Control System Toolbox™
Reference

MATLAB

R2023a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Control System Toolbox™ Reference
© COPYRIGHT 2001-2023 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

June 2001 Online only New for Version 5.1 (Release 12.1)

July 2002 Online only Revised for Version 5.2 (Release 13)

June 2004 Online only Revised for Version 6.0 (Release 14)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 7.0 (Release 2006a)
September 2006 Online only Revised for Version 7.1 (Release 2006b)
March 2007 Online only Revised for Version 8.0 (Release 2007a)
September 2007 Online only Revised for Version 8.0.1 (Release 2007b)
March 2008 Online only Revised for Version 8.1 (Release 2008a)
October 2008 Online only Revised for Version 8.2 (Release 2008b)
March 2009 Online only Revised for Version 8.3 (Release 2009a)
September 2009 Online only Revised for Version 8.4 (Release 2009b)
March 2010 Online only Revised for Version 8.5 (Release 2010a)
September 2010 Online only Revised for Version 9.0 (Release 2010b)
April 2011 Online only Revised for Version 9.1 (Release 2011a)
September 2011 Online only Revised for Version 9.2 (Release 2011b)
March 2012 Online only Revised for Version 9.3 (Release 2012a)
September 2012 Online only Revised for Version 9.4 (Release 2012b)
March 2013 Online only Revised for Version 9.5 (Release 2013a)
September 2013 Online only Revised for Version 9.6 (Release 2013b)
March 2014 Online only Revised for Version 9.7 (Release 2014a)
October 2014 Online only Revised for Version 9.8 (Release 2014b)
March 2015 Online only Revised for Version 9.9 (Release 2015a)
September 2015 Online only Revised for Version 9.10 (Release 2015b)
March 2016 Online only Revised for Version 10.0 (Release 2016a)
September 2016 Online only Revised for Version 10.1 (Release 2016b)
March 2017 Online only Revised for Version 10.2 (Release 2017a)
September 2017 Online only Revised for Version 10.3 (Release 2017b)
March 2018 Online only Revised for Version 10.4 (Release 2018a)
September 2018 Online only Revised for Version 10.5 (Release 2018b)
March 2019 Online only Revised for Version 10.6 (Release 2019a)
September 2019 Online only Revised for Version 10.7 (Release 2019b)
March 2020 Online only Revised for Version 10.8 (Release 2020a)
September 2020 Online only Revised for Version 10.9 (Release 2020b)
March 2021 Online only Revised for Version 10.10 (Release 2021a)
September 2021 Online only Revised for Version 10.11 (Release 2021b)
March 2022 Online only Revised for Version 10.11.1 (Release 2022a)
September 2022 Online only Revised for Version 10.12 (Release 2022b)

March 2023 Online only Revised for Version 10.13 (Release 2023a)

Classes

1|
Functions

2|
Blocks

3|

Classes

1 Classes

1-2

TuningGoal.ConicSector class

Package: TuningGoal

Sector bound for control system tuning

Description

A conic sector bound is a restriction on the output trajectories of a system. If for all nonzero input
trajectories u(t), the output trajectory z(t) = (Hu)(t) of a linear system H satisfies:

T T
£ 2670 2(t)dt < 0,

for all T = 0, then the output trajectories of H lie in the conic sector described by the symmetric
indefinite matrix Q. Selecting different Q matrices imposes different conditions on the system
response.

When tuning a control system with systune, use TuningGoal.ConicSector to restrict the output
trajectories of the response between specified inputs and outputs to a specified sector. For more
information about sector bounds, see “About Sector Bounds and Sector Indices”.

Construction

Reg = TuningGoal.ConicSector(inputname,outputname, Q) creates a tuning goal for
restricting the response H(s) from inputs inputname to outputs outputname to the conic sector
specified by the symmetric matrix Q. The tuning goal constrains H such that its trajectories z(t) =
(Hu)(t) satisfy:

T T
£ 267Qz(t)dt < 0,

forall T = 0. (See “About Sector Bounds and Sector Indices”.) The matrix Q must have as many
negative eigenvalues as there are inputs in H.

To specify frequency-dependent sector bounds, set Q to an LTI model that satisfies Q(s)T = Q(-s).
Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

+ Ifyou are using the tuning goal to tune a Simulink® model of a control system, then inputname
can include:
* Any model input.
* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

TuningGoal.ConicSector class

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:

* Any input of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be any input name
in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP _u, then

inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out in

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

If you are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use {'y1', 'y2'} to
designate a two-channel output.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

* Any output of the genss model
* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OutputName. Also, if T contains an AnalysisPoint block with a location named

1-3

1 Classes

1-4

AP_u, then outputname can include 'AP u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out imn

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

Q

Sector geometry, specified as:

* A matrix, for constant sector geometry. Q is a symmetric square matrix that is ny on a side, where
ny is the number of signals in outputname. The matrix Q must be indefinite to describe a well-
defined conic sector. An indefinite matrix has both positive and negative eigenvalues. In particular,
Q must have as many negative eigenvalues as there are input channels specified in inputname
(the size of the vector input signal u(t)).

« An LTI model, for frequency-dependent sector geometry. Q satisfies Q(s)T = Q(-s). In other words,
Q(s) evaluates to a Hermitian matrix at each frequency.

For more information, see “About Sector Bounds and Sector Indices”.

Properties
SectorMatrix
Sector geometry, specified as a matrix or an LTI model. The Q input argument sets initial value of
SectorMatrix when you create the tuning goal, and the same restrictions and characteristics apply
to SectorMatrix as apply to Q.
Regularization
Regularization parameter, specified as a real nonnegative scalar value.
Given the indefinite factorization of the sector matrix,
Q=WiWi - W,Ws, WiWw,=0
the sector bound
H(- jw) ' QH(jw) < 0
is equivalent to

Hy (jw) Hy (jw) < Hy(jw) Ha(jw),

TuningGoal.ConicSector class

where Hy = WiFH, Hy = W}H , and (*)" denotes the Hermitian transpose. Enforcing this condition

might become numerically challenging when other tuning goals drive both H;(jw) and H,(jw) to zero
at some frequencies. This condition is equivalent to controlling the sign of a 0/0 expression, which is
intractable in the presence of rounding errors. To avoid this condition, you can regularize the sector
bound to

H(-jw) QH(jw) < -¢€%,
or equivalently,
. \H . 2 . \H .
Hy(jw) "Hy(jw) + €I < Hy(jw) Hy(jw).

This regularization prevents H,(jw) from becoming singular, and helps keep evaluation of the tuning
goal numerically tractable. Use the Regularization property to set the value of € to a small (but
not negligible) fraction of the typical norm of the feedthrough term in H. For example, if you
anticipate the norm of the feedthrough term of H to be of order 1 during tuning, try:

Req.Regularization = le-3;

Default: 0

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the model sample
time.

Input

Input signal names, specified as a cell array of character vectors. The input signal names specify the
inputs of the constrained response, initially populated by the inputname argument.

Output

Output signal names, specified as a cell array of character vectors. The output signal names specify
the outputs of the constrained response, initially populated by the outputname argument.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

1-5

1 Classes

When Models = NaN, the tuning goal applies to all models.
Default: NaN
Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}
Name
Name of the tuning goal, specified as a character vector.

For example, if Req is a tuning goal:
Req.Name = 'LoopReq’;

Default: []

Examples

Conic Sector Goal

Create a tuning goal that restricts the response from an input or analysis point 'u' to an output or
analysis point 'y "' in a control system to the following sector:

S= {(y, u):0.1u? <uy < 10u2}.

The Q matrix for this sector is given by:

a=0.1;
b = 10;
Q = [1 -(a+b)/2 ; -(a+b)/2 a*bl;

Use this Q matrix to create the tuning goal.

TG = TuningGoal.ConicSector('u','y",Q)

1-6

TuningGoal.ConicSector class

TG =
ConicSector with properties:

SectorMatrix: [2x2 double]
Regularization: 0
Focus: [0 Inf]

Input: {'u'}
OQutput: {'y'}
Models: NaN

Openings: {0x1 cell}
Name: ''

Set properties to further configure the tuning goal. For example, suppose the control system model
has an analysis point called 'OuterLoop', and you want to enforce the tuning goal with the loop
open at that point.

TG.Openings = 'OuterlLoop’;

Before or after tuning, use viewGoal to visualize the tuning goal.

viewGoal(TG)
Requirement 1: Sector R-index vs. frequency

2

15
)
]
=,
[75]
8

R
o
=3
()
=
a0

0.5

10° 10"

Frequency (rad/s)

The goal is met when the relative sector index R < 1 at all frequencies. The shaded area represents
the region where the goal is not met. When you use this requirement to tune a control system CL,
viewGoal (TG, CL) shows R for the specified inputs and outputs on this plot, enabling you to identify
frequency ranges in which the goal is not met, and by how much.

1-7

1 Classes

1-8

Constrain Input and Output Trajectories to Conic Sector

Consider the following control system.

rqve o L4 g .y

| e

Suppose that the signal u is marked as an analysis point in a Simulink model or genss model of the
control system. Suppose also that G is the closed-loop transfer function from u to y. Create a tuning
goal that constrains all I/O trajectories {u(t),y(t)} of G to satisfy:

£T (O ()
u(t) u(t)

for all T = 0. For this example, use sector matrix that imposes input passivity with index 0.5.

T

Q dt <0,

nu = 0.5;
Q=100 -1;-1 2*nul;

Constraining the I/O trajectories of G is equivalent to restricting the output trajectories z(t) of
H =[G;I] to the sector defined by:

T T
£ 2670 z(t)dt < 0.

(See “About Sector Bounds and Sector Indices” for more details about this equivalence.) To specify
this constraint, create a tuning goal that constrains the transfer function H = [G; I], which the
transfer function from input u to outputs {y; u}.

TG = TuningGoal.ConicSector('u',{'y"';'u'},Q);

When you specify the same signal 'u' as both input and output, the conic sector tuning goal sets the
corresponding transfer function to the identity. Therefore, the transfer function constrained by TG is
H =[G;I] as intended. This treatment is specific to the conic sector tuning goal. For other tuning
goals, when the same signal appears in both inputs and outputs, the resulting transfer function is
zero in the absence of feedback loops, or the complementary sensitivity at that location otherwise.
This result occurs because when the software processes analysis points, it assumes the input is
injected after the output. See “Mark Signals of Interest for Control System Analysis and Design” for
more information about how analysis points work.

Tips

The conic sector tuning goal requires that WEH (s) be square and minimum phase, where H(s) is

the transfer function between the specified inputs and outputs, and W, spans the negative
invariant subspace of the sector matrix, Q:

Q=W Wi - WoW3, WiW,;=0

TuningGoal.ConicSector class

(See “Algorithms” on page 1-9.) This means that the stabilized dynamics for this goal are not the

poles of H, but rather the transmission zeros of W}H (5). The MinDecay and MaxRadius options of

systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization
fails to meet the default bounds, or if the default bounds conflict with other requirements, use
systuneOptions to change these defaults.

Algorithms

Let
Q=W Wi - WoW3, WiW,;=0

be an indefinite factorization of Q. When WFZFH (s) is square and minimum phase, then the time-domain
sector bound on trajectories z(t) = Hu(t),

T .\T
£ 27Qz(t)dt < 0,
is equivalent to the frequency-domain sector condition,
H(-jw)'QH(jw) < 0

for all frequencies. The TuningGoal.ConicSector goal uses this equivalence to convert the time-
domain characterization into a frequency-domain condition that systune can handle in the same way
it handles gain constraints. To secure this equivalence, TuningGoal.ConicSector also makes

WFZFH (s) minimum phase by making all its zeros stable.

For sector bounds, the R-index plays the same role as the peak gain does for gain constraints (see
“About Sector Bounds and Sector Indices”). The condition

H(-jw)'QH(jw) < 0

is satisfied at all frequencies if and only if the R-index is less than one. The viewGoal plot for
TuningGoal.ConicSector shows the R-index value as a function of frequency (see sectorplot).

When you tune a control system using a TuningGoal object to specify a tuning goal, the software
converts the tuning goal into a normalized scalar value f(x), where x is the vector of free (tunable)
parameters in the control system. The software then adjusts the parameter values to minimize f(x) or
to drive f(x) below 1 if the tuning goal is a hard constraint.

For the sector bound
H(-jw)' QH(jw) < 0
TuningGoal.ConicSector uses the objective function given by:

R

_ 108
f0) = Ty R Rmax=10°.

R is the sector-bound R-index (see getSectorIndex for details).

The dynamics of H affected by the minimum-phase condition are the stabilized dynamics for this
tuning goal. The MinDecay and MaxRadius options of systuneOptions control the bounds on

1-9

1 Classes

these implicitly constrained dynamics. If the optimization fails to meet the default bounds, or if the
default bounds conflict with other requirements, use systuneOptions to change these defaults.

Version History
Introduced in R2016b

See Also
systune | systune (for slTuner) | getSectorIndex | viewGoal | evalGoal | slTuner

Topics

“About Sector Bounds and Sector Indices”
“Tune Control Systems Using systune”
“Tune Control Systems in Simulink”

1-10

TuningGoal.ControllerPoles class

TuningGoal.ControllerPoles class

Package: TuningGoal

Constraint on controller dynamics for control system tuning

Description

Use TuningGoal.ControllerPoles to constrain the dynamics of a tunable component in a control
system model. Use this tuning goal for constraining the dynamics of tuned blocks identified in a
slTuner interface to a Simulink model. If you are tuning a genss model of a control system, use it to
constrain tunable elements such as tunableTF or tunableSS . The
TuningGoal.ControllerPoles requirement lets you control the minimum decay rate, minimum
damping, and maximum natural frequency of the poles of the tunable element, ensuring that the
controller is free of fast or resonant dynamics. The tuning goal can also ensure stability of the tuned
value of the tunable element.

After you create a requirement object, you can further configure the tuning goal by setting
“Properties” on page 1-12 of the object.

Construction

Reg = TuningGoal.ControllerPoles(blockID,mindecay,mindamping,maxfreq) creates a
tuning goal that constrains the dynamics of a tunable component of a control system. The minimum
decay rate, minimum damping constant, and maximum natural frequency define a region of the
complex plane in which poles of the component must lie. A nonnegative minimum decay ensures
stability of the tuned poles. The tuning goal applies to all poles in the block except fixed integrators,
such as the I term of a PID controller.

Input Arguments
blockID

Tunable component to constrain, specified as a character vector. blockID designates one of the
tuned blocks in the control system you are tuning.

+ For tuning a Simulink model of a control system, blockID is a tuned block in the slTuner
interface to the model. For example, suppose the s1Tuner interface has a tuned block called
Controller. To constrain this block, use 'Controller' for the blockID input argument.

» For tuning a genss model of a control system, blockid is one of the control design blocks of that
model. For example, suppose the genss interface has a tunable block with name C1. To constrain
this block, use 'C1' for the blockID input argument.

mindecay

Minimum decay rate of poles of tunable component, specified as a scalar value in the frequency units
of the control system model you are tuning.

Specify mindecay = 0 to ensure that the block is stable. If you specify a negative value, the tuned
block can include unstable poles.

1-11

1 Classes

1-12

When you tune the control system using this tuning goal, all poles of the tunable component are
constrained to satisfy:

* Re(s) < -mindecay, for continuous-time systems.
* log(|z]) < -mindecay*Ts, for discrete-time systems with sample time Ts.

Default: 0
mindamping
Desired minimum damping ratio of poles of the tunable block, specified as a value between 0 and 1.

Poles of the block that depend on the tunable parameters are constrained to satisfy Re(s) < -
mindamping*|s]|. In discrete time, the damping ratio is computed using s=1log(z) /Ts.

Default: 0
maxfreq

Desired maximum natural frequency of poles of the tunable block, specified as a scalar value in the
units of the control system model you are tuning.

Poles of the block are constrained to satisfy |s| < maxfreq for continuous-time blocks, or |
log(z)| < maxfreqg*Ts for discrete-time blocks with sample time Ts. This constraint prevents fast
dynamics in the tunable block.

Default: Inf

Properties
Block

Name of tunable component to constrain, specified as a character vector. The blockID input
argument sets the value of Block.

MinDecay

Minimum decay rate of poles of tunable component, specified as a scalar value in the frequency units
of the control system you are tuning. The initial value of this property is set by the mindecay input
argument.

MinDecay = 0 to ensure that the block is stable. If you specify a negative value, the tuned block can
include unstable poles.

When you tune the control system using this tuning goal, all poles of the tunable component are
constrained to satisfy Re(s) < -MinDecay for continuous-time systems, or log(|z|) < -
MinDecay*Ts for discrete-time systems with sample time Ts.

