1}{\omega_{0}}, \zeta=a \tau$

For discrete-time models, the polynomial factors are arranged similar to the continuous-time models, with the following variable substitutions:

$$
s \rightarrow w=\frac{z-1}{T_{s}} ; \quad R \rightarrow \frac{R-1}{T_{s}}
$$

where $T_{s}$ is the sample time. In discrete-time, $\tau$ and $\omega_{0}$ closely match the time constant and natural frequency of the equivalent continuous-time root, provided that the following condition is fulfilled: $|z-1| \ll T_{S}\left(\omega_{0} \ll \frac{\Pi}{T_{S}}=\right.$ Nyquist frequency $)$.

## Variable - Zero-pole-gain model display variable

's' (default) |'z'|'p'|' $\left.q^{\prime}\right|^{\prime} z^{\wedge}-\left.1^{\prime}\right|^{\prime} q^{\wedge}-1$ '
Zero-pole-gain model display variable, specified as one of the following:

- 's' - Default for continuous-time models
- ' z' - Default for discrete-time models
- 'p' - Equivalent to 's'
- ' $q$ ' - Equivalent to ' $z$ '
- ' $z^{\wedge}-1^{\prime}$ - Inverse of ' $z$ '
- ' $q^{\wedge}-1$ ' - Equivalent to ${ }^{\prime} z^{\wedge}-1$ '


## IODelay - Transport delay

0 (default) | scalar | Ny-by-Nu array
Transport delay, specified as one of the following:

- Scalar - Specify the transport delay for a SISO system or the same transport delay for all input/ output pairs of a MIMO system.
- Ny-by-Nu array - Specify separate transport delays for each input/output pair of a MIMO system. Here, Ny is the number of outputs and Nu is the number of inputs.

For continuous-time systems, specify transport delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify transport delays in integer multiples of the sample time, Ts. For more information on time delay, see "Time Delays in Linear Systems".

## InputDelay - Input delay

0 (default) | scalar | Nu-by-1 vector
Input delay for each input channel, specified as one of the following:

- Scalar - Specify the input delay for a SISO system or the same delay for all inputs of a multi-input system.
- Nu-by-1 vector - Specify separate input delays for input of a multi-input system, where Nu is the number of inputs.

For continuous-time systems, specify input delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify input delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

## OutputDelay - Output delay

0 (default) | scalar | Ny-by-1 vector
Output delay for each output channel, specified as one of the following:

- Scalar - Specify the output delay for a SISO system or the same delay for all outputs of a multioutput system.
- Ny-by-1 vector - Specify separate output delays for output of a multi-output system, where Ny is the number of outputs.

For continuous-time systems, specify output delays in the time unit specified by the TimeUnit property. For discrete-time systems, specify output delays in integer multiples of the sample time, Ts.

For more information, see "Time Delays in Linear Systems".

## Ts - Sample time

0 (default) | positive scalar |-1
Sample time, specified as:

- 0 for continuous-time systems.
- A positive scalar representing the sampling period of a discrete-time system. Specify Ts in the time unit specified by the TimeUnit property.
-     - 1 for a discrete-time system with an unspecified sample time.

Note Changing Ts does not discretize or resample the model. To convert between continuous-time and discrete-time representations, use c2d and d2c. To change the sample time of a discrete-time system, use d2d.

## TimeUnit - Time variable units

```
'seconds'(default)|'nanoseconds' | 'microseconds' | 'milliseconds' | 'minutes' |
'hours'|'days'|'weeks'|'months'|'years'|...
```

Time variable units, specified as one of the following:

- 'nanoseconds'
- 'microseconds'
- 'milliseconds'
- 'seconds'
- 'minutes'
- 'hours'
- 'days'
- 'weeks'
- 'months'
- 'years'

Changing TimeUnit has no effect on other properties, but changes the overall system behavior. Use chgTimeUnit to convert between time units without modifying system behavior.

## InputName - Input channel names

' ' (default) | character vector | cell array of character vectors
Input channel names, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' , no names specified, for any input channels.

Alternatively, you can assign input names for multi-input models using automatic vector expansion. For example, if sys is a two-input model, enter the following:

```
sys.InputName = 'controls';
```

The input names automatically expand to \{'controls(1)'; 'controls(2)' \}.
You can use the shorthand notation $u$ to refer to the InputName property. For example, sys. $u$ is equivalent to sys.InputName.

Use InputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## InputUnit - Input channel units

' ' (default) | character vector | cell array of character vectors
Input channel units, specified as one of the following:

- A character vector, for single-input models.
- A cell array of character vectors, for multi-input models.
- ' ' ', no units specified, for any input channels.

Use InputUnit to specify input signal units. InputUnit has no effect on system behavior.

## InputGroup - Input channel groups

structure
Input channel groups, specified as a structure. Use InputGroup to assign the input channels of MIMO systems into groups and refer to each group by name. The field names of InputGroup are the group names and the field values are the input channels of each group. For example, enter the following to create input groups named controls and noise that include input channels 1 and 2 , and 3 and 5 , respectively.

```
sys.InputGroup.controls = [1 2];
```

sys.InputGroup.noise = [3 5];
You can then extract the subsystem from the controls inputs to all outputs using the following.

```
sys(:,'controls')
```

By default, InputGroup is a structure with no fields.

## OutputName - Output channel names

' ' (default) | character vector | cell array of character vectors
Output channel names, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' ', no names specified, for any output channels.

Alternatively, you can assign output names for multi-output models using automatic vector expansion. For example, if sys is a two-output model, enter the following.

```
sys.OutputName = 'measurements';
```

The output names automatically expand to \{'measurements(1)';'measurements(2)'\}.
You can also use the shorthand notation y to refer to the OutputName property. For example, sys.y is equivalent to sys.OutputName.

Use OutputName to:

- Identify channels on model display and plots.
- Extract subsystems of MIMO systems.
- Specify connection points when interconnecting models.


## OutputUnit - Output channel units

' ' (default) | character vector | cell array of character vectors
Output channel units, specified as one of the following:

- A character vector, for single-output models.
- A cell array of character vectors, for multi-output models.
- ' ' , no units specified, for any output channels.

Use OutputUnit to specify output signal units. OutputUnit has no effect on system behavior.

## OutputGroup - Output channel groups

structure
Output channel groups, specified as a structure. Use OutputGroupto assign the output channels of MIMO systems into groups and refer to each group by name. The field names of OutputGroup are the group names and the field values are the output channels of each group. For example, create output groups named temperature and measurement that include output channels 1 , and 3 and 5, respectively.

```
sys.OutputGroup.temperature = [1];
sys.OutputGroup.measurement = [3 5];
```

You can then extract the subsystem from all inputs to the measurement outputs using the following.

```
sys('measurement',:)
```

By default, OutputGroup is a structure with no fields.

## Name - System name

' ' (default) | character vector
System name, specified as a character vector. For example, ' system_1'.

## Notes - User-specified text

\{\} (default) | character vector | cell array of character vectors
User-specified text that you want to associate with the system, specified as a character vector or cell array of character vectors. For example, 'System is MIMO'.

## UserData - User-specified data

[] (default) | any MATLAB data type
User-specified data that you want to associate with the system, specified as any MATLAB data type.

## SamplingGrid - Sampling grid for model arrays

structure array
Sampling grid for model arrays, specified as a structure array.
Use SamplingGrid to track the variable values associated with each model in a model array, including identified linear time-invariant (IDLTI) model arrays.

Set the field names of the structure to the names of the sampling variables. Set the field values to the sampled variable values associated with each model in the array. All sampling variables must be numeric scalars, and all arrays of sampled values must match the dimensions of the model array.

For example, you can create an 11-by-1 array of linear models, sysarr, by taking snapshots of a linear time-varying system at times $t=0: 10$. The following code stores the time samples with the linear models.

```
sysarr.SamplingGrid = struct('time',0:10)
```

Similarly, you can create a 6 -by- 9 model array, M, by independently sampling two variables, zeta and $w$. The following code maps the (zeta, w) values to M.

```
[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)
```

When you display $M$, each entry in the array includes the corresponding zeta and $w$ values.
M

```
M(:,:,1,1) [zeta=0.3, w=5] =
 25
 s^2 + 3 s + 25
M(:,:,2,1) [zeta=0.35, w=5] =
 25
 s^2 + 3.5 s + 25
```

For model arrays generated by linearizing a Simulink model at multiple parameter values or operating points, the software populates SamplingGrid automatically with the variable values that correspond to each entry in the array. For instance, the Simulink Control Design commands linearize and slLinearizer populate SamplingGrid automatically.

By default, SamplingGrid is a structure with no fields.

## Object Functions

The following lists contain a representative subset of the functions you can use with zpk models. In general, any function applicable to "Dynamic System Models" is applicable to a zpk object.

## Linear Analysis

step	Step response plot of dynamic system; step response data
impulse	Impulse response plot of dynamic system; impulse response data
lsim	Plot simulated time response of dynamic system to arbitrary inputs; simulated response   data
bode	Bode plot of frequency response, or magnitude and phase data
nyquist	Nyquist plot of frequency response
nichols	Nichols chart of frequency response
bandwidth	Frequency response bandwidth

## Stability Analysis

pole Poles of dynamic system
zero Zeros and gain of SISO dynamic system
pzplot Pole-zero plot of dynamic system model with additional plot customization options
margin Gain margin, phase margin, and crossover frequencies

## Model Transformation

tf Transfer function model
ss State-space model
c2d Convert model from continuous to discrete time
d2c Convert model from discrete to continuous time
d2d Resample discrete-time model

## Model Interconnection

feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

## Controller Design

pidtune PID tuning algorithm for linear plant model
rlocus Root locus plot of dynamic system
lqr Linear-Quadratic Regulator (LQR) design
lqg Linear-Quadratic-Gaussian (LQG) design
lqi Linear-Quadratic-Integral control
kalman Design Kalman filter for state estimation

## Examples

## Continuous-Time SISO Zero-Pole-Gain Model

For this example, consider the following continuous-time SISO zero-pole-gain model:

$$
\operatorname{sys}(s)=\frac{-2 s}{(s-1-i)(s-1+i)(s-2)}
$$

Specify the zeros, poles and gain, and create the SISO zero-pole-gain model.

```
zeros = 0;
poles = [1-1i 1+1i 2];
gain = -2;
sys = zpk(zeros,poles,gain)
sys =
 -2 s
 (s-2) (s^2 - 2s + 2)
```

Continuous-time zero/pole/gain model.

## Discrete-Time SISO Zero-Pole-Gain Model

For this example, consider the following SISO discrete-time zero-pole-gain model with 0.1 s sample time:

$$
\operatorname{sys}(s)=\frac{7(z-1)(z-2)(z-3)}{(z-6)(z-5)(z-4)}
$$

Specify the zeros, poles, gains and the sample time, and create the discrete-time SISO zero-pole-gain model.

```
zeros = [lllll
poles = [6 5 4];
gain = 7;
ts = 0.1;
sys = zpk(zeros,poles,gain,ts)
sys =
 7 (z-1) (z-2) (z-3)

 (z-6) (z-5) (z-4)
Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.
```


## Concatenate SISO Zero-Pole-Gain models into a MIMO Zero-Pole-Gain Model

In this example, you create a MIMO zero-pole-gain model by concatenating SISO zero-pole-gain models. Consider the following single-input, two-output continuous-time zero-pole-gain model:

$$
\operatorname{sys}(s)=\left[\begin{array}{c}
\frac{(s-1)}{(s+1)} \\
\frac{(s+2)}{(s+2+i)(s+2-i)}
\end{array}\right] .
$$

Specify the MIMO zero-pole-gain model by concatenating the SISO entries.

```
zeros1 = 1;
poles1 = -1;
gain = 1;
sys1 = zpk(zeros1,poles1,gain)
sys1 =
 (s-1)

```

Continuous-time zero/pole/gain model.
zeros2 = -2;
poles2 = [-2+1i -2-1i];
sys2 = zpk(zeros2,poles2,gain)
sys2 =
(s+2)
$\left(s^{\wedge} 2+4 s+5\right)$
Continuous-time zero/pole/gain model.
sys = [sys1;sys2]
sys =
From input to output...
(s-1)
1: -----
( $s+1$ )
( $\mathrm{s}+2$ )
2: -------------
$\left(s^{\wedge} 2+4 s+5\right)$
Continuous-time zero/pole/gain model.

## Discrete-Time MIMO Zero-Pole-Gain Model

Create a zero-pole-gain model for the discrete-time, multi-input, multi-output model:

$$
\operatorname{sys}(z)=\left[\begin{array}{cc}
\frac{1}{(z+0.3)} & \frac{z}{(z+0.3)} \\
\frac{-(z-2)}{(z+0.3)} & \frac{3}{(z+0.3)}
\end{array}\right]
$$

with sample time ts $=0.2$ seconds.
Specify the zeros and poles as cell arrays and the gains as an array.

```
zeros = {[] 0;2 []};
poles ={-0.3 -0.3;-0.3 -0.3};
gain = [1 1;-1 3];
ts = 0.2;
```

Create the discrete-time MIMO zero-pole-gain model.

```
sys = zpk(zeros,poles,gain,ts)
```

sys $=$
From input 1 to output...
1
1: ------
(z+0.3)
- (z-2)
2: ------
( $z+0.3$ )
From input 2 to output...
z
1: ------
(z+0.3)
3
2: ------
(z+0.3)
Sample time: 0.2 seconds
Discrete-time zero/pole/gain model.

## Specify Input Names for Zero-Pole-Gain Model

Specify the zeros, poles and gain along with the sample time and create the zero-pole-gain model, specifying the state and input names using name-value pairs.

```
zeros = 4;
poles = [-1+2i -1-2i];
gain = 3;
ts = 0.05;
sys = zpk(zeros,poles,gain,ts,'InputName','Force')
```

```
sys =
 From input "Force" to output:
 3 (z-4)
 (z^2 + 2z + 5)
Sample time: 0.05 seconds
Discrete-time zero/pole/gain model.
```

The number of input names must be consistent with the number of zeros.
Naming the inputs and outputs can be useful when dealing with response plots for MIMO systems.
step(sys)

Step Response


Notice the input name Force in the title of the step response plot.

## Continuous-Time Zero-Pole-Gain Model Using Rational Expression

For this example, create a continuous-time zero-pole-gain model using rational expressions. Using a rational expression can sometimes be easier and more intuitive than specifying poles and zeros.

Consider the following system:

$$
\operatorname{sys}(s)=\frac{s}{s^{2}+2 s+10} .
$$

To create the transfer function model, first specify s as a zpk object.

```
s = zpk('s')
s =
 s
Continuous-time zero/pole/gain model.
```

Create the zero-pole-gain model using s in the rational expression.

```
sys = s/(s^2 + 2*s + 10)
sys =
```

    s
    \(\left(s^{\wedge} 2+2 s+10\right)\)
    Continuous-time zero/pole/gain model.

## Discrete-Time Zero-Pole-Gain Model Using Rational Expression

For this example, create a discrete-time zero-pole-gain model using a rational expression. Using a rational expression can sometimes be easier and more intuitive than specifying poles and zeros.

Consider the following system:

$$
\operatorname{sys}(z)=\frac{z-1}{z^{2}-1.85 z+0.9}
$$

To create the zero-pole-gain model, first specify $z$ as a zpk object and the sample time ts.

```
ts = 0.1;
z = zpk('z',ts)
z =
 z
```

Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.

Create the zero-pole-gain model using $z$ in the rational expression.

```
sys = (z - 1) / (z^2 - 1.85*z + 0.9)
sys =
```

    (z-1)
    ```
 (z^2 - 1.85z + 0.9)
```

Sample time: 0.1 seconds
Discrete-time zero/pole/gain model.

## Zero-Pole-Gain Model with Inherited Properties

For this example, create a zero-pole-gain model with properties inherited from another zero-pole-gain model. Consider the following two zero-pole-gain models:

$$
\operatorname{sys} 1(s)=\frac{2 s}{s(s+8)} \quad \text { and } \quad \operatorname{sys} 2(s)=\frac{0.8(s-1)}{(s+3)(s-5)} .
$$

For this example, create sys1 with the TimeUnit and InputDelay property set to 'minutes'.

```
zerol = 0;
pole1 = [0;-8];
gain1 = 2;
sys1 = zpk(zero1,pole1,gain1,'TimeUnit','minutes','InputUnit','minutes')
sys1 =
 2 s

 s (s+8)
Continuous-time zero/pole/gain model.
propValues1 = [sys1.TimeUnit,sys1.InputUnit]
propValues1 = 1x2 cell
 {'minutes'} {'minutes'}
```

Create the second zero-pole-gain model with properties inherited from sys1.

```
zero = 1;
pole = [-3,5];
gain2 = 0.8;
sys2 = zpk(zero,pole,gain2,sys1)
sys2 =
 0.8 (s-1)

Continuous-time zero/pole/gain model.
propValues2 = [sys2.TimeUnit,sys2.InputUnit]
propValues2 = 1x2 cell
 {'minutes'} {'minutes'}
```

Observe that the zero-pole-gain model sys2 has that same properties as sys1.

## Static Gain MIMO Zero-Pole-Gain Model

Consider the following two-input, two-output static gain matrix m:

$$
m=\left[\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array}\right]
$$

Specify the gain matrix and create the static gain zero-pole-gain model.

```
m = [2,4;...
 3,5];
sys1 = zpk(m)
sys1 =
 From input 1 to output...
 1: 2
 2: 3
 From input 2 to output...
 1: 4
 2: 5
Static gain.
```

You can use static gain zero-pole-gain model sys1 obtained above to cascade it with another zero-pole-gain model.

```
sys2 = zpk(0,[-1 7],1)
sys2 =
 S
 (s+1) (s-7)
Continuous-time zero/pole/gain model.
sys = series(sys1,sys2)
sys =
 From input 1 to output...
 s
 1: -----------
 (s+1) (s-7)
 s
 2: ----------
 (s+1) (s-7)
 From input 2 to output...
 s
```

```
1: ----------
 (s+1) (s-7)
 s
2: ----------
 (s+1) (s-7)
```

Continuous-time zero/pole/gain model.

## Convert State-Space Model to Zero-Pole-Gain Model

For this example, compute the zero-pole-gain model of the following state-space model:

$$
A=\left[\begin{array}{cc}
-2 & -1 \\
1 & -2
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad D=\left[\begin{array}{ll}
0 & 1
\end{array}\right] .
$$

Create the state-space model using the state-space matrices.

```
A = [-2 -1;1 -2];
B = [1 1;2 -1];
C = [1 0];
D = [0 1];
ltiSys = ss(A,B,C,D);
```

Convert the state-space model ltiSys to a zero-pole-gain model.

```
sys = zpk(ltiSys)
sys =
 From input 1 to output:
 S
 (s^2 + 4s + 5)
 From input 2 to output:
 (s^2 + 5s + 8)

Continuous-time zero/pole/gain model.
```


## Array of Zero-Pole-Gain Models

You can use a for loop to specify an array of zero-pole-gain models.
First, pre-allocate the zero-pole-gain model array with zeros.
sys = zpk(zeros(1,1,3));
The first two indices represent the number of outputs and inputs for the models, while the third index is the number of models in the array.

Create the zero-pole-gain model array using a rational expression in the for loop.

```
s = zpk('s');
for k = 1:3
 sys(:,:,k) = k/(s^2+s+k);
end
sys
sys(:,:,1,1) =
 1
 (s^2 + s + 1)
sys(:,:,2,1) =
 2
 (s^2 + s + 2)
sys(:,:,3,1) =
 3
 (s^2 + s + 3)
3x1 array of continuous-time zero/pole/gain models.
```


## Extract Zero-Pole-Gain Models from Identified Model

For this example, extract the measured and noise components of an identified polynomial model into two separate zero-pole-gain models.

Load the Box-Jenkins polynomial model ltiSys in identifiedModel.mat.
load('identifiedModel.mat','ltiSys');
ltiSys is an identified discrete-time model of the form: $y(t)=\frac{B}{F} u(t)+\frac{C}{D} e(t)$, where $\frac{B}{F}$ represents the measured component and $\frac{C}{D}$ the noise component.

Extract the measured and noise components as zero-pole-gain models.

```
sysMeas = zpk(ltiSys,'measured')
sysMeas =
 From input "u1" to output "y1":
 -0.14256 z^-1 (1-1.374z^-1)
 z^(-2)* ----------------------------
 (1-0.8789z^-1) (1-0.6958z^-1)
```

```
Sample time: 0.04 seconds
Discrete-time zero/pole/gain model.
sysNoise = zpk(ltiSys,'noise')
sysNoise =
 From input "v@y1" to output "y1":
 0.045563 (1+0.7245z^-1)
 (1-0.9658z^-1) (1 - 0.0602z^-1 + 0.2018z^-2)
Input groups:
 Name Channels
 Noise 1
Sample time: 0.04 seconds
Discrete-time zero/pole/gain model.
```

The measured component can serve as a plant model, while the noise component can be used as a disturbance model for control system design.

## Zero-Pole-Gain Model with Input and Output Delay

For this example, create a SISO zero-pole-gain model with an input delay of 0.5 seconds and an output delay of 2.5 seconds.

```
zeros = 5;
poles = [7+1i 7-1i -3];
gains = 1;
sys = zpk(zeros,poles,gains,'InputDelay',0.5,'OutputDelay',2.5)
sys =
 (s-5)
 exp(-3*s)* ----------------------
 (s+3) (s^2 - 14s + 50)
Continuous-time zero/pole/gain model.
```

You can also use the get command to display all the properties of a MATLAB object.
get(sys)

```
 Z: {[5]}
 P: {[3x1 double]}
 K: 1
DisplayFormat: 'roots'
 Variable: 's'
 IODelay: 0
 InputDelay: 0.5000
 OutputDelay: 2.5000
 InputName: {''}
 InputUnit: {''}
 InputGroup: [1x1 struct]
 OutputName: {''}
```

```
 OutputUnit: {''}
OutputGroup: [1x1 struct]
 Notes: [0x1 string]
 UserData: []
 Name: ''
 Ts: 0
 TimeUnit: 'seconds'
SamplingGrid: [1x1 struct]
```

For more information on specifying time delay for an LTI model, see "Specifying Time Delays".

## Control Design using Zero-Pole-Gain Models

For this example, design a 2-DOF PID controller with a target bandwidth of $0.75 \mathrm{rad} / \mathrm{s}$ for a system represented by the following zero-pole-gain model:

$$
\operatorname{sys}(s)=\frac{1}{s^{2}+0.5 s+0.1}
$$

Create a zero-pole-gain model object sys using the zpk command.

```
zeros = [];
poles = [-0.25+0.2i;-0.25-0.2i];
gain = 1;
sys = zpk(zeros,poles,gain)
sys =
```

    1
    \(\left(s^{\wedge} 2+0.5 s+0.1025\right)\)
    Continuous-time zero/pole/gain model.

Using the target bandwidth, use pidtune to generate a 2-DOF controller.