You can use dot notation to change the value of this property after you create the tuning goal. For
example, suppose Req is a TuningGoal.ControllerPoles tuning goal. Change the minimum
decay rate to 0.001:

Reqg.MinDecay = 0.001;
Default: 0

TuningGoal.ControllerPoles class

MinDamping

Desired minimum damping ratio of poles of the tunable block, specified as a value between 0 and 1.
The initial value of this property is set by the mindamping input argument.

Poles of the block that depend on the tunable parameters are constrained to satisfy Re(s) < -
MinDamping*|s|. In discrete time, the damping ratio is computed using s=log(z) /Ts.

Default: 0
MaxFrequency

Desired maximum natural frequency of poles of the tunable block, specified as a scalar value in the
frequency units of the control system model you are tuning. The initial value of this property is set by
the maxfreq input argument.

Poles of the block are constrained to satisfy |s| < maxfreq for continuous-time blocks, or |
log(z)| < maxfreqg*Ts for discrete-time blocks with sample time Ts. This constraint prevents fast
dynamics in the tunable block.

You can use dot notation to change the value of this property after you create the tuning goal. For
example, suppose Req is a TuningGoal.ControllerPoles tuning goal. Change the maximum
frequency to 1000:

Req.MaxFrequency = 1000;

Default: Inf

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples

Constrain Dynamics of Tunable Transfer Function

Create a tuning goal that constrains the dynamics of a tunable transfer function block in a tuned
control system.

For this example, suppose that you are tuning a control system that includes a compensator block
parametrized as a second-order transfer function. Create a tuning goal that restricts the poles of that
transfer function to the region Re(s) < — 0.1, |s| < 30.

Create a tunable component that represents the compensator.
C = tunableTF('Compensator',2,2);

This command creates a Control Design Block named 'Compensator' with two poles and two
zeroes. You can construct a tunable control system model, T, by interconnecting this Control Design

1-13

1 Classes

1-14

Block with other tunable and numeric LTI models. If you tune T using systune, the values of these
poles and zeroes are unconstrained by default.

Create a tuning requirement to constrain the dynamics of the compensator block. Set the minimum
decay rate to 0.1 rad/s, and set the maximum frequency to 30 rad/s.

Req = TuningGoal.ControllerPoles('Compensator',0.1,0,30);

The mindamping input argument is 0, which imposes no constraint on the damping constant of the
poles of the block.

If you tune T using systune and the tuning requirement Req, the poles of the compensator block are
constrained satisfy these values. After you tune T, you can use viewGoal to validate the tuned
control system against the tuning goal.

Tips

* TuningGoal.ControllerPoles restricts the dynamics of a single tunable component of the
control system. To ensure the stability or restrict the overall dynamics of the tuned control system,
use TuningGoal.Poles.

Algorithms

When you use a TuningGoal object to specify a tuning goal, the software converts the tuning goal
into a normalized scalar value f(x). x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x), or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.ControllerPoles, f(x) reflects the relative satisfaction or violation of the goal.
For example, if you attempt to constrain the pole of a tuned block to a minimum damping of ¢ = 0.5,
then:

* f(x) = 1 means the damping of the pole is C = 0.5 exactly.

* f(x) = 1.1 means the damping is ¢ = 0.5/1.1 = 0.45, roughly 10% less than the target.

* f(x) = 0.9 means the damping is T = 0.5/0.9 = 0.55, roughly 10% better than the target.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R20164, this functionality required a Robust Control Toolbox™ license.
See Also

looptune | systune | systune (for slTuner) | looptune (for slTuner) | viewGoal |
evalGoal | tunableTF | tunableSS | TuningGoal.Poles

Topics
“System Dynamics Specifications”

TuningGoal.ControllerPoles class

“Models with Tunable Coefficients”

1-15

1 Classes

1-16

TuningGoal.Gain class

Package: TuningGoal

Gain constraint for control system tuning

Description

Use the TuningGoal.Gain object to specify a constraint that limits the gain from a specified input to
a specified output. Use this tuning goal for control system tuning with tuning commands such as
systune or Llooptune.

When you use TuningGoal.Gain, the software attempts to tune the system so that the gain from the
specified input to the specified output does not exceed the specified value. By default, the constraint
is applied with the loop closed. To apply the constraint to an open-loop response, use the Openings
property of the TuningGoal.Gain object.

You can use a gain constraint to:

* Enforce a design requirement of disturbance rejection across a particular input/output pair, by
constraining the gain to be less than 1

* Enforce a custom roll-off rate in a particular frequency band, by specifying a gain profile in that
band

Construction

Req = TuningGoal.Gain(inputname,outputname,gainvalue) creates a tuning goal that
constrains the gain from inputname to outputname to remain below the value gainvalue.

You can specify the inputname or outputname as cell arrays (vector-valued signals). If you do so,
then the tuning goal constrains the largest singular value of the transfer matrix from inputname to
outputname. See sigma for more information about singular values.

Req = TuningGoal.Gain(inputname,outputname,gainprofile) specifies the maximum gain
as a function of frequency. You can specify the target gain profile (maximum gain across the 1/O pair)
as a smooth transfer function. Alternatively, you can sketch a piecewise error profile using an frd
model.

Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

+ Ifyou are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:

* Any model input.
* Any linear analysis point marked in the model.

TuningGoal.Gain class

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:

* Any input of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be any input name
in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then

inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out in

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

If you are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an s1Tuner interface associated with the Simulink model. Use
addPoint to add analysis points to the s1Tuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use { 'y1', 'y2'} to
designate a two-channel output.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

* Any output of the genss model

1-17

1 Classes

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OQutputName. Also, if T contains an AnalysisPoint block with a location named
AP_u, then outputname can include 'AP u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out in

+

AnalysizsPoint -

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

gainvalue

Maximum gain (linear). The gain constraint Req specifies that the gain from inputname to
outputname is less than gainvalue.

gainvalue is a scalar value. If the signals inputname or outputname are vector-valued signals,
then gainvalue constrains the largest singular value of the transfer matrix from inputname to
outputname. See sigma for more information about singular values.

gainprofile

Gain profile as a function of frequency. The gain constraint Req specifies that the gain from
inputname to outputname at a particular frequency is less than gainprofile. You can specify
gainprofile as a smooth transfer function (tf, zpk, or ss model). Alternatively, you can sketch a
piecewise gain profile using a frd model or the makeweight function. When you do so, the software
automatically maps the gain profile onto a zpk model. The magnitude of this zpk model approximates
the desired gain profile. Use viewGoal (Req) to plot the magnitude of the zpk model.

gainprofile is a SISO transfer function. If inputname or outputname are cell arrays,
gainprofile applies to all I/O pairs from inputname to outputname

If you are tuning in discrete time (that is, using a genss model or sl Tuner interface with nonzero
Ts), you can specify gainfprofile as a discrete-time model with the same Ts. If you specify
gainfprofile in continuous time, the tuning software discretizes it. Specifying the gain profile in
discrete time gives you more control over the gain profile near the Nyquist frequency.

Properties
MaxGain
Maximum gain as a function of frequency, expressed as a SISO zpk model.

The software automatically maps the gainvalue or gainprofile input arguments to a zpk model.
The magnitude of this zpk model approximates the desired gain profile. The tuning goal derives and
is stored in the MaxGain property. Use viewGoal (Req) to plot the magnitude of MaxGain.

1-18

TuningGoal.Gain class

Focus
Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0,pi/Ts] for discrete time, where Ts is the model sample
time.

Stabilize
Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).

By default, TuningGoal.Gain imposes a stability requirement on the closed-loop transfer function
from the specified inputs to outputs, in addition to the gain requirement. If stability is not required or
cannot be achieved, set Stabilize to false to remove the stability requirement. For example, if the
gain constraint applies to an unstable open-loop transfer function, set Stabilize to false.

Default: 1(true)
InputScaling
Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued input signals when
the choice of units results in a mix of small and large signals. This information is used to scale the
closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The tuning goal is evaluated
for the scaled transfer function D, 'T(s)D;. The diagonal matrices D, and D; have the OutputScaling
and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued output signals when
the choice of units results in a mix of small and large signals. This information is used to scale the
closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The tuning goal is evaluated
for the scaled transfer function D, 'T(s)D;. The diagonal matrices D, and D; have the OutputScaling
and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

1-19

1 Classes

1-20

Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the
transfer function that the tuning goal constrains. The initial value of the Input property is set by the
inputname input argument when you construct the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the
transfer function that the tuning goal constrains. The initial value of the Output property is set by
the outputname input argument when you construct the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
s1lTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}
Name
Name of the tuning goal, specified as a character vector.

For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

TuningGoal.Gain class

Default: []

Examples

Disturbance Rejection Goal

Create a gain constraint that enforces a disturbance rejection requirement from a signal 'du’ to a
signal 'u".

Req = TuningGoal.Gain('du','u',1);

This requirement specifies that the maximum gain of the response from 'du’ to 'u' not exceed 1 (0
dB).

Custom roll-off specification

Create a tuning goal that constrains the response from a signal 'du’' to a signal 'u' to roll off at 20
dB/decade at frequencies greater than 1. The tuning goal also specifies disturbance rejection
(maximum gain of 1) in the frequency range [0,1].

gmax = frd([1 1 0.01],[0 1 100]);
Req = TuningGoal.Gain('du','u',gmax);

These commands use a frd model to specify the gain profile as a function of frequency. The maximum
gain of 1 dB at the frequency 1 rad/s, together with the maximum gain of 0.01 dB at the frequency
100 rad/s, specifies the desired rolloff of 20 dB/decade.

The software converts gmax into a smooth function of frequency that approximates the piecewise
specified requirement. Display the gain profile using viewGoal.

viewGoal(Req)

1-21

1 Classes

1-22

Requirement 1: Maximum gain as a function of frequency

—— ey

Ay

]
1

~ |- = —Max gain]|

Singular Values (dB)

40 - - -
; .

1
10° 10" 107

[
ra

—
=]

Frequency (rad/s)

The dashed line shows the gain profile, and the region indicates where the requirement is violated.

Tips

» This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from
Input to Output, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal object, the software converts the tuning goal
into a normalized scalar value f(x), where x is the vector of free (tunable) parameters in the control
system. The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the
tuning goal is a hard constraint.

For TuningGoal.Gain, f(x) is given by:
fx) = [Wr(s)D5 'T(s, 0Dl .,

or its discrete-time equivalent, for discrete-time tuning. Here, T(s,x) is the closed-loop transfer
function from Input to Output. D, and D, are diagonal matrices with the OutputScaling and

TuningGoal.Gain class

InputScaling property values on the diagonal, respectively. | - |, denotes the H,, norm (see
getPeakGain).

The frequency weighting function Wr is the regularized gain profile, derived from the maximum gain
profile you specify. The gains of Wr and 1/MaxGain roughly match inside the frequency band Focus.
Wr is always stable and proper. Because poles of W close to s = 0 or s = Inf might lead to poor
numeric conditioning of the systune optimization problem, it is not recommended to specify
maximum gain profiles with very low-frequency or very high-frequency dynamics.

To obtain Wy, use:
WF = getWeight(Req,Ts)

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for
continuous time). For more information about regularization and its effects, see “Visualize Tuning
Goals”.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R20164, this functionality required a Robust Control Toolbox license.

See Also
looptune | viewGoal | systune | systune (for slTuner) | looptune (for slTuner) |
TuningGoal.Tracking | TuningGoal.LoopShape | slTuner | makeweight

Topics

“Frequency-Domain Specifications”
“Visualize Tuning Goals”

“Control of a Linear Electric Actuator”
“MIMO Control of Diesel Engine”

1-23

1 Classes

TuningGoal.LoopShape class

Package: TuningGoal

Target loop shape for control system tuning

Description

Use TuningGoal.LoopShape to specify a target gain profile (gain as a function of frequency) of an
open-loop response. TuningGoal.LoopShape constrains the open-loop, point-to-point response (L)
at a specified location in your control system. Use this tuning goal for control system tuning with
tuning commands, such as systune or Looptune.

When you tune a control system, the target open-loop gain profile is converted into constraints on the
inverse sensitivity function inv(S) = (I + L) and the complementary sensitivity function T = 1-S.
These constraints are illustrated for a representative tuned system in the following figure.

Minimiim low-frequency loop gain

Op=ni laop TG Minrmum snd meximum laop geins (CrassTal = 0.549)

L=

T
———— L GainiE)
— — — Targsat loop shepe

Singular Valuas (0B
o

21

i T 10 s
Prequency fddis) — pMaximum high-frequency loep gain
- E-|

2*CrossTol

Where L is much greater than 1, a minimum gain constraint on inv(S) (green shaded region) is
equivalent to a minimum gain constraint on L. Similarly, where L is much smaller than 1, a maximum
gain constraint on T (red shaded region) is equivalent to a maximum gain constraint on L. The gap
between these two constraints is twice the CrossTol parameter, which specifies the frequency band
where the loop gain can cross 0 dB.

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater than 1 are
interpreted as minimum performance requirements. Such values are lower bounds on the smallest
singular value of the open-loop response. Gain profile values less than one are interpreted as

1-24

TuningGoal.LoopShape class

minimum roll-off requirements, which are upper bounds on the largest singular value of the open-loop
response. For more information about singular values, see sigma.

Use TuningGoal.LoopShape when the loop shape near crossover is simple or well understood
(such as integral action). To specify only high gain or low gain constraints in certain frequency bands,
use TuningGoal.MinLoopGain and TuningGoal.MaxLoopGain. When you do so, the software
determines the best loop shape near crossover.

Construction

Req = TuningGoal.LoopShape(location, loopgain) creates a tuning goal for shaping the
open-loop response measured at the specified location. The magnitude of the single-input, single-
output (SISO) transfer function Loopgain specifies the target open-loop gain profile. You can specify
the target gain profile (maximum gain across the I/O pair) as a smooth transfer function or sketch a
piecewise error profile using an frd model.

Req = TuningGoal.LoopShape(location, loopgain,crosstol) specifies a tolerance on the
location of the crossover frequency. crosstol expresses the tolerance in decades. For example,
crosstol = 0.5 allows gain crossovers within half a decade on either side of the target crossover
frequency specified by Loopgain. When you omit crosstol, the tuning goal uses a default value of
0.1 decades. You can increase crosstol when tuning MIMO control systems. Doing so allows more
widely varying crossover frequencies for different loops in the system.

Req = TuningGoal.LoopShape(location,wc) specifies just the target gain crossover frequency.
This syntax is equivalent to specifying a pure integrator loop shape, Lloopgain = wc/s.

Req = TuningGoal.LoopShape(location,wcrange) specifies a range for the target gain
crossover frequency. The range is a vector of the form wcrange = [wcl,wc2]. This syntax is
equivalent to using the geometric mean sqrt(wcl*wc2) as wc and setting crosstol to the half-
width of wcrange in decades. Using a range instead of a single wc value increases the ability of the
tuning algorithm to enforce the target loop shape for all loops in a MIMO control system.

Input Arguments
location

Location where the open-loop response shape to be constrained is measured, specified as a character
vector or cell array of character vectors that identify one or more locations in the control system to
tune. What locations are available depends on what kind of system you are tuning:

» Ifyou are tuning a Simulink model of a control system, you can use any linear analysis point
marked in the model, or any linear analysis point in an slTuner interface associated with the
Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if
the s1Tuner interface contains an analysis point u, you can use 'u' to refer to that point when
creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner
interface to your model.

* Ifyou are tuning a generalized state-space (genss) model of a control system, you can use any
AnalysisPoint location in the control system model. For example, the following code creates a
PI loop with an analysis point at the plant input 'u'.

AP = AnalysisPoint('u');

G = tf(1,[1 2]);
C = tunablePID('C','pi');
T = feedback(G*AP*C,1);

1-25

1 Classes

1-26

When creating tuning goals, you can use 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

The loop shape requirement applies to the point-to-point open-loop transfer function at the specified
location. That transfer function is the open-loop response obtained by injecting signals at the location
and measuring the return signals at the same point.

If Location specifies multiple locations, then the loop-shape requirement applies to the MIMO open-
loop transfer function.

loopgain
Target open-loop gain profile as a function of frequency.

You can specify Loopgain as a smooth SISO transfer function (tf, zpk, or ss model). Alternatively,
you can sketch a piecewise gain profile using a frd model or the makeweight function. When you do
so, the software automatically maps your specified gain profile to a zpk model whose magnitude
approximates the desired gain profile. Use viewGoal (Req) to plot the magnitude of that zpk model.

For multi-input, multi-output (MIMO) control systems, values in the gain profile greater than 1 are
interpreted as minimum performance requirements. These values are lower bounds on the smallest
singular value of L. Gain profile values less than one are interpreted as minimum roll-off
requirements, which are upper bounds on the largest singular value of L. For more information about
singular values, see sigma.

If you are tuning in discrete time (that is, using a genss model or s1Tuner interface with nonzero
Ts), you can specify Lloopgain as a discrete-time model with the same Ts. If you specify Loopgain
in continuous time, the tuning software discretizes it. Specifying the loop shape in discrete time gives
you more control over the loop shape near the Nyquist frequency.

crosstol

Tolerance in the location of crossover frequency, in decades. specified as a scalar value. For example,
crosstol = 0.5 allows gain crossovers within half a decade on either side of the target crossover
frequency specified by Loopgain. Increasing crosstol increases the ability of the tuning algorithm
to enforce the target loop shape for all loops in a MIMO control system.

Default: 0.1
wcC

Target crossover frequency, specified as a positive scalar value. Express wc in units of rad/TimeUnit,
where TimeUnit is the TimeUnit property of the control system model you are tuning.

wcrange

Range for target crossover frequency, specified as a vector of the form [wcl,wc2]. Express wc in
units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the control system model you
are tuning.

Properties
LoopGain

Target loop shape as a function of frequency, specified as a SISO zpk model.

TuningGoal.LoopShape class

The software automatically maps the input argument Loopgain onto a zpk model. The magnitude of
this zpk model approximates the desired gain profile. Use viewGoal (Req) to plot the magnitude of
the zpk model LoopGain.

CrossTol

Tolerance on gain crossover frequency, in decades.

The initial value of CrossTol is set by the crosstol input when you create the tuning goal.
Default: 0.1

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

Stabilize
Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).

When Stabilize is true, this requirement stabilizes the specified feedback loop, as well as
imposing gain or loop-shape requirements. Set Stabilize to false if stability for the specified loop
is not required or cannot be achieved.

Default: 1 (true)
LoopScaling
Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled to equalize
the off-diagonal terms in the open-loop transfer function (loop interaction terms). Set LoopScaling
to 'off' to disable such scaling and shape the unscaled open-loop response.

Default: 'on'
Location

Location at which the open-loop response shape to be constrained is measured, specified as a cell
array of character vectors that identify one or more analysis points in the control system to tune. For
example, if Location = {'u'}, the tuning goal evaluates the open-loop response measured at an
analysis point 'u'. If Location = {'ul', 'u2'}, the tuning goal evaluates the MIMO open-loop
response measured at analysis points 'ul' and 'u2'.

The initial value of the Location property is set by the Location input argument when you create
the tuning goal.

1-27

1 Classes

1-28

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the slTuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}
Name
Name of the tuning goal, specified as a character vector.

For example, if Req is a tuning goal:
Req.Name = 'LoopReq’;

Default: []

Examples

Loop Shape and Crossover Tolerance

Create a target gain profile requirement for the following control system. Specify integral action, gain
crossover at 1, and a roll-off requirement of 40 dB/decade.

TuningGoal.LoopShape class

X

The requirement should apply to the open-loop response measured at the AnalysisPoint block X.
Specify a crossover tolerance of 0.5 decades.

LS = frd([100 1 0.06001],[0.01 1 100]);
Req = TuningGoal.LoopShape('X',LS,0.5);

The software converts LS into a smooth function of frequency that approximates the piecewise-
specified requirement. Display the requirement using viewGoal.

viewGoal(Req)

Requirement 1: Minimum and maximum loop gains (CrossTol = 0.5)
40 " . . .

. [= = —=Targetloop shape |

Singular Values (dB)

_\4': - 1 1 1
1072 1072 10" 10° 101 10°
Frequency (rad/s)

The green and red regions indicate the bounds for the inverse sensitivity, inv(S) = 1-G*(, and the
complementary sensitivity, T = 1-S, respectively. The gap between these regions at 0 dB gain
reflects the specified crossover tolerance, which is half a decade to either side of the target loop
CroSSover.

When you use viewGoal (Req, CL) to validate a tuned closed-loop model of this control system, CL,
the tuned values of S and T are also plotted.

1-29

1 Classes

1-30

Specify Different Loop Shapes for Multiple Loops

Create separate loop shape requirements for the inner and outer loops of the following control
system.

r—() PID L&} Pl 2+ G, %22 G, F—v,

X le
By

For the inner loop, specify a loop shape with integral action, gain crossover at 1, and a roll-off
requirement of 40 dB/decade. Additionally, specify that this loop shape requirement should be
enforced with the outer loop open.

LS2 = frd([160 1 0.0001],[0.01 1 160]);
Req2 = TuningGoal.LoopShape('X2',LS2);
Reg2.0penings = 'X1';

Specifying 'X2' for the location indicates that Req2 applies to the point-to point, open-loop
transfer function at the location X2. Setting Req2.0penings indicates that the loop is opened at the
analysis point X1 when Req?2 is enforced.

By default, Req2 imposes a stability requirement on the inner loop as well as the loop shape
requirement. In some control systems, however, inner-loop stability might not be required, or might
be impossible to achieve. In that case, remove the stability requirement from Req2 as follows.

Reg2.Stabilize = false;

For the outer loop, specify a loop shape with integral action, gain crossover at 0.1, and a roll-off
requirement of 20 dB/decade.

LS1 = frd([10 1 0.01],[0.01 0.1 10]);
Reql = TuningGoal.LoopShape('X1',LS1);

Specifying 'X1' for the Llocation indicates that Reql applies to the point-to point, open-loop
transfer function at the location X1. You do not have to set Reql.0Openings because this loop shape
is enforced with the inner loop closed.

You might want to tune the control system with both loop shaping requirements Reql and Req2. To
do so, use both requirements as inputs to the tuning command. For example, suppose CLO is a
tunable genss model of the closed-loop control system. In that case, use [CL, fSoft] =
systune(CLO, [Reql,Req2]) to tune the control system to both requirements.

Loop Shape for Tuning Simulink Model

Create a loop-shape requirement for the feedback loop on 'q' in the Simulink model
rct airframe2. Specify that the loop-shape requirement is enforced with the 'az' loop open.

Open the model.

open_system('rct airframe2')

TuningGoal.LoopShape class

Tweo-loop autopilot for controlling the vertical acceleration of an airframe

1

delta trim az
az ref 4z

B ,
L x=Ax4 B +$))
\‘]L e —P@—D Fin Deflaction
- y=Cx+ D dalta fin

MIMO Contraller t

g
q

Airframe Model
[l

az Response

Copyright 2014 The Math\Works, Inc.

Create a loop shape requirement that enforces integral action with a crossover a 2 rad/s for the 'q'
loop. This loop shape corresponds to a loop shape of 2/ s .

s = tf('s');

shape = 2/s;

Req = TuningGoal.LoopShape('q',shape);

Specify the location at which to open an additional loop when enforcing the requirement.

Req.0Openings = 'az';

To use this requirement to tune the Simulink model, create an s1Tuner interface to the model.
Identify the block to tune in the interface.

STO = slTuner('rct airframe2', '"MIMO Controller');
Designate both az and q as analysis points in the slTuner interface.
addPoint(STO,{'az','q'});

This command makes q available as an analysis location. It also allows the tuning requirement to be
enforced with the loop open at az.

You can now tune the model using Req and any other tuning requirements. For example:
[ST,fSoft] = systune(STO,Req);

Final: Soft = 0.845, Hard = -Inf, Iterations = 51

1-31

1 Classes

1-32

Loop Shape Requirement with Crossover Range

Create a tuning requirement specifying that the open-loop response of loop identified by 'X' cross
unity gain between 50 and 100 rad/s.

Req = TuningGoal.LoopShape('X',[50,100]);

Examine the resulting requirement to see the target loop shape.

viewGoal(Req)

Requirement 1: Minimum and maximum loop gains (CrossTol =0.151)

o
[}

|‘\ [= = =Targetloop shape |
Y
\

Cad
[}

[
]
,

Singular Values (dB)
[]
¢
7

10° 10" 10° 10° 10*
Frequency (rad/s)

The plot shows that the requirement specifies an integral loop shape, with crossover around 70 rad/s,
the geometrical mean of the range [50,100]. The gap at 0 dB between the minimum low-frequency

gain (green region) and the maximum high-frequency gain (red region) reflects the allowed crossover
range [50,100].

Tips

» This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at Location, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

TuningGoal.LoopShape class

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x), where x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.LoopShape, f(x) is given by:

WgS

f00 = ‘WTT

[o2]

Here, S = D'![I - L(s,x)]"'D is the scaled sensitivity function at the specified location, where L(s,x) is
the open-loop response being shaped. D is an automatically-computed loop scaling factor. (If the
LoopScaling property is set to 'off', then D =1.) T = S - I is the complementary sensitivity
function.

W and W; are frequency weighting functions derived from the specified loop shape. The gains of
these functions roughly match LoopGain and 1/LoopGain, for values ranging from -20 dB to 60 dB.
For numerical reasons, the weighting functions level off outside this range, unless the specified loop
gain profile changes slope for gains above 60 dB or below -60 dB. Because poles of W5 or W close to
s = 0 or s = Inf might lead to poor numeric conditioning of the systune optimization problem, it is
not recommended to specify loop shapes with very low-frequency or very high-frequency dynamics.

To obtain Wg and Wy, use:
[WS,WT] = getWeights(Req,Ts)

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for
continuous time). For more information about the effects of the weighting functions on numeric
stability, see “Visualize Tuning Goals”.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R20164a, this functionality required a Robust Control Toolbox license.

See Also

looptune | systune | Llooptune (for slTuner) | systune (for slTuner) |
TuningGoal.MinLoopGain | TuningGoal.MaxLoopGain | viewGoal | TuningGoal.Tracking |
TuningGoal.Gain | slTuner | frd

Topics

“Loop Shape and Stability Margin Specifications”
“Visualize Tuning Goals”

“Tuning Multiloop Control Systems”

“Tuning of a Digital Motion Control System”

1-33

1 Classes

1-34

TuningGoal.LQG class

Package: TuningGoal

Linear-Quadratic-Gaussian (LQG) goal for control system tuning

Description

Use TuningGoal.LQG to specify a tuning goal that quantifies control performance as an LQG cost. It
is applicable to any control structure, not just the classical observer structure of optimal LQG control.
You can use this tuning goal for control system tuning with tuning commands, such as systune or
looptune.

The LQG cost is given by:

J = E@(t) QZ 2(1)).

z(t) is the system response to a white noise input vector w(t). The covariance of w(t) is given by:
E(w(t)w(t)) = QW.

The vector w(t) typically consists of external inputs to the system such as noise, disturbances, or
command. The vector z(t) includes all the system variables that characterize performance, such as
control signals, system states, and outputs. E(x) denotes the expected value of the stochastic variable
X.

The cost function J can also be written as an average over time:

T£) QZ (1)

After you create a tuning goal, you can further configure it by setting “Properties” on page 1-37 of
the object.

= lim E

T—>oo

Construction

Reg = TuningGoal.LQG(wname, zname,QW,QZ) creates an LQG requirement. wname and zname
specify the signals making up w(t) and z(t). The matrices QW and QZ specify the noise covariance and
performance weight. These matrices must be symmetric nonnegative definite. Use scalar values for
QW and QZ to specify multiples of the identity matrix.

Input Arguments
wname

Noise inputs, w(t), specified as a character vector or a cell array of character vectors, that designate
the signals making up w(t) by name, such as 'w' or {'w', 'v'}. The signals available to designate as
noise inputs for the tuning goal are as follows.

» Ifyou are using the tuning goal to tune a Simulink model of a control system, then wname can
include:

TuningGoal.LQG class

* Any model input
* Any linearization input point in the model

* Any signal identified as a Controls, Measurements, Switches, or I0s signal in an slTuner
interface associated with the Simulink model

* Ifyou are using the tuning goal to tune a generalized state-space model (genss) of a control
system using systune, then wname can include:
* Any input of the control system model
* Any channel of an AnalysisPoint block in the control system model

For example, if you are tuning a control system model, T, then wname can be an input name
contained in T.InputName. Also, if T contains an AnalysisPoint block with a location named X,
then wname can include X.

* Ifyou are using the tuning goal to tune a controller model, CO for a plant GO, using Looptune,
then wname can include:

* Any input of CO or GO
* Any channel of an AnalysisPoint block in CO or GO

If wname is a channel of an AnalysisPoint block of a generalized model, the noise input for the
tuning goal is the implied input associated with the switch:

out in

AnalysisPoint

e

Zhame

Performance outputs, z(t), specified as a character vector or a cell array of character vectors, that
designate the signals making up z(t) by name, suchas 'y' or {'y"', 'u'}. The signals available to
designate as performance outputs for the tuning goal are as follows.

* Ifyou are using the tuning goal to tune a Simulink model of a control system, then zname can
include:
* Any model output
* Any linearization output point in the model

* Any signal identified as a Controls, Measurements, Switches, or I0s signal in an slTuner
interface associated with the Simulink model

» Ifyou are using the tuning goal to tune a generalized state-space model (genss) of a control
system using systune, then zname can include:
* Any output of the control system model
* Any channel of an AnalysisPoint block in the control system model
For example, if you are tuning a control system model, T, then zname can be an output name

contained in T.OutputName. Also, if T contains an AnalysisPoint block with a channel named
X, then zname can include X.

1-35

1 Classes

1-36

» Ifyou are using the tuning goal to tune a controller model, CO for a plant GO, using Looptune,
then zname can include:

* Any input of CO or GO
* Any channel of an AnalysisPoint block in CO or GO

If zname is a channel of an AnalysisPoint block of a generalized model, the performance output
for the tuning goal is the implied output associated with the switch:

out in

AnalysizPoint n

Qw

Covariance of the white noise input vector w(t), specified as a scalar or a matrix. Use a scalar value to
specify a multiple of the identity matrix. Otherwise specify a symmetric nonnegative definite matrix
with as many rows as there are entries in the vector w(t). A diagonal matrix means the entries of w(t)
are uncorrelated.

The covariance of w(t is given by:

Ew(w(t)) = QW.

When you are tuning a control system in discrete time, the LQG tuning goal assumes:

E(wlk]wlk]) = QW/T.

T, is the model sample time. This assumption ensures consistent results with tuning in the
continuous-time domain. In this assumption, w[k] is discrete-time noise obtained by sampling
continuous white noise w(t) with covariance QW. If in your system w[k] is a truly discrete process
with known covariance QWd, use the value T;*QWd for the QW value when creating the LQG goal.

Default: |
Qz

Performance weights, specified as a scalar or a matrix. Use a scalar value to specify a multiple of the
identity matrix. Otherwise specify a symmetric nonnegative definite matrix. Use a diagonal matrix to
independently scale or penalize the contribution of each variable in 2.

The performance weights contribute to the cost function according to:

J = E@(t) QZ 2(1)).

When you use the LQG tuning goal as a hard goal, the software tries to drive the cost function J < 1.

When you use it as a soft goal, the cost function J is minimized subject to any hard goals and its value
is contributed to the overall objective function. Therefore, select QZ values to properly scale the cost

function so that driving it below 1 or minimizing it yields the performance you require.

Default: |

TuningGoal.LQG class

Properties
NoiseCovariance

Covariance matrix of the noise inputs w(t), specified as a matrix. The value of the NoiseCovariance
property is set by the WZ input argument when you create the LQG tuning goal.

PerformanceWeight

Weights for the performance signals z(t), specified as a matrix. The value of the
PerformanceWeight property is set by the QZ input argument when you create the LQG tuning
goal.

Input

Noise input signal names, specified as a cell array of character vectors. The input signal names
specify the inputs of the transfer function that the tuning goal constrains. The initial value of the
Input property is set by the wname input argument when you construct the tuning goal.

Output

Performance output signal names, specified as a cell array of character vectors. The output signal
names specify the outputs of the transfer function that the tuning goal constrains. The initial value of
the Qutput property is set by the zname input argument when you construct the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
s1lTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

1-37

1 Classes

1-38

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}
Name
Name of the tuning goal, specified as a character vector.

For example, if Req is a tuning goal:
Req.Name = 'LoopReq';

Default: []

Tips

* When you use this tuning goal to tune a continuous-time control system, systune attempts to
enforce zero feedthrough (D = 0) on the transfer that the tuning goal constrains. Zero
feedthrough is imposed because the H, norm, and therefore the value of the tuning goal, is infinite
for continuous-time systems with nonzero feedthrough.

systune enforces zero feedthrough by fixing to zero all tunable parameters that contribute to the
feedthrough term. systune returns an error when fixing these tunable parameters is insufficient
to enforce zero feedthrough. In such cases, you must modify the tuning goal or the control
structure, or manually fix some tunable parameters of your system to values that eliminate the
feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software’s
approach of zeroing all parameters that contribute to the overall feedthrough might be
conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you
want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of
the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free properties of the
block parametrization. For example, consider a tuned state-space block:

C = tunableSsS('C',1,2,3);
To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the parameter.