```
wc = 0.75;
C2 = pidtune(sys,'PID2',wc)
C2 =
 u = Kp (b*r-y) +Ki
 with Kp = 0.512, Ki = 0.0975, Kd = 0.574, b = 0.38, c = 0
Continuous-time 2-DOF PID controller in parallel form.
```

Using the type 'PID2' causes pidtune to generate a 2-DOF controller, represented as a pid2 object. The display confirms this result. The display also shows that pidtune tunes all controller coefficients, including the setpoint weights $b$ and $c$, to balance performance and robustness.

For interactive PID tuning in the Live Editor, see the Tune PID Controller Live Editor task. This task lets you interactively design a PID controller and automatically generates MATLAB code for your live script.

For interactive PID tuning in a standalone app, use PID Tuner. See "PID Controller Design for Fast Reference Tracking" for an example of designing a controller using the app.

## Algorithms

zpk uses the MATLAB function roots to convert transfer functions and the functions zero and pole to convert state-space models.

## Version History

Introduced before R2006a

## See Also

filt|frd|get|set|ss|zpkdata|genss|tf|realp|genmat

## Topics

"Transfer Functions"
"What Are Model Objects?"
"Discrete-Time Numeric Models"
"Using the Right Model Representation"
"Using FEEDBACK to Close Feedback Loops"

## zpkdata

Access zero-pole-gain data

## Syntax

[z,p,k] = zpkdata(sys)
[z,p,k,Ts] = zpkdata(sys)
[z, p,k,Ts,covz,covp,covk] = zpkdata(sys)

## Description

$[z, p, k]=z p k d a t a(s y s)$ returns the zeros $z$, poles $p$, and gain(s) $k$ of the zero-pole-gain model sys. The outputs $z$ and $p$ are cell arrays with the following characteristics:

- $z$ and $p$ have as many rows as outputs and as many columns as inputs.
- The ( $i, j$ ) entries $z\{i, j\}$ and $p\{i, j\}$ are the (column) vectors of zeros and poles of the transfer function from input $j$ to output $i$.

The output k is a matrix with as many rows as outputs and as many columns as inputs such that $k(i, j)$ is the gain of the transfer function from input $j$ to output $i$. If sys is a transfer function or state-space model, it is first converted to zero-pole-gain form using zpk.

For SISO zero-pole-gain models, the syntax
[z,p,k] = zpkdata(sys,'v')
forces zpkdata to return the zeros and poles directly as column vectors rather than as cell arrays (see example below).
[z,p,k,Ts] = zpkdata(sys) also returns the sample time Ts.
[z,p,k,Ts,covz,covp,covk] = zpkdata(sys) also returns the covariances of the zeros, poles and gain of the identified model sys. covz is a cell array such that covz\{ky, ku\} contains the covariance information about the zeros in the vector $z\{k y, k u\} . \operatorname{covz}\{k y, k u\}$ is a 3-D array of dimension 2-by-2-by-Nz, where $N z$ is the length of $z\{k y, k u\}$, so that the $(1,1)$ element is the variance of the real part, the $(2,2)$ element is the variance of the imaginary part, and the $(1,2)$ and $(2,1)$ elements contain the covariance between the real and imaginary parts. covp has a similar relationship to $p$. covk is a matrix containing the variances of the elements of $k$.

You can access the remaining LTI properties of sys with get or by direct referencing, for example,
sys.Ts
sys.inputname

## Examples

## Example 1

Given a zero-pole-gain model with two outputs and one input

```
H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)
Zero/pole/gain from input to output...
 z
 #1: -------
 (z-0.3)
 2(z+0.5)
 #2: -------------------
 (z^2 - 0.2z + 1.01)
Sample time: unspecified
you can extract the zero/pole/gain data embedded in }\textrm{H}\mathrm{ with
```

```
[z,p,k] = zpkdata(H)
```

[z,p,k] = zpkdata(H)
z =
z =
[ 0]
[ 0]
[-0.5000]
[-0.5000]
p =
p =
[ 0.3000]
[ 0.3000]
[2x1 double]
[2x1 double]
k =
k =
1
1
2

```
 2
```

To access the zeros and poles of the second output channel of H , get the content of the second cell in $z$ and $p$ by typing
$z\{2,1\}$
ans =
$-0.5000$
$\mathrm{p}\{2,1\}$
ans $=$
$0.1000+1.0000 i$
0.1000-1.0000i

## Example 2

Extract the ZPK matrices and their standard deviations for a 2-input, 1 output identified transfer function.

```
load iddata7
```

transfer function model
sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);
an equivalent process model
sys2 = procest(z7, \{'P2UZ', 'P2UZ'\}, 'InputDelay',[1 0]);
1, p1, k1, ~, dz1, dp1, dk1] = zpkdata(sys1);
[z2, p2, k2, ~, dz2, dp2, dk2] = zpkdata(sys2);
Use iopzplot to visualize the pole-zero locations and their covariances

```
h = iopzplot(sys1, sys2);
showConfidence(h)
```


## Version History

Introduced before R2006a

## See Also

get | ssdata|tfdata|zpk

Blocks

## Discrete Varying Lowpass

Discrete Butterworth filter with varying coefficients


Discrete Varying Lowpass

## Libraries:

Control System Toolbox / Linear Parameter Varying

## Description

The block implements the Tustin discretization of a continuous-time $\mathrm{N}^{\mathrm{th}}$-order Butterworth filter. The result is a digital filter with unit DC gain and varying cutoff frequency.

Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

## Ports

Input
$\mathbf{u}$ - Filter input
scalar
Lowpass filter input signal.
freq - Cutoff frequency
scalar
Continuous-time value of the cutoff frequency, specified in rad/s.

## Output

y - Filter output
scalar
Lowpass filter output signal.

## Parameters

Filter order - Lowpass filter order
1 (default) | positive integer
Lowpass filter order, specified as a positive integer.
Pre-warping frequency w0 (rad/s) - Pre-warping frequency
0 (default) | positive scalar

Pre-warping frequency, specified as a positive scalar. Discretization of the continuous-time Butterworth filter can shift the cutoff frequency when it is close to the Nyquist frequency. To ensure that the analog and digital filters have matching frequency response near a particular frequency w0, set this parameter to $w 0$. The default value w0 $=0$ corresponds to the bilinear (Tustin) transformation without pre-warp:

$$
s=\frac{2}{T_{s}}\left(\frac{z-1}{z+1}\right)
$$

where $T_{s}$ is the block sample time, specified with the Sample time Ts parameter.
Sample time Ts - Sample time
1 (default) | positive scalar
Block sample time, specified as a positive scalar. This block does not support inherited sample time, because it requires a specified sample time to compute the discretization of the Butterworth filter.

## Version History

Introduced in R2017b

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{Tm}}$.
PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder ${ }^{\text {™ }}$.

## See Also

Varying Lowpass Filter

## Topics

"Model Gain-Scheduled Control Systems in Simulink"

## Discrete Varying Notch

Discrete-time notch filter with varying coefficients


## Libraries:

Control System Toolbox / Linear Parameter Varying

## Description

The block implements the Tustin discretization of a continuous-time notch filter with varying coefficients. Feed the continuous-time values of the notch frequency, minimum gain, and damping ratio to the freq, gmin, and damp input ports, respectively. These parameters control the notch depth and frequency of the continuous-time notch frequency as shown in the following illustration. The damping ratio damp controls the notch width $\Delta$; larger damp means larger $\Delta$.


Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

## Ports

## Input

$\mathbf{u}$ - Filter input
scalar
Notch filter input signal
freq - Notch frequency
scalar
Continuous-time value of the notch frequency, specified in rad/s.
gmin - Gain at notch frequency
scalar
Continuous-time value of the gain at notch frequency, in absolute units. This value controls the notch depth. The notch filter has unit gain at low and high frequency. The gain is lowest at the notch frequency.
damp - Damping ratio of the filter poles scalar

Continuous-time value of the damping ratio, specified as a positive scalar value. The damping ratio controls the notch width; the closer to 0 , the steeper the notch.

## Output

y - Filter output
scalar
Notch filter output signal.

## Parameters

Pre-warping frequency w0 (rad/s) - Pre-warping frequency
0 (default) | positive scalar
Pre-warping frequency, specified as a positive scalar. Discretization of the continuous-time notch-filter transfer function can shift the notch frequency when it is close to the Nyquist frequency. To ensure that the continuous and discrete filters have matching frequency response near a particular frequency $w 0$, set this parameter to $w 0$. The default value w $0=0$ corresponds to the bilinear (Tustin) transformation without pre-warp:

$$
s=\frac{2}{T_{s}}\left(\frac{z-1}{z+1}\right)
$$

where $T_{s}$ is the block sample time, specified with the Sample time Ts parameter.

## Sample time Ts - Sample time

1 (default) | positive scalar
Block sample time, specified as a positive scalar. This block does not support inherited sample time, because it requires a specified sample time to compute the discretization of the notch filter.

## Version History

Introduced in R2017b

## Extended Capabilities

C/C++ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## PLC Code Generation

Generate Structured Text code using Simulink ${ }_{\circledR}$ PLC Coder ${ }^{\text {TM }}$.

## See Also

Varying Notch Filter
Topics
"Model Gain-Scheduled Control Systems in Simulink"

## Discrete Varying Observer Form

Discrete-time observer-form state-space model with varying matrix values


## Libraries:

Control System Toolbox / Linear Parameter Varying

## Description

Use this block to implement a discrete-time varying state-space model in observer form. The system matrices $A, B, C$, and $D$ describe the plant dynamics, and the matrices $K$ and $L$ specify the statefeedback and state-observer gains, respectively. Feed the instantaneous values of these matrices to the corresponding input ports. The observer form is given by:

$$
\begin{gathered}
x_{k+1}=A x_{k}+B u_{k}+L \varepsilon_{k} \\
u_{k}=-K x_{k} \\
\varepsilon_{k}=y_{k}-C x_{k}-D u_{k}
\end{gathered}
$$

where $u_{k}$ is the plant input, $y_{k}$ is the plant output, $x_{k}$ is the estimated state, and $\varepsilon_{k}$ is the innovation, the difference between the predicted and measured plant output. The observer form works well for gain scheduling of state-space controllers. In particular, the state $x_{k}$ tracks the plant state, and all controllers are expressed with the same state coordinates.

Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

## Ports

## Input

## $\mathbf{y}_{\mathbf{k}}$ - Measurement signal <br> scalar | vector

Measured plant output signal.
A - Plant state matrix
matrix
Plant state matrix of dimensions $N_{x}$-by- $N_{x}$, where $N_{x}$ is the number of plant states.
B - Plant input matrix
matrix
Plant input matrix of dimensions $N_{x}$-by- $N_{u}$, where $N_{u}$ is the number of plant inputs.

## C - Plant output matrix matrix

Plant output matrix of dimensions $N_{y}$-by $-N_{x}$, where $N_{y}$ is the number of plant outputs.
D - Plant feedforward matrix matrix

Plant feedforward matrix of dimensions $N_{y}$-by- $N_{u}$.
K - State-feedback matrix
matrix
State-feedback matrix of dimensions $N_{u}$-by- $N_{\chi}$.
L - State-observer matrix
matrix
State-observer matrix of dimensions $N_{\chi}$-by- $N_{y}$.

## Output

$\mathbf{u}_{\mathbf{k}}$ - Control signal
scalar | vector
Control signal (plant input).
$\mathbf{x}_{\mathbf{k}}$ - Estimated plant state vector
vector
Vector of estimated plant states.

## Dependencies

To enable this port, select the Output states parameter.
$\mathbf{x}_{\mathbf{k + 1}}$ - Estimated next state vector
vector
Estimated state values at next time step.
Dependencies
To enable this port, select the Output state updates parameter.

## Parameters

Initial conditions - System initial conditions
0 (default) | scalar | vector
Initial state values, specified as a scalar or a vector whose length is the number of plant states.
Sample time (-1 for inherited) - Block sample time
-1 (default) | positive scalar
Block sample time, specified as either -1 (inherited sample time) or a positive scalar value.

Output states - Provide state output
on (default) | off
Select to enable the estimated states output port, $\mathbf{x}_{\mathbf{e}}$.
Output state derivatives - Provide state updates
on (default) | off
Select to enable the estimated state updates output port, $\mathbf{x}_{\mathbf{k}+\mathbf{1}}$.

## Version History

Introduced in R2017b

## Extended Capabilities

$\mathbf{C} / \mathbf{C}++$ Code Generation
Generate C and $\mathrm{C}++$ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Varying Observer Form | Discrete Varying State Space
Topics
"Model Gain-Scheduled Control Systems in Simulink"

## Discrete Varying State Space

Discrete-time state-space model with varying matrix values

## Libraries:



Discrete Varying State Space

Control System Toolbox / Linear Parameter Varying

## Description

Use this block to implement a discrete-time state-space model with varying matrices. Feed the instantaneous values of the state matrix $A$, input matrix $B$, output matrix $C$, and feedforward matrix $D$ to the corresponding input ports. The system response is given by:

$$
\begin{gathered}
x_{k+1}=A x_{k}+B u_{k} \\
y_{k}=C x_{k}+D u_{k}
\end{gathered}
$$

where $u_{k}$ is the system input, $y_{k}$ is the system output, $x_{k}$ is the current system state, and $x_{k+1}$ is the system state at the next time step.

Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

Caution Avoid making the $\mathbf{C}$ and $\mathbf{D}$ matrices depend on the system output $\mathbf{y}_{\mathbf{k}}$. If you have such dependence, the resulting state-space equation $y_{k}=C\left(y_{k}\right) x_{k}+D\left(y_{k}\right) u_{k}$ creates an algebraic loop, because computing the output value $y_{k}$ requires knowing the output value. This algebraic loop is prone to instability and divergence. Instead, try expressing $\mathbf{C}$ and $\mathbf{D}$ in terms of the time $t$, the block input $\mathbf{u}_{\mathbf{k}}$, and the state outputs $\mathbf{x}_{\mathbf{k}}$.

For similar reasons, avoid making $\mathbf{A}$ and $\mathbf{B}$ depend on the $\mathbf{x}_{\mathbf{k + 1}}$ output. Note that it is safe to for $\mathbf{A}$ and $\mathbf{B}$ to depend on $\mathbf{y}_{\mathbf{k}}$ when $\mathbf{y}_{\mathbf{k}}$ is a fixed combination of states and inputs, (in other words, when $y_{k}=C x_{k}$ $+D u_{k}$ where $C$ and $D$ are constant matrices).

## Ports

## Input

$\mathbf{u}_{\mathbf{k}}$ - System input
scalar | vector
System input signal.
A - State matrix
matrix
State matrix of dimensions $N_{x}$-by- $N_{x}$, where $N_{x}$ is the number of system states.

B - Input matrix
matrix
Input matrix of dimensions $N_{x}$-by- $N_{u}$, where $N_{u}$ is the number of system inputs.
C O Output matrix
matrix
Output matrix $N_{y}$-by- $N_{x}$, where $N_{y}$ is the number of system outputs.
D - Feedforward matrix
matrix
Feedforward matrix of dimensions $N_{y}$-by- $N_{u}$.
For a zero-feedthrough state-space model, clear the Enable feedthrough checkbox. Clearing this checkbox disables the $\mathbf{D}$ input port.

## Output

$\mathbf{y}_{\mathbf{k}}$ - System output
scalar | vector
System output signal.
$\mathbf{x}_{\mathbf{k}}$ - Current state vector
vector
Current state values.

## Dependencies

To enable this port, select the Output states parameter.
$\mathbf{x}_{\mathbf{k}+\mathbf{1}}$ - Next state vector
vector
State values at next time step.
Dependencies
To enable this port, select the Output state updates parameter.

## Parameters

Initial conditions - System initial conditions
0 (default) | scalar | vector
Initial state values, specified as a scalar or a vector whose length is the number of system states.
Sample time (-1 for inherited) - Block sample time
-1 (default) | positive scalar
Block sample time, specified as either -1 (inherited sample time) or a positive scalar value.

Output states - Provide state output on (default) | off

Select to enable the state values output port, $\mathbf{x}$.
Output state derivatives - Provide state updates on (default) | off

Select to enable the state updates output port, $\mathbf{x}_{\mathbf{k}+\mathbf{1}}$.
Enable feedthrough - Add input port for feedthrough matrix
on (default) | off
Enable the $\mathbf{D}$ input port for a state-space model with direct feedthrough. For a zero-feedthrough model, clear this checkbox. Disabling the port for zero-feedthrough models is numerically more reliable than feeding a zero-constant into the port.

## Version History

Introduced in R2017b

## R2023a: Enable feedthrough checkbox added

For a zero-feedthrough state-space model, clear the Enable feedthrough checkbox. Clearing this checkbox disables the $\mathbf{D}$ input port. Disabling the port for zero-feedthrough models is numerically more reliable than feeding a zero-constant into the port.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## PLC Code Generation

Generate Structured Text code using Simulink ${ }^{\circledR}$ PLC Coder ${ }^{\text {TM }}$.

## See Also

Varying State Space
Topics
"Model Gain-Scheduled Control Systems in Simulink"

## Discrete Varying Transfer Function

Discrete-time transfer function with varying coefficients


## Libraries:

Control System Toolbox / Linear Parameter Varying

## Description

This block implements a discrete-time transfer function with varying coefficients. The instantaneous transfer function is given by:

$$
H(z)=\frac{b_{0}+b_{1} / z+\cdots+b_{N} / z^{N}}{1+a_{1} / z+\cdots+a_{N} / z^{N}}
$$

where $N$ is number of poles, specified with the Transfer function order parameter. Feed the values of the coefficients $a_{1}, \ldots, a_{N}$ and $b_{0}, b_{1}, \ldots, b_{N}$ to the corresponding block input ports.

Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

## Ports

Input
$\mathbf{u}$ - Transfer function input
scalar
Transfer function input signal.
b0, b1, ... - Numerator coefficients
scalar
Transfer function numerator coefficients. The number of coefficient ports is determined by the Transfer function order parameter.

For a zero-feedthrough transfer function, clear the Enable feedthrough checkbox. Clearing this checkbox disables the $\mathbf{b 0}$ input port.
a1, a2, ... - Denominator coefficients
scalar
Transfer function denominator coefficients. The number of coefficient ports is determined by the Transfer function order parameter.

## Output

$\mathbf{y}$ - Transfer function output
scalar
Transfer function output signal.

## Parameters

Transfer function order - Number of poles
1 (default) | positive integer
Transfer function (number of poles), specified as a positive integer. This parameter determines the number of coefficient input ports on the block.

Enable feedthrough - Add input port for feedthrough term
on (default) | off
Enable the $\mathbf{b 0}$ input port for a transfer function with direct feedthrough. For a zero-feedthrough transfer function, clear this checkbox. Disabling the port for zero-feedthrough models is numerically more reliable than feeding a zero-constant into the port.

Sample time (-1 for inherited) - Block sample time
-1 (default) | positive scalar
Block sample time, specified as either -1 (inherited sample time) or a positive scalar value.

## Version History

## Introduced in R2017b

## R2023a: Enable feedthrough checkbox added

For a zero-feedthrough transfer function, clear the Enable feedthrough checkbox. Clearing this checkbox disables the $\mathbf{b 0}$ input port. Disabling the port for zero-feedthrough models is numerically more reliable than feeding a zero-constant into the port.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder ${ }^{\mathrm{TM}}$.

## PLC Code Generation

Generate Structured Text code using Simulink ${ }^{\circledR}$ PLC Coder ${ }^{\text {TM }}$.

## See Also

Varying Transfer Function

## Topics

"Model Gain-Scheduled Control Systems in Simulink"

## Kalman Filter

Estimate states of discrete-time or continuous-time linear system


## Libraries:

Control System Toolbox / State Estimation
System Identification Toolbox / Estimators

## Description

Use the Kalman Filter block to estimate states of a state-space plant model given process and measurement noise covariance data. The state-space model can be time-varying. A steady-state Kalman filter implementation is used if the state-space model and noise covariance matrices are all time-invariant, and a time-varying Kalman filter is used otherwise.

A Kalman filter provides the optimal solution to the continuous or discrete estimation problems in "Continuous-Time Estimation" (System Identification Toolbox) and "Discrete-Time Estimation" (System Identification Toolbox).

The Kalman Filter block differs from the kalman command in the following ways:

- When you call kalman (sys, ...), it assumes that sys includes the G and H matrices. Specifically, sys. B is of the form [B G] and sys.D is of the form [D H]. When you provide a LTI variable to the Kalman Filter block, it does not assume that the LTI variable provided contains G and H . They are optional and separate.
- The filter created by the kalman command outputs [yhat ; xhat] by default. The block outputs only xhat by default.
- The Kalman command can output both P and Z covariance matrices for discrete-time systems. The block can only output $P$ or $Z$ for such systems.


## Limitations

- The plant and noise data must satisfy these constraints:
- $(C, A)$ is detectable.
- $\bar{R}>0$ and $\bar{Q}-\bar{N} \bar{R}^{-1} \bar{N}^{T} \geq 0$.
- (A- $\bar{N} \bar{R}^{-1} C, \bar{Q}-\bar{N} \bar{R}^{-1} \bar{N}^{T}$ ) has no uncontrollable mode on the imaginary axis (or unit circle in discrete time), where

$$
\begin{aligned}
& \bar{Q}=G Q G^{T} \\
& \bar{R}=R+H N+N^{T} H^{T}+H Q H^{T} \\
& \bar{N}=G\left(Q H^{T}+N\right)
\end{aligned}
$$

- The continuous-time Kalman filter cannot be used in Function-Call Subsystems or Triggered Subsystems.


## Ports

Input
$\mathbf{u}$ - Known inputs
scalar | vector
Known inputs $u(t)$ or $u[k]$.
Dependencies
To enable this port, select the Add input port u parameter. This parameter is selected by default.
$\mathbf{y}$ - Measured outputs
scalar | vector
Measured output y n$]$ to update the estimated states.
A - State matrix
real matrix
$n$-by- $n$ state (or system) matrix.

## Dependencies

To enable this port, set the Model source parameter to Input Port.
B - Input matrix
real matrix
$n$-by- $p$ input matrix.

## Dependencies

To enable this port, set the Model source parameter to Input Port and select the Add input port u parameter.

C - Output matrix
real matrix
$q$-by- $p$ output matrix.

## Dependencies

To enable this port, set the Model source parameter to Input Port.
D - Feedthrough matrix
real matrix
$q$-by- $p$ feedthrough (or feedforward) matrix. In cases where the system model does not have a direct feedthrough, $\mathbf{D}$ is the zero matrix.

## Dependencies

To enable this port, set the Model source parameter to Input Port and select the Add input port u parameter.

## G - Measured outputs

real matrix
Noise transformation in the state-space equation.

## Dependencies

To enable this port, select Use $\mathbf{G}$ and $\mathbf{H}$ matrices (default $\mathbf{G}=\mathbf{I}$ and $\mathbf{H}=\mathbf{0}$ ) parameter.
H - Measured outputs
real matrix
Noise transformation in the state-space equation.

## Dependencies

To enable this port, select Use $\mathbf{G}$ and $\mathbf{H}$ matrices (default $\mathbf{G}=\mathbf{I}$ and $\mathbf{H}=\mathbf{0}$ ) parameter.
Q - Process noise covariance matrix
scalar | vector | matrix
Process noise covariance matrix, specified as one of the following:

- Real nonnegative scalar. $\mathbf{Q}$ is an $N w$-by- $N w$ diagonal matrix with the scalar on the diagonals. $N w$ is the number of process noise inputs in the model.
- Vector of real nonnegative scalars. $\mathbf{Q}$ is an $N w$-by- $N w$ diagonal matrix with the elements of the vector on the diagonals of $\mathbf{Q}$.
- $N w$-by- $N w$ positive semi-definite matrix.


## Dependencies

To enable this port, deselect the Time-invariant $\mathbf{Q}$ parameter.
R - Measurement noise covariance matrix
scalar | vector | matrix
Measurement noise covariance matrix, specified as one of the following:

- Real positive scalar. $\mathbf{R}$ is an Ny -by-Ny diagonal matrix with the scalar on the diagonals. Ny is the number of measured outputs in the model.
- Vector of real positive scalars. $\mathbf{R}$ is an $N y$-by-Ny diagonal matrix with the elements of the vector on the diagonals of $\mathbf{R}$.
- $N y$-by-Ny positive-definite matrix.


## Dependencies

To enable this port, deselect the Time-invariant $\mathbf{R}$ parameter.
N - Process and measurement noise cross-covariance matrix
scalar | vector | matrix
Process and measurement noise cross-covariance matrix, specified as a $N w$-by-Ny matrix. The matrix [Q $\left.\mathrm{N} ; \mathrm{N}^{\mathrm{T}} \mathrm{R}\right]$ must be positive definite.

## Dependencies

To enable this port, deselect the Time-invariant $\mathbf{N}$ parameter.
PO - Initial state estimation error covariance
scalar | vector | matrix
$\mathbf{P}$ matrix at the initial time.
Dependencies
To enable this port, set the Model source parameter to Input Port and set the Source parameter to Input Port.

XO - Initial state estimates
scalar | vector
Estimated states at the initial time.

## Dependencies

To enable this port, set the Source parameter to Input Port.
Enable - Control signal to enable measurement updates
scalar
This port controls the measurement updates and takes a scalar signal.
Dependencies
To enable this port, select Add input port Enable to control measurement updates parameter.
Reset - Control signal to reset state estimates
scalar
Control signal to reset estimated states and the parameter covariance matrix using specified initial values. See "External Reset" (System Identification Toolbox) for more information on when a reset is triggered.

## Dependencies

To enable this port, set the External reset paramter to any value other than None.

## Output

xhat - Estimated states
scalar | vector
Estimated states of the linear system.
yhat - Estimated outputs
scalar | vector
Estimated outputs of the linear system.

## Dependencies

To enable this port, select Output estimated model output y parameter.
$\mathbf{Z}$ - State estimation error covariance
matrix
Add $\mathbf{Z}$ output port to the block.
To enable this port, select Output state estimation error covariance $\mathbf{Z}$ parameter.

## Dependencies

To enable this port, set the Time domain parameter to Discrete-Time and select Use the current measurement $y[n]$ to improve xhat[n] parameter.

P - State estimation error covariance
matrix
Add $\mathbf{P}$ output port to the block.
To enable this port, select Output state estimation error covariance $\mathbf{P}$ parameter.

## Dependencies

To enable this port, set the Time domain parameter to Continuous-Time or set the Time domain parameter to Discrete-Time and deselect Use the current measurement y[n] to improve xhat[n] parameter.

## Note

- All input ports except Enable and Reset must have the same data type (single or double).
- Enable and Reset ports support single, double, int8, uint8, int16, uint16, int32, uint32, and boolean data types.


## Parameters

## Filter Settings

Time domain - Specify whether to estimate continuous-time or discrete-time states Discrete-Time (default) | Continuous-Time

- Discrete-Time (default) - Block estimates discrete-time states.
- Continuous-Time - Block estimates continuous-time states.

When the Kalman Filter block is in a model with synchronous state control (see the State Control block), you cannot select Continuous-Time.

## Programmatic Use

Block Parameter: TimeDomain
Type: string, character vector
Values: "Discrete-Time" | "Continuous-Time"
Default: "Discrete-Time"
Use the current measurement $\mathbf{y}[\mathbf{n}]$ to improve xhat[n] - Update output state estimates using the measure outputs
on (default) | off

Use the current estimator variant of the discrete-time Kalman filter. When this parameter is not selected, the delayed estimator (variant) is used.

This parameter is available only when Time domain is Discrete-Time.