C.D.Value = 0;
C.D.Free = false;

For more information on fixing parameter values, see the Control Design Block reference pages,
such as tunableSS.

» This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from
wname to zname, evaluated with loops opened at the points identified in Openings. The dynamics
affected by this implicit constraint are the stabilized dynamics for this tuning goal. The MinDecay
and MaxRadius options of systuneOptions control the bounds on these implicitly constrained
dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict
with other requirements, use systuneOptions to change these defaults.

TuningGoal.LQG class

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x). x is the vector of free (tunable) parameters in the control system. The
software then adjusts the parameter values to minimize f(x), or to drive f(x) below 1 if the tuning goal
is a hard constraint.

For TuningGoal.LQG, f(x) is given by the cost function J:
J = E@(t) QZ 2(1)).

When you use the LQG requirement as a hard goal, the software tries to drive the cost function J < 1.
When you use it as a soft goal, the cost function J is minimized subject to any hard goals and its value
is contributed to the overall objective function. Therefore, select QZ values to properly scale the cost

function so that driving it below 1 or minimizing it yields the performance you require.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R20164, this functionality required a Robust Control Toolbox license.
See Also

systune | slTuner | systune (for slTuner) | viewGoal | evalGoal |
TuningGoal.WeightedVariance | TuningGoal.Variance

Topics

“Vibration Control in Flexible Beam”
“Time-Domain Specifications”

1-39

1 Classes

1-40

TuningGoal.Margins class

Package: TuningGoal

Stability margin requirement for control system tuning

Description

Use TuningGoal.Margins to specify a tuning goal for the gain and phase margins of a SISO or
MIMO feedback loop. You can use this tuning goal for validating a tuned control system with
viewGoal. You can also use the tuning goal for control system tuning with tuning commands such as
systune or Llooptune.

After you create a tuning goal, you can configure it further by setting “Properties” on page 1-41 of
the object.

After using the tuning goal to tune a control system, you can visualize the tuning goal and the tuned
value using the viewGoal command. For information about interpreting the margins goal, see
“Stability Margins in Control System Tuning”.

Construction

Req = TuningGoal.Margins(location,gainmargin,phasemargin) creates a tuning goal that
specifies the minimum gain and phase margins at the specified location in the control system.

Input Arguments
location

Location in the control system at which the minimum gain and phase margins apply, specified as a
character vector or cell array of character vectors that identify one or more locations in the control
system to tune. What locations are available depends on what kind of system you are tuning:

* Ifyou are tuning a Simulink model of a control system, you can use any linear analysis point
marked in the model, or any linear analysis point in an s1Tuner interface associated with the
Simulink model. Use addPoint to add analysis points to the s1Tuner interface. For example, if
the s1Tuner interface contains an analysis point u, you can use 'u' to refer to that point when
creating tuning goals. Use getPoints to get the list of analysis points available in an s1Tuner
interface to your model.

* Ifyou are tuning a generalized state-space (genss) model of a control system, you can use any
AnalysisPoint location in the control system model. For example, the following code creates a
PI loop with an analysis point at the plant input 'u'.

= AnalysisPoint('u');
tf(1,[1 2]);
tunablePID('C', 'pi');

AP
G
C
T feedback (G*AP*C,1);

When creating tuning goals, you can use 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

TuningGoal.Margins class

The margin requirements apply to the point-to-point, open-loop transfer function at the specified loop-
opening location. That transfer function is the open-loop response obtained by injecting signals at the
specified location, and measuring the return signals at the same point.

If location is a cell array, then the margin requirement applies to the MIMO open-loop transfer
function.

gainmargin

Required minimum gain margin for the feedback loop, specified as a scalar value in dB.
TuningGoal.Margins uses disk-based gain and phase margins, which provide a stronger guarantee
of stability than the classical gain and phase margins. (For details about disk margins, see “Stability
Analysis Using Disk Margins” (Robust Control Toolbox).)

The gain margin indicates how much the gain of the open-loop response can increase or decrease
without loss of stability. For instance,

* For a SISO system, setting gainmargin = 3 specifies a requirement that the closed-loop system
remain stable for changes in the open-loop gain of up to +3 dB.

* For a MIMO system, setting gainmargin = 3 specifies a requirement that the closed-system
remain stable for gain changes up to =3 dB in each feedback channel. The gain can change in all
channels simultaneously, and by a different amount in each channel.

phasemargin

Required minimum phase margin for the feedback loop, specified as a scalar value in degrees.
TuningGoal.Margins uses disk-based gain and phase margins, which provide a stronger guarantee
of stability than the classical gain and phase margins. (For details about disk margins, see “Stability
Analysis Using Disk Margins” (Robust Control Toolbox).)

The phase margin indicates how much the phase of the open-loop response can increase or decrease
without loss of stability. For instance,

» For a SISO system, setting phasemargin = 45 specifies a requirement that the closed-loop
system remain stable for changes of up to £45° in the phase of the open-loop response.

* For a MIMO system, setting phasemargin = 45 specifies a requirement that the closed-system
remain stable for phase changes up to +45° in each feedback channel. The phase can change in
all channels simultaneously, and by a different amount in each channel.

Properties
GainMargin
Required minimum gain margin for the feedback loop, specified as a scalar value in decibels (dB).

The value of the GainMargin property is set by the gainmargin input argument when you create
the tuning goal.

PhaseMargin
Required minimum phase margin for the feedback loop, specified as a scalar value in degrees.

The value of the PhaseMargin property is set by the phasemargin input argument when you create
the tuning goal.

1-41

1 Classes

ScalingOrder

Controls the order (number of states) of the scalings involved in computing MIMO stability margins.
Static scalings (ScalingOrder = 0) are used by default. Increasing the order may improve results
at the expense of increased computations. Use viewGoal to assess the gap between optimized and
actual margins. If this gap is too large, consider increasing the scaling order. See “Stability Margins
in Control System Tuning”.

Default: 0 (static scaling)
Focus
Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band. For
best results with stability margin requirements, pick a frequency band extending about one decade
on each side of the gain crossover frequencies. For example, suppose Req is a
TuningGoal.Margins object that you are using to tune a system with approximately 10 rad/s
bandwidth. To limit the enforcement of the tuning goal, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

Location

Location at which the minimum gain and phase margins apply, specified as a cell array of character
vectors that identify one or more analysis points in the control system to tune. For example, if
Location = {'u'}, the tuning goal enforces the minimum gain and phase margins at an analysis
point ‘u’'.

The value of the Location property is set by the Location input argument when you create the
tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors

that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

1-42

TuningGoal.Margins class

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples

SISO Margin Requirement Evaluated with Additional Loop Opening

Create a margin requirement for the inner loop of the following control system. The requirement
imposes a minimum gain margin of 5 dB and a minimum phase margin of 40 degrees.

+ +

r) 4::|4f_—«-::2 2 G, F— G,
AP |4

n'JH.P|

¥
e

F 3

Create a model of the system. To do so, specify and connect the numeric plant models G1 and G2, and
the tunable controllers C1 and C2. Also specify and connect the AnalysisPoint blocks AP1 and AP2
that mark points of interest for analysis and tuning.

Gl = tf(10,[1 10]);

G2 = tf([1 21,[1 0.2 10]);

Cl = tunablePID('C','pi');

C2 = tunableGain('G',1);

AP1 = AnalysisPoint('AP1');

AP2 = AnalysisPoint('AP2');

T = feedback(Gl*feedback(G2*C2,AP2)*C1,AP1);

Create a tuning requirement object.

Req = TuningGoal.Margins('AP2',5,40);

1-43

1 Classes

1-44

This requirement imposes the specified stability margins on the feedback loop identified by the
AnalysisPoint channel 'AP2"', which is the inner loop.

Specify that these margins are evaluated with the outer loop of the control system open.
Req.0Openings = {'AP1'};

Adding 'AP1' to the Openings property of the tuning requirements object ensures that systune
evaluates the requirement with the loop open at that location.

Use systune to tune the free parameters of T to meet the tuning requirement specified by Req. You
can then use viewGoal to validate the tuned control system against the requirement.

MIMO Margin Requirement in Frequency Band

Create a requirement that sets minimum gain and phase margins for the loop defined by three loop-
opening locations in a control system to tune. Because this loop is defined by three loop-opening
locations, it is a MIMO loop.

The requirement sets a minimum gain margin of 10 dB and a minimum phase margin of 40 degrees,
within the band between 0.1 and 10 rad/s.

Req = TuningGoal.Margins({'r', 'theta','phi'},10,40);

The names 'r', 'theta’', and 'phi' must specify valid loop-opening locations in the control system
that you are tuning.

Limit the requirement to the frequency band between 0.1 and 10 rad/s.

Req.Focus = [0.1 10];

Tips

» This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at Location, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x), where x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.Margins, f(x) is given by:

fx) = 12aS - all .

TuningGoal.Margins class

S = DI - L(s,x)I"'D is the scaled sensitivity function.
L(s,x) is the open-loop response being shaped.

D is an automatically-computed loop scaling factor. For more information about D, see “Stability
Margins in Control System Tuning”.

a is a scalar parameter computed from the specified gain and phase margin. For more information
about a, see “Stability Analysis Using Disk Margins” (Robust Control Toolbox).

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune | systune | systune (for slTuner) | Llooptune (for slTuner) | viewGoal |
evalGoal

Topics

“Loop Shape and Stability Margin Specifications”
“Tune Control Systems Using systune”

“Digital Control of Power Stage Voltage”

“Tuning of a Two-Loop Autopilot”
“Fixed-Structure Autopilot for a Passenger Jet”
“Stability Margins in Control System Tuning”

1-45

1 Classes

1-46

TuningGoal.MinLoopGain class

Package: TuningGoal

Minimum loop gain constraint for control system tuning

Description

Use the TuningGoal.MinLoopGain object to enforce a minimum loop gain in a particular frequency
band. Use this tuning goal with control system tuning commands such as systune or Looptune.

This tuning goal imposes a minimum gain on the open-loop frequency response (L) at a specified
location in your control system. You specify the minimum open-loop gain as a function of frequency (a
minimum gain profile). For MIMO feedback loops, the specified gain profile is interpreted as a lower
bound on the smallest singular value of L.

When you tune a control system, the minimum gain profile is converted to a minimum gain constraint
on the inverse of the sensitivity function, inv(S) = (I + L).

The following figure shows a typical specified minimum gain profile (dashed line) and a resulting
tuned loop gain, L (blue line). The shaded region represents gain profile values that are forbidden by
this tuning goal. The figure shows that when L is much larger than 1, imposing a minimum gain on
inv(S) is a good proxy for a minimum open-loop gain.

Requirement 1: Minimum loop gain as a function of frequency

o T T T T

— (S}
= Loop gain(s)
= = = WMin loop gain

Singular Values (dB)

]

10° 10’ 102 10

Frequency (rad/s)

107 10

TuningGoal.MinLoopGain class

TuningGoal.MinLoopGain and TuningGoal.MaxLoopGain specify only low-gain or high-gain
constraints in certain frequency bands. When you use these tuning goals, systune and looptune
determine the best loop shape near crossover. When the loop shape near crossover is simple or well
understood (such as integral action), you can use TuningGoal.LoopShape to specify that target
loop shape.

Construction

Req = TuningGoal.MinLoopGain(location, loopgain) creates a tuning goal for boosting the
gain of a SISO or MIMO feedback loop. The tuning goal specifies that the open-loop frequency
response (L) measured at the specified locations exceeds the minimum gain profile specified by
loopgain.

You can specify the minimum gain profile as a smooth transfer function or sketch a piecewise error
profile using an frd model or the makeweight command. Only gain values greater than 1 are
enforced.

For MIMO feedback loops, the specified gain profile is interpreted as a lower bound on the smallest
singular value of L.

Req = TuningGoal.MinLoopGain(location, fmin,gmin) specifies a minimum gain profile of
the form loopgain = K/s (integral action). The software chooses K such that the gain value is gmin
at the specified frequency, fmin.

Input Arguments
location

Location at which the maximum open-loop gain is constrained, specified as a character vector or cell
array of character vectors that identify one or more locations in the control system to tune. What
loop-opening locations are available depends on what kind of system you are tuning:

* Ifyou are tuning a Simulink model of a control system, you can use any linear analysis point
marked in the model, or any linear analysis point in an s1Tuner interface associated with the
Simulink model. Use addPoint to add analysis points to the s1Tuner interface. For example, if
the s1Tuner interface contains an analysis point u, you can use 'u' to refer to that point when
creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner
interface to your model.

+ Ifyou are tuning a generalized state-space (genss) model of a control system, you can use any
AnalysisPoint location in the control system model. For example, the following code creates a
PI loop with an analysis point at the plant input 'u’.

P = AnalysisPoint('u');
tf(1,[1 2]1);
tunablePID('C','pi');

A
G
C
T feedback (G*AP*C,1);

When creating tuning goals, you can use 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If location is a cell array of loop-opening locations, then the minimum gain goal applies to the
resulting MIMO loop.

1-47

1 Classes

1-48

loopgain
Minimum open-loop gain as a function of frequency.

You can specify Loopgain as a smooth SISO transfer function (tf, zpk, or ss model). Alternatively,
you can sketch a piecewise gain profile using a frd model or the makeweight command. For
example, the following frd model specifies a minimum gain of 100 (40 dB) below 0.1 rad/s, rolling off
at a rate of -20 dB/dec at higher frequencies.

loopgain = frd([100 100 10],[0 le-1 1]);

When you use an frd model to specify Loopgain, the software automatically maps your specified
gain profile to a zpk model. The magnitude of this model approximates the desired gain profile. Use
viewGoal (Req) to plot the magnitude of that zpk model.

Only gain values larger than 1 are enforced. For multi-input, multi-output (MIMO) feedback loops, the
gain profile is interpreted as a lower bound on the smallest singular value of L. For more information
about singular values, see sigma.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero
Ts), you can specify Lloopgain as a discrete-time model with the same Ts. If you specify Loopgain
in continuous time, the tuning software discretizes it. Specifying the loop gain in discrete time gives
you more control over the loop gain near the Nyquist frequency.

fmin

Frequency of minimum gain gmin, specified as a scalar value in rad/s.

Use this argument to specify a minimum gain profile of the form loopgain = K/s (integral action).
The software chooses K such that the gain value is gmin at the specified frequency, fmin.

gmin
Value of minimum gain occurring at fmin, specified as a scalar absolute value.

Use this argument to specify a minimum gain profile of the form loopgain = K/s (integral action).
The software chooses K such that the gain value is gmin at the specified frequency, fmin.

Properties

MinGain

Minimum open-loop gain as a function of frequency, specified as a SISO zpk model.

The software automatically maps the input argument Loopgain onto a zpk model. The magnitude of
this zpk model approximates the desired gain profile. Alternatively, if you use the fmin and gmin
arguments to specify the gain profile, this property is set to K/s. The software chooses K such that
the gain value is gmin at the specified frequency, fmin.

Use viewGoal (Req) to plot the magnitude of the open-loop minimum gain profile.

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

TuningGoal.MinLoopGain class

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

Stabilize
Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).

When Stabilize is true, this requirement stabilizes the specified feedback loop, as well as
imposing gain or loop-shape requirements. Set Stabilize to false if stability for the specified loop
is not required or cannot be achieved.

Default: 1 (true)
LoopScaling
Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled to equalize
the off-diagonal terms in the open-loop transfer function (loop interaction terms). Set LoopScaling
to 'off' to disable such scaling and shape the unscaled open-loop response.

Default: 'on'
Location

Location at which minimum loop gain is constrained, specified as a cell array of character vectors
that identify one or more analysis points in the control system to tune. For example, if Location =
{'u'}, the tuning goal evaluates the open-loop response measured at an analysis point 'u'. If
Location = {'ul', 'u2'}, the tuning goal evaluates the MIMO open-loop response measured at
analysis points 'ul' and 'u2'.

The value of the Location property is set by the Location input argument when you create the
tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;
When Models = NaN, the tuning goal applies to all models.

Default: NaN

1-49

1 Classes

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples

Minimum Loop Gain Tuning Goal
Create a tuning goal that boosts the open-loop gain of a feedback loop to at least a specified profile.

Suppose that you are tuning a control system that has a loop-opening location identified by PILoop.
Specify that the open-loop gain measured at that location exceeds a minimum gain of 10 (20 dB)
below 0.1 rad/s, rolling off at a rate of -20 dB/dec at higher frequencies. Use an frd model to sketch
this gain profile.

loopgain = frd([10 10 0.1],[0 le-1 10]);
Req = TuningGoal.MinLoopGain('PILoop',loopgain);

The software converts Loopgain into a smooth function of frequency that approximates the
piecewise-specified gain profile. Display the tuning goal using viewGoal.

viewGoal(Req)

TuningGoal.MinLoopGain class

Requirement 1: Minimum loop gain as a function of frequency
40

[= = —Min loop gain |

10 ~

Singular Values (dB)

10 L

-20 _—
1073 1072 107" 10° 10" 107
Frequency (rad/s)

The dashed line shows the specified the gain profile. The shaded region indicates where the tuning
goal is violated, except that gain values less than 1 are not enforced. Therefore, this tuning goal only
specifies a minimum gain at frequencies below 1 rad/s.

You can use Req as an input to Looptune or systune when tuning the control system. Then use

viewGoal (Req, T) to compare the tuned loop gain to the minimum gain specified in the tuning goal,
where T represents the tuned control system.

Integral Minimum Gain Specified as Gain Value at Single Frequency

Create a tuning goal that specifies a minimum loop gain profile of the form L = K/ s. The gain profile
attains the value of -20 dB (0.01) at 100 rad/s.

Req = TuningGoal.MinLoopGain('X',100,0.01);
viewGoal(Req)

1-51

1 Classes

1-52

Requirement 1: Minimum loop gain as a function of frequency

[= = —Min loop gain |

Singular Values (dB)
#

10 . .

_2|: »
1072 10 10° 10! 107
Frequency (rad/s)

viewGoal confirms that the tuning goal is correctly specified. You can use this tuning goal to tune a
control system that has a loop-opening location identified as 'X'. Since loop gain values less than 1
are ignored, this tuning goal specifies minimum gain only below 1 rad/s, with no restriction on loop
gain at higher frequency.

Although the specified gain profile (dashed line) is a pure integrator, for numeric reasons, the gain
profile enforced during tuning levels off at very low frequencies, as described in “Algorithms” on page
1-56. To see the regularized gain profile, expand the axes of the tuning-goal plot.

x1im([10~-4,1072])
ylim([-20,80])

TuningGoal.MinLoopGain class

Requirement 1: Minimum loop gain as a function of frequency

. [= —Min loop gain |

Singular Values (dB)

.
10 .
'2'3 b

10 1073 1072 1071 10° 107
Frequency (rad/s)

The shaded region reflects the modified gain profile.

Minimum Loop Gain as Constraint on Sensitivity Function

107

Examine a minimum loop gain tuning goal against the tuned loop gain. A minimum loop gain tuning
goal is converted to a constraint on the gain of the sensitivity function at the location specified in the

tuning goal.

To see this relationship between the minimum loop gain and the sensitivity function, tune the
following closed-loop system with analysis points at X1 and X2. The control system has tunable PID

controllers C1 and C2.

r—() PID |21 Pl 2 G, [+{%]22 G, ¥

e
Ry

Create a model of the control system.

G2 = zpk([],-2,3);
Gl = zpk([],[-1 -1 -1],10);
C20 = tunablePID('C2','pi');

1-53

1 Classes

C1l0 = tunablePID('C1l', 'pid");

X1 = AnalysisPoint('X1");

X2 = AnalysisPoint('X2");

InnerLoop = feedback(X2*G2*(C20,1);
CLO = feedback(Gl*InnerLoop*C1l0,X1);
CLO.InputName = 'r';

CLO.OutputName = 'y';

Specify some tuning goals, including a minimum loop gain. Tune the control system to these

requirements.

Rtrack = TuningGoal.Tracking('r','y',10,0.01);
Rreject = TuningGoal.Gain('X2','y',0.1);

Rgain = TuningGoal.MinLoopGain('X2',100,10000);
Rgain.Openings = 'X1°';

opts = systuneOptions('RandomStart',2);
rng('default'); % for reproducibility
[CL,fSoft] = systune(CLO,[Rtrack,Rreject,Rgain]);

Final: Soft = 1.07, Hard = -Inf, Iterations = 101
Some closed-loop poles are marginally stable (decay rate near le-07)

Examine the TuningGoal.MinLoopGain goal against the corresponding tuned response.

viewGoal(Rgain,CL)

Requirement 1: Minimum loop gain as a function of frequency
80 T T T .
invis)
= = =linloop gain

Singular Values (dB)

10° 10* 10° 10° 107 10®
Frequency (rad/s)

TuningGoal.MinLoopGain class

The plot shows the achieved loop gain for the loop at X2 (blue line). The plot also shows the inverse of
the achieved sensitivity function, S, at the location X2 (green line). The inverse sensitivity function at
this location is given by inv(S) = I+L. Here, L is the open-loop point-to-point loop transfer
measured at X2.

The minimum loop gain goal Rgain is constraint on inv(S), represented in the plot by the green

shaded region. The constraint on inv(S) can be thought of as a minimum gain constraint on L that
applies where the gain of L (or the smallest singular value of L, for MIMO loops) is greater than 1.

Loop-Gain Requirement without Stability Constraint on Inner Loop

Create requirements that specify a minimum loop gain of 20 dB (100) at 50 rad/s and a maximum
loop gain of -20 dB (0.01) at 1000 rad/s on the inner loop of the following control system.

+ +
r CI?CI "G 6
X, 1

Xy

¥
b

F 3

Create the maximum and minimum loop gain requirements.

RMinGain
RMaxGain

TuningGoal.MinLoopGain('X2',50,100);
TuningGoal.MaxLoopGain('X2',1000,0.01);

Configure the requirements to apply to the loop gain of the inner loop measured with the outer loop
open.

RMinGain.Openings
RMaxGain.Openings

|X1|;
|X1|;

Setting Req.0Openings tells the tuning algorithm to enforce the requirements with a loop open at the
specified location. With the outer loop open, the requirements apply only to the inner loop.

By default, tuning using TuningGoal.MinLoopGain or TuningGoal.MaxLoopGain imposes a
stability requirement as well as the minimum or maximum loop gain. Practically, in some control
systems it is not possible to achieve a stable inner loop. In that case, remove the stability requirement
for the inner loop by setting the Stabilize property to false.

RMinGain.Stabilize
RMaxGain.Stabilize

false;
false;

When you tune using either of these requirements, the tuning algorithm still imposes a stability
requirement on the overall tuned control system, but not on the inner loop alone.

1-55

1 Classes

1-56

Tips

» This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at Location, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.MinLoopGain, f(x) is given by:

f(x) = "WS(D_lSD)"w.

Here, D is a diagonal scaling (for MIMO loops). S is the sensitivity function at Location. Wgis a
frequency-weighting function derived from the minimum loop gain profile, MinGain. The gain of this
function roughly matches MaxGain for values ranging from -20 dB to 60 dB. For numerical reasons,
the weighting function levels off outside this range, unless the specified gain profile changes slope
outside this range. This adjustment is called regularization. Because poles of W closetos = 0 ors =
Inf might lead to poor numeric conditioning of the systune optimization problem, it is not
recommended to specify gain profiles with very low-frequency or very high-frequency dynamics.

To obtain Wg, use:
WS = getWeight(Req,Ts)

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for
continuous time). For more information about regularization and its effects, see “Visualize Tuning
Goals”.

Although S is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing a lower bound
on the open-loop transfer function, L, in a frequency band where the gain of L is greater than 1. To
see why, note that S = 1/(1 + L). For SISO loops, when |L| >> 1, |S | = 1/|L|. Therefore, enforcing the
open-loop minimum gain requirement, |L| > |Wg|, is roughly equivalent to enforcing |W,S| < 1. For
MIMO loops, similar reasoning applies, with ||S|| = 1/0,i,(L), where o, is the smallest singular
value.

For an example illustrating the constraint on S, see “Minimum Loop Gain as Constraint on Sensitivity
Function” on page 1-53.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

TuningGoal.MinLoopGain class

Prior to R20164, this functionality required a Robust Control Toolbox license.

See Also

looptune | systune | systune (for slTuner) | looptune (for slTuner) | viewGoal |
evalGoal | TuningGoal.Gain | TuningGoal.LoopShape | TuningGoal.MaxLoopGain |
TuningGoal.Margins | slTuner | sigma

Topics

“Loop Shape and Stability Margin Specifications”

“Visualize Tuning Goals”

“PID Tuning for Setpoint Tracking vs. Disturbance Rejection”

1-57

1 Classes

1-58

TuningGoal.MaxLoopGain class

Package: TuningGoal

Maximum loop gain constraint for control system tuning

Description

Use TuningGoal.MaxLoopGain to enforce a maximum loop gain and desired roll-off in a particular
frequency band. Use this tuning goal with control system tuning commands such as systune or
looptune.

This tuning goal imposes a maximum gain on the open-loop frequency response (L) at a specified
location in your control system. You specify the maximum open-loop gain as a function of frequency (a
maximum gain profile). For MIMO feedback loops, the specified gain profile is interpreted as an
upper bound on the largest singular value of L.

When you tune a control system, the maximum gain profile is converted to a maximum gain
constraint on the complementary sensitivity function, T) = L/(I + L).

The following figure shows a typical specified maximum gain profile (dashed line) and a resulting
tuned loop gain, L (blue line). The shaded region represents gain profile values that are forbidden by
this tuning goal. The figure shows that when L is much smaller than 1, imposing a maximum gain on
T is a good proxy for a maximum open-loop gain.

Requirement 1: Maximum loop gain as a function of frequency

FA8 ™

Singular Values (dB)

=
| |==Loop gainis)
= = =ax loop gain

1072 107! 10° 10 102 10 10*
Frequency (rad/s)

TuningGoal.MaxLoopGain and TuningGoal.MinLoopGain specify only high-gain or low-gain
constraints in certain frequency bands. When you use these tuning goals, systune and looptune
determine the best loop shape near crossover. When the loop shape near crossover is simple or well
understood (such as integral action), you can use TuningGoal.LoopShape to specify that target
loop shape.

TuningGoal.MaxLoopGain class

Construction

Req = TuningGoal.MaxLoopGain(location,loopgain) creates a tuning goal for limiting the
gain of a SISO or MIMO feedback loop. The tuning goal limits the open-loop frequency response
measured at the specified locations to the maximum gain profile specified by Loopgain. You can
specify the maximum gain profile as a smooth transfer function or sketch a piecewise error profile
using an frd model or the makeweight command. Only gain values smaller than 1 are enforced.

Req = TuningGoal.MaxLoopGain(location, fmax,gmax) specifies a maximum gain profile of
the form loopgain = K/s (integral action). The software chooses K such that the gain value is gmax
at the specified frequency, fmax.

Input Arguments
location

Location at which the maximum open-loop gain is constrained, specified as a character vector or cell
array of character vectors that identify one or more locations in the control system to tune. What
loop-opening locations are available depends on what kind of system you are tuning:

* Ifyou are tuning a Simulink model of a control system, you can use any linear analysis point
marked in the model, or any linear analysis point in an s1Tuner interface associated with the
Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if
the s1Tuner interface contains an analysis point u, you can use 'u' to refer to that point when
creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner
interface to your model.

* Ifyou are tuning a generalized state-space (genss) model of a control system, you can use any
AnalysisPoint location in the control system model. For example, the following code creates a
PI loop with an analysis point at the plant input 'u’.

P = AnalysisPoint('u');
tf(1,[1 2]);
tunablePID('C', 'pi');

A
G
C
T feedback (G*AP*C,1);

When creating tuning goals, you can use 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If Llocation is a cell array of loop-opening locations, then the maximum gain requirement applies to
the resulting MIMO loop.

loopgain

Maximum open-loop gain as a function of frequency.

You can specify Loopgain as a smooth SISO transfer function (tf, zpk, or ss model). Alternatively,
you can sketch a piecewise gain profile using a frd model or the makeweight command. For
example, the following frd model specifies a maximum gain of 1 (0 dB) at 1 rad/s, rolling off at a rate

of -20 dB/dec up to 10 rad/s, and a rate of -40 dB/dec at higher frequencies.

loopgain = frd([1 le-1 1le-3],[1 10 100]);
bodemag (loopgain)

1-59

1 Classes

1-60

Bode Diagram

E

AN
N

Magnitude {dB)

1
Ln

=

[]
=u 3

0 10’ 10°
Frequency (rad/s)
When you use an frd model to specify Loopgain, the software automatically maps your specified

gain profile to a zpk model. The magnitude of this model approximates the desired gain profile. Use
viewGoal (Req) to plot the magnitude of that zpk model.

Only gain values smaller than 1 are enforced. For multi-input, multi-output (MIMO) feedback loops,
the gain profile is interpreted as a minimum roll-off requirement, which is an upper bound on the
largest singular value of L. For more information about singular values, see sigma.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero
Ts), you can specify Lloopgain as a discrete-time model with the same Ts. If you specify Loopgain
in continuous time, the tuning software discretizes it. Specifying the loop gain in discrete time gives
you more control over the loop gain near the Nyquist frequency.

fmax
Frequency of maximum gain gmax, specified as a scalar value in rad/s.

Use this argument to specify a maximum gain profile of the form loopgain = K/s (integral action).
The software chooses K such that the gain value is gmax at the specified frequency, fmax.

gmax
Value of maximum gain occurring at fmax, specified as a scalar absolute value.

Use this argument to specify a maximum gain profile of the form loopgain = K/s (integral action).
The software chooses K such that the gain value is gmax at the specified frequency, fmax.

TuningGoal.MaxLoopGain class

Properties

MaxGain

Maximum open-loop gain as a function of frequency, specified as a SISO zpk model.

The software automatically maps the input argument Loopgain onto a zpk model. The magnitude of
this zpk model approximates the desired gain profile. Alternatively, if you use the fmax and gmax
arguments to specify the gain profile, this property is set to K/s. The software chooses K such that
the gain value is gmax at the specified frequency, fmax.

Use viewGoal (Req) to plot the magnitude of the open-loop maximum gain profile.

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).

For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

Stabilize

Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).

When Stabilize is true, this requirement stabilizes the specified feedback loop, as well as
imposing gain or loop-shape requirements. Set Stabilize to false if stability for the specified loop
is not required or cannot be achieved.

Default: 1 (true)

LoopScaling

Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled to equalize
the off-diagonal terms in the open-loop transfer function (loop interaction terms). Set LoopScaling
to 'off' to disable such scaling and shape the unscaled open-loop response.

Default: 'on'

Location

Location at which minimum loop gain is constrained, specified as a cell array of character vectors
that identify one or more analysis points in the control system to tune. For example, if Location =
{'u'}, the tuning goal evaluates the open-loop response measured at an analysis point 'u'. If

Location = {'ul', 'u2'}, the tuning goal evaluates the MIMO open-loop response measured at
analysis points 'ul' and 'u2'.

1-61

1 Classes

1-62

The value of the Location property is set by the Location input argument when you create the
tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}
Name
Name of the tuning goal, specified as a character vector.

For example, if Req is a tuning goal:
Req.Name = 'LoopReq’;

Default: []

Examples

Maximum Loop Gain Tuning Goal

Create a tuning goal that limits the maximum open-loop gain of a feedback loop to a specified profile.

TuningGoal.MaxLoopGain class

Suppose that you are tuning a control system that has a loop-opening location identified by PILoop.
Limit the open-loop gain measured at that location to 1 (0 dB) at 1 rad/s, rolling off at a rate of -20
dB/dec up to 10 rad/s, and a rate of -40 dB/dec at higher frequencies. Use an frd model to sketch this
gain profile.

loopgain = frd([1 le-1 1le-3],[1 10 100]);
Req = TuningGoal.MaxLoopGain('PILoop',loopgain);

The software converts Loopgain into a smooth function of frequency that approximates the
piecewise-specified gain profile. Display the tuning goal using viewGoal.

viewGoal(Req)

Requirement 1: Maximum loop gain as a function of frequency

Singular Values (dB)
-

. A
60 |

-70

I [= = =Maxloop gain | “\

_EE i i i
1072 1071 10° 10" 107 10°
Freguency (rad/s)

The dashed line shows the specified gain profile. The shaded region indicates where the tuning goal
is violated, except that gain values greater than 1 are not enforced. Therefore, this tuning goal only
specifies minimum roll-off rates at frequencies above 1 rad/s.

You can use Req as an input to Looptune or systune when tuning the control system. Then use

viewGoal (Req, T) to compare the tuned loop gain to the minimum gain specified in the tuning goal,
where T represents the tuned control system.

1-63

1 Classes

1-64

Integral Maximum Gain Specified as Gain Value at Single Frequency

Create a tuning goal that specifies a maximum loop gain of the form L = K /s . The maximum gain
attains the value of -20 dB (0.01) at 100 rad/s.

Req = TuningGoal.MaxLoopGain('X',100,0.01);
viewGoal(Req)

Requirement 1: Maximum loop gain as a function of frequency

Singular Values (dB)
F

40

[= —Maxloop gain |
50 = .