```
Programmatic Use
Block Parameter: UseCurrentEstimator
Type: string, character vector
Values: "off" | "on"
Default: "on"
Sample Time - Block sample time
-1 (default)| non-negative scalar
```

Block sample time, specified as -1 or a positive scalar.
The default value is -1 , which implies that the block inherits its sample time based on the context of the block within the model. All block input ports must have the same sample time.

## Dependencies

This parameter is available only when Time domain is Discrete-Time and Model source is Individual A, B, C, D matrices or Input port. When Model source is LTI State-Space Variable, the block takes its sample time from the LTI state-space variable.

## Programmatic Use

Block Parameter: Ts
Type: string, character vector
Values: "-1" | scalar
Default: "-1"

## Model Parameters

## System Model

Model source - Specify how the A, B, C, D matrices are provided to the block
LTI State-Space Variable (default)|Individual A, B, C, D matrices|Input port

- LTI State-Space Variable - Use the model specified in Variable. The default value is ss ( $0.95,1,1,0$ ). The sample time of the model must match the Time domain parameter; that is, the model must be discrete-time if Time domain is discrete-time.
- Individual A, B, C, D matrices - Specify the $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and $\mathbf{D}$ in the block paramaters.
- Input port - Specify the A, B, C, D matrices as input signals to the Kalman Filter block. If you select this option, the block includes additional input ports A, B, C, D. You must also specify Number of states, Number of inputs, and Number of outputs in the block parameters.


## Programmatic Use

Block Parameter: ModelSource
Type: string, character vector
Values: "LTI State-Space Varaible"|"Individual A, B, C, D matrices"|"Input port"
Default: "LTI State-Space Variable"
A - State Matrix
0.95 (default)

Specify the A matrix. It must be real and square. The default value is 0.95 .

## Dependencies

To enable this port, set the Model source parameter to Individual A, B, C, D matrices.
Programmatic Use
Block Parameter: A
Type: string, character vector
Values: "real matrix"
Default: "0.95"
B - Input Matrix
1 (default)
Specify the $\mathbf{B}$ matrix. It must be real and have as many rows as the $\mathbf{A}$ matrix. The default value is 1 .

## Dependencies

To enable this port, set the Model source parameter to Individual A, B, C, D matrices.
Programmatic Use
Block Parameter: B
Type: string, character vector
Values: "real matrix"
Default: " 1 "
C - Output Matrix
1 (default)
Specify the $\mathbf{C}$ matrix. It must be real and have as many columns as the $\mathbf{A}$ matrix. The default value is 1.

## Dependencies

To enable this port, set the Model source parameter to Individual A, B, C, D matrices.
Programmatic Use
Block Parameter: C
Type: string, character vector
Values: "real matrix"
Default: "1"
D - Feedthrough Matrix
0 (default)
Specify the $\mathbf{D}$ matrix. It must be real and must have as many rows as the $\mathbf{C}$ matrix and as many columns as the $\mathbf{B}$ matrix. The default value is 0 .

## Dependencies

To enable this port, set the Model source parameter to Individual A, B, C, D matrices.
Programmatic Use
Block Parameter: D
Type: string, character vector
Values: "real matrix"

Default: "0"
Number of states - Number of states to be estimated
1 (default)| non-negative scalar
Number of states to be estimated, specified as a positive integer. The default value is 1 .

## Dependencies

To enable this port, set the Model source parameter to Input port.

## Programmatic Use

Block Parameter: NumberOfStates
Type: string, character vector
Values: "1" | scalar
Default: "1"
Number of inputs - Number of known inputs
1 (default) | non-negative scalar
Number of known inputs in the model, specified as a positive integer. The default value is 1.

## Dependencies

To enable this port, set the Model source parameter to Input port.

## Programmatic Use

Block Parameter: NumberOfInputs
Type: string, character vector
Values: "1" | scalar
Default: "1"
Number of outputs - Number of measured output
1 (default) | non-negative scalar
Number of measured outputs in the model, specified as a positive integer. The default value is 1 .

## Dependencies

To enable this port, set the Model source parameter to Input port.

## Programmatic Use

Block Parameter: NumberOfOutputs
Type: string, character vector
Values:"1" | scalar
Default: "1"
Initial Estimates
Source - Specify how to enter the initial state estimates and initial state estimation error covariance Dialog (default) | Input port

- Dialog - Specify the values directly in the dialog boxes.
- Input port - Inherit the values from input ports. The default is 10. The block includes an additional input port X0. A second additional input port $\mathbf{P 0}$ is added when time-varying Kalman filter is used. $\mathbf{X 0}$ and $\mathbf{P 0}$ must satisfy the same conditions as the parameters Initial states $\mathrm{x}[0]$ and State estimation error covariance P[0], respectively.


## Programmatic Use

Block Parameter: InitialEstimateSource
Type: string, character vector
Values: "Dialog"| "Input port"
Default: "Dialog"
Initial states $\mathbf{x [ 0 ]}$ - Specify the initial state estimate
0 (default) | scalar | vector
Specify the initial state estimate as a real scalar or vector. If you specify a scalar, all initial state estimates are set to this scalar. If you specify a vector, the length of the vector must match with the number of states in the model. The default is 0 .

## Dependencies

To enable this port, set the Source parameter to Dialog.

## Programmatic Use

Block Parameter: X0
Type: string, character vector
Values: "0" | scalar | vector
Default: "0"
State estimation error covariance $\mathbf{P}[0]$ - Specify the initial state estimation error covariance
10 (default) | scalar|vector | matrix
Specify the initial state estimation error covariance $\mathrm{P}[0]$ for a discrete-time Kalman filter or $\mathrm{P}(0)$ for continuous-time. This parameter must be specified as one of the following:

- Real nonnegative scalar. $\mathbf{P}$ is an $N s$-by- $N s$ diagonal matrix with the scalar on the diagonals. $N s$ is the number of states in the model.
- Vector of real nonnegative scalars. $\mathbf{P}$ is an $N s-b y-N s$ diagonal matrix with the elements of the vector on the diagonals of $\mathbf{P}$.
- $N s$-by-Ns positive semi-definite matrix.


## Dependencies

To enable this port, set the Model source parameter to Input port and Source parameter to Dialog.

Programmatic Use
Block Parameter: P0
Type: string, character vector
Values: "10" | scalar | vector | matrix
Default: "10"

## Noise Characterstics

Use the Kalman Gain K from the model variable - Specify whether to use pre-identified Kalman
Gain contained in state-space plant model
off (default) | on
Specify whether to use the pre-identified Kalman Gain present in the state-space model specified by Variable.

## Dependencies

To enable this parameter, you must meet the following conditions:

- The Model source is set toLTI State-Space Variable and Variable is an identified state-space model (idss) with a nonzero $\mathbf{K}$ matrix.
- Select the Time Invariant $\mathbf{Q}$, Time Invariant $\mathbf{R}$, and Time Invariant $\mathbf{N}$ parameters.
- If the Use $\mathbf{G}$ and $\mathbf{H}$ matrices (default $\mathbf{G}=\mathbf{I}$ and $\mathbf{H}=\mathbf{0}$ ) parameter is selected, the Time Invariant $\mathbf{G}$ and Time Invariant $\mathbf{H}$ parameters must also be selected.


## Programmatic Use

Block Parameter: UseK
Type: string, character vector
Values: "off" | "on"
Default: "off"
Use $\mathbf{G}$ and $\mathbf{H}$ matrices (default $\mathbf{G}=\mathbf{I}$ and $\mathbf{H}=\mathbf{0}$ ) - Specify whether to use non-default values for $\mathbf{G}$ and H matrices
off (default) | on
By default $\mathrm{G}=\mathrm{I}$ and $\mathrm{H}=0$. If you select this option, you must specify $\mathbf{G}$ and $\mathbf{H}$ parameter.

```
Programmatic Use
Block Parameter: UseGH
Type: string, character vector
Values: "off"|"on"
Default: "off"
G - Specify the G matrix
1 (default)| non-negative scalar|vector |matrix
```

It must be a real matrix with as many rows as the $\mathbf{A}$ matrix. The default value is 1 .

## Dependencies

To enable this paramter, select Use $\mathbf{G}$ and $\mathbf{H}$ matrices (default $\mathbf{G}=\mathbf{I}$ and $\mathbf{H}=\mathbf{0}$ ) parameter.
Programmatic Use
Block Parameter: G
Type: string, character vector
Values: scalar | vector | matrix
Default: "1"
Time-invariant $\mathbf{G}$ - Specify the $G$ matrix is time invariant
on (default) | off
If you unselect this option, the block includes an additional input port $\mathbf{G}$.

## Programmatic Use

Block Parameter: TimeInvariantG
Type: string, character vector
Values: "off" | "on"
Default: "on"
H - Specify the H matrix
0 (default) | non-negative scalar|vector|matrix

It must be a real matrix with as many rows as the $\mathbf{C}$ matrix and as many columns as the $\mathbf{G}$ matrix. The default value is 0 .

## Dependencies

To enable this paramter, select Use $\mathbf{G}$ and $\mathbf{H}$ matrices (default $\mathbf{G}=\mathbf{I}$ and $\mathbf{H}=\mathbf{0}$ ) parameter.

```
Programmatic Use
Block Parameter: H
Type: string, character vector
Values: scalar | vector | matrix
Default: "0"
```

Time-invariant $\mathbf{H}$ - Specify the H matrix is time invariant
on (default) | off
If you unselect this option, the block includes an additional input port $\mathbf{H}$.
Programmatic Use
Block Parameter: TimeInvariantH
Type: string, character vector
Values: "off" | "on"
Default: "on"
Number of process noise inputs - Process noise inputs
1 (default)| non-negative scalar
Specify the number of process noise inputs in the model. The default value is 1 .

## Dependencies

This parameter is available only when Time-invariant G and Time-invariant H are deselected. Otherwise, this information is inferred from the $\mathbf{G}$ or $\mathbf{H}$ matrix.

## Programmatic Use

Block Parameter: NumberOfProcessNoiseInputs
Type: string, character vector
Values: scalar
Default: "1"
Q - Process noise covariance matrix
0.05 (default)| non-negative scalar|vector|matrix

Specified as one of the following:

- Real nonnegative scalar. $\mathbf{Q}$ is an $N w$-by- $N w$ diagonal matrix with the scalar on the diagonals. $N w$ is the number of process noise inputs in the model.
- Vector of real nonnegative scalars. $\mathbf{Q}$ is an $N w$-by- $N w$ diagonal matrix with the elements of the vector on the diagonals of $\mathbf{Q}$.
- $N w$-by- $N w$ positive semi-definite matrix.


## Dependencies

To enable this paramater, select the Time-invariant $\mathbf{Q}$ parameter.

Programmatic Use
Block Parameter: Q
Type: string, character vector
Values: scalar | vector | matrix
Default: "0.05"
Time-invariant $\mathbf{Q}$ - Specify if Q matrix is time invariant
on (default) | off
If you deselect this parameter, the block includes an additional input port $\mathbf{Q}$.
Programmatic Use
Block Parameter: TimeInvariantQ
Type: string, character vector
Values: "off" |"on"
Default: "on"
R - Measurement noise covariance matrix
1 (default)| non-negative scalar|vector|matrix
Specified as one of the following:

- Real positive scalar. $\mathbf{R}$ is an Ny -by-Ny diagonal matrix with the scalar on the diagonals. Ny is the number of measured outputs in the model.
- Vector of real positive scalars. $\mathbf{R}$ is an $N y$-by-Ny diagonal matrix with the elements of the vector on the diagonals of $\mathbf{R}$.
- $N y$-by-Ny positive-definite matrix.


## Dependencies

To enable this paramater, select the Time-invariant $\mathbf{R}$ parameter.

```
Programmatic Use
Block Parameter: R
Type: string, character vector
Values: scalar | vector | matrix
Default: "1"
```

Time-invariant $\mathbf{R}$ - Specify if $R$ matrix is time invariant
on (default) | off
If you deselect this parameter, the block includes an additional input port $\mathbf{R}$.
Programmatic Use
Block Parameter: TimeInvariantR
Type: string, character vector
Values: "off" |"on"
Default: "on"
$\mathbf{N}$ - Process and measurement noise cross-covariance matrix
0 (default)| non-negative scalar|vector|matrix
Specify this parameter as a $N w$-by-Ny matrix. The matrix $\left[Q N ; N^{T} R\right]$ must be positive definite.

## Dependencies

To enable this paramater, select the Time-invariant $\mathbf{N}$ parameter.
Programmatic Use
Block Parameter: N
Type: string, character vector
Values: scalar | vector | matrix
Default: "0"

Time-invariant $\mathbf{N}$ - Specify if N matrix is time invariant
on (default) |off

If you deselect this parameter, the block includes an additional input port $\mathbf{N}$.
Programmatic Use
Block Parameter: TimeInvariantN
Type: string, character vector
Values: "off" |"on"
Default: "on"

Options
Additional Inports
Add input port u - Specify if model contains known inputs
on (default) | off
Select this option if your model contains known inputs $u(t)$ or $u[k]$. The parameter is selected by default. Deselecting this parameter removes the input port $\mathbf{u}$ from the block and removes the $\mathbf{B}, \mathbf{D}$ and Number of inputs parameters from the block dialog box.

## Programmatic Use

Block Parameter: AddInputPort
Type: string, character vector
Values: "off" | "on"
Default: "on"

Add input port Enable to control measurement updates - Control the measurement updates off (default) | on

Select this option if you want to control the measurement updates. The block includes an additional inport Enable. The Enable input port takes a scalar signal. This parameter is not selected by default.

By default the block does measurement updates at each time step to improve the state and output estimates $\widehat{x}$ and $\widehat{y}$ based on measured outputs. The measurement update is skipped for the current sample time when the signal in the Enable port is 0. Concretely, the equation for state estimates become $\widehat{\widehat{x}}(t)=A(t) \widehat{x}(t)+B(t) u(t)$ for a continuous-time Kalman filter and $\widehat{x}[n+1 \mid n]=A[n] \widehat{x}[n \mid n-1]+B[n] u[n]$ for discrete-time.

Note Enabling the Enable port allows measurement updates to be controlled. By default, Kalman Filter does the measurement updates.

Programmatic Use
Block Parameter: AddEnablePort
Type: string, character vector
Values: "off"|"on"
Default: "off"
External Reset - Option to reset estimated states and parameter covariance matrix using specified initial values
None (default) | Rising | Falling | Either| Level| Level hold
This parameter helps control when the block is reset. Suppose you reset the block at a time step, $t$. If the block is enabled at $t$, the software uses the initial parameter values specified either in the block dialog or the input ports $\mathbf{P 0}$ and $\mathbf{X 0}$ to estimate the states. In other words, at $t$, the block performs a time update and, if it is enabled, a measurement update after the reset. The block outputs these updated estimates.

Specify one of the following:

- None (Default) - Estimated states $\widehat{\chi}$ and state estimation error covariance matrix $\mathbf{P}$ values are not reset.
- Rising - Triggers a reset when the control signal rises from a negative or zero value to a positive value. If the initial value is negative, rising to zero triggers a reset.
- Falling - Triggers a reset when the control signal falls from a positive or zero value to a negative value. If the initial value is positive, falling to zero triggers a reset.
- Either - Triggers a reset when the control signal is either rising or falling.
- Level - Triggers a reset in either of these cases:
- The control signal is nonzero at the current time step.
- The control signal changes from nonzero at the previous time step to zero at the current time step.
- Level hold - Triggers reset when the control signal is nonzero at the current time step.

When you choose an option other than None, a Reset input port is added to the block to provide the reset control input signal.

```
Programmatic Use
Block Parameter: ExternalReset
Type: string, character vector
Values: "None" | "Rising" | "Falling" | "Either" | "Level" | "Level hold"
Default: "None"
Additional Outports
Output estimated model output y - Include estimated model outputs
off (default)| on
```

Add a $\widehat{y}$ output port to the block to output the estimated model outputs. The parameter is not selected by default.

Programmatic Use
Block Parameter: OutputEstimatedY
Type: string, character vector
Values: "off" | "on"

Default: "off"
Output state estimation error covariance Z - Add Z output port to the block off (default) | on

Add a $\mathbf{Z}$ output port to the block. The $\mathbf{Z}$ matrix is provided only when Time domain is Discrete-Time and the Use the current measurement y[n] to improve xhat[n] parameter is selected. Otherwise, the $\mathbf{P}$ matrix, as described in the "Algorithms" (System Identification Toolbox) section, is provided.

This parameter is not selected by default.

## Programmatic Use

Block Parameter: OutputZ
Type: string, character vector
Values: "off" | "on"
Default: "off"
Output state estimation error covariance $\mathbf{P}$ - Add P output port to the block
off (default) | on
Add a $\mathbf{P}$ output port to the block. This parameter is not selected by default.

## Dependencies

To enable this port, set the Time domain parameter to Continuous-Time or set the Time domain parameter to Discrete-Time and deselect Use the current measurement y[n] to improve xhat[n] parameter.

```
Programmatic Use
Block Parameter: OutputP
Type: string, character vector
Values: "off" |"on"
Default: "off"
```


## Algorithms

## Continuous-Time Estimation

Given the continuous plant

$$
\begin{aligned}
& \dot{x}(t)=A(t) x(t)+B(t) u(t)+G(t) w(t) \quad \text { (state equation) } \\
& y(t)=C(t) x(t)+D(t) u(t)+H(t) w(t)+v(t) \quad \text { (measurement equation) }
\end{aligned}
$$

with known inputs $u$, white process noise $w$, and white measurement noise $v$ satisfying

$$
\begin{aligned}
& E[w(t)]=E[v(t)]=0 \\
& E\left[w(t) w^{T}(t)\right]=Q(t) \\
& E\left[w(t) v^{T}(t)\right]=N(t) \\
& E\left[v(t) v\left(^{(t}\right]=R(t)\right.
\end{aligned}
$$

construct a state estimate $\widehat{x}$ that minimizes the state estimation error covariance $P(t)=E\left[(x-\widehat{x})(x-\widehat{x})^{T}\right]$.

The optimal solution is the Kalman filter with equations

$$
\begin{aligned}
& L(t)=\left(P(t) C^{T}(t)+\bar{N}(t)\right) \bar{R}\left({ }^{t},\right. \\
& \dot{P}(t)=A(t) P(t)+P(t) A^{T}(t)+\bar{Q}(t)-L(t) \bar{R}(t) L^{T}(t), \\
& \dot{\hat{x}}(t)=A(t) \widehat{x}(t)+B(t) u(t)+L(t)(y(t)-C(t) \widehat{x}(t)-D(t) u(t)),
\end{aligned}
$$

where

$$
\begin{aligned}
& \bar{Q}(t)=G(t) Q(t) G^{T}(t), \\
& \bar{R}(t)=R(t)+H(t) N(t)+N^{T}(t) H^{T}(t)+H(t) Q(t) H^{T}(t), \\
& \bar{N}(t)=G(t)\left(Q(t) H^{T}(t)+N(t)\right) .
\end{aligned}
$$

The Kalman filter uses known inputs $u$ and measurements $y$ to generate state estimates $\widehat{x}$. If you want, the block can also output the estimates of the true plant output $\widehat{y}$.


The block implements the steady-state Kalman filter when the system matrices $(A(t), B(t), C(t)$, $D(t), G(t), H(t))$ and noise covariance matrices $(Q(t), R(t), N(t))$ are constant (specified in the Block Parameters dialog box). The steady-state Kalman filter uses a constant matrix P that minimizes the steady-state estimation error covariance and solves the associated continuous-time algebraic Riccati equation:

$$
P=\lim _{t \rightarrow \infty} E\left[(x-\widehat{x})(x-\widehat{x})^{T}\right] .
$$

## Discrete-Time Estimation

Consider the discrete plant

$$
\begin{aligned}
& x[n+1]=A[n] x[n]+B[n] u[n]+G[n] w[n], \\
& y[n]=C[n] x[n]+D[n] u[n]+H[n] w[n]+v[n],
\end{aligned}
$$

with known inputs $u$, white process noise $w$, and white measurement noise $v$ satisfying

$$
\begin{aligned}
& E[w[n]]=E[v[n]]=0, \\
& E\left[w[n] w^{T}[n]\right]=Q[n], \\
& E\left[v[n] v^{T}[n]\right]=R[n], \\
& E\left[w[n] v^{T}[n]\right]=N[n] .
\end{aligned}
$$

The estimator has the following state equation

$$
\widehat{x}[n+1 \mid n]=A[n] \widehat{x}[n \mid n-1]+B[n] u[n]+L[n](y[n]-C[n] \widehat{x}[n \mid n-1]-D[n] u[n]),
$$

where the gain $\mathrm{L}[\mathrm{n}]$ is calculated through the discrete Riccati equation:

$$
\begin{aligned}
& L[n]=\left(A[n] P[n] C^{T}[n]+\bar{N}[n]\right) C^{C}, \\
& M[n]=P[n] C^{T}[n] C^{C}, \\
& Z[n]=(I-M[n] C[n]) P[n]\left(^{I}+M[n] \bar{R}[n] M^{T}[n],\right. \\
& P[n+1]=\left(A[n]-\bar{N}[n] \bar{R}^{-1}[n] C[n]\right) Z\left(^{A}+\bar{Q}[n]-N[n] \bar{R}^{-1}[n] \bar{N}^{T}[n],\right.
\end{aligned}
$$

where I is the identity matrix of appropriate size and

$$
\begin{aligned}
& \bar{Q}[\mathrm{n}]=G[\mathrm{n}] Q[\mathrm{n}] G^{T}[\mathrm{n}], \\
& \bar{R}[\mathrm{n}]=R[\mathrm{n}]+H[\mathrm{n}] N[\mathrm{n}]+N^{T}[\mathrm{n}] H^{T}[\mathrm{n}]+H[\mathrm{n}] Q[\mathrm{n}] H^{T}[\mathrm{n}], \\
& \bar{N}[\mathrm{n}]=G[\mathrm{n}]\left(Q[\mathrm{n}] H^{T}[\mathrm{n}]+N[\mathrm{n}]\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& P[\mathrm{n}]=E\left[(x-\widehat{x}[n \mid n-1])\left({ }^{x}\right],\right. \\
& Z[\mathrm{n}]=E\left[(x-\widehat{x}[n \mid n])\left({ }^{x}\right],\right.
\end{aligned}
$$

The steady-state Kalman filter uses a constant matrix P that minimizes the steady-state estimation error covariance and solves the associated discrete-time algebraic Riccati equation.

There are two variants of discrete-time Kalman filters:

- The current estimator generates the state estimates $\widehat{x}[n \mid n]$ using all measurements available, including $y[n]$. The filter updates $\widehat{x}[n \mid n-1]$ with $y[n]$ and outputs:

$$
\begin{aligned}
& \widehat{x}[n \mid n]=\widehat{x}[n \mid n-1]+M[n](y[n]-C[n] \widehat{x}[n \mid n-1]-D[n] u[n]), \\
& \widehat{y}[n \mid n]=C[n] \widehat{x}[n \mid n]+D[n] u[n] .
\end{aligned}
$$

- The delayed estimator generates the state estimates $\widehat{x}[n \mid n-1]$ using measurements up to $y[n-1]$. The filter outputs $\widehat{x}[n \mid n-1]$ as defined previously, along with the optional output

$$
\widehat{y}[n \mid n-1]=C[n] \widehat{x}[n \mid n-1]+D[n] u[n]
$$

The current estimator has better estimation accuracy than the delayed estimator, which is important for slow sample times. However, it has a higher computational cost, so implementing it inside control loops is harder. More specifically, it has direct feedthrough which leads to an algebraic loop if the Kalman filter is used in a feedback loop that does not contain any delays (the feedback loop itself also has direct feedthrough). This algebraic loop can impact the speed of simulation, and you cannot generate code if your model contains algebraic loops.

## Version History

## Introduced in R2014b

Starting in 2021a, numerical improvements in the algorithms used by the Kalman Filter block might produce results that are different from the results you obtained using previous versions.

## References

[1] Franklin, Gene F., J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems. 2nd ed. Reading, Mass: Addison-Wesley, 1990.
[2] Lewis, Frank L. Optimal Estimation: With an Introduction to Stochastic Control Theory. New York: Wiley, 1986.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\text {TM }}$.

## PLC Code Generation

Generate Structured Text code using Simulink $®$ PLC Coder ${ }^{\mathrm{TM}}$.

## See Also

## Functions

kalman | extendedKalmanFilter|unscentedKalmanFilter|kalmd|particleFilter
Blocks
Extended Kalman Filter | Unscented Kalman Filter | Particle Filter
Topics
"Validate Online State Estimation in Simulink"
"Troubleshoot Online State Estimation"

## Extended Kalman Filter

Estimate states of discrete-time nonlinear system using extended Kalman filter


## Libraries:

Control System Toolbox / State Estimation
System Identification Toolbox / Estimators

## Description

The Extended Kalman Filter block estimates the states of a discrete-time nonlinear system using the first-order discrete-time extended Kalman filter algorithm.

Consider a plant with states $x$, input $u$, output $y$, process noise $w$, and measurement noise $v$. Assume that you can represent the plant as a nonlinear system.


Using the state transition and measurement functions of the system and the extended Kalman filter algorithm, the block produces state estimates $\widehat{x}$ for the current time step. For information about the algorithm, see "Extended and Unscented Kalman Filter Algorithms for Online State Estimation".

You create the nonlinear state transition function and measurement functions for the system and specify these functions in the block. The block supports state estimation of a system with multiple sensors that are operating at different sampling rates. You can specify up to five measurement functions, each corresponding to a sensor in the system. You can also specify the Jacobians of the state transition and measurement functions. If you do not specify them, the software numerically computes the Jacobians. For more information, see "State Transition and Measurement Functions" on page 3-46.

## Ports

## Input

$\mathbf{y 1}, \mathbf{y 2}, \mathbf{y 3}, \mathbf{y 4}, \mathbf{y 5}$ - Measured system outputs
vector
Measured system outputs corresponding to each measurement function that you specify in the block. The number of ports equals the number of measurement functions in your system. You can specify up to five measurement functions. For example, if your system has two sensors, you specify two
measurement functions in the block. The first port $\mathbf{y 1}$ is available by default. When you click Apply, the software generates port $\mathbf{y 2}$ corresponding to the second measurement function.

Specify the ports as $N$-dimensional vectors, where $N$ is the number of quantities measured by the corresponding sensor. For example, if your system has one sensor that measures the position and velocity of an object, then there is only one port $\mathbf{y 1}$. The port is specified as a 2 -dimensional vector with values corresponding to position and velocity.

## Dependencies

The first port $\mathbf{y} \mathbf{1}$ is available by default. Ports $\mathbf{y} \mathbf{2}$ to $\mathbf{y 5}$ are generated when you click Add Measurement, and click Apply.
Data Types: single | double
StateTransitionFcnInputs - Additional optional input argument to state transition function scalar | vector | matrix

Additional optional input argument to the state transition function $f$ other than the state $x$ and process noise w. For information about state transition functions see, "State Transition and Measurement Functions" on page 3-46.

Suppose that your system has nonadditive process noise, and the state transition function $f$ has the following form:

```
x(k+1) = f(x(k),w(k),StateTransitionFcnInputs)
```

Here k is the time step, and StateTransitionFcnInputs is an additional input argument other than $x$ and $w$.

If you create f using a MATLAB function (.m file), the software generates the port
StateTransitionFcnInputs when you click Apply. You can specify the inputs to this port as a scalar, vector, or matrix.

If your state transition function has more than one additional input, use a Simulink Function block to specify the function. When you use a Simulink Function block, you provide the additional inputs directly to the Simulink Function block using Inport blocks. No input ports are generated for the additional inputs in the Extended Kalman Filter block.

## Dependencies

This port is generated only if both of the following conditions are satisfied:

- You specify $f$ in Function using a MATLAB function, and $f$ is on the MATLAB path.
- frequires only one additional input argument apart from $x$ and $w$.


## Data Types: single | double

MeasurementFcn1Inputs,MeasurementFcn2Inputs,MeasurementFcn3Inputs,MeasurementF cn4Inputs, MeasurementFcn5Inputs - Additional optional input argument to each measurement function
scalar | vector | matrix
Additional optional inputs to the measurement functions other than the state x and measurement noise v. For information about measurement functions see, "State Transition and Measurement Functions" on page 3-46.

MeasurementFcn1Inputs corresponds to the first measurement function that you specify, and so on. For example, suppose that your system has three sensors and nonadditive measurement noise, and the three measurement functions h1, h2, and h3 have the following form:

```
y1[k] = h1(x[k],v1[k],MeasurementFcn1Inputs)
y2[k] = h2(x[k],v2[k],MeasurementFcn2Inputs)
y3[k] = h3(x[k],v3[k])
```

Here k is the time step, and MeasurementFcn1Inputs and MeasurementFcn2Inputs are the additional input arguments to h 1 and h 2 .

If you specify h1, h2, and h3 using MATLAB functions (.m files) in Function, the software generates ports MeasurementFcn1Inputs and MeasurementFcn2Inputs when you click Apply. You can specify the inputs to these ports as scalars, vectors, or matrices.

If your measurement functions have more than one additional input, use Simulink Function blocks to specify the functions. When you use a Simulink Function block, you provide the additional inputs directly to the Simulink Function block using Inport blocks. No input ports are generated for the additional inputs in the Extended Kalman Filter block.

## Dependencies

A port corresponding to a measurement function $h$ is generated only if both of the following conditions are satisfied:

- You specify $h$ in Function using a MATLAB function, and $h$ is on the MATLAB path.
- $h$ requires only one additional input argument apart from $x$ and $v$.

Data Types: single | double
Q - Time-varying process noise covariance
scalar | vector | matrix
Time-varying process noise covariance, specified as a scalar, vector, or matrix depending on the value of the Process noise parameter:

- Process noise is Additive - Specify the covariance as a scalar, an Ns-element vector, or an Ns-by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no crosscorrelation between process noise terms, and all the terms have the same variance. Specify a vector of length $N s$, if there is no cross-correlation between process noise terms, but all the terms have different variances.
- Process noise is Nonadditive - Specify the covariance as a $W$-by- $W$ matrix, where $W$ is the number of process noise terms in the state transition function.


## Dependencies

This port is generated if you specify the process noise covariance as Time-Varying. The port appears when you click Apply.
Data Types: single | double
$\mathbf{R 1}, \mathbf{R 2}, \mathbf{R 3}, \mathbf{R 4}, \mathbf{R 5}$ - Time-varying measurement noise covariance
matrix

Time-varying measurement noise covariances for up to five measurement functions of the system, specified as matrices. The sizes of the matrices depend on the value of the Measurement noise parameter for the corresponding measurement function:

- Measurement noise is Additive - Specify the covariance as an $N$-by- $N$ matrix, where $N$ is the number of measurements of the system.
- Measurement noise is Nonadditive - Specify the covariance as a $V$-by- $V$ matrix, where $V$ is the number of measurement noise terms in the corresponding measurement function.


## Dependencies

A port is generated if you specify the measurement noise covariance as Time-Varying for the corresponding measurement function. The port appears when you click Apply.
Data Types: single|double
Enable1,Enable2,Enable3,Enable4,Enable5 - Enable correction of estimated states when measured data is available scalar

Suppose that measured output data is not available at all time points at the port $\mathbf{y} \mathbf{1}$ that corresponds to the first measurement function. Use a signal value other than 0 at the Enable1 port to enable the correction of estimated states when measured data is available. Specify the port value as 0 when measured data is not available. Similarly, if measured output data is not available at all time points at the port yi for the $i^{\text {th }}$ measurement function, specify the corresponding port Enablei as a value other than 0.

## Dependencies

A port corresponding to a measurement function is generated if you select Add Enable port for that measurement function. The port appears when you click Apply.
Data Types: single|double|Boolean

## Output

xhat - Estimated states
vector
Estimated states, returned as a vector of size $N s$, where $N s$ is the number of states of the system. To access the individual states, use the Selector block.

When the Use the current measurements to improve state estimates parameter is selected, the block outputs the corrected state estimate $\widehat{x}[k \mid k]$ at time step k , estimated using measured outputs until time k . If you clear this parameter, the block returns the predicted state estimate $\widehat{x}[k \mid k-1]$ for time k, estimated using measured output until a previous time k-1. Clear this parameter if your filter is in a feedback loop and there is an algebraic loop in your Simulink model.

Data Types: single | double
P - State estimation error covariance
matrix
State estimation error covariance, returned as an Ns-by-Ns matrix, where Ns is the number of states of the system. To access the individual covariances, use the Selector block.

## Dependencies

This port is generated if you select Output state estimation error covariance in the System Model tab, and click Apply.

Data Types: single|double

## Parameters

## System Model Tab

## State Transition

Function - State transition function name
myStateTransitionFcn (default) | function name
The state transition function calculates the $N s$-element state vector of the system at time step $k+1$, given the state vector at time step $k$. Ns is the number of states of the nonlinear system. You create the state transition function and specify the function name in Function. For example, if vdpStateFcn.m is the state transition function that you created and saved, specify Function as vdpStateFcn.

The inputs to the function you create depend on whether you specify the process noise as additive or nonadditive in Process noise.

- Process noise is Additive - The state transition function $f$ specifies how the states evolve as a function of state values at previous time step:
$x(k+1)=f(x(k), U s 1(k), \ldots, U s n(k))$,
where $x(k)$ is the estimated state at time $k$, and Us1, ... Usn are any additional input arguments required by your state transition function, such as system inputs or the sample time. To see an example of a state transition function with additive process noise, type edit vdpStateFcn at the command line.
- Process noise is Nonadditive - The state transition function also specifies how the states evolve as a function of the process noise w :
$x(k+1)=f(x(k), w(k), U s 1(k), \ldots, U s n(k))$.
For more information, see "State Transition and Measurement Functions" on page 3-46.
You can create $f$ using a Simulink Function block or as a MATLAB function (.m file).
- You can use a MATLAB function only if $f$ has one additional input argument Us1 other than x and w.
$x(k+1)=f(x(k), w(k), U s 1(k))$
The software generates an additional input port StateTransitionFenInputs to specify this argument.
- If you are using a Simulink Function block, specify x and w using Argument Inport blocks and the additional inputs Us 1, . . . Usn using Inport blocks in the Simulink Function block. You do not provide Us1, . . . , Usn to the Extended Kalman Filter block.

```
Programmatic Use
Block Parameter: StateTransitionFcn
Type: character vector, string
Default: 'myStateTransitionFcn'
Jacobian - Jacobian of state transition function
off (default)| on
```

Jacobian of state transition function $f$, specified as one of the following:

- off - The software computes the Jacobian numerically. This computation may increase processing time and numerical inaccuracy of the state estimation.
- on - You create a function to compute the Jacobian, and specify the name of the function in Jacobian. For example, if vdpStateJacobianFcn.m is the Jacobian function, specify Jacobian as vdpStateJacobianFcn. If you create the state transition function $f$ using a Simulink Function block, then create the Jacobian using a Simulink Function block. If you create $f$ using a MATLAB function (. m file), then create the Jacobian using a MATLAB function.

The function calculates the partial derivatives of the state transition function with respect to the states and process noise. The number of inputs to the Jacobian function must equal the number of inputs of the state transition function and must be specified in the same order in both functions. The number of outputs of the Jacobian function depends on the Process noise parameter:

- Process noise is Additive - The function calculates the partial derivative of the state transition function $f$ with respect to the states ( $\partial f / \partial x$ ). The output is an $N s$-by-Ns Jacobian matrix, where $N s$ is the number of states.

To see an example of a Jacobian function for additive process noise, type edit vdpStateJacobianFcn at the command line.

- Process noise is Nonadditive - The function must also return a second output that is the partial derivative of the state transition function $f$ with respect to the process noise terms $(\partial f / \partial w)$. The second output is returned as an $N s$-by- $W$ matrix, where $W$ is the number of process noise terms in the state transition function.

Programmatic Use
Block Parameter: HasStateTransitionJacobianFcn
Type: character vector
Values: 'off','on'
Default: 'off'
Block Parameter: StateTransitionJacobianFcn
Type: character vector, string
Default: ' '
Process noise - Process noise characteristics
Additive (default) | Nonadditive
Process noise characteristics, specified as one of the following values:

- Additive - Process noise $w$ is additive, and the state transition function $f$ that you specify in Function has the following form:
$x(k+1)=f(x(k), U s 1(k), \ldots, U s n(k))$,
where $x(k)$ is the estimated state at time $k$, and Us $1, \ldots$, Usn are any additional input arguments required by your state transition function.
- Nonadditive - Process noise is nonadditive, and the state transition function specifies how the states evolve as a function of the state and process noise at the previous time step:

$$
x(k+1)=f(x(k), w(k), U s 1(k), \ldots, U s n(k)) .
$$

Programmatic Use
Block Parameter: HasAdditiveProcessNoise
Type: character vector
Values: 'Additive', 'Nonadditive'
Default: 'Additive'
Covariance - Time-invariant process noise covariance
1 (default) | scalar | vector | matrix
Time-invariant process noise covariance, specified as a scalar, vector, or matrix depending on the value of the Process noise parameter:

- Process noise is Additive - Specify the covariance as a scalar, an Ns-element vector, or an Ns-by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no crosscorrelation between process noise terms and all the terms have the same variance. Specify a vector of length $N s$, if there is no cross-correlation between process noise terms but all the terms have different variances.
- Process noise is Nonadditive - Specify the covariance as a $W$-by- $W$ matrix, where $W$ is the number of process noise terms.

If the process noise covariance is time-varying, select Time-varying. The block generates input port $\mathbf{Q}$ to specify the time-varying covariance.

## Dependencies

This parameter is enabled if you do not specify the process noise as Time-Varying.

## Programmatic Use

Block Parameter: ProcessNoise
Type: character vector, string
Default: '1'
Time-varying - Time-varying process noise covariance
'off' (default) |'on'
If you select this parameter, the block includes an additional input port $\mathbf{Q}$ to specify the time-varying process noise covariance.

```
Programmatic Use
Block Parameter: HasTimeVaryingProcessNoise
Type: character vector
Values: 'off','on'
Default: 'off'
Initialization
Initial state - Initial state estimate
0 (default) | vector
```

Initial state estimate value, specified as an $N s$-element vector, where $N s$ is the number of states in the system. Specify the initial state values based on your knowledge of the system.

Programmatic Use
Block Parameter: InitialState
Type: character vector, string
Default: ' 0 '
Initial covariance - State estimation error covariance
1 (default) | scalar | vector | matrix
State estimation error covariance, specified as a scalar, an $N s$-element vector, or an $N s$-by- $N s$ matrix, where $N s$ is the number of states of the system. If you specify a scalar or vector, the software creates an $N s$-by- $N s$ diagonal matrix with the scalar or vector elements on the diagonal.

Specify a high value for the covariance when you do not have confidence in the initial state values that you specify in Initial state.

Programmatic Use
Block Parameter: InitialStateCovariance
Type: character vector, string
Default: '1'
Measurement
Function - Measurement function name
myMeasurementFcn (default) | function name
The measurement function calculates the $N$-element output measurement vector of the nonlinear system at time step $k$, given the state vector at time step $k$. You create the measurement function and specify the function name in Function. For example, if vdpMeasurementFcn.m is the measurement function that you created and saved, specify Function as vdpMeasurementFcn.

The inputs to the function you create depend on whether you specify the measurement noise as additive or nonadditive in Measurement noise.

- Measurement noise is Additive - The measurement function $h$ specifies how the measurements evolve as a function of state Values:
$y(k)=h(x(k), \operatorname{Um1}(k), \ldots, \operatorname{Umn}(k))$,
where $y(k)$ and $x(k)$ are the estimated output and estimated state at time $k$, and Um1, ... Umn are any optional input arguments required by your measurement function. For example, if you are using a sensor for tracking an object, an additional input could be the sensor position.

To see an example of a measurement function with additive process noise, type edit vdpMeasurementFcn at the command line.

- Measurement noise is Nonadditive- The measurement function also specifies how the output measurement evolves as a function of the measurement noise $v$ :
$y(k)=h(x(k), v(k), \operatorname{Um1}(k), \ldots, \operatorname{Umn}(k))$.
To see an example of a measurement function with nonadditive process noise, type edit vdpMeasurementNonAdditiveNoiseFcn.

For more information, see "State Transition and Measurement Functions" on page 3-46.
You can create $h$ using a Simulink Function block or as a MATLAB function (.m file).

- You can use a MATLAB function only if $h$ has one additional input argument Um1 other than $x$ and v.
$y[k]=h(x[k], v[k], \operatorname{Um} 1(k))$
The software generates an additional input port MeasurementFcniInputs to specify this argument for the $i$ th measurement function.
- If you are using a Simulink Function block, specify $x$ and $v$ using Argument Inport blocks and the additional inputs Um1, . . . Umn using Inport blocks in the Simulink Function block. You do not provide Um1 , . . . , Umn to the Extended Kalman Filter block.

If you have multiple sensors in your system, you can specify multiple measurement functions. You can specify up to five measurement functions using the Add Measurement button. To remove measurement functions, use Remove Measurement.

```
Programmatic Use
Block Parameter: MeasurementFcn1, MeasurementFcn2, MeasurementFcn3,
MeasurementFcn4, MeasurementFcn5
Type: character vector, string
Default: 'myMeasurementFcn'
Jacobian - Jacobian of measurement function
off (default) | on
```

Jacobian of measurement function $h$, specified as one of the following:

- off - The software computes the Jacobian numerically. This computation may increase processing time and numerical inaccuracy of the state estimation.
- on - You create a function to compute the Jacobian of the measurement function $h$, and specify the name of the function in Jacobian. For example, if vdpMeasurementJacobianFcn.m is the Jacobian function, specify MeasurementJacobianFcn as vdpMeasurementJacobianFcn. If you create $h$ using a Simulink Function block, then create the Jacobian using a Simulink Function block. If you create $h$ using a MATLAB function (. m file), then create the Jacobian using a MATLAB function.

The function calculates the partial derivatives of the measurement function $h$ with respect to the states and measurement noise. The number of inputs to the Jacobian function must equal the number of inputs to the measurement function and must be specified in the same order in both functions. The number of outputs of the Jacobian function depends on the Measurement noise parameter:

- Measurement noise is Additive - The function calculates the partial derivatives of the measurement function with respect to the states ( $\partial h / \partial x$ ). The output is as an $N$-by-Ns Jacobian matrix, where $N$ is the number of measurements of the system and $N s$ is the number of states.

To see an example of a Jacobian function for additive measurement noise, type edit vdpMeasurementJacobianFcn at the command line.

- Measurement noise is Nonadditive - The function also returns a second output that is the partial derivative of the measurement function with respect to the measurement noise terms $(\partial h / \partial v)$. The second output is returned as an $N$-by- $V$ Jacobian matrix, where $V$ is the number of measurement noise terms.

```
Programmatic Use
Block Parameter: HasMeasurementJacobianFcn1, HasMeasurementJacobianFcn2,
HasMeasurementJacobianFcn3,
HasMeasurementJacobianFcn4,HasMeasurementJacobianFcn5
Type: character vector
Values: 'off','on'
Default: 'off'
Block Parameter: MeasurementJacobianFcn1, MeasurementJacobianFcn2,
MeasurementJacobianFcn3, MeasurementJacobianFcn4, MeasurementJacobianFcn5
Type: character vector
Default: ''
Measurement noise - Measurement noise characteristics
Additive (default)| Nonadditive
```

Measurement noise characteristics, specified as one of the following values:

- Additive - Measurement noise $v$ is additive, and the measurement function $h$ that you specify in Function has the following form:
$y(k)=h(x(k), \operatorname{Um1}(k), \ldots, \operatorname{Umn}(k))$,
where $\mathrm{y}(\mathrm{k})$ and $\mathrm{x}(\mathrm{k})$ are the estimated output and estimated state at time k , and Um1, ..., Umn are any optional input arguments required by your measurement function.
- Nonadditive - Measurement noise is nonadditive, and the measurement function specifies how the output measurement evolves as a function of the state and measurement noise:

$$
y(k)=h(x(k), v(k), \operatorname{Um1}(k), \ldots, \operatorname{Umn}(k)) .
$$

## Programmatic Use

Block Parameter: HasAdditiveMeasurementNoise1, HasAdditiveMeasurementNoise2,
HasAdditiveMeasurementNoise3, HasAdditiveMeasurementNoise4,
HasAdditiveMeasurementNoise5
Type: character vector
Values: 'Additive', 'Nonadditive'
Default: 'Additive'
Has measurement wrapping - Enable measurement wrapping
off (default) | on
Select this parameter to enable measurement wrapping to estimate states when you have circular measurements that are independent of your model states. If you select this parameter, then the measurement function you specify must include the following two outputs:

1 The measurement, specified as a $N$-element output measurement vector of the nonlinear system at time step $k$, given the state vector at time step $k . N$ is the number of measurements of the system.
2 The measurement wrapping bounds, specified as an $N$-by- 2 matrix where, the first column provides the minimum measurement bound and the second column provides the maximum measurement bound.

Enabling the Has measurement wrapping check box wraps the measurement residuals in a defined bound, which helps to prevent the filter from divergence due to incorrect measurement residual
values. For an example, see "State Estimation with Wrapped Measurements Using Extended Kalman Filter".

Programmatic Use
Block Parameter: HasMeasurementWrapping1, HasMeasurementWrapping2, HasMeasurementWrapping3, HasMeasurementWrapping4, HasMeasurementWrapping5
Type: character vector
Values: 'off', 'on'
Default: 'off'
Covariance - Time-invariant process noise covariance
1 (default) | scalar | vector | matrix
Time-invariant process noise covariance, specified as a scalar, vector, or matrix depending on the value of the Process noise parameter:

- Process noise is Additive - Specify the covariance as a scalar, an Ns-element vector, or an Ns-by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no crosscorrelation between process noise terms and all the terms have the same variance. Specify a vector of length $N s$, if there is no cross-correlation between process noise terms but all the terms have different variances.
- Process noise is Nonadditive - Specify the covariance as a $W$-by- $W$ matrix, where $W$ is the number of process noise terms.

If the process noise covariance is time-varying, select Time-varying. The block generates input port $\mathbf{Q}$ to specify the time-varying covariance.

## Dependencies

This parameter is enabled if you do not specify the process noise as Time-Varying.
Programmatic Use
Block Parameter: ProcessNoise
Type: character vector, string
Default: ' 1 '
Time-varying - Time-varying measurement noise covariance
off (default) | on
If you select this parameter for the measurement noise covariance of the first measurement function, the block includes an additional input port R1. You specify the time-varying measurement noise covariance in R1. Similarly, if you select Time-varying for the $i^{\text {th }}$ measurement function, the block includes an additional input port Ri to specify the time-varying measurement noise covariance for that function.

## Programmatic Use

Block Parameter: HasTimeVaryingMeasurementNoise1, HasTimeVaryingMeasurementNoise2, HasTimeVaryingMeasurementNoise3, HasTimeVaryingMeasurementNoise4, HasTimeVaryingMeasurementNoise5 Type: character vector
Values: 'off', 'on'
Default: 'off'
Add Enable Port - Enable correction of estimated states only when measured data is available off (default) | on

Suppose that measured output data is not available at all time points at the port y1 that corresponds to the first measurement function. Select Add Enable port to generate an input port Enable1. Use a signal at this port to enable the correction of estimated states only when measured data is available. Similarly, if measured output data is not available at all time points at the port yi for the $i^{\text {th }}$ measurement function, select the corresponding Add Enable port.

```
Programmatic Use
Block Parameter: HasMeasurementEnablePort1, HasMeasurementEnablePort2,
HasMeasurementEnablePort3, HasMeasurementEnablePort4, HasMeasurementEnablePort5
Type: character vector
Values: 'off', 'on'
Default: 'off'
```


## Settings

```
Use the current measurements to improve state estimates - Choose between corrected or predicted state estimate
on (default) | off
```

When this parameter is selected, the block outputs the corrected state estimate $\widehat{x}[k \mid k]$ at time step k , estimated using measured outputs until time $k$. If you clear this parameter, the block returns the predicted state estimate $\widehat{x}[k \mid k-1]$ for time $k$, estimated using measured output until a previous time $\mathrm{k}-1$. Clear this parameter if your filter is in a feedback loop and there is an algebraic loop in your Simulink model.

Programmatic Use
Block Parameter: UseCurrentEstimator
Type: character vector
Values: 'off', 'on'
Default: 'on'
Output state estimation error covariance - Output state estimation error covariance off (default) | on

If you select this parameter, a state estimation error covariance output port $\mathbf{P}$ is generated in the block.

Programmatic Use
Block Parameter: OutputStateCovariance
Type: character vector
Values: 'off','on'
Default: 'off'
Data type - Data type for block parameters
double (default)| single
Use this parameter to specify the data type for all block parameters.
Programmatic Use
Block Parameter: DataType
Type: character vector
Values: 'single', 'double'
Default: 'double'
Sample time - Block sample time
1 (default) | positive scalar

Block sample time, specified as a positive scalar. If the sample times of your state transition and measurement functions are different, select Enable multirate operation in the Multirate tab, and specify the sample times in the Multirate tab instead.

## Dependencies

This parameter is available if in the Multirate tab, the Enable multirate operation parameter is off.

## Programmatic Use

Block Parameter: SampleTime
Type: character vector, string
Default: ' 1 '

## Multirate Tab

Enable multirate operation - Enable specification of different sample times for state transition and measurement functions
off (default) | on
Select this parameter if the sample times of the state transition and measurement functions are different. You specify the sample times in the Multirate tab, in Sample time.

## Programmatic Use

Block Parameter: EnableMultirate
Type: character vector
Values: 'off', 'on'
Default: 'off'
Sample times - State transition and measurement function sample times
positive scalar
If the sample times for state transition and measurement functions are different, specify Sample time. Specify the sample times for the measurement functions as positive integer multiples of the state transition sample time. The sample times you specify correspond to the following input ports:

- Ports corresponding to state transition function - Additional input to state transition function StateTransitionFcnInputs and time-varying process noise covariance $\mathbf{Q}$. The sample times of these ports must always equal the state transition function sample time, but can differ from the sample time of the measurement functions.
- Ports corresponding to $i^{\text {th }}$ measurement function - Measured output yi, additional input to measurement function MeasurementFcniInputs, enable signal at port Enablei, and timevarying measurement noise covariance Ri. The sample times of these ports for the same measurement function must always be the same, but can differ from the sample time for the state transition function and other measurement functions.


## Dependencies

This parameter is available if in the Multirate tab, the Enable multirate operation parameter is on.

```
Programmatic Use
Block Parameter: StateTransitionFcnSampleTime, MeasurementFcn1SampleTime1,
MeasurementFcn1SampleTime2, MeasurementFcn1SampleTime3,
MeasurementFcn1SampleTime4, MeasurementFcn1SampleTime5
```

Type: character vector, string
Default: ' 1 '

## More About

## State Transition and Measurement Functions

The algorithm computes the state estimates $\widehat{x}$ of the nonlinear system using state transition and measurement functions specified by you. You can specify up to five measurement functions, each corresponding to a sensor in the system. The software lets you specify the noise in these functions as additive or nonadditive.

- Additive Noise Terms - The state transition and measurements equations have the following form:

$$
\begin{aligned}
& x[k+1]=f\left(x[k], u_{S}[k]\right)+w[k] \\
& y[k]=h\left(x[k], u_{m}[k]\right)+v[k]
\end{aligned}
$$

Here $f$ is a nonlinear state transition function that describes the evolution of states $x$ from one time step to the next. The nonlinear measurement function $h$ relates $x$ to the measurements $y$ at time step k . w and v are the zero-mean, uncorrelated process and measurement noises, respectively. These functions can also have additional optional input arguments that are denoted by $u_{s}$ and $u_{m}$ in the equations. For example, the additional arguments could be time step $k$ or the inputs $u$ to the nonlinear system. There can be multiple such arguments.

Note that the noise terms in both equations are additive. That is, $x(k+1)$ is linearly related to the process noise $w(k)$, and $y(k)$ is linearly related to the measurement noise $v(k)$. For additive noise terms, you do not need to specify the noise terms in the state transition and measurement functions. The software adds the terms to the output of the functions.

- Nonadditive Noise Terms - The software also supports more complex state transition and measurement functions where the state $x[k]$ and measurement $y[k]$ are nonlinear functions of the process noise and measurement noise, respectively. When the noise terms are nonadditive, the state transition and measurements equation have the following form:

$$
\begin{aligned}
& x[k+1]=f\left(x[k], w[k], u_{s}[k]\right) \\
& y[k]=h\left(x[k], v[k], u_{m}[k]\right)
\end{aligned}
$$

## Version History

Introduced in R2017a

## R2020b: Numerical Changes

Behavior changed in R2020b
Starting in R2020b, numerical improvements in the Extended Kalman Filter algorithm might produce results that are different from the results you obtained in previous versions.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

The state transition, measurement, and Jacobian functions that you specify must use only the MATLAB commands and Simulink blocks that support code generation. For a list of blocks that support code generation, see "Blocks Supported for Code Generation" (Simulink Coder). For a list of commands that support code generation, see "Functions and Objects Supported for C/C++ Code Generation" (MATLAB Coder).

Generated code uses an algorithm that is different from the algorithm that the Extended Kalman Filter block itself uses. You might see some numerical differences in the results obtained using the two methods.

## See Also

## Blocks

Kalman Filter | Unscented Kalman Filter | Particle Filter

## Functions

extendedKalmanFilter|unscentedKalmanFilter|kalman| kalmd|particleFilter

## Topics

"Extended and Unscented Kalman Filter Algorithms for Online State Estimation"
"Validate Online State Estimation in Simulink"
"Troubleshoot Online State Estimation"

## External Websites

Understanding Kalman Filters: Nonlinear State Estimators - MATLAB Video Series

## LTI System

Use linear time invariant system model object in Simulink

## Libraries:



Control System Toolbox

## Description

The LTI System block imports linear system model objects into the Simulink environment. You specify the LTI model to import in the LTI system variable parameter. You can import any type of proper linear time-invariant dynamic system model. If the imported system is a state-space (ss) model, you can specify initial state values in the Initial states parameter.

## Ports

## Input

Port_1(In1) - Input signal
scalar | vector
For a single-input LTI system, the input signal is a scalar. For multiple-input systems, combine the system inputs into a vector signal, using blocks such as:

- Mux
- Vector Concatenate
- Bus Creator

Output
Port_1(Out1) - Output signal
scalar | vector
For a single-output LTI system, the output signal is a scalar. For multiple-output systems, the output signal is a vector. To split system outputs into scalar signals, use blocks such as:

- Demux
- Bus Selector


## Parameters

LTI system variable - Linear system
dynamic system model
Specify the linear system for the block as a MATLAB expression or a variable in the MATLAB workspace, the model workspace, or a data dictionary. The model can be SISO or MIMO.

Most linear time-invariant dynamic system models are supported, except:

- Frequency-response data models, such as frd and genfrd models.
- Nonlinear identified models, such as idnlarx.
- Models with unmodeled dynamics, such as udyn.

The specified model must be proper (see isproper).
The model can be either continuous time or discrete time. When the LTI system block is in a Simulink model with synchronous state control (see the State Control block), you must specify a discrete-time model.

Simulink converts the model to its state-space equivalent prior to initializing the simulation.
Initial states (state-space only) - Initial state values for state-space model
[ ] (default) | vector | scalar
If the linear system is in state-space form, specify the initial state values as a vector with as many entries as the system has states. If you specify a scalar value, the block applies that value to each state in the system. The default value, [ ], initializes all states to zero.

The concept of initial state is not well-defined for linear systems that are not in state-space form, such as transfer functions or zero-pole-gain models. For such models, the initial state depends on the choice of state coordinates used by the realization algorithm. As a result, the block ignores this parameter for such models.

## Version History

Introduced before R2006a

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{Tm}}$.

## See Also

LPV System

## Topics

"Import LTI Model Objects into Simulink"

## LPV System

Simulate Linear Parameter-Varying (LPV) systems


## Description

Represent and simulate Linear Parameter-Varying (LPV) systems in Simulink. The block also supports code generation.

A linear parameter-varying (LPV) system is a linear state-space model whose dynamics vary as a function of certain time-varying parameters called scheduling parameters. In MATLAB, an LPV model is represented in a state-space form using coefficients that are parameter dependent.

Mathematically, an LPV system is represented as:
$d x(t)=A(p) x(t)+B(p) u(t)$
$y(t)=C(p) x(t)+D(p) u(t)$
$x(0)=x_{0}$
where

- $u(t)$ are the inputs
- $y(t)$ the outputs
- $x(t)$ are the model states with initial value $x 0$
- $d x(t)$ is the state derivative vector $\dot{x}$ for continuous-time systems and the state update vector $x(t+\Delta T)$ for discrete-time systems. $\Delta T$ is the sample time.
- $A(p), B(p), C(p)$ and $D(p)$ are the state-space matrices parameterized by the scheduling parameter vector $p$.
- The parameters $p=p(t)$ are measurable functions of the inputs and the states of the model. They can be a scalar quantity or a vector of several parameters. The set of scheduling parameters define the scheduling space over which the LPV model is defined.

Caution Avoid making $C(p)$ and $D(p)$ depend on the system output $\mathbf{y}$. Otherwise, the resulting statespace equation $y=C(y) x+D(y) u$ creates an algebraic loop, because computing the output value $y$ requires knowing the output value. This algebraic loop is prone to instability and divergence. Instead, try expressing $C$ and $D$ in terms of the time $t$, the block input $\mathbf{u}$, and the state outputs $\mathbf{x}$.

For similar reasons, avoid scheduling $A(p)$ and $B(p)$ based on the dx output. Note that it is safe to for $A$ and $B$ to depend on $\mathbf{y}$ when $\mathbf{y}$ is a fixed combination of states and inputs, (in other words, when $y=$ $C x+D u$ where $C$ and $D$ are constant matrices).

The block implements a grid-based representation of the LPV system. You pick a grid of values for the scheduling parameters. At each value $p=p^{*}$, you specify the corresponding linear system as a state-space (ss or idss) model object. You use the generated array of state-space models to configure the LPV System block.

The block accepts an array of state-space models with operating point information. The information on the scheduling variables is extracted from the SamplingGrid property of the LTI array. The scheduling variables define the grid of the LPV models. They are scalar-valued quantities that can be functions of time, inputs and states, or constants. They are used to pick the local dynamics in the operating space. The software interpolates the values of these variables. The block uses this array with data interpolation and extrapolation techniques for simulation.

The LPV system representation can be extended to allow offsets in $d x, x, u$ and $y$ variables. This form is known as affine form of the LPV model. Mathematically, the following represents an LPV system:

$$
\begin{aligned}
& d x(t)=A(p) x(t)+B(p) u(t)+(\overline{d x}(p)-A(p) \bar{x}(p)-B(p) \bar{u}(p)) \\
& y(t)=C(p) x(t)+D(p) u(t)+(\bar{y}(p)-C(p) \bar{x}(p)-D(p) \bar{u}(p)) \\
& x(0)=x_{0}
\end{aligned}
$$

$\overline{d x}(p), \quad \bar{x}(p), \quad \bar{u}(p), \quad \bar{y}(p)$ are the offsets in the values of $\mathrm{dx}(\mathrm{t}), \mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ at a given parameter value $p=p(t)$.

To obtain such representations of the linear system array, linearize a Simulink model over a batch of operating points (see "Batch Linearization" (Simulink Control Design).) The offsets correspond to the operating points at which you linearized the model.

You can obtain the offsets by returning additional linearization information when calling functions such as linearize or getIOTransfer. You can then extract the offsets using getOffsetsForLPV. For an example, see "LPV Approximation of Boost Converter Model" (Simulink Control Design).

The following limitations apply to the LPV System block:

- Internal delays cannot be extrapolated to be less than their minimum value in the state-space model array.
- When using an irregular grid of linear models to define the LPV system, only the nearest neighbor interpolation scheme is used. This may reduce the accuracy of simulation results. It is recommended to work with regular grids. To learn more about regular and irregular grids, see "Regular vs. Irregular Grids".


## Data Type Support

Single and double data. You must convert any other data type for input signals or model properties to these data types.

## Parameters

The LPV System Block Parameter dialog box contains five tabs for specifying the system data, scheduling algorithm and output ports. The following table summarizes the block parameters.

| Task | Parameters |
| :---: | :---: |
| Specify an array of state-space models and initial states | In LPV Model tab: <br> - State-space array on page 3-53 <br> - Initial state on page 3-53 |
| Specify operating point offsets | In LPV Model tab: <br> - Input offset on page 3-53 <br> - Output offset on page 3-53 <br> - State offset on page 3-53 |
| Specify offsets in state derivative or update variable | In the LPV Model tab: <br> - State derivative/update offset on page 354 |
| Specify which model matrices are fixed and their nominal values to override entries in model data. In some situations, you may want to replace a parameter-dependent matrix such as $A(p)$ with a fixed value A* for simulation. For example, A* may represent an average value over the scheduling range. | In the Fixed Entries tab: <br> - Nominal Model on page 3-54 <br> - Fixed Coefficient Indices on page 3-55 |
| Specify options for interpolation and extrapolation | In the Scheduling tab: <br> - Interpolation method on page 3-55 <br> - Extrapolation method on page 3-56 <br> - Index search method on page 3-56 <br> - Begin index search using previous index result on page 3-56 |
| Specify additional outputs for the block | In the Outputs tab: <br> - Output states on page 3-56 <br> - Output state derivatives (continuoustime) or updates (discrete-time) on page 356 <br> - Output interpolated state-space data on page 3-56 <br> - Output interpolated offsets on page 3-56 |
| Specify code generation settings | In the Code Generation tab: <br> - Block data type (discrete-time case only) on page 3-57 <br> - Initial buffer size for delays on page 3-57 <br> - Use fixed buffer size on page 3-57 |

## State-space array

An array of state-space (ss or idss) models. All the models in the array must use the same definition of states. Use the SamplingGrid property of the state-space object to specify scheduling parameters for the model. See the ss or idss model reference page for more information on the SamplingGrid property.

When the block is in a model with synchronous state control (see the State Control block), you must specify an array of discrete-time models.

## Initial state

Initial conditions to use with the local model to start the simulation, specified one of the following:

- 0 (Default)
- Double vector of length equal to the number of model states


## Input offset

Offsets in input $u(t)$, specified as one of the following:

- 0 (Default) - Use when there are no input offsets $(\bar{u}(p)=0 \quad \forall p)$.
- Double vector of length equal to the number of inputs - Use when input offset is the same across the scheduling space.
- Double array of size [nu 1 sysArraySize] — Use when offsets are present and they vary across the scheduling space. Here, nu = number of inputs, sysArraySize = array size of state-space array sys. Use sysArraySize $=$ getArraySize(sys) to determine the array size.

You can obtain offsets during linearization and convert them to the format supported by the LPV System block. For more information, see "Approximate Nonlinear Behavior Using Array of LTI Systems" (Simulink Control Design) and getOffsetsForLPV.

## Output offset

Offsets in output $y(t)$, specified as one of the following:

- 0 (Default) - Use when there are no output offsets $\bar{y}(p)=0 \quad \forall p$.
- Double vector of length equal to the number of outputs. Use when output offsets are the same across the scheduling space.
- Double array of size [ny 1 sysArraySize]. Use when offsets are present and they vary across the scheduling space. Here, ny = number of outputs, sysArraySize = array size of state-space array. Use sysArraySize $=$ getArraySize(sys) to determine the array size.

You can obtain offsets during linearization and convert them to the format supported by the LPV System block. For more information, see "Approximate Nonlinear Behavior Using Array of LTI Systems" (Simulink Control Design) and getOffsetsForLPV.

## State offset

Offsets in states $x(t)$, specified as one of the following:

- 0 (Default) - Use when there are no state offsets $\bar{x}(p)=0 \quad \forall p$.
- Double vector of length equal to the number of states. Use when the state offsets are the same across the scheduling space.
- Double array of size [nx 1 sysArraySize], where $n x=$ number of states, sysArraySize = array size of state-space array. Use when offsets are present and they vary across the scheduling space. Here, $n x=$ number of states, sysArraySize = array size of state-space array. Use sysArraySize = getArraySize(sys) to determine the array size.

You can obtain offsets during linearization and convert them to the format supported by the LPV System block. For more information, see "Approximate Nonlinear Behavior Using Array of LTI Systems" (Simulink Control Design) and getOffsetsForLPV.

## State derivative/update offset

Offsets in state derivative or update variable $\mathrm{dx}(\mathrm{t})$, specified as one of the following:

- If you obtained the linear system array by linearization under equilibrium conditions, select the Assume equilibrium operating conditions option. This option corresponds to an offset of $\overline{d x}(p)=0$ for a continuous-time system and $\overline{d x}(p)=\bar{x}(p)$ for a discrete-time system. This option is selected by default.
- If the linear system contains at least one system that you obtained under non-equilibrium conditions, clear the Assume equilibrium operating conditions option. Specify one of the following in the Offset value field:
- If the dx offset values are the same across the scheduling space, specify as a double vector of length equal to the number of states.
- If the dx offsets are present and they vary across the scheduling space, specify as a double array of size [ $n \times 1$ sysArraySize], where $n x=$ number of states, and sysArraySize = array size of state-space array.

You can obtain offsets during linearization and convert them to the format supported by the LPV System block. For more information, see "Approximate Nonlinear Behavior Using Array of LTI Systems" (Simulink Control Design) and getOffsetsForLPV.

## Nominal Model

State-space model that provides the values of the fixed coefficients, specified as one of the following:

- Use the first model in state-space array (Default:) - The first model in the statespace array is used to represent the LPV model. In the following example, the state-space array is specified by object sys and the fixed coefficients are taken from model sys (:,:, 1 ).

```
\% Specify a 4-by-5 array of state-space models.
sys \(=\) rss (4, 2, 3, 4,5);
a = 1:4;
b = 10:10:50;
[av,bv] = ndgrid(a,b);
\% Use "alpha" and "beta" variables as scheduling parameters.
sys.SamplingGrid = struct('alpha',av,'beta',bv);
```

Fixed coefficients are taken from the model sysFixed $=$ sys(:,: 1 ), which corresponds to [alpha=1, beta=10]. If the $(2,1)$ entry of $A$ matrix is forced to be fixed, its value used during the simulation is sysFixed. $\mathrm{A}(2,1)$.

- Custom value - Specify a different state-space model for fixed entries. Specify a variable for the fixed model in the State space model field. The fixed model must use the same state basis as the state-space array in the LPV model.


## Fixed Coefficient Indices

Specify which coefficients of the state-space matrices and delay vectors are fixed.
Specify one of the following:

- Scalar Boolean (true or false), if all entries of a matrix are to be treated the same way.

The default value is false for the state-space matrices and delay vectors, which means that they are treated as free.

- Logical matrix of a size compatible with the size of the corresponding matrix:

| State-space matrix | Size of fixed entry matrix |
| :--- | :--- |
| A matrix | $n x-b y-n x$ |
| B matrix | nx-by-nu |
| C matrix | ny-by-nx |
| D matrix | ny-by-nu |
| Input delay | nu-by-1 |
| Output delay | ny-by-1 |
| Internal delay | ni-by-1 |

where, $\mathrm{nu}=$ number of inputs, $\mathrm{ny}=$ number of outputs, $\mathrm{nx}=$ number of states, $\mathrm{ni}=$ length of internal delay vector.

- Numerical indices to specify the location of fixed entries. See sub2ind reference page for more information on how to generate numerical indices corresponding to a given subscript ( $i, j$ ) for an element of a matrix.


## Interpolation method

Interpolation method. Defines how the state-space data must be computed for scheduling parameter values that are located away from their grid locations.

Specify one of the following options:

- Flat - Choose the state-space data at the grid point closest, but not larger than, the current point. The current point is the value of the scheduling parameters at current time.
- Nearest - Choose the state-space data at the closest grid point in the scheduling space.
- Linear - Obtain state-space data by linear interpolation of the nearest 2d neighbors in the scheduling space, where $\mathrm{d}=$ number of scheduling parameters.

The default interpolation scheme is Linear for regular grids of scheduling parameter values. For irregular grids, the Nearest interpolation scheme is always used regardless of the choice made. to learn more about regular and irregular grids, see "Regular vs. Irregular Grids".

The Linear method provides the highest accuracy but takes longer to compute. The Flat and Nearest methods are good for models that have mode-switching dynamics.

## Extrapolation method

Extrapolation method. Defines how to compute the state-space data for scheduling parameter values that fall outside the range over which the state-space array has been provided (as specified in the SamplingGrid property).

Specify one of the following options:

- Clip (Default:) - Disables extrapolation and returns the data corresponding to the last available scheduling grid point that is closest to the current point.
- Linear - Fits a line between the first or last pair of values for each scheduling parameter, depending upon whether the current value is less than the first or greater than the last grid point value, respectively. This method returns the point on that line corresponding to the current value. Linear extrapolation requires that the interpolation scheme be linear too.


## Index search method

The location of the current scheduling parameter values in the scheduling space is determined by a prelookup algorithm. Select Linear search or Binary search. Each search method has speed advantages in different situations. For more information on this parameter, see the Prelookup (Simulink) block reference page.

## Begin index search using previous index result

Select this check box when you want the block to start its search using the index found at the previous time step. For more information on this parameter, see the Prelookup (Simulink) block reference page.

## Output states

Add $\times$ port to the block to output state values. This option is selected by default.

## Output state derivatives (continuous-time) or updates (discrete-time)

Add dx port to the block to output state derivative values or update the values. This option is selected by default.

## Output interpolated state-space data

Add ss port to the block to output state-space data as a structure. This option is selected by default.
The fields of the generated structure are:

- State-space matrices A, B, C, D.
- Delays InputDelay, OutputDelay, and InternalDelay. The InternalDelay field is available only when the model has internal delay.


## Output interpolated offsets

Add offset port to the block to output LPV model offsets $(\bar{u}(p), \quad \bar{y}(p), \quad \bar{x}(p), \overline{d x}(p))$.
The fields of the structure are:

- InputOffset, Output0ffset, StateOffset, and StateDerivativeOffset in continuoustime.
- InputOffset, OutputOffset, StateOffset, and StateUpdateOffset in discrete-time.


## Block data type (discrete-time case only)

Supported data type. Use this option only for discrete-time state-space models. Specify double or single.

## Initial buffer size for delays

Initial memory allocation for the number of input points to store for models that contain delays. If the number of input points exceeds the initial buffer size, the block allocates additional memory. The default size is 1024 .

When you run the model in Accelerator mode or build the model, make sure the initial buffer size is large enough to handle maximum anticipated delay in the model.

## Use fixed buffer size

Specify whether to use a fixed buffer size to save delayed input and output data from previous time steps. Use this option for continuous-time LPV systems that contain input or output delays. If the buffer is full, new data replaces data already in the buffer. The software uses linear extrapolation to estimate output values that are not in the buffer.

## Examples

## Configure the Scheduling Parameter Input Port

Consider a 2-input, 3 -output, 4 -state LPV model. Use input $u(2)$ and state $\times(1)$ as scheduling parameters. Configure the Simulink model as shown in the following figure.


## Simulate a Linear Parameter-Varying System

Consider a linear mass-spring-damper system whose mass changes as a function of an external load command. The governing equation is:

$$
m(u) \ddot{y}+c \dot{y}+k(y) y=F(t)
$$

where $m(u)$ is the mass dependent upon the external command $u, c$ is the damping ratio, $k$ is the stiffness of the spring and $F(t)$ is the forcing input. $y(t)$ is position of the mass at a given time $t$. For a fixed value of $u$, the system is linear and expressed as:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m}-\frac{c}{m}
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
& \dot{x}=A x+B u, \quad y=C x
\end{aligned}
$$

where $x=\left[\begin{array}{l}y \\ \dot{y}\end{array}\right]$ is the state vector and $m$ is the value of the mass for a given value of $u$.
In this example, you want to study the model behavior over a range of input values from 1 to 10 Volts. For each value of $u$, measure the mass and compute the linear representation of the system. Suppose, mass is related to the input by the relationship: $m(u)=10 u+0.1 u^{2}$. For values of $u$ ranging from 1:10 results in the following array of linear systems.

```
% Specify damping coefficient.
c = 5;
% Specify stiffness.
k = 300;
% Specify load command.
u = 1:10;
% Specify mass.
m = 10*u + 0.1*u.^2;
% Compute linear system at a given mass value.
for i = 1:length(u)
 A = [0 1; -k/m(i), -c/m(i)];
 B = [0; 1/m(i)];
 C = [1 0];
 sys(:,:,i) = ss(A,B,C,0);
end
```

The variable $u$ is the scheduling input. Add this information to the model.