102 10° 10° 10 107
Frequency (rad/s)

viewGoal confirms that the tuning goal is correctly specified. You can use this tuning goal to tune a
control system that has a loop-opening location identified as 'X"'. Since loop gain values greater than
1 are ignored, this requirement specifies a rolloff of 20 dB/decade above 1 rad/s, with no restriction
on loop gain below that frequency.

Although the specified gain profile (dashed line) is a pure integrator, for numeric reasons, the gain
profile enforced during tuning levels off at very high frequencies, as described in “Algorithms” on
page 1-56. To see the regularized gain profile, expand the axes of the tuning-goal plot.

x1im([107-2,1074])
ylim([-80,201)

TuningGoal.MaxLoopGain class

Requirement 1: Maximum loop gain as a function of frequency
20

10 1 ~

Singular Values (dB)

70t : >
[= = =Maxloop gain | N
_EE 1 1 1 1 1 - ‘
1072 1071 10° 10! 107 10° 10*
Frequency (rad/s)

The shaded region reflects the modified gain profile.

Loop-Gain Requirement without Stability Constraint on Inner Loop

Create requirements that specify a minimum loop gain of 20 dB (100) at 50 rad/s and a maximum
loop gain of -20 dB (0.01) at 1000 rad/s on the inner loop of the following control system.

+

r {_‘l

+

';G2

T

G,

of

Create the maximum and minimum loop gain requirements.

RMinGai
RMaxGai

S5 S

Xy

s

TuningGoal.MinLoopGain('X2',50,100);
TuningGoal.MaxLoopGain('X2',1000,0.01);

Configure the requirements to apply to the loop gain of the inner loop measured with the outer loop

open.

1-65

1 Classes

1-66

RMinGain.Openings
RMaxGain.Openings

|X1|;
|X1|;

Setting Req.0penings tells the tuning algorithm to enforce the requirements with a loop open at the
specified location. With the outer loop open, the requirements apply only to the inner loop.

By default, tuning using TuningGoal.MinLoopGain or TuningGoal.MaxLoopGain imposes a
stability requirement as well as the minimum or maximum loop gain. Practically, in some control
systems it is not possible to achieve a stable inner loop. In that case, remove the stability requirement
for the inner loop by setting the Stabilize property to false.

RMinGain.Stabilize
RMaxGain.Stabilize

false;
false;

When you tune using either of these requirements, the tuning algorithm still imposes a stability
requirement on the overall tuned control system, but not on the inner loop alone.

Tips

» This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at Location, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.MaxLoopGain, f(x) is given by:
() = |[wr(D~'TD)] .

Here, D is a diagonal scaling (for MIMO loops). T is the complementary sensitivity function at
Location. Wris a frequency-weighting function derived from the maximum loop gain profile,
MaxGain. The gain of this function roughly matches 1/MaxGain for values ranging from -60 dB to 20
dB. For numerical reasons, the weighting function levels off outside this range, unless the specified
gain profile changes slope outside this range. This adjustment is called regularization. Because poles
of Wy close to s = 0 or s = Inf might lead to poor numeric conditioning of the systune optimization
problem, it is not recommended to specify gain profiles with very low-frequency or very high-
frequency dynamics.

To obtain Wy, use:
WT = getWeight(Req,Ts)

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for
continuous time). For more information about regularization and its effects, see “Visualize Tuning
Goals”.

TuningGoal.MaxLoopGain class

Although T is a closed-loop transfer function, driving f(x) < 1 is equivalent to enforcing an upper
bound on the open-loop transfer, L, in a frequency band where the gain of L is less than one. To see
why, note that T = L/(I + L). For SISO loops, when |L| << 1, |T| = |L|. Therefore, enforcing the open-
loop maximum gain requirement, |[L| < 1/|W|, is roughly equivalent to enforcing |W;T| < 1. For
MIMO loops, similar reasoning applies, with ||T|| = opa(L), where oy, is the largest singular value.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also
looptune | systune | Llooptune (for slTuner) | systune (for slTuner) | viewGoal |

evalGoal | TuningGoal.Gain | TuningGoal.LoopShape | TuningGoal.MinLoopGain |
TuningGoal.Margins | slTuner | sigma

Topics

“Loop Shape and Stability Margin Specifications”

“Visualize Tuning Goals”

“PID Tuning for Setpoint Tracking vs. Disturbance Rejection”
“MIMO Control of Diesel Engine”

“Tuning of a Two-Loop Autopilot”

1-67

1 Classes

1-68

TuningGoal.Overshoot class

Package: TuningGoal

Overshoot constraint for control system tuning

Description

Use TuningGoal.Overshoot to limit the overshoot in the step response from specified inputs to
specified outputs of a control system. Use this tuning goal for control system tuning with tuning
commands such as systune or Looptune.

Construction

Reg = TuningGoal.Overshoot(inputname, outputname,maxpercent) creates a tuning goal
for limiting the overshoot in the step response between the specified signal locations. The scalar
maxpercent specifies the maximum overshoot as a percentage.

When you use TuningGoal.Overshoot for tuning, the software maps overshoot constraints to peak
gain constraints assuming second-order system characteristics. Therefore, the mapping is only
approximate for higher-order systems. In addition, this tuning goal cannot reliably reduce the
overshoot below 5%.

Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

» Ifyou are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:
* Any model input.
* Any linear analysis point marked in the model.

* Any linear analysis point in an s1Tuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul' to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

+ Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:

* Any input of the genss model
* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be any input name
in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then

TuningGoal.Overshoot class

inputname can include 'AP _u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out in

AnalysisPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

If you are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an sl Tuner interface associated with the Simulink model. Use
addPoint to add analysis points to the s1Tuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use {'y1"', 'y2'} to
designate a two-channel output.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

* Any output of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OutputName. Also, if T contains an AnalysisPoint block with a location named

AP_u, then outputname can include 'AP _u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out imn

AnalysizsPoint

1-69

1 Classes

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

maxpercent

Maximum percent overshoot, specified as a scalar value. For example, the following code specifies a
maximum 5% overshoot in the step response from 'r' to 'y"'.

Req = TuningGoal.Overshoot('r','y"',5);

TuningGoal.OverShoot cannot reliably reduce the overshoot below 5%.

Properties
MaxOvershoot

Maximum percent overshoot, specified as a scalar value. For example, the scalar value 5 means the
overshoot should not exceed 5%. The initial value of the MaxOvershoot property is set by the
maxpercent input argument when you construct the tuning goal.

InputScaling
Reference signal scaling, specified as a vector of positive real values.

For a MIMO tracking requirement, when the choice of units results in a mix of small and large signals
in different channels of the response, use this property to specify the relative amplitude of each entry
in the vector-valued step input. This information is used to scale the off-diagonal terms in the transfer
function from reference to tracking error. This scaling ensures that cross-couplings are measured
relative to the amplitude of each reference signal.

For example, suppose that Req is a tuning goal that signals {'y1', 'y2'} track reference signals
{'rl','r2'}. Suppose further that you require the outputs to track the references with less than
10% cross-coupling. If r1 and r2 have comparable amplitudes, then it is sufficient to keep the gains
from rlto y2 and r2 and y1 below 0.1. However, if rl is 100 times larger than r2, the gain from rl
to y2 must be less than 0.001 to ensure that rl1 changes y2 by less than 10% of the r2 target. To
ensure this result, set the InputScaling property as follows.

Req.InputScaling = [100,1];

This tells the software to take into account that the first reference signal is 100 times greater than
the second reference signal.

The default value, [] , means no scaling.

Default: []

Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the

transfer function that the tuning goal constrains. The initial value of the Input property is set by the
inputname input argument when you construct the tuning goal.

TuningGoal.Overshoot class

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the
transfer function that the tuning goal constrains. The initial value of the Output property is set by
the outputname input argument when you construct the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration

created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the slTuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples

1-71

1 Classes

Overshoot Constraint

Create a tuning goal that limits the overshoot of the step response from signals named 'r' to 'y' in
a control system to 10 percent.

Req = TuningGoal.Overshoot('r','y"',10);

The overshoot tuning goal is evaluated as a constraint on the peak system gain, assuming second-
order model characteristics (see “Algorithms” on page 1-73). Visualizing the tuning goal shows a
shaded area where the target peak gain is exceeded.

viewGoal(Req)

Regquirement 1: Overshoot as a peak gain constraint

Closed-loop gain (dB)

20 _
10° 10
Frequency (rad/s)

If you visualize the tuning goal with a tuned system, the plot includes the corresponding system
response.

Configure other characteristics of the tuning goal by setting properties. For instance, configure the
tuning goal to apply only to the second model in a model array to tune. Also, configure it to be
evaluated with a loop open at an analysis point in the control system called OuterLoop.

Req.Models = 2;
Req.0Openings = 'OuterLoop’;

1-72

TuningGoal.Overshoot class

Tips

+ This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from
Input to Output, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x). x is the vector of free (tunable) parameters in the control system. The
software then adjusts the parameter values to minimize f(x), or to drive f(x) below 1 if the tuning goal
is a hard constraint.

For TuningGoal.Overshoot, f(x) reflects the relative satisfaction or violation of the goal. The
percent deviation from f(x) = 1 roughly corresponds to the percent deviation from the specified
overshoot target. For example, f(x) = 1.2 means the actual overshoot exceeds the target by roughly
20%, and f(x) = 0.8 means the actual overshoot is about 20% less than the target.

TuningGoal.Overshoot uses [T, as a proxy for the overshoot, based on second-order model
characteristics. Here, T is the closed-loop transfer function that the tuning goal constrains. The
overshoot is tuned in the range from 5% ([Tl = 1) to 100% (|T|l.,). TuningGoal.Overshoot is
ineffective at forcing the overshoot below 5%.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R20164, this functionality required a Robust Control Toolbox license.

See Also

looptune | systune | systune (for slTuner) | looptune (for slTuner) | viewGoal |
evalGoal | TuningGoal.Gain | TuningGoal.Sensitivity | slTuner

Topics

“Time-Domain Specifications”
“Multi-Loop PI Control of a Robotic Arm”

1-73

1 Classes

TuningGoal.Passivity class

Package: TuningGoal

Passivity constraint for control system tuning

Description

A system is passive if all its I/O trajectories (u(t),y(t)) satisfy:

£ Lo umdt > 0,

for all T > 0. Equivalently, a system is passive if its frequency response is positive real, which means
that for all w > 0,

G(jw) + G(jw)® > 0

Use TuningGoal.Passivity to enforce passivity of the response between specified inputs and
outputs, when using a control system tuning command such as systune. You can also use
TuningGoal.Passivity to ensure a particular excess or shortage of passivity (see
getPassiveIndex).

Construction

Req = TuningGoal.Passivity(inputname,outputname) creates a tuning goal for enforcing
passivity of the response from the specified inputs to the specified outputs.

Reg = TuningGoal.Passivity(inputname,outputname,nu, rho) creates a tuning goal for
enforcing:

£ Lo ubdt > v £ T u(dt + p £ "o Tyt

for all T > 0. This tuning goal enforces an excess of passivity at the inputs or outputs when nu > 0 or
rho > 0, respectively. The tuning goal allows for a shortage of input passivity when nu < 0. See
getPassiveIndex for more information about these indices.

Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

» If you are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:

* Any model input.
* Any linear analysis point marked in the model.

TuningGoal.Passivity class

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:

* Any input of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be any input name
in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then

inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out in

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

If you are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an s1Tuner interface associated with the Simulink model. Use
addPoint to add analysis points to the s1Tuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use { 'y1', 'y2'} to
designate a two-channel output.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

* Any output of the genss model

1-75

1 Classes

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OutputName. Also, if T contains an AnalysisPoint block with a location named
AP_u, then outputname can include 'AP u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out in

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

nu

Target passivity at the inputs listed in inputname, specified as a scalar value. The input passivity
index is defined as the largest value of v for which:

T T
£ vt Tutydt > v £ u®)Tu(t)dt,
for all T > 0. Equivalently, nu is the largest v for which:
G(jw) + G(jw) > 201
When you set a target nu in a TuningGoal.Passivity goal, the tuning software:

* Ensures that the specified response is input strictly passive when nu > 0. The magnitude of nu
sets the required excess of passivity.

» Allows the response to be not input strictly passive when nu < 0. The magnitude of nu sets the
permitted shortage of passivity.

Default: 0
rho

Target passivity at the outputs listed in outputname, specified as a scalar value. The output passivity
index is defined as the largest value of p for which:

£ "y uvdt > p £ e Tywt,

forall T > 0.
When you set a target rho in a TuningGoal.Passivity goal, the tuning software:

* Ensures that the specified response is output strictly passive when rho > 0. The magnitude of rho
sets the required excess of passivity.

1-76

TuningGoal.Passivity class

» Allows the response to be not output strictly passive when rho < 0. The magnitude of rho sets the
permitted shortage of passivity.

Default: 0

Properties
IPX

Target passivity at the inputs, stored as a scalar value. This value specifies the required amount of
passivity at the inputs listed in inputname. The initial value of this property is set by the input
argument nu when you create the TuningGoal.Passivity goal.

Default: 0
oPX

Target passivity at the outputs, stored as a scalar value. This value specifies the required amount of
passivity at the outputs listed in outputname The initial value of this property is set by the input
argument rho when you create the TuningGoal.Passivity goal.

Default: 0
Focus
Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

Input

Input signal names, specified as a cell array of character vectors. The input signal names specify the
input locations for determining passivity, initially populated by the inputname argument.

Output

Output signal names, specified as a cell array of character vectors. The output signal names specify
the output locations for determining passivity, initially populated by the outputname argument.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

1-77

1 Classes

1-78

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.

Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use

getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples

Passivity Requirement

Create a requirement that ensures passivity in the response from an input or analysis point 'u' to an
output or analysis point 'y ' in a control system.

TG = TuningGoal.Passivity('u','y"');
Use viewGoal to visualize the tuning goal.

viewGoal(TG)

TuningGoal.Passivity class

Requirement 1: Relative passivity index

2
1_|-
)
]
x
(7]
1K)
o
2z 1
™
=3
()
=
O
0.5 _
10° 10

Frequency (rad/s)

The requirement is satisfied when the relative passivity index R < 1 at all frequencies. The shaded
area represents the region where the requirement is violated. When you use this requirement to tune
a control system CL, viewGoal (TG, CL) shows R for the specified inputs and outputs on this plot,
enabling you to identify frequency ranges in which the passivity requirement is violated.

Input Passivity in Specified Frequency Range

Create a requirement that ensures that the response from an input 'u' to an output 'y ' is input
strictly passive, with an excess of passivity of 2.

TGi = TuningGoal.Passivity('u','y',2,0);
Restrict the requirement to apply only within the frequency range between 0 and 10 rad/s.

TGi.Focus = [0 10];

Tips
* Use viewGoal to visualize this tuning goal. For enforcing passivity with nu = 0 and rho = 0,
viewGoal plots the relative passivity indices as a function of frequency (see passiveplot).

These are the singular values of (I — G(jw))(I — G(jw))_l. The transfer function G from inputname
to outputname (evaluated with loops open as specified in Openings) is passive when the largest
singular value is less than 1 at all frequencies.

1-79

1 Classes

1-80

For nonzero nu or rho, viewGoal plots the relative index as described in “Algorithms” on page 1-
80.

* This tuning goal imposes an implicit minimum-phase constraint on the transfer function G + I. The
transmission zeros of G + I are the stabilized dynamics for this tuning goal. The MinDecay and
MaxRadius options of systuneOptions control the bounds on these implicitly constrained
dynamics. If the optimization fails to meet the default bounds, or if the default bounds conflict
with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x), where x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For the TuningGoal.Passivity goal, for a closed-loop transfer function G(s, x) from inputname
to outputname, f(x) is given by:

R

_ _ 108
f) = T3RR Rmax=10".

R is the relative sector index (see getSectorIndex) of [G(s,X);I], for the sector represented by:

20 —I)

Q=|_7 2

using the values of the OPX and IPX properties for p and v, respectively.

Version History
Introduced in R2016a

See Also
looptune | systune | systune (for slTuner) | Llooptune (for slTuner) | viewGoal |
evalGoal | TuningGoal.WeightedPassivity | slTuner | getPassiveIndex | passiveplot

Topics
“About Passivity and Passivity Indices”
“Tune Control Systems Using systune”

TuningGoal.Poles class

TuningGoal.Poles class

Package: TuningGoal

Constraint on control system dynamics

Description

Use TuningGoal.Poles to constrain the closed-loop dynamics of a control system or of specific
feedback loops within the control system. You can use this tuning goal for control system tuning with
tuning commands, such as systune or Looptune. A TuningGoal.Poles goal can ensure a
minimum decay rate or minimum damping of the poles of the control system or loop. It can also
eliminate fast dynamics in the tuned system.