```
sys.SamplingGrid = struct('LoadCommand',u);
```

Configure the LPV System block:

- Type sys in the State-space array field.
- Connect the input port par to a one-dimensional source signal that generates the values of the load command. If the source provides values between 1 and 10, interpolation is used to compute the linear model at a given time instance. Otherwise, extrapolation is used.

| War Function Block Parameters: LPV System <br> LPV Block (mask) (link) <br> Linear Parameter Varying (LPV) Model. <br> For "State-space array", specify an @ss object array. The SamplingGrid property <br> of the object specifies the scheduling parameters for the model. <br> The offsets specify the affine terms for the model's inputs, outputs, states and <br> state derivatives. <br> LPV Model Fixed Entries Scheduling <br> LTI Array   <br> State-space array: sys   <br> Initial state: 0 0  <br> Operating Point Offsets   <br> Input offset: 0   <br> Output offset: 0  |
| :--- |

## Ports

| Port Name | Port <br> Type <br> (In/ <br> Out) | Description |
| :--- | :--- | :--- |
| u | In | Input signal u(t) in "Equation 3-2" described previously. In multi-input <br> case, this port accepts a signal of the dimension of the input. |


| Port Name | Port <br> Type <br> (In/ <br> Out) | Description |
| :---: | :---: | :---: |
| par | In | Provides the signals for variables defining the scheduling space ("sampling grid" variables). The scheduling variables can be functions of time, inputs and states, or constants. The required dependence can be achieved by preparing a scheduling signal using clock input (for time), input signal ( $u$ ), and the outputs signals ( $\mathrm{x}, \mathrm{dx} / \mathrm{dt}, \mathrm{y}$ ) of the LPV block, as required. <br> Caution Avoid making $C(p)$ and $D(p)$ depend on the system output $\mathbf{y}$. Otherwise, the resulting state-space equation $y=C(y) x+D(y) u$ creates an algebraic loop, because computing the output value $y$ requires knowing the output value. This algebraic loop is prone to instability and divergence. Instead, try expressing $C$ and $D$ in terms of the time $t$, the block input $\mathbf{u}$, and the state outputs $\mathbf{x}$. <br> For similar reasons, avoid scheduling $A(p)$ and $B(p)$ based on the $\mathbf{d x}$ output. Note that it is safe to for $A$ and $B$ to depend on $\mathbf{y}$ when $\mathbf{y}$ is a fixed combination of states and inputs, (in other words, when $y=C x+D u$ where $C$ and $D$ are constant matrices). |
| y | Out | Model output |
| x | Out | Values of the model states |
| dx | Out | Values of the state derivatives. The state derivatives are sometimes used to define the scheduling parameters. However, avoid scheduling $A$ and $B$ based on the dx output. |
| ss | Out | Local state-space model at the major simulation time steps |
| offset | Out | LPV model offsets |

## Version History

Introduced in R2014b

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

getOffsetsForLPV

## Topics

"Linear Parameter-Varying Models"
"Using LTI Arrays for Simulating Multi-Mode Dynamics"
"Approximate Nonlinear Behavior Using Array of LTI Systems" (Simulink Control Design)
"LPV Approximation of Boost Converter Model" (Simulink Control Design)

## Particle Filter

Estimate states of discrete-time nonlinear system using particle filter


## Libraries:

Control System Toolbox / State Estimation
System Identification Toolbox / Estimators

## Description

The Particle Filter block estimates the states of a discrete-time nonlinear system using the discretetime particle filter algorithm.

Consider a plant with states $x$, input $u$, output $m$, process noise $w$, and measurement $y$. Assume that you can represent the plant as a nonlinear system.


The algorithm computes the state estimates $\widehat{x}$ of the nonlinear system using the state transition and measurement likelihood functions you specify.

You create the nonlinear state transition function and measurement likelihood functions for the system and specify these functions in the block. The block supports state estimation of a system with multiple sensors that are operating at different sampling rates. You can specify up to five measurement likelihood functions, each corresponding to a sensor in the system.

## Ports

## Input

## $\mathbf{y 1}, \mathbf{y 2}, \mathbf{y} 3, \mathbf{y} 4, \mathbf{y} 5$ - Measured system outputs

vector
Measured system outputs corresponding to each measurement likelihood function that you specify in the block. The number of ports equals the number of measurement likelihood functions in your system. You can specify up to five measurement likelihood functions. For example, if your system has two sensors, you specify two measurement likelihood functions in the block. The first port $\mathbf{y 1}$ is available by default. Click Add Measurement, to generate port y2 corresponding to the second measurement likelihood function.

Specify the ports as $N$-dimensional vectors, where $N$ is the number of quantities measured by the corresponding sensor. For example, if your system has one sensor that measures the position and
velocity of an object, then there is only one port $\mathbf{y 1}$. The port is specified as a two-dimensional vector with values corresponding to position and velocity.

## Dependencies

The first port $\mathbf{y 1}$ is available by default. Ports $\mathbf{y} \mathbf{2}$ to $\mathbf{y 5}$ are generated when you click Add Measurement.

StateTransitionFcnInputs - Optional input argument to state transition function
scalar | vector | matrix
Optional input argument to the state transition function $f$ other than the state x .
If you create f using a MATLAB function (.m file), the software generates the port StateTransitionFcnInputs when you enter the name of your function, and click Apply.

If your state transition function has more than one additional input, use a Simulink Function block to specify the function. When you use a Simulink Function block, you provide the additional inputs directly to the Simulink Function block using Inport blocks. No input ports are generated for the additional inputs in the Particle Filter block.

## Dependencies

This port is generated only if both of the following conditions are satisfied:

- You specify $f$ in Function using a MATLAB function, and $f$ is on the MATLAB path.
- f requires only one additional input argument apart from particles.

MeasurementLikelihoodFcn1Inputs,...,MeasurementLikelihoodFcn5Inputs - Optional input argument to each measurement likelihood function
scalar | vector | matrix
Optional inputs to the measurement likelihood functions other than the state $x$ and measurement $y$.
MeasurementLikelihoodFcn1Inputs corresponds to the first measurement likelihood function that you specify, and so on.

If you specify two measurement inputs using MATLAB functions (.m files) in Function, the software generates ports MeasurementLikelihoodFcn1Inputs and MeasurementLikelihoodFcn2Inputs when you click Apply. You can specify the inputs to these ports as scalars, vectors, or matrices.

If your measurement likelihood functions have more than one additional input, use Simulink Function blocks to specify the functions. When you use a Simulink Function block, you provide the additional inputs directly to the Simulink Function block using Inport blocks. No input ports are generated for the additional inputs in the Particle Filter block.

## Dependencies

A port corresponding to a measurement likelihood function h is generated only if both of the following conditions are satisfied:

- You specify measurement input h in Function using a MATLAB function, and h is on the MATLAB path.
- h requires only one additional input argument apart from particles and measurement.


## Enable1,Enable2,Enable3,Enable4,Enable5 - Enable correction of estimated states when measured data is available scalar

Enable correction of estimated states when measured data is available.
For example, consider that measured output data is not available at all time points at the port $\mathbf{y} \mathbf{1}$ that corresponds to the first measurement likelihood function. Then, use a signal value other than 0 at the Enable1 port to enable the correction of estimated states when measured data is available. Specify the port value as 0 when measured data is not available. Similarly, if measured output data is not available at all time points at the port yi for the $i^{\text {th }}$ measurement likelihood function, specify the corresponding port Enablei as a value other than 0.

## Dependencies

If you select Add Enable port for a measurement likelihood function, a port corresponding to that measurement likelihood function is generated. The port appears when you click Apply.

## Output

xhat - Estimated states
vector
Estimated states, returned as a vector of size $N s$, where $N s$ is the number of states of the system. To access the individual states, use the Selector block.

When the Use the current measurements to improve state estimates parameter is selected, the block outputs the corrected state estimate $\widehat{x}[k \mid k]$ at time step k , estimated using measured outputs until time $k$. If you clear this parameter, the block returns the predicted state estimate $\widehat{x}[k \mid k-1]$ for time $k$, estimated using measured output until a previous time $k-1$. Clear this parameter if your filter is in a feedback loop and there is an algebraic loop in your Simulink model.
$\mathbf{P}$ - State estimation error covariance
matrix
State estimation error covariance, returned as an $N s$-by- $N s$ matrix, where $N s$ is the number of states of the system. To access the individual covariances, use the Selector block.

You can output the error covariance only if you select Output state estimation error covariance in the Block outputs, Multirate tab, and click Apply.

## Dependencies

This parameter is available if in the Block outputs, Multirate tab, the State estimation method parameter is set to 'Mean '.

Particles - Particle values used for state estimation
array
Particle values used for state estimation, returned as an $N s$-by- $N p$ or $N p$-by- $N s$ array. $N s$ is the number of states of the system, and $N p$ is the number of particles.

- If the StateOrientation parameter is specified as 'column', then Particles is returned as an $N s$-by-Np array.
- If the StateOrientation parameter is specified as 'row' , then Particles is returned as an $N p$ -by-Ns array.


## Dependencies

This port is generated if you select Output all particles in the Block outputs, Multirate tab, and click Apply.

Weights - Particle weights used for state estimation
vector

Particle weights used for state estimation, returned as a 1 -by- $N p$ or $N p$-by- 1 vector, where $N p$ is the number of particles used for state estimation.

- If the State0rientation parameter is specified as 'column', then Weights is returned as a 1-by- $N p$ vector, where each weight is associated with the particle in the same column in the Particles array.
- If the StateOrientation parameter is specified as ' row' , then Weights is returned as a $N p$ -by-1 vector, where each weight is associated with the particle in the same row in the Particles array.


## Dependencies

This port is generated if you select Output weights in the Block outputs, Multirate tab, and click Apply.

## Parameters

## System Model Tab

## State Transition

Function - State transition function name
'vdpParticleFilterStateFcn' (default)| function name
The particle filter state transition function calculates the particles at time step $k+1$, given particles at time step $k$ per the dynamics of your system and process noise. This function has the syntax:
particlesNext $=$ f(particles, param1, param2, ...)
where, particles and particlesNext have dimensions $N s$-by-Np if State Orientation is specified as ' column ' , or $N p$-by-Ns if State Orientation is specified as 'row'. Also, param_i represents optional input arguments you may specify. For more information on optional input arguments, see "StateTransitionFcnInputs" on page 3-0.

You create the state transition function and specify the function name in Function. For example, if vdpParticleFilterStateFcn.m is the state transition function that you created and saved, specify Function as 'vdpParticleFilterStateFcn'.

You can create Function using a Simulink Function block or as a MATLAB function (.m file).

## Programmatic Use

Block Parameter: StateTransitionFcn
Type: character vector, string
Default: 'vdpParticleFilterStateFcn'

## Initialization

Number of Particles - Number of particles used in the filter
1000 (default) | positive scalar integer
Number of particles used in the filter, specified as a positive scalar integer. Each particle represents a state hypothesis in the system. A higher number of particles increases the state estimation accuracy, but also increases the computational effort required to run the filter.

```
Programmatic Use
Block Parameter: NumberOfParticles
Type: positive scalar integer
Default: }100
Distribution - Initial distribution of particles
'Gaussian' (default)|'Uniform'| 'Custom'
```

Initial distribution of particles, specified as 'Gaussian', 'Uniform', or 'Custom'.
If you choose 'Gaussian ', the initial set of particles or state hypotheses are distributed per the multivariate Gaussian distribution, where you specify the Mean and Covariance. The initial weight of all particles is assumed to be equal.

If you choose 'Uniform' , the initial set of particles are distributed per the uniform distribution, where you specify the upper and lower State bounds. The initial weight of all particles is assumed to be equal.
'Custom ' allows you to specify your own set of initial particles and their weights. You can use arbitrary probability distributions for Particles and Weights to initialize the filter.

```
Programmatic Use
Block Parameter: InitialDistribution
Type: character vector
Values: 'Gaussian', 'Uniform', 'Custom'
Default: 'Gaussian'
Mean - Initial mean value of particles
[0;0] (default) | vector
```

Initial mean value of particles, specified as a vector. The number of states to be estimated defines the length of the vector.

## Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to Gaussian.

Programmatic Use
Block Parameter: InitialMean
Type: array
Default: [0,0]
Covariance - Initial covariance of particles
1 (default) | scalar | vector | matrix
Initial covariance of particles, specified as a scalar, vector, or matrix.

If Covariance is specified as:

- A scalar, then it must be positive. The covariance is assumed to be a [Ns Ns] matrix with this scalar on the diagonals. Here, $N s$ is the number of states.
- A vector, then each element must be positive. The covariance is assumed to be a [Ns Ns] matrix with the elements of the vector on the diagonals.
- A matrix, then it must be positive semidefinite.


## Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to Gaussian.

Programmatic Use
Block Parameter: InitialCovariance
Type: scalar, vector, or matrix
Default: 1
Circular Variables - Circular variables used for state estimation
0 (default) | scalar | vector
Circular variables used for state estimation, specified as a scalar, or Ns-element vector, where $N s$ is the number of states.

If Circular Variables is specified as a scalar, the software extends it to a vector where each element is equal to this scalar. Circular (or angular) distributions use a probability density function with a range of $[-\pi \pi]$. Use circular variables if some of the states in your system represent angular quantities like the orientation of an object.

## Programmatic Use

Block Parameter: CircularVariables
Type: scalar, vector
Default: 0
State Orientation - Orientation of input system states
' column' (default) | 'row'
Orientation of system states, specified as 'column' or 'row'.
If State Orientation is specified as:

- ' column' , then the first input argument to the state transition and measurement likelihood function is [ $N s N p$ ]. In this case, $i^{\text {th }}$ column of this matrix is the $i^{\text {th }}$ particle (state hypothesis). Also, the states estimates xhat is output as a [ $N s 1$ 1] vector. Here, $N s$ is the number of states, and $N p$ is the number of particles.
- 'row' , then the first input argument to the state transition and measurement likelihood function is [ $N p N s$ ], and each row of this matrix contains a particle. Also, the states estimates xhat is output as a [1 Ns] vector.

Programmatic Use
Block Parameter: State0rientation
Type: character vector
Values: 'column', 'row'
Default: ' column'

## State bounds - Initial bounds on system states

## [-3 3;-3 3] (default) | array

Initial bounds on system states, specified as an Ns-by-2 array, where $N s$ is the number of states.
The $i^{\text {th }}$ row lists the lower and upper bound of the uniform distribution for the initial distribution of particles of the $i^{\text {th }}$ state.

## Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to Uniform.

Programmatic Use
Block Parameter: InitialStateBounds
Type: array
Default: [-3 3;-3 3]
Particles - Custom particle distribution for state estimation
[] (default) | array
Custom particle distribution for state estimation, specified as an $N s$-by- $N p$ or $N p$-by- $N s$ array. $N s$ is the number of states of the system, and $N p$ is the number of particles.

- If the StateOrientation parameter is specified as ' column ', then Particles is an $N s$-by- $N p$ array.
- If the StateOrientation parameter is specified as 'row', then Particles is an $N p$-by-Ns array.


## Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to Custom.

## Programmatic Use

Block Parameter: InitialParticles
Type: array
Default: []
Weights - Custom particle weight values for state estimation
[] (default) | positive vector
Custom particle weight values for state estimation, specified as a 1-by-Np or $N p-$ by-1 positive vector, where $N p$ is the number of particles used for state estimation.

- If the StateOrientation parameter is specified as 'column', then Weights is a 1-by-Np vector. Each weight in the vector is associated with the particle in the same column in the Particles array.
- If the StateOrientation parameter is specified as 'row', then Weights is a $N p$-by-1 vector. Each weight in the vector is associated with the particle in the same row in the Particles array.


## Dependencies

This parameter is available if in the System model tab, the Distribution parameter is set to Custom.

Programmatic Use
Block Parameter: InitialWeights
Type: positive vector
Default: []

## Measurement

Function - Measurement likelihood function name
'vdpMeasurementLikelihoodFcn' (default)| function name
The measurement likelihood function calculates the likelihood of particles (state hypotheses) using the sensor measurements. For each state hypothesis (particle), the function first calculates an Nmelement measurement hypothesis vector. Then the likelihood of each measurement hypothesis is calculated based on the sensor measurement and the measurement noise probability distribution. this function has the syntax:
likelihood = h(particles, measurement, param1, param2, ...)
where, likelihood is an $N p$-element vector, where $N p$ is the number of particles. particles have dimensions $N s$-by- $N p$ if State Orientation is specified as 'column ', or $N p$-by- $N s$ if State Orientation is specified as 'row' . measurement is an $N m$-element vector where, $N m$ is the number of measurements your sensor provides. param_i represents optional input arguments you may specify. For more information on optional input arguments, see
"MeasurementLikelihoodFcn1Inputs,...,MeasurementLikelihoodFcn5Inputs" on page 3-0 .
You create the measurement likelihood function and specify the function name in Function. For example, if vdpMeasurementLikelihoodFcn.m is the measurement likelihood function that you created and saved, specify Function as 'vdpMeasurementLikelihoodFcn'.

You can create Function using a Simulink Function block or as a MATLAB function (.m file).

- You can use a MATLAB function only if $h$ has zero or one additional input argument param_i other than Particles and Measurement.

The software generates an additional input port MeasurementLikelihoodFcniInputs to specify this argument for the $i^{\text {th }}$ measurement likelihood function, and click Apply.

- If you are using a Simulink Function block, specify x and y using Argument Inport blocks and the additional inputs param_i using Inport blocks in the Simulink Function block. You do not provide param_i to the Particle Filter block.

If you have multiple sensors in your system, you can specify multiple measurement likelihood functions. You can specify up to five measurement likelihood functions using the Add Measurement button. To remove measurement likelihood functions, use Remove Measurement.

Programmatic Use
Block Parameter: MeasurementLikelihoodFcn1, MeasurementLikelihoodFcn2,
MeasurementLikelihoodFcn3, MeasurementLikelihoodFcn4, MeasurementLikelihoodFcn5
Type: character vector, string
Default: 'vdpMeasurementLikelihoodFcn'
Add Enable Port - Enable correction of estimated states only when measured data is available off (default) | on

Suppose that measured output data is not available at all time points at the port $\mathbf{y} \mathbf{1}$ that corresponds to the first measurement likelihood function. To generate an input port Enable1, select Add Enable
port. Use a signal at this port to enable the correction of estimated states only when measured data is available. Similarly, if measured output data is not available at all time points at the port yi for the $i^{\text {th }}$ measurement likelihood function, select the corresponding Add Enable port.

Programmatic Use
Block Parameter: HasMeasurementEnablePort1, HasMeasurementEnablePort2,
HasMeasurementEnablePort3, HasMeasurementEnablePort4, HasMeasurementEnablePort5
Type: character vector
Values: 'off', 'on'
Default: 'off'

## Resampling

Resampling method - Method used for particle resampling
'Multinomial' (default)|'Systemic' |'Stratified'
Method used for particle resampling, specified as one of the following:

- 'Multinomial' - Multinomial resampling, also called simplified random sampling, generates N random numbers independently from the uniform distribution in the open interval $(0,1)$ and uses them to select particles proportional to their weight.
- 'Stratified ' - Stratified resampling divides the whole population of particles into subsets called strata. It pre-partitions the $(0,1)$ interval into $N$ disjoint sub-intervals of size $1 / \mathrm{N}$. The random numbers are drawn independently in each of these sub-intervals and the sample indices chosen in the strata.
- 'Systematic ' - Systematic resampling is similar to stratified resampling as it also makes use of strata. One distinction is that it only draws one random number from the open interval ( $0,1 / \mathrm{N}$ ) and the remaining sample points are calculated deterministically at a fixed $1 / \mathrm{N}$ step size.


## Programmatic Use

Block Parameter: ResamplingMethod
Type: character vector
Values: 'Multinomial','Systemic','Stratified'
Default: 'Multinomial'
Trigger method - Method to determine when resampling occurs
'Ratio' (default)|'Interval'
Method to determine when resampling occurs, specified as either 'Ratio' or 'Interval'. The 'Ratio' value triggers resampling based on the ratio of effective total particles. The 'Interval' value triggers resampling at regular time steps of the particle filter operation.

## Programmatic Use

Block Parameter: TriggerMethod
Type: character vector
Values: 'Ratio', 'Interval'
Default: 'Ratio'
Minimum effective particle ratio - Minimum desired ratio of the effective number of particles to the total number of particles
0.5 (default) | positive scalar

Minimum desired ratio of the effective number of particles to the total number of particles, specified as a positive scalar. The effective number of particles is a measure of how well the current set of
particles approximates the posterior distribution. A lower effective particle ratio implies that a lower number of particles are contributing to the estimation and resampling is required.

If the ratio of the effective number of particles to the total number of particles falls below the minimum effective particle ratio, a resampling step is triggered.

Specify minimum effective particle ratio as any value from 0 through 1.

## Dependencies

This parameter is available if in the System model tab, the Trigger method parameter is set to Ratio.

## Programmatic Use

Block Parameter: MinEffectiveParticleRatio
Type: scalar
Values: Range [0,1]
Default: 0.5
Sampling Interval - Fixed interval between resampling
1 (default) | positive scalar integer
Fixed interval between resampling, specified as a positive scalar integer. The sampling interval determines during which correction steps the resampling is executed. For example, a value of two means the resampling is executed every second correction step. A value of inf means that resampling is never executed.

## Dependencies

This parameter is available if in the System model tab, the Trigger method parameter is set to Interval.

Programmatic Use
Block Parameter: SamplingInterval
Type: positive scalar integer
Default: 1
Random Number Generator Options
Randomness - Whether the random numbers are repeatable
'Repeatable' (default)|'Not repeatable'
Whether the random numbers are repeatable, specified as either 'Repeatable' or 'Not repeatable'. If you want to be able to produce the same result more than once, set Randomness to 'Repeatable', and specify the same random number generator seed value in Seed.

Programmatic Use
Block Parameter: Randomness
Type: character vector
Values: 'Repeatable', 'Not repeatable'
Default: 'Repeatable'
Seed - Seed value for repeatable random numbers
0 (default) | scalar
Seed value for repeatable random numbers, specified as a scalar.

## Dependencies

This parameter is available if in the System model tab, the Randomness parameter is set to 'Repeatable'.

Programmatic Use
Block Parameter: Seed
Type: scalar
Default: 0

## Settings

Data type - Data type for block parameters
double (default) | single
Use this parameter to specify the data type for all block parameters.
Programmatic Use
Block Parameter: DataType
Type: character vector
Values: 'single', 'double'
Default: 'double'
Sample time - Block sample time
1 (default) | positive scalar
Block sample time, specified as a positive scalar.
Use the Sample time parameter if your state transition and all measurement likelihood functions have the same sample time. Otherwise, select the Enable multirate operation option in the Multirate tab, and specify sample times in the same tab.

## Dependencies

This parameter is available if in the Block output, Multirate tab, the Enable multirate operation parameter is off.

## Programmatic Use

Block Parameter: SampleTime
Type: character vector, string
Default: ' 1'

## Block Outputs, Multirate Tab

## Outputs

State Estimation Method - Method used for extracting a state estimate from particles
'Mean ' (default)| 'MaxWeight' | 'None'
Method used for extracting a state estimate from particles, specified as one of the following:

- 'Mean ' - The Particle Filter block outputs the weighted mean of the particles, depending on the parameters Weights and Particles, as the state estimate.
- 'Maxweight ' - The Particle Filter block outputs the particle with the highest weight as the state estimate.
- 'None ' - Use this option to implement a custom state estimation method by accessing all particles using the Output all particles parameter from the Block outputs, Multirate tab.

Programmatic Use
Block Parameter: StateEstimationMethod
Type: character vector, string
Values: 'Mean', 'MaxWeight', 'None'
Default: 'Mean'
Output all particles - Output all particles
'off' (default)|'on'
If you select this parameter, an output port for particles used in the estimation, Particles is generated in the block.

- If the StateOrientation parameter is specified as 'column', then the particles are output as an $N s$-by- $N p$ array. $N s$ is the number of states of the system, and $N p$ is the number of particles.
- If the StateOrientation parameter is specified as 'row', then the particles are output as an $N p-b y-N s$ array.

Programmatic Use
Block Parameter: OutputParticles
Type: character vector
Values: 'off', 'on'
Default: 'off'
Output weights - Output particle weights
'off' (default)|'on'
If you select this parameter, an output port for particle weights used in the estimation, Weights is generated in the block.

- If the StateOrientation parameter is specified as 'column', then the particle weights are output as a $1-$ by- $N p$ vector. Here, where each weight is associated with the particle in the same column in the Particles array. $N p$ is the number of particles used for state estimation.
- If the State0rientation parameter is specified as 'row' , then the particle weights are output as a $N p$-by- 1 vector.

Programmatic Use
Block Parameter: OutputWeights
Type: character vector
Values: 'off', 'on'
Default: 'off'
Output state estimation error covariance - Output state estimation error covariance 'off' (default)|'on'

If you select this parameter, a state estimation error covariance output port, $\mathbf{P}$ is generated in the block.

## Dependencies

This parameter is available if in the Block outputs, Multirate tab, the State estimation method parameter is set to 'Mean '.

Programmatic Use
Block Parameter: OutputStateCovariance
Type: character vector

Values: 'off', 'on'
Default: 'off'
Use the current measurements to improve state estimates - Option to use current measurements for state estimation
'on' (default)| 'off'
When this parameter is selected, the block outputs the corrected state estimate $\widehat{x}[k \mid k]$ at time step $k$, estimated using measured outputs until time $k$. If you clear this parameter, the block returns the predicted state estimate $\widehat{x}[k \mid k-1]$ for time $k$, estimated using measured output until a previous time $\mathrm{k}-1$. Clear this parameter if your filter is in a feedback loop and there is an algebraic loop in your Simulink model.

## Programmatic Use

Block Parameter: UseCurrentEstimator
Type: character vector
Values: 'on', 'off'
Default: ' on'

## Multirate

Enable multirate operation - Enable specification of different sample times for state transition and measurement likelihood functions
'off' (default)|'on'
Select this parameter if the sample times of the state transition or any of the measurement likelihood functions differ from the rest. You specify the sample times in the Multirate tab, in Sample time.

## Programmatic Use <br> Block Parameter: EnableMultirate <br> Type: character vector <br> Values: 'off', 'on' <br> Default: 'off' <br> Sample times - State transition and measurement likelihood function sample times positive scalar

If the sample times for state transition and measurement likelihood functions are different, specify Sample time. Specify the sample times for the measurement functions as positive integer multiples of the state transition sample time. The sample times you specify correspond to the following input ports:

- Ports corresponding to state transition function - Additional input to state transition function StateTransitionFcnInputs. The sample times of these ports must always equal the state transition function sample time, but can differ from the sample time of the measurement likelihood functions.
- Ports corresponding to $i^{\text {th }}$ measurement likelihood function - Measured output yi, additional input to measurement likelihood function MeasurementLikelihoodFcniInputs, enable signal at port Enablei. The sample times of these ports for the same measurement likelihood function must always be the same, but can differ from the sample time for the state transition function and other measurement likelihood functions.


## Dependencies

This parameter is available if in the Block outputs, Multirate tab, the Enable multirate operation parameter is on.

## Programmatic Use

Block Parameter: StateTransitionFcnSampleTime, MeasurementLikelihoodFcn1SampleTime1, MeasurementLikelihoodFcn1SampleTime2, MeasurementLikelihoodFcn1SampleTime3, MeasurementLikelihoodFcn1SampleTime4, MeasurementLikelihoodFcn1SampleTime5
Type: character vector, string
Default: ' 1 '

## Version History

Introduced in R2018a

## References

[1] T. Li, M. Bolic, P.M. Djuric, "Resampling Methods for Particle Filtering: Classification, implementation, and strategies," IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 70-86, May 2015.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.
The state transition and measurement likelihood functions that you specify must use only the MATLAB commands and Simulink blocks that support code generation. For a list of blocks that support code generation, see "Blocks Supported for Code Generation" (Simulink Coder). For a list of commands that support code generation, see "Functions and Objects Supported for C/C++ Code Generation" (MATLAB Coder).

## See Also

## Blocks

Kalman Filter | Unscented Kalman Filter | Extended Kalman Filter

## Functions

particleFilter|extendedKalmanFilter|unscentedKalmanFilter|kalman|kalmd

## Topics

"Parameter and State Estimation in Simulink Using Particle Filter Block"
"Validate Online State Estimation in Simulink"
"Troubleshoot Online State Estimation"
"Estimate States of Nonlinear System with Multiple, Multirate Sensors"

## External Websites

Understanding Kalman Filters: Nonlinear State Estimators - MATLAB Video Series

## Sparse Second Order

Represent sparse second-order models in Simulink


## Description

The Sparse Second Order block lets you represent second-order sparse state-space models, in Simulink. Such sparse models arise from finite element analysis (FEA) and are useful in fields like structural analysis, fluid flow, heat transfer and electromagnetics. The resultant matrices from this type of modeling are quite large with a sparse pattern. In continuous time, a second-order sparse mass-spring-damper state-space model is represented in the following form:

$$
\begin{array}{r}
\mathrm{M} \ddot{q}(t)+\mathrm{C} \dot{q}(t)+\mathrm{K} q(t)=\mathrm{B} u(t) \\
y(t)=\mathrm{F} q(t)+\mathrm{G} \dot{q}(t)+\mathrm{D} u(t)
\end{array}
$$

Here, the full state vector is given by $[q, \dot{q}]$, where $q$ and $\dot{q}$ are the displacement and velocity vectors. $u$ and $y$ represent the inputs and outputs, respectively. M, C, and K represent the mass, damping and stiffness matrices, respectively. B is the input matrix, while F and G are the output matrices resulting from the two components of the state vector. $D$ is the input-to-output matrix.

## Ports

Input
Input 1 - Input signal
scalar | vector
Real-valued input vector of type double whose size is equal the number of columns in the $\mathbf{B}$ and $\mathbf{D}$ matrices.
Data Types: double
Output
Output 1 - Output vector
scalar | vector
Real-valued output vector of type double whose size is equal to the number of rows in the $\mathbf{F}, \mathbf{G}$ and D matrices.
Data Types: double

## Parameters

M (mass) - Mass matrix
1 (default) | scalar | Nq-by-Nq sparse matrix

Mass matrix, specified as an $\mathrm{Nq}-\mathrm{by}-\mathrm{Nq}$ sparse matrix where, Nq is the number of nodes.
Programmatic Use
Block Parameter: M
Type: scalar, square sparse matrix
Default: 1
C (damping) - Damping matrix
0 (default) | scalar | Nq-by-Nq sparse matrix
Damping matrix, specified as an Nq-by-Nq sparse matrix where, Nq is the number of nodes.

## Programmatic Use

Block Parameter: C
Type: scalar, square sparse matrix
Default: 0
K (stiffness) - Stiffness matrix
1 (default) | scalar | Nq-by-Nq sparse matrix
Stiffness matrix, specified as an Nq-by-Nq sparse matrix where, Nq is the number of nodes.

## Programmatic Use

Block Parameter: K
Type: scalar, square sparse matrix
Default: 1

B - Input-to-state matrix
1 (default) | scalar | Nq-by-Nu sparse matrix
Input-to-state matrix, specified as an Nq -by-Nu sparse matrix where, Nq is the number of nodes and Nu is the number of inputs.

## Programmatic Use

Block Parameter: B
Type: scalar, sparse matrix
Default: 1
F - Displacement-to-output matrix
1 (default) | scalar | Ny-by-Nq sparse matrix
Displacement-to-output matrix, specified as an Ny-by-Nq sparse matrix where, Nq is the number of nodes and Ny is the number of outputs.

Programmatic Use
Block Parameter: F
Type: scalar, sparse matrix
Default: 1
G - Velocity-to-output matrix
0 (default) | scalar | Ny-by-Nq sparse matrix
Velocity-to-output matrix, specified as an Ny -by-Nq sparse matrix where, Nq is the number of nodes and Ny is the number of outputs.

Programmatic Use
Block Parameter: G
Type: scalar, sparse matrix
Default: 0
D - Input-to-output matrix
0 (default) | scalar | Ny-by-Nu sparse matrix
Input-to-output matrix, specified as an Ny -by-Nu sparse matrix where, Ny is the number of outputs and Nu is the number of inputs.

Programmatic Use
Block Parameter: D
Type: scalar, sparse matrix
Default: 0
Initial position $\mathbf{q ( 0 )}$ - Initial values for displacement vector
0 (default) | scalar | vector of doubles
Initial values for displacement vector $q$, specified as a vector of doubles. $q$ and $\dot{q}$ are the displacement and velocity vectors that make up the state vector.

Programmatic Use
Block Parameter: q0
Type: scalar, vector of doubles
Default: 0
Initial velocity $\mathbf{q}^{\prime}(\mathbf{0})$ - Initial values for velocity vector
0 (default) | scalar | vector of doubles
Initial values for velocity vector $\dot{q}$, specified as a vector of doubles. $q$ and $\dot{q}$ are the displacement and velocity vectors that make up the state vector.

```
Programmatic Use
Block Parameter: dq0
Type: scalar, vector of doubles
Default: 0
```

Note For linearization with Simulink Control Design, the linearized model is a mechss model object when the Sparse Second Order block is present in your Simulink model.

For more information, see "Sparse Model Basics".
For an example, see "Linearize Simulink Model to a Sparse Second-Order Model Object".

## Version History

Introduced in R2020b

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

Not recommended for production code.

## See Also

mechss
Topics
"Sparse Model Basics"

## Unscented Kalman Filter

Estimate states of discrete-time nonlinear system using unscented Kalman filter


## Libraries:

Control System Toolbox / State Estimation
System Identification Toolbox / Estimators

## Description

The Unscented Kalman Filter block estimates the states of a discrete-time nonlinear system using the discrete-time unscented Kalman filter algorithm.

Consider a plant with states $x$, input $u$, output $y$, process noise $w$, and measurement noise $v$. Assume that you can represent the plant as a nonlinear system.


Using the state transition and measurement functions of the system and the unscented Kalman filter algorithm, the block produces state estimates $\widehat{x}$ for the current time step. For information about the algorithm, see "Extended and Unscented Kalman Filter Algorithms for Online State Estimation".

You create the nonlinear state transition function and measurement functions for the system and specify these functions in the block. The block supports state estimation of a system with multiple sensors that are operating at different sampling rates. You can specify up to five measurement functions, each corresponding to a sensor in the system. For more information, see "State Transition and Measurement Functions" on page 3-92.

## Ports

Input
$\mathbf{y 1}, \mathbf{y 2}, \mathbf{y} \mathbf{3}, \mathbf{y} 4, \mathbf{y} 5$ - Measured system outputs
vector
Measured system outputs corresponding to each measurement function that you specify in the block. The number of ports equals the number of measurement functions in your system. You can specify up to five measurement functions. For example, if your system has two sensors, you specify two measurement functions in the block. The first port $\mathbf{y 1}$ is available by default. When you click Apply, the software generates port $\mathbf{y} \mathbf{2}$ corresponding to the second measurement function.

Specify the ports as $N$-dimensional vectors, where $N$ is the number of quantities measured by the corresponding sensor. For example, if your system has one sensor that measures the position and velocity of an object, then there is only one port $\mathbf{y 1}$. The port is specified as a 2-dimensional vector with values corresponding to position and velocity.

## Dependencies

The first port $\mathbf{y 1}$ is available by default. Ports $\mathbf{y} \mathbf{2}$ to $\mathbf{y 5}$ are generated when you click Add Measurement, and click Apply.
Data Types: single|double
StateTransitionFcnInputs - Additional optional input argument to state transition function scalar | vector | matrix

Additional optional input argument to the state transition function $f$ other than the state x and process noise w . For information about state transition functions see, "State Transition and Measurement Functions" on page 3-92.

Suppose that your system has nonadditive process noise, and the state transition function $f$ has the following form:
$x(k+1)=f(x(k), w(k)$, StateTransitionFcnInputs).
Here k is the time step, and StateTransitionFcnInputs is an additional input argument other than $x$ and $w$.

If you create f using a MATLAB function (.m file), the software generates the port
StateTransitionFcnInputs when you click Apply. You can specify the inputs to this port as a scalar, vector, or matrix.

If your state transition function has more than one additional input, use a Simulink Function block to specify the function. When you use a Simulink Function block, you provide the additional inputs directly to the Simulink Function block using Inport blocks. No input ports are generated for the additional inputs in the Unscented Kalman Filter block.

## Dependencies

This port is generated only if both of the following conditions are satisfied:

- You specify $f$ in Function using a MATLAB function, and $f$ is on the MATLAB path.
- frequires only one additional input argument apart from $x$ and $w$.

Data Types: single | double
MeasurementFcn1Inputs,MeasurementFcn2Inputs, MeasurementFcn3Inputs,MeasurementF cn4Inputs,MeasurementFcn5Inputs - Additional optional input argument to each measurement function
scalar | vector | matrix
Additional optional inputs to the measurement functions other than the state x and measurement noise v. For information about measurement functions see, "State Transition and Measurement Functions" on page 3-92.

MeasurementFcn1Inputs corresponds to the first measurement function that you specify, and so on. For example, suppose that your system has three sensors and nonadditive measurement noise, and the three measurement functions h1, h2, and h3 have the following form:

```
y1[k] = h1(x[k],v[k],MeasurementFcn1Inputs)
y2[k] = h2(x[k],v[k],MeasurementFcn2Inputs)
y3[k] = h3(x[k],v[k])
```

Here k is the time step, and MeasurementFcn1Inputs and MeasurementFcn2Inputs are the additional input arguments to h 1 and h 2 .

If you specify h1, h2, and h3 using MATLAB functions (.m files) in Function, the software generates ports MeasurementFcn1Inputs and MeasurementFcn2Inputs when you click Apply. You can specify the inputs to these ports as scalars, vectors, or matrices.

If your measurement functions have more than one additional input, use Simulink Function blocks to specify the functions. When you use a Simulink Function block, you provide the additional inputs directly to the Simulink Function block using Inport blocks. No input ports are generated for the additional inputs in the Unscented Kalman Filter block.

## Dependencies

A port corresponding to a measurement function $h$ is generated only if both of the following conditions are satisfied:

- You specify $h$ in Function using a MATLAB function, and $h$ is on the MATLAB path.
- $h$ requires only one additional input argument apart from $x$ and $v$.


## Data Types: single | double

Q - Time-varying process noise covariance
scalar | vector | matrix
Time-varying process noise covariance, specified as a scalar, vector, or matrix depending on the value of the Process noise parameter:

- Process noise is Additive - Specify the covariance as a scalar, an Ns-element vector, or an Ns-by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no crosscorrelation between process noise terms, and all the terms have the same variance. Specify a vector of length $N s$, if there is no cross-correlation between process noise terms, but all the terms have different variances.
- Process noise is Nonadditive - Specify the covariance as a $W$-by- $W$ matrix, where $W$ is the number of process noise terms in the state transition function.


## Dependencies

This port is generated if you specify the process noise covariance as Time-Varying. The port appears when you click Apply.
Data Types: single | double
$\mathbf{R 1}, \mathbf{R 2}, \mathbf{R 3}, \mathbf{R 4}, \mathbf{R 5}$ - Time-varying measurement noise covariance
matrix

Time-varying measurement noise covariances for up to five measurement functions of the system, specified as matrices. The sizes of the matrices depend on the value of the Measurement noise parameter for the corresponding measurement function:

- Measurement noise is Additive - Specify the covariance as an $N$-by- $N$ matrix, where $N$ is the number of measurements of the system.
- Measurement noise is Nonadditive - Specify the covariance as a $V$-by- $V$ matrix, where $V$ is the number of measurement noise terms in the corresponding measurement function.


## Dependencies

A port is generated if you specify the measurement noise covariance as Time-Varying for the corresponding measurement function. The port appears when you click Apply.
Data Types: single|double
Enable1,Enable2,Enable3,Enable4,Enable5 - Enable correction of estimated states when measured data is available scalar

Suppose that measured output data is not available at all time points at the port $\mathbf{y} \mathbf{1}$ that corresponds to the first measurement function. Use a signal value other than 0 at the Enable1 port to enable the correction of estimated states when measured data is available. Specify the port value as 0 when measured data is not available. Similarly, if measured output data is not available at all time points at the port yi for the $i^{\text {th }}$ measurement function, specify the corresponding port Enablei as a value other than 0.

## Dependencies

A port corresponding to a measurement function is generated if you select Add Enable port for that measurement function. The port appears when you click Apply.
Data Types: single|double | Boolean

## Output

xhat - Estimated states
vector
Estimated states, returned as a vector of size $N s$, where $N s$ is the number of states of the system. To access the individual states, use the Selector block.

When the Use the current measurements to improve state estimates parameter is selected, the block outputs the corrected state estimate $\widehat{x}[k \mid k]$ at time step k , estimated using measured outputs until time k . If you clear this parameter, the block returns the predicted state estimate $\widehat{x}[k \mid k-1]$ for time k, estimated using measured output until a previous time k-1. Clear this parameter if your filter is in a feedback loop and there is an algebraic loop in your Simulink model.

Data Types: single | double
$\mathbf{P}$ - State estimation error covariance
matrix
State estimation error covariance, returned as an Ns-by-Ns matrix, where Ns is the number of states of the system. To access the individual covariances, use the Selector block.

## Dependencies

This port is generated if you select Output state estimation error covariance in the System Model tab, and click Apply.

Data Types: single | double

## Parameters

## System Model Tab

State Transition
Function - State transition function name
myStateTransitionFcn (default) | function name
The state transition function calculates the $N s$-element state vector of the system at time step $k+1$, given the state vector at time step $k$. $N s$ is the number of states of the nonlinear system. You create the state transition function and specify the function name in Function. For example, if vdpStateFcn.m is the state transition function that you created and saved, specify Function as vdpStateFcn.

The inputs to the function you create depend on whether you specify the process noise as additive or nonadditive in Process noise.

- Process noise is Additive - The state transition function $f$ specifies how the states evolve as a function of state values at previous time step:
$x(k+1)=f(x(k), U s 1(k), \ldots, U s n(k))$,
where $x(k)$ is the estimated state at time $k$, and Us1, ... Usn are any additional input arguments required by your state transition function, such as system inputs or the sample time. To see an example of a state transition function with additive process noise, type edit vdpStateFcn at the command line.
- Process noise is Nonadditive - The state transition function also specifies how the states evolve as a function of the process noise $w$ :
$x(k+1)=f(x(k), w(k), U s 1(k), \ldots, U s n(k))$.
For more information, see "State Transition and Measurement Functions" on page 3-92.
You can create $f$ using a Simulink Function block or as a MATLAB function (.m file).
- You can use a MATLAB function only if $f$ has one additional input argument Us1 other than $x$ and w.
$x(k+1)=f(x(k), w(k), U s 1(k))$
The software generates an additional input port StateTransitionFenInputs to specify this argument.
- If you are using a Simulink Function block, specify x and w using Argument Inport blocks and the additional inputs Us $1, \ldots$. Usn using Inport blocks in the Simulink Function block. You do not provide Us1, . . . Usn to the Unscented Kalman Filter block.

Programmatic Use
Block Parameter: StateTransitionFcn
Type: character vector, string
Default: 'myStateTransitionFcn'
Process noise - Process noise characteristics
Additive (default) | Nonadditive
Process noise characteristics, specified as one of the following values:

- Additive - Process noise w is additive, and the state transition function $f$ that you specify in Function has the following form:
$x(k+1)=f(x(k), U s 1(k), \ldots, U s n(k))$,
where $\mathrm{x}(\mathrm{k})$ is the estimated state at time k , and Us1, ... Usn are any additional input arguments required by your state transition function.
- Nonadditive - Process noise is nonadditive, and the state transition function specifies how the states evolve as a function of the state and process noise at the previous time step:
$x(k+1)=f(x(k), w(k), U s l(k), \ldots, U s n(k))$.
Programmatic Use
Block Parameter: HasAdditiveProcessNoise
Type: character vector
Values: 'Additive','Nonadditive'
Default: 'Additive'
Covariance - Time-invariant process noise covariance
1 (default) | scalar | vector | matrix
Time-invariant process noise covariance, specified as a scalar, vector, or matrix depending on the value of the Process noise parameter:
- Process noise is Additive - Specify the covariance as a scalar, an Ns-element vector, or an Ns-by-Ns matrix, where Ns is the number of states of the system. Specify a scalar if there is no crosscorrelation between process noise terms and all the terms have the same variance. Specify a vector of length $N s$, if there is no cross-correlation between process noise terms but all the terms have different variances.
- Process noise is Nonadditive - Specify the covariance as a $W$-by- $W$ matrix, where $W$ is the number of process noise terms.

If the process noise covariance is time-varying, select Time-varying. The block generates input port $\mathbf{Q}$ to specify the time-varying covariance.

## Dependencies

This parameter is enabled if you do not specify the process noise as Time-Varying.

```
Programmatic Use
Block Parameter: ProcessNoise
Type: character vector, string
Default: '1'
Time-varying - Time-varying process noise covariance
'off'(default)|'on'
```

If you select this parameter, the block includes an additional input port $\mathbf{Q}$ to specify the time-varying process noise covariance.

Programmatic Use
Block Parameter: HasTimeVaryingProcessNoise
Type: character vector
Values: 'off', 'on'
Default: 'off'
Initialization
Initial state - Initial state estimate
0 (default) | vector
Initial state estimate value, specified as an $N s$-element vector, where $N s$ is the number of states in the system. Specify the initial state values based on your knowledge of the system.

```
Programmatic Use
Block Parameter: InitialState
Type: character vector, string
Default: ' 0 '
Initial covariance - State estimation error covariance
1 (default) | scalar | vector | matrix
```

State estimation error covariance, specified as a scalar, an Ns-element vector, or an Ns-by-Ns matrix, where $N s$ is the number of states of the system. If you specify a scalar or vector, the software creates an $N s$-by- $N s$ diagonal matrix with the scalar or vector elements on the diagonal.

Specify a high value for the covariance when you do not have confidence in the initial state values that you specify in Initial state.

```
Programmatic Use
Block Parameter: InitialStateCovariance
Type: character vector, string
Default: '1'
Unscented Transformation Parameters
```


## Alpha - Spread of sigma points <br> 1e-3 (default) | scalar value between 0 and 1

The unscented Kalman filter algorithm treats the state of the system as a random variable with a mean state value and variance. To compute the state and its statistical properties at the next time step, the algorithm first generates a set of state values distributed around the mean value by using the unscented transformation. These generated state values are called sigma points. The algorithm uses each of the sigma points as an input to the state transition and measurement functions to get a new set of transformed state points and measurements. The transformed points are used to compute the state and state estimation error covariance value at the next time step.

The spread of the sigma points around the mean state value is controlled by two parameters Alpha and Kappa. A third parameter, Beta, impacts the weights of the transformed points during state and measurement covariance calculations:

- Alpha - Determines the spread of the sigma points around the mean state value. Specify as a scalar value between 0 and $1(0<$ Alpha $<=1$ ). It is usually a small positive value. The spread of
sigma points is proportional to Alpha. Smaller values correspond to sigma points closer to the mean state.
- Kappa - A second scaling parameter that is typically set to 0 . Smaller values correspond to sigma points closer to the mean state. The spread is proportional to the square-root of Kappa.
- Beta - Incorporates prior knowledge of the distribution of the state. For Gaussian distributions, Beta $=2$ is optimal.

If you know the distribution of state and state covariance, you can adjust these parameters to capture the transformation of higher-order moments of the distribution. The algorithm can track only a single peak in the probability distribution of the state. If there are multiple peaks in the state distribution of your system, you can adjust these parameters so that the sigma points stay around a single peak. For example, choose a small Alpha to generate sigma points close to the mean state value.

For more information, see "Unscented Kalman Filter Algorithm".
Programmatic Use
Block Parameter: Alpha
Type: character vector, string
Default: '1e-3'
Beta - Characterization of state distribution
2 (default) | scalar value greater than or equal to 0
Characterization of the state distribution that is used to adjust weights of transformed sigma points, specified as a scalar value greater than or equal to 0 . For Gaussian distributions, Beta $=2$ is the optimal choice.

For more information, see the description for Alpha.

```
Programmatic Use
Block Parameter: Beta
Type: character vector, string
Default: '2'
Kappa - Spread of sigma points
0 (default) | scalar value between 0 and 3
```

Spread of sigma points around mean state value, specified as a scalar value between 0 and 3 ( $0<=$ Kappa <= 3). Kappa is typically specified as 0 . Smaller values correspond to sigma points closer to the mean state. The spread is proportional to the square root of Kappa. For more information, see the description for Alpha.

Programmatic Use
Block Parameter: Kappa
Type: character vector, string
Default: ' 0 '
Measurement

Function - Measurement function name myMeasu rementFcn (default) | function name

The measurement function calculates the $N$-element output measurement vector of the nonlinear system at time step $k$, given the state vector at time step $k$. You create the measurement function and
specify the function name in Function. For example, if vdpMeasurementFcn.m is the measurement function that you created and saved, specify Function as vdpMeasurementFcn.

The inputs to the function you create depend on whether you specify the measurement noise as additive or nonadditive in Measurement noise.

- Measurement noise is Additive - The measurement function $h$ specifies how the measurements evolve as a function of state Values:
$y(k)=h(x(k), \operatorname{Um1}(k), \ldots, \operatorname{Umn}(k))$,
where $\mathrm{y}(\mathrm{k})$ and $\mathrm{x}(\mathrm{k})$ are the estimated output and estimated state at time k , and Um1, ..., Umn are any optional input arguments required by your measurement function. For example, if you are using a sensor for tracking an object, an additional input could be the sensor position.

To see an example of a measurement function with additive process noise, type edit vdpMeasurementFcn at the command line.

- Measurement noise is Nonadditive- The measurement function also specifies how the output measurement evolves as a function of the measurement noise v :
$y(k)=h(x(k), v(k), U m 1(k), \ldots, \operatorname{Umn}(k))$.
To see an example of a measurement function with nonadditive process noise, type edit vdpMeasurementNonAdditiveNoiseFcn.

For more information, see "State Transition and Measurement Functions" on page 3-92.
You can create $h$ using a Simulink Function block or as a MATLAB function (.m file).

- You can use a MATLAB function only if $h$ has one additional input argument Um1 other than $x$ and v.

$$
y[k]=h(x[k], v[k], \operatorname{Um} 1(k))
$$

The software generates an additional input port MeasurementFcnInput to specify this argument.

- If you are using a Simulink Function block, specify $x$ and $v$ using Argument Inport blocks and the additional inputs Um1, . . . Umn using Inport blocks in the Simulink Function block. You do not provide Um1, . . . , Umn to the Unscented Kalman Filter block.

If you have multiple sensors in your system, you can specify multiple measurement functions. You can specify up to five measurement functions using the Add Measurement button. To remove measurement functions, use Remove Measurement.