Construction

Reg = TuningGoal.Poles(mindecay,mindamping,maxfreq) creates a default template for
constraining the closed-loop pole locations. The minimum decay rate, minimum damping constant,
and maximum natural frequency define a region of the complex plane in which poles of the
component must lie. Set mindecay = 0, mindamping = 0, or maxfreq = Inf to skip any of the three
constraints.

Req = TuningGoal.Poles(location,mindecay,mindamping,maxfreq) constrains the poles of
the sensitivity function measured at a specified location in the control system. (See getSensitivity
for information about sensitivity functions.) Use this syntax to narrow the scope of the tuning goal to
a particular feedback loop.

If you want to constrain the poles of the system with one or more feedback loops opened, set the

Openings property. To limit the enforcement of this tuning goal to poles having natural frequency
within a specified frequency range, set the Focus property. (See “Properties” on page 1-82.)

Input Arguments
mindecay

Minimum decay rate of poles of tunable component, specified as a nonnegative scalar value in the
frequency units of the control system model you are tuning.

When you tune the control system using this tuning goal, the closed-loop poles of the control system
are constrained to satisfy:

* Re(s) < -mindecay, for continuous-time systems.
* log(|z]) < -mindecay*Ts, for discrete-time systems with sample time Ts.

Set mindecay = 0 to impose no constraint on the decay rate.
mindamping

Desired minimum damping ratio of the closed-loop poles, specified as a value between 0 and 1.

1-81

1 Classes

1-82

Poles that depend on the tunable parameters are constrained to satisfy Re(s) < -mindamping*|
s|. In discrete time, the damping ratio is computed using s=log(z) /Ts.

Set mindamping = 0 to impose no constraint on the damping ratio.
maxfreq

Desired maximum natural frequency of closed-loop poles, specified as a scalar value in the frequency
units of the control system model you are tuning.

Poles are constrained to satisfy |s| < maxfreq for continuous time, or |log(z)| < maxfreq*Ts
for discrete-time systems with sample time Ts. This constraint prevents fast dynamics in the closed-
loop system.

Set maxfreq = Inf to impose no constraint on the natural frequency.
location

Location at which poles are assessed, specified as a character vector or cell array of character
vectors that identify one or more locations in the control system to tune. When you use this input, the
tuning goal constrains the poles of the sensitivity function measured at this location. (See
getSensitivity for information about sensitivity functions.) What locations are available depends
on what kind of system you are tuning:

» Ifyou are tuning a Simulink model of a control system, you can use any linear analysis point
marked in the model, or any linear analysis point in an slTuner interface associated with the
Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if
the s1Tuner interface contains an analysis point u, you can use 'u' to refer to that point when
creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner
interface to your model.

» Ifyou are tuning a generalized state-space (genss) model of a control system, you can use any
AnalysisPoint location in the control system model. For example, the following code creates a
PI loop with an analysis point at the plant input 'u'.

P = AnalysisPoint('u');
tf(1,[1 2]);
tunablePID('C', 'pi');

A
G
C
T feedback (G*AP*C,1);

When creating tuning goals, you can use 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If Location specifies multiple locations, then the poles constraint applies to the sensitivity of the
MIMO loop.

Properties
MinDecay
Minimum decay rate of closed-loop poles of tunable component, specified as a positive scalar value in

the frequency units of the control system you are tuning. The initial value of this property is set by
the mindecay input argument.

TuningGoal.Poles class

When you tune the control system using this tuning goal, closed-loop poles are constrained to satisfy
Re(s) < -MinDecay for continuous-time systems, or Log(|z|) < -MinDecay*Ts for discrete-
time systems with sample time Ts.

You can use dot notation to change the value of this property after you create the tuning goal. For
example, suppose Req is a TuningGoal.Poles tuning goal. Change the minimum decay rate to
0.001:

Req.MinDecay = 0.001;
Default: 0
MinDamping

Desired minimum damping ratio of closed-loop poles, specified as a value between 0 and 1. The initial
value of this property is set by the mindamping input argument.

Poles that depend on the tunable parameters are constrained to satisfy Re(s) < -MinDamping*|
s|. In discrete time, the damping ratio is computed using s=log(z) /Ts.

Default: 0
MaxFrequency

Desired maximum natural frequency of closed-poles, specified as a scalar value in the frequency units
of the control system model you are tuning. The initial value of this property is set by the maxfreq
input argument.

Poles of the block are constrained to satisfy |s| < maxfreq for continuous-time systems, or |
log(z)| < maxfreqg*Ts for discrete-time systems with sample time Ts. This constraint prevents
fast dynamics in the tuned control system.

You can use dot notation to change the value of this property after you create the tuning goal. For
example, suppose Reqis a TuningGoal.ControllerPoles tuning goal. Change the maximum
frequency to 1000:

Req.MaxFrequency = 1000;

Default: Inf

Focus

Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].
Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

1-83

1 Classes

1-84

Location

Location at which poles are assessed, specified as a cell array of character vectors that identify one
or more analysis points in the control system to tune. For example, if Location = {'u'}, the tuning
goal evaluates the open-loop response measured at an analysis point 'u'. If Location =

{'ul', 'u2'}, the tuning goal evaluates the MIMO open-loop response measured at analysis points
'ul' and 'u2'.

The initial value of the Location property is set by the Location input argument when you create
the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
s1Tuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

TuningGoal.Poles class

Examples

Constrain Closed-Loop Dynamics of Specified Loop of System to Tune

Create a requirement that constrains the inner loop of the following control system to be stable and
free of fast dynamics. Specify that the constraint is evaluated with the outer loop open.

+ +

T _ C| ? CI » GE - G]
AP, Lo

n'JH.P|

¥
b

F)

Create a model of the system. To do so, specify and connect the numeric plant models, G1 and G2,
and the tunable controllers C1 and C2. Also, create and connect the AnalysisPoint blocks, AP1 and
AP2, which mark points of interest for analysis and tuning.

Gl = tf(10,[1 10]);

G2 = tf([1 2]1,[1 0.2 10]);
C1l = tunablePID('C','pi');
C2 = tunableGain('G',1);

AP1 = AnalysisPoint('AP1");

1
AP2 = AnalysisPoint('AP2");
= feedback(Gl*feedback(G2*C2,AP2)*C1,AP1);

Create a tuning requirement that constrains the dynamics of the closed-loop poles. Restrict the poles
of the inner loop to the region Re(s) < - 0.1, |s| < 30.

Req = TuningGoal.Poles(0.1,0,30);

Setting the minimum damping to zero imposes no constraint on the damping constants for the poles.
Specify that the constraint on the tuned system poles is applied with the outer loop open.
Req.0Openings = 'AP1l‘;

When you tune T using this requirement, the constraint applies to the poles of the entire control
system evaluated with the loop open at 'AP1'. In other words, the poles of the inner loop plus the
poles of C1 and G1 are all considered.

After you tune T, you can use viewGoal to validate the tuned control system against the
requirement.

Constrain Dynamics of Specified Feedback Loop

Create a requirement that constrains the inner loop of the system of the previous example to be
stable and free of fast dynamics. Specify that the constraint is evaluated with the outer loop open.

Create a tuning requirement that constrains the dynamics of the inner feedback loop, the loop
identified by AP2. Restrict the poles of the inner loop to the region Re(s) < — 0.1, |s| < 30.

1-85

1 Classes

1-86

Req = TuningGoal.Poles('AP2',0.1,0,30);
Specify that the constraint on the tuned system poles is applied with the outer loop open.
Req.Openings = 'AP1';

When you tune T using this requirement, the constraint applies only to the poles of the inner loop,
evaluated with the outer loop open. In this case, since G1 and C1 do not contribute to the sensitivity
function at AP2 when the outer loop is open, the requirement constrains only the poles of G2 and C2.

After you tune T, you can use viewGoal to validate the tuned control system against the
requirement.

Tips

* TuningGoal.Poles restricts the closed-loop dynamics of the tuned control system. To constrain
the dynamics or ensure the stability of a single tunable component, use
TuningGoal.ControllerPoles.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x). x is the vector of free (tunable) parameters in the control system. The
software then adjusts the parameter values to minimize f(x), or to drive f(x) below 1 if the tuning goal
is a hard constraint.

For TuningGoal.Poles, f(x) reflects the relative satisfaction or violation of the goal. For example, if
you attempt to constrain the closed-loop poles of a feedback loop to a minimum damping of ¢ = 0.5,
then:

* f(x) = 1 means the smallest damping among the constrained poles is ¢ = 0.5 exactly.

* f(x) = 1.1 means the smallest damping C = 0.5/1.1 = 0.45, roughly 10% less than the target.

* fix) = 0.9 means the smallest damping ¢ = 0.5/0.9 = 0.55, roughly 10% better than the target.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also
looptune | systune | looptune (for slTuner) | systune (for slTuner) | viewGoal |
evalGoal | tunableTF | tunableSS | TuningGoal.ControllerPoles

Topics
“System Dynamics Specifications”
“Digital Control of Power Stage Voltage”

TuningGoal.Poles class

“Multiloop Control of a Helicopter”

1-87

1 Classes

1-88

TuningGoal.Rejection class

Package: TuningGoal

Disturbance rejection requirement for control system tuning

Description

Use TuningGoal.Rejection to specify the minimum attenuation of a disturbance injected at a
specified location in a control system. This tuning goal helps you tune control systems with tuning
commands such as systune or Looptune.

When you use TuningGoal.Rejection, the software attempts to tune the system so that the
attenuation of a disturbance at the specified location exceeds the minimum attenuation factor you
specify. This attenuation factor is the ratio between the open- and closed-loop sensitivities to the
disturbance and is a function of frequency. You can achieve disturbance attenuation only inside the
control bandwidth. The loop gain must be larger than one for the disturbance to be attenuated
(attenuation factor > 1).

Construction

Req = TuningGoal.Rejection(distloc,attfact) creates a tuning goal for rejecting a
disturbance entering at distloc. This tuning goal constrains the minimum disturbance attenuation
factor to the frequency-dependent value, attfact.

Input Arguments
distloc

Disturbance location, specified as a character vector or, for multiple-input tuning goals, a cell array of
character vectors.

» Ifyou are using the tuning goal to tune a Simulink model of a control system, then distloc can
include any signal identified as an analysis point in an slTuner interface associated with the
Simulink model. Use addPoint to add analysis points to the slTuner interface. Use getPoints
to get the list of analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as the disturbance input when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel disturbance input.

* Ifyou are using the tuning goal to tune a generalized state-space model (genss) of a control
system, then inputname can include any AnalysisPoint channel in the model. For example, if
you are tuning a control system model, T, which contains an AnalysisPoint block with a
location named AP _u, then distloc can include 'AP_u'. (Use getPoints to get a list of analysis
points available in a genss model.) The constrained disturbance location is injected at the implied
input associated with the analysis point, and measured at the implied output:

out imn

AnalysizsPoint

TuningGoal.Rejection class

attfact
Attenuation factor as a function of frequency, specified as a numeric LTI model.

TuningGoal.Rejection constrains the minimum disturbance attenuation to the frequency-
dependent value attfact. You can specify attfact as a smooth transfer function (tf , zpk, or ss
model). Alternatively, you can specify a piecewise gain profile using a frd model. For example, the
following code specifies an attenuation factor of 100 (40 dB) below 1 rad/s, gradually dropping to 1 (0
dB) past 10 rad/s, for a disturbance injected at u.

attfact = frd([100 160 1 1],[0 1 10 100]);
Req = TuningGoal.Rejection('u',attfact);
bodemag(attfact)

ylim([-5,40])

Bode Diagram

L T

Magnitude {dB)
Py

e

£n

10" 10 102

Frequency (rad/s)

When you use an frd model to specify attfact, the gain profile is automatically mapped onto a zpk
model. The magnitude of this zpk model approximates the desired gain profile. Use viewGoal (Req)
to visualize the resulting attenuation profile.

If you are tuning in discrete time (that is, using a genss model or s1Tuner interface with nonzero
Ts), you can specify attfact as a discrete-time model with the same Ts. If you specify attfact in
continuous time, the tuning software discretizes it. Specifying the attenuation profile in discrete time
gives you more control over the profile near the Nyquist frequency.

1-89

1 Classes

1-90

Properties
MinAttenuation
Minimum disturbance attenuation as a function of frequency, expressed as a SISO zpk model.

The software automatically maps the attfact input argument to a zpk model. The magnitude of this
zpk model approximates the desired attenuation factor and is stored in the MinAttenuation
property. Use viewGoal (Req) to plot the magnitude of MinAttenuation.

Focus
Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

LoopScaling
Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

For multiloop or MIMO disturbance rejection tuning goals, the feedback channels are automatically
rescaled to equalize the off-diagonal (loop interaction) terms in the open-loop transfer function. Set
LoopScaling to 'off' to disable such scaling and shape the unscaled open-loop response.

Default: 'on'
Location

Location of disturbance, specified as a cell array of character vectors that identify one or more
analysis points in the control system to tune. For example, if Location = {'u'}, the tuning goal
evaluates disturbance rejection at an analysis point 'u'. If Location = {'ul', 'u2'}, the tuning
goal evaluates the rejection at based on the MIMO open-loop response measured at analysis points
'ul' and 'u2'.

The initial value of the Location property is set by the distloc input argument when you create
the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

TuningGoal.Rejection class

When Models = NaN, the tuning goal applies to all models.
Default: NaN
Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the slTuner interface. Use getPoints to get the list of analysis points available in an
s1Tuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples
Constant Minimum Attenuation in Frequency Band

Create a tuning goal that enforces a attenuation of at least a factor of 10 between 0 and 5 rad/s. The
tuning goal applies to a disturbance entering a control system at a point identified as 'u"'.

Req = TuningGoal.Rejection('u',10);

Req.Name = 'Rejection spec';
Req.Focus = [0 5]

Frequency-Dependent Attenuation Profile

Create a tuning goal that enforces an attenuation factor of at least 100 (40 dB) below 1 rad/s,
gradually dropping to 1 (0 dB) past 10 rad/s. The tuning goal applies to a disturbance entering a
control system at a point identified as 'u'.

attfact = frd([100 160 1 1]1,[0 1 10 100]);
Req = TuningGoal.Rejection('u',attfact);

1-91

1 Classes

1-92

These commands use a frd model to specify the minimum attenuation profile as a function of
frequency. The minimum attenuation of 100 below 1 rad/s, together with the minimum attenuation of
1 at the frequencies of 10 and 100 rad/s, specifies the desired rolloff.

attfact is converted into a smooth function of frequency that approximates the piecewise specified
profile. Display the gain profile using viewGoal.

viewGoal (Req)

Requirement 1: Disturbance attenuation as a function of frequency

1Ez|‘""""‘--,‘ [= = —Min attenuation |
~
x
!
LS
E‘w LY
N 3
—~ 10 X
- \
= L
8 \!
S .
'.g LY
.
E]
~
o 1|_':| el o e m = w
:I:.-" L
=
107 _ ; : .
107 10 10 10 10° 10°

Frequency (rad/s)

The shaded region indicates where the tuning goal is violated.

Tips

» This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at Location, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x). In this case, x is the vector of free (tunable) parameters in the control

TuningGoal.Rejection class

system. The parameter values are adjusted automatically to minimize f(x) or drive f(x) below 1 if the
tuning goal is a hard constraint.

For TuningGoal.Rejection, f(x) is given by:

f(x) = max [Ws(jw)S(jw, X)|l
we€ N

or its discrete-time equivalent. Here, S(jw,x) is the closed-loop sensitivity function measured at the
disturbance location. Q is the frequency interval over which the tuning goal is enforced, specified in
the Focus property. W is a frequency weighting function derived from the specified attenuation
profile. The gains of Wg and MinAttenuation roughly match for gain values ranging from -20 dB to
60 dB. For numerical reasons, the weighting function levels off outside this range, unless the
specified attenuation profile changes slope outside this range. This adjustment is called
regularization. Because poles of Ws close to s = 0 or s = Inf might lead to poor numeric conditioning
of the systune optimization problem, it is not recommended to specify attenuation profiles with very
low-frequency or very high-frequency dynamics.

To obtain Wg, use:
WS = getWeight(Req,Ts)

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for
continuous time). For more information about regularization and its effects, see “Visualize Tuning
Goals”.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also
looptune | viewGoal | systune | systune (for slTuner) | looptune (for slTuner) |
TuningGoal.Tracking | TuningGoal.LoopShape | slTuner

Topics

“Time-Domain Specifications”

“Visualize Tuning Goals”

“Decoupling Controller for a Distillation Column”
“Tuning of a Two-Loop Autopilot”

1-93

1 Classes

TuningGoal.Sensitivity class

Package: TuningGoal

Sensitivity requirement for control system tuning

Description

Use TuningGoal.Sensitivity to limit the sensitivity of a feedback loop to disturbances. Constrain
the sensitivity to be smaller than one at frequencies where you need good disturbance rejection. Use
this tuning goal for control system tuning with tuning commands such as systune or Looptune.