```
Programmatic Use
Block Parameter: MeasurementFcn1, MeasurementFcn2, MeasurementFcn3,
MeasurementFcn4, MeasurementFcn5
Type: character vector, string
Default: 'myMeasurementFcn'
Measurement noise - Measurement noise characteristics
Additive (default)| Nonadditive
```

Measurement noise characteristics, specified as one of the following values:

- Additive - Measurement noise $v$ is additive, and the measurement function $h$ that you specify in Function has the following form:
$y(k)=h(x(k), \operatorname{Um1}(k), \ldots, \operatorname{Umn}(k))$,
where $\mathrm{y}(\mathrm{k})$ and $\mathrm{x}(\mathrm{k})$ are the estimated output and estimated state at time k , and Um1, ..., Umn are any optional input arguments required by your measurement function.
- Nonadditive - Measurement noise is nonadditive, and the measurement function specifies how the output measurement evolves as a function of the state and measurement noise:

```
y(k) = h(x(k),v(k),Um1(k),\ldots.,Umn(k)).
```


## Programmatic Use

Block Parameter: HasAdditiveMeasurementNoise1, HasAdditiveMeasurementNoise2, HasAdditiveMeasurementNoise3, HasAdditiveMeasurementNoise4,
HasAdditiveMeasurementNoise5
Type: character vector
Values: 'Additive','Nonadditive'
Default: 'Additive'
Has measurement wrapping - Enable measurement wrapping
off (default) | on
Select this parameter to enable measurement wrapping to estimate states when you have circular measurements that are independent of your model states. If you select this parameter, then the measurement function you specify must include the following two outputs:

1 The measurement, specified as a $N$-element output measurement vector of the nonlinear system at time step $k$, given the state vector at time step $k$. $N$ is the number of measurements of the system.
2 The measurement wrapping bounds, specified as an $N$-by- 2 matrix where, the first column provides the minimum measurement bound and the second column provides the maximum measurement bound.

Enabling the Has measurement wrapping check box wraps the measurement residuals in a defined bound, which helps to prevent the filter from divergence due to incorrect measurement residual values. For an example, see "State Estimation with Wrapped Measurements Using Extended Kalman Filter".

```
Programmatic Use
Block Parameter: HasMeasurementWrapping1, HasMeasurementWrapping2,
HasMeasurementWrapping3, HasMeasurementWrapping4, HasMeasurementWrapping5
Type: character vector
Values: 'off','on'
Default:'off'
Covariance - Time-invariant measurement noise covariance
1 (default) | matrix
```

Time-invariant measurement noise covariance, specified as a matrix. The size of the matrix depends on the value of the Measurement noise parameter:

- Measurement noise is Additive - Specify the covariance as an $N$-by- $N$ matrix, where $N$ is the number of measurements of the system.
- Measurement noise is Nonadditive - Specify the covariance as a $V$-by- $V$ matrix, where $V$ is the number of measurement noise terms.

If the measurement noise covariance is time-varying, select Time-varying. The block generates input port Ri to specify the time-varying covariance for the $i^{\text {th }}$ measurement function.

## Dependencies

This parameter is enabled if you do not specify the process noise as Time-Varying.
Programmatic Use
Block Parameter: MeasurementNoise1, MeasurementNoise2, MeasurementNoise3,
MeasurementNoise4, MeasurementNoise5
Type: character vector, string
Default: ' 1 '
Time-varying - Time-varying measurement noise covariance
off (default) | on
If you select this parameter for the measurement noise covariance of the first measurement function, the block includes an additional input port R1. You specify the time-varying measurement noise covariance in R1. Similarly, if you select Time-varying for the $i^{\text {th }}$ measurement function, the block includes an additional input port Ri to specify the time-varying measurement noise covariance for that function.
Programmatic Use
Block Parameter: HasTimeVaryingMeasurementNoise1,
HasTimeVaryingMeasurementNoise2, HasTimeVaryingMeasurementNoise3,
HasTimeVaryingMeasurementNoise4, HasTimeVaryingMeasurementNoise5
Type: character vector
Values: 'off', 'on'
Default: 'off'
Add Enable Port - Enable correction of estimated states only when measured data is available off (default) | on

Suppose that measured output data is not available at all time points at the port $\mathbf{y} \mathbf{1}$ that corresponds to the first measurement function. Select Add Enable port to generate an input port Enable1. Use a signal at this port to enable the correction of estimated states only when measured data is available. Similarly, if measured output data is not available at all time points at the port yi for the $i^{\text {th }}$ measurement function, select the corresponding Add Enable port.
Programmatic Use
Block Parameter: HasMeasurementEnablePort1, HasMeasurementEnablePort2, HasMeasurementEnablePort3, HasMeasurementEnablePort4, HasMeasurementEnablePort5
Type: character vector
Values: 'off', 'on'
Default: 'off'

## Settings

Use the current measurements to improve state estimates - Choose between corrected or predicted state estimate
on (default) | off
When this parameter is selected, the block outputs the corrected state estimate $\widehat{x}[k \mid k]$ at time step k , estimated using measured outputs until time $k$. If you clear this parameter, the block returns the
predicted state estimate $\widehat{x}[k \mid k-1]$ for time $k$, estimated using measured output until a previous time $\mathrm{k}-1$. Clear this parameter if your filter is in a feedback loop and there is an algebraic loop in your Simulink model.

```
Programmatic Use
Block Parameter: UseCurrentEstimator
Type: character vector
Values: 'off', 'on'
Default: 'on'
Output state estimation error covariance - Output state estimation error covariance
off (default)| on
```

If you select this parameter, a state estimation error covariance output port $\mathbf{P}$ is generated in the block.

## Programmatic Use

Block Parameter: OutputStateCovariance
Type: character vector
Values: 'off','on'
Default: 'off'
Data type - Data type for block parameters
double (default) | single
Use this parameter to specify the data type for all block parameters.

## Programmatic Use

Block Parameter: DataType
Type: character vector
Values: 'single', 'double'
Default: 'double'
Sample time - Block sample time
1 (default) | positive scalar
Block sample time, specified as a positive scalar. If the sample times of your state transition and measurement functions are different, select Enable multirate operation in the Multirate tab, and specify the sample times in the Multirate tab instead.

## Dependencies

This parameter is available if in the Multirate tab, the Enable multirate operation parameter is off.

## Programmatic Use

Block Parameter: SampleTime
Type: character vector, string
Default: ' 1'

## Multirate Tab

Enable multirate operation - Enable specification of different sample times for state transition and measurement functions
off (default) | on

Select this parameter if the sample times of the state transition and measurement functions are different. You specify the sample times in the Multirate tab, in Sample time.

Programmatic Use
Block Parameter: EnableMultirate
Type: character vector
Values: 'off', 'on'
Default: 'off'
Sample times - State transition and measurement function sample times
positive scalar
If the sample times for state transition and measurement functions are different, specify Sample time. Specify the sample times for the measurement functions as positive integer multiples of the state transition sample time. The sample times you specify correspond to the following input ports:

- Ports corresponding to state transition function - Additional input to state transition function StateTransitionFcnInputs and time-varying process noise covariance $\mathbf{Q}$. The sample times of these ports must always equal the state transition function sample time, but can differ from the sample time of the measurement functions.
- Ports corresponding to $i^{\text {th }}$ measurement function - Measured output yi, additional input to measurement function MeasurementFcniInputs, enable signal at port Enablei, and timevarying measurement noise covariance $\mathbf{R i}$. The sample times of these ports for the same measurement function must always be the same, but can differ from the sample time for the state transition function and other measurement functions.


## Dependencies

This parameter is available if in the Multirate tab, the Enable multirate operation parameter is on.

Programmatic Use
Block Parameter: StateTransitionFcnSampleTime, MeasurementFcn1SampleTime1, MeasurementFcn1SampleTime2, MeasurementFcn1SampleTime3, MeasurementFcn1SampleTime4, MeasurementFcn1SampleTime5
Type: character vector, string
Default: '1'

## More About

## State Transition and Measurement Functions

The algorithm computes the state estimates $\widehat{x}$ of the nonlinear system using state transition and measurement functions specified by you. You can specify up to five measurement functions, each corresponding to a sensor in the system. The software lets you specify the noise in these functions as additive or nonadditive.

- Additive Noise Terms - The state transition and measurements equations have the following form:

$$
\begin{aligned}
& x[k+1]=f\left(x[k], u_{s}[k]\right)+w[k] \\
& y[k]=h\left(x[k], u_{m}[k]\right)+v[k]
\end{aligned}
$$

Here $f$ is a nonlinear state transition function that describes the evolution of states x from one time step to the next. The nonlinear measurement function $h$ relates $x$ to the measurements $y$ at
time step k. w and v are the zero-mean, uncorrelated process and measurement noises, respectively. These functions can also have additional optional input arguments that are denoted by $u_{s}$ and $u_{m}$ in the equations. For example, the additional arguments could be time step $k$ or the inputs $u$ to the nonlinear system. There can be multiple such arguments.

Note that the noise terms in both equations are additive. That is, $x(k+1)$ is linearly related to the process noise $w(k)$, and $y(k)$ is linearly related to the measurement noise $v(k)$. For additive noise terms, you do not need to specify the noise terms in the state transition and measurement functions. The software adds the terms to the output of the functions.

- Nonadditive Noise Terms - The software also supports more complex state transition and measurement functions where the state $x[k]$ and measurement $y[k]$ are nonlinear functions of the process noise and measurement noise, respectively. When the noise terms are nonadditive, the state transition and measurements equation have the following form:

$$
\begin{aligned}
& x[k+1]=f\left(x[k], w[k], u_{S}[k]\right) \\
& y[k]=h\left(x[k], v[k], u_{m}[k]\right)
\end{aligned}
$$

## Version History

## Introduced in R2017a

## R2020b: Numerical Changes

Behavior changed in R2020b
Starting in R2020b, numerical improvements in the Unscented Kalman Filter algorithm might produce results that are different from the results you obtained in previous versions.

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.
The state transition and measurement functions that you specify must use only the MATLAB commands and Simulink blocks that support code generation. For a list of blocks that support code generation, see "Blocks Supported for Code Generation" (Simulink Coder). For a list of commands that support code generation, see "Functions and Objects Supported for C/C++ Code Generation" (MATLAB Coder).

Generated code uses an algorithm that is different from the algorithm that the Unscented Kalman Filter block itself uses. You might see some numerical differences in the results obtained using the two methods.

## See Also

## Blocks

Kalman Filter | Extended Kalman Filter | Particle Filter

## Functions

extendedKalmanFilter|unscentedKalmanFilter|kalman|kalmd|particleFilter

## Topics

"Extended and Unscented Kalman Filter Algorithms for Online State Estimation"
"Validate Online State Estimation in Simulink"
"Troubleshoot Online State Estimation"

## External Websites

Understanding Kalman Filters: Nonlinear State Estimators - MATLAB Video Series

## Varying Lowpass Filter

Butterworth filter with varying coefficients


## Libraries:

Control System Toolbox / Linear Parameter Varying

Varying Lowpass Filter

## Description

The block implements an analog $\mathrm{N}^{\text {th }}$-order Butterworth filter with unit DC gain and varying cutoff frequency.

Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

## Ports

Input
$\mathbf{u}$ - Filter input
scalar
Lowpass filter input signal.
freq - Cutoff frequency
scalar
Filter cutoff frequency, specified in rad/s.

## Output

y - Filter output
scalar
Lowpass filter output signal.

## Parameters

Filter order - Lowpass filter order
1 (default) | positive integer
Lowpass filter order, specified as a positive integer.

## Version History

Introduced in R2017b

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Discrete Varying Lowpass

## Topics

"Model Gain-Scheduled Control Systems in Simulink"

## Varying Notch Filter

Notch filter with varying coefficients


## Libraries:

Control System Toolbox / Linear Parameter Varying

## Description

The block implements a continuous-time notch filter with varying coefficients. The instantaneous transfer function of the filter is given by:

$$
N(s)=\frac{s^{2}+2 * \text { gmin } * \text { damp }^{*} \text { freq } * s+\text { freq }^{2}}{s^{2}+2 * \text { damp }^{*} \text { freq } * s+\text { freq }^{2}}
$$

where gmin, damp, and freq are the values supplied at the corresponding input ports. These parameters control the notch depth and frequency as shown in the following illustration. The damping ratio damp controls the notch width $\Delta$; larger damp means larger $\Delta$.


Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

## Ports

## Input

$\mathbf{u}$ - Filter input
scalar
Notch filter input signal
freq - Notch frequency
scalar
Value of the notch frequency, specified in rad/s.
gmin - Gain at notch frequency
scalar
Value of the gain at notch frequency, in absolute units. This value controls the notch depth. The notch filter has unit gain at low and high frequency. The gain is lowest at the notch frequency, the value at the freq port.
damp - Damping ratio of the filter poles
scalar
Value of the damping ratio, specified as a positive scalar value. The damping ratio controls the notch width; the closer to 0 , the steeper the notch.

## Output

$\mathbf{y}$ - Filter output
scalar
Notch filter output signal.

## Version History <br> Introduced in R2017b

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Discrete Varying Notch

## Topics

"Model Gain-Scheduled Control Systems in Simulink"

## Varying Observer Form

Observer-form state-space model with varying matrix values


Varying Observer Form

Libraries:
Control System Toolbox / Linear Parameter Varying

## Description

Use this block to implement a continuous-time varying state-space model in observer form. The system matrices $A, B, C$, and $D$ describe the plant dynamics, and the matrices $K$ and $L$ specify the state-feedback and state-observer gains, respectively. Feed the instantaneous values of these matrices to the corresponding input ports. The observer form is given by:

$$
\begin{gathered}
d x_{e}=A x_{e}+B u+L \varepsilon \\
u=-K x_{e} \\
\varepsilon=y-C x_{e}-D u
\end{gathered}
$$

where $u$ is the plant input, $y$ is the plant output, $x_{e}$ is the estimated state, and $\varepsilon$ is the innovation, the difference between the predicted and measured plant output. The observer form works well for gain scheduling of state-space controllers. In particular, the state $x_{e}$ tracks the plant state, and all controllers are expressed with the same state coordinates.

Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

## Ports

## Input

y - Measurement signal
scalar | vector
Measured plant output signal.
A - Plant state matrix
matrix
Plant state matrix of dimensions $N_{x}$-by- $N_{x}$, where $N_{x}$ is the number of plant states.
B - Plant input matrix
matrix
Plant input matrix of dimensions $N_{x}$-by- $N_{u}$, where $N_{u}$ is the number of plant inputs.

## C - Plant output matrix matrix

Plant output matrix $N_{y}$-by- $N_{x}$, where $N_{y}$ is the number of plant outputs.
D - Plant feedforward matrix matrix

Plant feedforward matrix of dimensions $N_{y}$-by- $N_{u}$.
K - State-feedback matrix
matrix
State-feedback matrix of dimensions $N_{u}$-by- $N_{\chi}$.
L - State-observer matrix
matrix
State-observer matrix of dimensions $N_{\chi}$-by- $N_{y}$.

## Output

$\mathbf{u}$ - Control signal
scalar | vector
Control signal (plant input).
$\mathbf{x}_{\mathbf{e}}$ - Estimated plant state vector
vector
Vector of estimated plant states.

## Dependencies

To enable this port, select the Output states parameter.
$\mathbf{d} \mathbf{x}_{\mathbf{e}}$ - Estimated state derivatives
vector
Derivatives of the corresponding estimated states in $\mathbf{x}_{\mathbf{e}}$.

## Dependencies

To enable this port, select the Output state updates parameter.

## Parameters

Initial conditions - System initial conditions
0 (default) | scalar | vector
Initial state values, specified as a scalar or a vector whose length is the number of plant states.
State names (e.g., 'position') - Plant state names
' ' (default) | character vector | cell array
To identify plant states, specify state names as a:

- character vector, for a one-state plant.
- Cell array of character vectors, for a multistate plant.

Output states - Provide state output
on (default) | off
Select to enable the estimated states output port, $\mathbf{x}_{\mathbf{e}}$.
Output state derivatives - Provide state derivatives
on (default) | off
Select to enable the estimated state derivatives output port, $\mathbf{d x}_{\mathbf{e}}$.

## Version History

Introduced in R2017b

## Extended Capabilities

## C/C++ Code Generation

Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Discrete Varying Observer Form | Varying State Space
Topics
"Model Gain-Scheduled Control Systems in Simulink"

## Varying State Space

State-space model with varying matrix values


Varying State Space

## Libraries:

Control System Toolbox / Linear Parameter Varying

## Description

Use this block to implement a continuous-time state-space model with varying matrices. Feed the instantaneous values of the state matrix $A$, input matrix $B$, output matrix $C$, and feedforward matrix $D$ to the corresponding input ports. The system response is given by:

$$
\begin{aligned}
& d x=A x+B u \\
& y=C x+D u,
\end{aligned}
$$

where $u$ is the system input, $y$ is the system output, and $x$ and $d x$ are the state vector and state derivatives, respectively.

Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

Caution Avoid making the $\mathbf{C}$ and $\mathbf{D}$ matrices depend on the system output $\mathbf{y}$. If you have such dependence, the resulting state-space equation $y=C(y) x+D(y) u$ creates an algebraic loop, because computing the output value $y$ requires knowing the output value. This algebraic loop is prone to instability and divergence. Instead, try expressing $\mathbf{C}$ and $\mathbf{D}$ in terms of the time $t$, the block input $\mathbf{u}$, and the state outputs $\mathbf{x}$.

For similar reasons, avoid making $\mathbf{A}$ and $\mathbf{B}$ depend on the $\mathbf{d x}$ output. Note that it is safe to for $\mathbf{A}$ and $\mathbf{B}$ to depend on $\mathbf{y}$ when $\mathbf{y}$ is a fixed combination of states and inputs, (in other words, when $y=C x+$ $D u$ where $C$ and $D$ are constant matrices).

## Ports

## Input

$\mathbf{u}$ - System input
scalar | vector
System input signal.
A - State matrix
matrix
State matrix of dimensions $N_{x}$-by- $N_{x}$, where $N_{x}$ is the number of system states.

B - Input matrix
matrix
Input matrix of dimensions $N_{x}$-by- $N_{u}$, where $N_{u}$ is the number of system inputs.
C - Output matrix
matrix
Output matrix $N_{y}$-by- $N_{x}$, where $N_{y}$ is the number of system outputs.
D - Feedforward matrix
matrix
Feedforward matrix of dimensions $N_{y}$-by- $N_{u}$.
For a zero-feedthrough state-space model, clear the Enable feedthrough checkbox. Clearing this checkbox disables the $\mathbf{D}$ input port.

## Output

y - System output
scalar | vector
System output signal.
$\mathbf{x}$ - Current state vector
vector
Current state values.

## Dependencies

To enable this port, select the Output states parameter.
dx - State derivatives
vector
Current derivatives of the corresponding states in $\mathbf{x}$.

## Dependencies

To enable this port, select the Output state derivatives parameter.

## Parameters

Initial conditions - System initial conditions
0 (default) | scalar | vector
Initial state values, specified as a scalar or a vector whose length is the number of system states.
State names - System state names
' ' (default) | character vector | cell array
To identify system states, specify state names as a:

- character vector, for a one-state plant.
- Cell array of character vectors, for a multistate plant.

Output states - Provide state output on (default) | off

Select to enable the state values output port, $\mathbf{x}$.
Output state derivatives - Provide state derivatives
on (default) | off
Select to enable the state derivatives output port, dx.
Enable feedthrough - Add input port for feedthrough matrix
on (default) | off
Enable the Dinput port for a state-space model with direct feedthrough. For a zero-feedthrough model, clear this checkbox. Disabling the port for zero-feedthrough models is numerically more reliable than feeding a zero-constant into the port.

## Version History

Introduced in R2017b

## R2023a: Enable feedthrough checkbox added

For a zero-feedthrough state-space model, clear the Enable feedthrough checkbox. Clearing this checkbox disables the $\mathbf{D}$ input port. Disabling the port for zero-feedthrough models is numerically more reliable than feeding a zero-constant into the port.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder ${ }^{\mathrm{TM}}$.

## See Also

Discrete Varying State Space

## Topics

"Model Gain-Scheduled Control Systems in Simulink"

## Varying Transfer Function

Transfer function with varying coefficients


## Libraries:

Control System Toolbox / Linear Parameter Varying

## Description

This block implements a continuous-time transfer function with varying coefficients. The instantaneous transfer function is given by:

$$
H(s)=\frac{b_{0}+b_{1} s^{-1}+\cdots+b_{N} s^{-N}}{1+a_{1} s^{-1}+\cdots+a_{N} s^{-N}}=\frac{b_{0} s^{N}+b_{1} s^{N-1}+\cdots+b_{N}}{s^{N}+a_{1} s^{N-1}+\cdots+a^{N}} .
$$

$N$ is number of poles, specified with the Transfer function order parameter. Feed the values of the coefficients $b_{0}, b_{1}, \ldots, b_{N}$ and $a_{1}, a_{2}, \ldots, a_{N}$ to the corresponding block input ports.

Note The above expression for $H(s)$ applies only to Varying Transfer Function blocks added to a model in R2023a or later. For information about Varying Transfer Function blocks created in R2022b or earlier, see "Varying Transfer Function block formula changed" on page 3-106.

Use this block and the other blocks in the Linear Parameter Varying library to implement common control elements with variable parameters or coefficients. For more information, see "Model GainScheduled Control Systems in Simulink".

## Ports

## Input

$\mathbf{u}$ - Transfer function input
scalar
Transfer function input signal.
b0, b1, ... - Numerator coefficients
scalar
Transfer function numerator coefficients. The number of coefficient ports is determined by the Transfer function order parameter.

For a zero-feedthrough transfer function, clear the Enable feedthrough checkbox. Clearing this checkbox disables the $\mathbf{b 0}$ input port.
a1, a2, ... - Denominator coefficients
scalar

Transfer function denominator coefficients. The number of coefficient ports is determined by the Transfer function order parameter. The coefficient of the lowest-order term $\left(a_{0}\right)$ is fixed to 1.

The denominator coefficients are $\mathrm{a} 0, \mathrm{a} 1, \ldots$. The coefficient $a_{\mathrm{N}}$ is fixed to 1 . For more information, see "Varying Transfer Function block formula changed" on page 3-106.

## Output

$\mathbf{y}$ - Transfer function output
scalar
Transfer function output signal.

## Parameters

Transfer function order - Number of poles N
1 (default) | positive integer
Transfer function order $N$, specified as a positive integer. This parameter determines the number of coefficient input ports on the block.

Enable feedthrough - Add input port for feedthrough term
on (default) | off
Enable the $\mathbf{b 0}$ input port for a transfer function with direct feedthrough. For a zero-feedthrough transfer function, clear this checkbox. Disabling the port for zero-feedthrough models is numerically more reliable than feeding a zero-constant into the port.

## Version History

## Introduced in R2017b

## R2023a: Varying Transfer Function block formula changed

Behavior changed in R2023a
In R2023a, the Varying Transfer Function block formula was changed to make the polynomial coefficient definitions consistent with the Discrete Varying Transfer Function block. Block diagrams to which the block was added in R2022b or earlier are unaffected by this change.

- A Varying Transfer Function block added to a Simulink model in R2023a or later has an instantaneous transfer function described by:

$$
H(s)=\frac{b_{0}+b_{1} s^{-1}+\cdots+b_{N} s^{-N}}{1+a_{1} s^{-1}+\cdots+a_{N} s^{-N}}=\frac{b_{0} s^{N}+b_{1} s^{N-1}+\cdots+b_{N}}{s^{N}+a_{1} s^{N-1}+\cdots+a^{N}} .
$$

- A block added in R2022b or before has an instantaneous transfer function described by:

$$
H(s)=\frac{b_{0}+b_{1} s+\cdots b_{N} s^{N}}{a_{0}+a_{1} s+\cdots a_{N-1} s^{N-1}+s^{N}} .
$$

Note that replacing a pre-R2023a block with the new block requires rewiring the coefficient inputs. For instance, consider the following second-order transfer function:

$$
H_{22 b}(s)=\frac{10+9 s+8 s^{2}}{7+6 s+s^{2}} .
$$

Using a block added in R2022b or before, you wire up the block as shown in the following illustration. The block fixes a2 to 1 .


To replace the block in R2023a or after, rewrite the transfer function as follows:

$$
H_{23 a}(s)=\frac{8 s^{2}+9 s+10}{s^{2}+6 s+7} .
$$

Rewire the block as shown. Now, the block fixes a0 to 1.


## R2023a: Enable feedthrough checkbox added

For a zero-feedthrough transfer function, clear the Enable feedthrough checkbox. Clearing this checkbox disables the $\mathbf{b 0}$ input port. Disabling the port for zero-feedthrough models is numerically more reliable than feeding a zero-constant into the port.

## Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink ${ }^{\circledR}$ Coder $^{\mathrm{TM}}$.

## See Also

Discrete Varying Transfer Function

[^0]
[^0]:    Topics
    "Model Gain-Scheduled Control Systems in Simulink"