Construction

Reg = TuningGoal.Sensitivity(location,maxsens) creates a tuning goal for limiting the
sensitivity to disturbances entering a feedback loop at the specified location. maxsens specifies the
maximum sensitivity as a function of frequency. You can specify the maximum sensitivity profile as a
smooth transfer function or sketch a piecewise error profile using an frd model or the makeweight
command.

See getSensitivity for more information about sensitivity functions.)
Input Arguments
location

Location at which the sensitivity to disturbances is constrained, specified as a character vector or cell
array of character vectors that identify one or more locations in the control system to tune. What
locations are available depends on what kind of system you are tuning:

* Ifyou are tuning a Simulink model of a control system, you can use any linear analysis point
marked in the model, or any linear analysis point in an s1Tuner interface associated with the
Simulink model. Use addPoint to add analysis points to the slTuner interface. For example, if
the slTuner interface contains an analysis point u, you can use 'u' to refer to that point when
creating tuning goals. Use getPoints to get the list of analysis points available in an slTuner
interface to your model.

» Ifyou are tuning a generalized state-space (genss) model of a control system, you can use any
AnalysisPoint location in the control system model. For example, the following code creates a
PI loop with an analysis point at the plant input 'u'.

P = AnalysisPoint('u');
tf(1,[1 2]);
tunablePID('C', 'pi');

A
G
C
T feedback (G*AP*C,1);

When creating tuning goals, you can use 'u' to refer to the analysis point at the plant input. Use
getPoints to get the list of analysis points available in a genss model.

If Llocation is a cell array, then the sensitivity requirement applies to the MIMO loop.

1-94

TuningGoal.Sensitivity class

maxsens
Maximum sensitivity to disturbances as a function of frequency.

You can specify maxsens as a smooth SISO transfer function (tf, zpk, or ss model). Alternatively,
you can sketch a piecewise gain profile using a frd model or the makeweight command. For
example, the following frd model specifies a maximum sensitivity of 0.01 (-40 dB) at 1 rad/s,
increasing to 1 (0 dB) past 50 rad/s.

maxsens = frd([0.01 1 1],[1 50 100]1);
bodemag (maxsens)
ylim([-45,5])

Bode Diagram

[
5 T

N e

5 //

10T ?___/'/// 4
%-15' /// .
5 e
e / |
g-gi' /f T
= ///

A0 r /,J]

10 102

Frequency (rad/s)

= LT

When you use an frd model to specify maxsens, the software automatically maps your specified gain
profile to a zpk model whose magnitude approximates the desired gain profile. Use viewGoal (Req)
to plot the magnitude of that zpk model.

If you are tuning in discrete time (that is, using a genss model or s1Tuner interface with nonzero
Ts), you can specify maxsens as a discrete-time model with the same Ts. If you specify maxsens in
continuous time, the tuning software discretizes it. Specifying the maximum sensitivity profile in
discrete time gives you more control over the profile near the Nyquist frequency.

1-95

1 Classes

1-96

Properties
MaxSensitivity
Maximum sensitivity as a function of frequency, specified as a SISO zpk model.

The software automatically maps the input argument maxsens onto a zpk model. The magnitude of
this zpk model approximates the desired gain profile. Use viewGoal (Req) to plot the magnitude of
the zpk model MaxSensitivity.

Focus
Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

LoopScaling
Toggle for automatically scaling loop signals, specified as 'on' or 'off'.

In multi-loop or MIMO control systems, the feedback channels are automatically rescaled to equalize
the off-diagonal terms in the open-loop transfer function (loop interaction terms). Set LoopScaling
to 'off' to disable such scaling and shape the unscaled sensitivity function.

Default: 'on'
Location

Location of disturbance, specified as a cell array of character vectors that identify one or more
analysis points in the control system to tune. For example, if Location = {'u'}, the tuning goal
evaluates the open-loop response measured at an analysis point 'u'. If Location = {'ul', 'u2'},
the tuning goal evaluates the MIMO open-loop response measured at analysis points 'ul' and 'u2'.

The initial value of the Location property is set by the Location input argument when you create
the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.

TuningGoal.Sensitivity class

Default: NaN
Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the slTuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}
Name
Name of the tuning goal, specified as a character vector.

For example, if Req is a tuning goal:
Req.Name = 'LoopReq';
Default: []

Examples

Disturbance Sensitivity at Plant Input

Create a tuning goal that limits the sensitivity to disturbance at the plant input of the following
control system. The control system contains an analysis point named 'X"' at the plant input.

Tﬁ}_—A C G -y

Specify a maximum sensitivity of 0.01 (-40 dB) at 1 rad/s, increasing to 1 (0 dB) past 10 rad/s. Use an
frd model to sketch this target sensitivity.

maxsens = frd([0.01 1 1],[1 10 100]);
Req = TuningGoal.Sensitivity('X',maxsens);

The software converts maxsens into a smooth function of frequency that approximates the piecewise-
specified gain profile. Visualize this function using viewGoal.

viewGoal (Req)

1-97

1 Classes

1-98

Requirement 1: Sensitivity as a function of frequency

[
L]

|— - —Maxsensitivim

[
[}
LY

et

mat 4

Sensitivity (dB)
™

-80 ¢

Ny i i i
LR

n-1 nd 13 132 n3

. : Frequency (rad/s) .

The shaded region indicates regions where the tuning goal is violated. The shaded region differs from
the specified gain profile (dashed line) at very low frequencies because of modifications that the
software introduces for numeric stability, as described in “Algorithms” on page 1-99.

Sensitivity Goal with Limited Frequency Range and Model Application

Create a tuning goal that specifies a maximum sensitivity of 0.1 (10%) at frequencies below 5 rad/s.
Configure the tuning goal to apply only to the second and third plant models.

Req = TuningGoal.Sensitivity('u',0.1);
Req.Focus = [0 5];
Req.Models = [2 3];

You can use Req as an input to Looptune or systune when tuning a control system that has an
analysis point called 'u'. Setting the Focus property limits the application of the tuning goal to
frequencies between 0 and 5 rad/s. Setting the Models property restricts application of the tuning
goal to the second and third models in an array, when you use the tuning goal to tune an array of
control system models.

Tips

» This tuning goal imposes an implicit stability constraint on the closed-loop sensitivity function
measured at Location, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly

TuningGoal.Sensitivity class

constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x), where x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.Sensitivity, f(x) is given by:
fx) = [Ws(s)S(s,)|l es

or its discrete-time equivalent. Here, S(s,x) is the closed-loop sensitivity function measured at the
location specified in the tuning goal. Wy is a frequency weighting function derived from the specified
sensitivity profile. The gains of Ws and 1/MaxSensitivity roughly match for gain values ranging
from -20 dB to 60 dB. For numerical reasons, the weighting function levels off outside this range,
unless the specified sensitivity profile changes slope outside this range. This adjustment is called
regularization. Because poles of W close to s = 0 or s = Inf might lead to poor numeric conditioning
of the systune optimization problem, it is not recommended to specify sensitivity profiles with very
low-frequency or very high-frequency dynamics.

To obtain W, use:
WS = getWeight(Req,Ts)

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for
continuous time). For more information about regularization and its effects, see “Visualize Tuning
Goals”.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R20164a, this functionality required a Robust Control Toolbox license.

See Also

looptune | systune | Llooptune (for slTuner) | systune (for slTuner) | viewGoal |
evalGoal | TuningGoal.Gain | TuningGoal.LoopShape | TuningGoal.Rejection |
TuningGoal.MinLoopGain | TuningGoal.MaxLoopGain | slTuner

Topics

“Frequency-Domain Specifications”
“Visualize Tuning Goals”

1-99

1 Classes

1-100

TuningGoal.StepRejection class

Package: TuningGoal

Step disturbance rejection requirement for control system tuning

Description

Use TuningGoal.StepRejection to specify how a step disturbance injected at a specified location
in your control system affects the signal at a specified output location. Use this tuning goal with
control system tuning commands such as systune or Looptune.

You can specify the desired response in time-domain terms of peak value, settling time, and damping
ratio. Alternatively, you can specify the response as a stable reference model having DC-gain. In that
case, the tuning goal is to reject the disturbance as well as or better than the reference model.

To specify disturbance rejection in terms of a frequency-domain attenuation profile, use
TuningGoal.Rejection.

Construction

Reg = TuningGoal.StepRejection(inputname,outputname, refsys) creates a tuning goal
that constrains how a step disturbance injected at a location inputname affects the response at
outputname. The tuning goal is that the disturbance be rejected as well as or better than the
reference system. inputname and outputname can describe a SISO or MIMO response of your
control system. For MIMO responses, the number of inputs must equal the number of outputs.

Reg = TuningGoal.StepRejection(inputname,outputname, peak, tSettle) specifies an
oscillation-free response in terms of a peak value and a settling time.

Req = TuningGoal.StepRejection(inputname,outputname, peak, tSettle, zeta) allows
for damped oscillations with a damping ratio of at least zeta.

Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

* Ifyou are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:

* Any model input.
* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the s1Tuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

TuningGoal.StepRejection class

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:

* Any input of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be any input name
in T.InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then

inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out imn

-

AnalysizPoint n

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

If you are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an s1Tuner interface associated with the Simulink model. Use
addPoint to add analysis points to the s1Tuner interface. Use getPoints to get the list of
analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use {'y1', 'y2'} to
designate a two-channel output.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

* Any output of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OQutputName. Also, if T contains an AnalysisPoint block with a location named

AP u, then outputname can include 'AP_u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

1-101

1 Classes

1-102

out imn

AnalysisPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

refsys
Reference system for target step rejection, specified as a SISO dynamic system model, such as a tf,
zpk, or ss model. refsys must be stable and proper, and must have zero DC gain. This restriction

ensures perfect rejection of the steady-state disturbance.

refsys can be continuous or discrete. If refsys is discrete, it can include time delays which are
treated as poles at z = 0.

For best results, refsys and the open-loop response from the disturbance to the output should have

similar gains at the frequency where the reference model gain peaks. You can check the peak gain
and peak frequency using getPeakGain. For example:

[gmax, fmax] = getPeakGain(refsys);

Use getIOTransfer to extract the corresponding open-loop response from the system you are
tuning.

peak
Peak absolute value of target response to disturbance, specified as a scalar value.
tSettle

Target settling time of the response to disturbance, specified as a positive scalar value, in the time
units of the control system you are tuning.

zeta

Minimum damping ratio of oscillations in the response to disturbance, specified as a value between 0
and 1.

Default: 1

Properties

ReferenceModel

Reference system for target response to step disturbance, specified as a SISO (zpk) model. The step
response of this model specifies how the output signals specified by outputname should respond to

the step disturbance at inputname.

If you use the refsys input argument to create the tuning goal, then the value of ReferenceModel
is zpk(refsys).

TuningGoal.StepRejection class

If you use the peak, tSample, and zeta input arguments, then ReferenceModel is a zpk
representation of the first-order or second-order transfer function whose step response has the
specified characteristics.

InputScaling
Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued input signals when
the choice of units results in a mix of small and large signals. This information is used to scale the
closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The tuning goal is evaluated
for the scaled transfer function D, 'T(s)D;. The diagonal matrices D, and D; have the OutputScaling
and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued output signals when
the choice of units results in a mix of small and large signals. This information is used to scale the
closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The tuning goal is evaluated
for the scaled transfer function D, 'T(s)D;. The diagonal matrices D, and D; have the OutputScaling
and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

Input

Names of disturbance input locations, specified as a cell array of character vectors. This property is
initially populated by the inputname argument when you create the tuning goal.

OQutput

Names of locations at which response to step disturbance is measured, specified as a cell array of
character vectors. This property is initially populated by the outputname argument when you create
the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

1-103

1 Classes

1-104

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the slTuner interface. Use getPoints to get the list of analysis points available in an
s1Tuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples

Specify First-Order or Second-Order Step Disturbance Response Characteristics

Create a requirement that specifies the step disturbance response in terms of peak time-domain
response, settling time, and damping of oscillations.

Suppose you want the response at 'y ' to a disturbance injected at 'd' to never exceed an absolute
value of 0.25, and to settle within 5 seconds. Create a TuningGoal.StepRejection requirement
that captures these specifications and also specifies non-oscillatory response.

Reql = TuningGoal.StepRejection('d','y"',0.25,5);

Omitting an explicit value for the damping ratio, zeta, is equivalent to setting zeta = 1. Therefore,
Req specifies a non-oscillatory response. The software converts the peak value and settling time into
a reference transfer function whose step response has the desired time-domain profile. This transfer
function is stored in the ReferenceModel property of Req.

TuningGoal.StepRejection class

Reql.ReferenceModel

ans

0.92883 s

(s+1.367)"2

Continuous-time zero/pole/gain model.

Confirm the target response by displaying Req.

figure()
viewGoal(Reql)
Requirement 1: Step disturbance rejection
0.25 — : : . : :
LY
I i
I \
02+ 1 A _
] i
] \
I \
0.15 ! ' .
o [\
E] LY
a | A
E \
< o1 \]
1 \
I LY
1 LY
0.05 [AN :
1] -
I Sy
.y
S~ |= = =Reference |
0 ' ' ' : LT e
0 1 2 3 4 5 &
Time (seconds)

Suppose your application can tolerate oscillations provided the damping ratio is less than 0.4. Create

a requirement that specifies this disturbance response.

Req2 = TuningGoal.StepRejection('d','y"',0.25,5,0.4);

figure()
viewGoal (Reqg2)

1-105

1 Classes

1-106

Requirement 1: Step disturbance rejection

0.25 —7v— . :
I
I
02F ¢ | -
J !
I
015 | |
! \
9 01 , :
g
S
g I 1 _
Soos| 1
]] .
-
I: [rrrrrrrrrrrrrrrreay i """"""""" ','f """"""" ?II*II;II;II“II” |||||||| - -
' ’
\ ’
005} ‘oo -
w
|- — —Reference |
E-] i i 1 i | i i
0 1 2 3 4 5 6 7 8

Time {seconasj

Step Disturbance Rejection with Custom Reference Model
Create a requirement that specifies the step disturbance response as a transfer function.

Suppose you want the response to a disturbance injected at an analysis point d in your control system
and measured at a point 'y ' to be rejected at least as well as the transfer function

=S
s2+2s+1°

H(s)

Create a TuningGoal.StepRejection requirement.

H=tf([1 0],[1 2 11);
Req = TuningGoal.StepRejection('d','y"',H);

Display the requirement.

viewGoal(Req)

TuningGoal.StepRejection class

Requirement 1: Step disturbance rejection

04
_ i
0.35]
/ A
! \
031 \
I \
! \
0.25
L ! v
'g] L}
£ g2t A
[+ A1
£ |
< |1 %
0.15 0y .
.
! »
0.1H \
| \
I LY
0.05 | S
T~ L |- — —Reference |
E i i [i i i - il L T |-
0 1 2 3 4 5 B [8 9 10
Time (seconds)

The plot displayed by viewGoal shows the step response of the specified transfer function. This
response is the target time-domain response to disturbance.

Tips

This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from
Input to Output, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x), where x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning

goal is a hard constraint.

TuningGoal.StepRejection aims to keep the gain from disturbance to output below the gain of
the reference model. The scalar value of the tuning goal f(x) is given by:

o0’

f(x) = [WE(s)Tay(s, %)

1-107

1 Classes

or its discrete-time equivalent. Here, Tg,(s,x) is the closed-loop transfer function from Input to
Output, and | - |, denotes the H, norm (see norm). Wris a frequency weighting function derived

from the step-rejection profile you specify in the tuning goal. The gains of Wz and 1/
ReferenceModel roughly match for gain values within 60 dB of the peak gain. For numerical
reasons, the weighting function levels off outside this range, unless you specify a reference model
that changes slope outside this range. This adjustment is called regularization. Because poles of W
close to s = 0 or s = Inf might lead to poor numeric conditioning of the systune optimization
problem, it is not recommended to specify reference models with very low-frequency or very high-
frequency dynamics.

I

To obtain W, use:
WF = getWeight(Req,Ts)

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for
continuous time). For more information about regularization and its effects, see “Visualize Tuning
Goals”.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R20164, this functionality required a Robust Control Toolbox license.

See Also
looptune | systune | systune (for slTuner) | Looptune (for slTuner) | viewGoal |
evalGoal | TuningGoal.Gain | TuningGoal.LoopShape | slTuner

Topics

“Time-Domain Specifications”
“Visualize Tuning Goals”

“Tune Control Systems Using systune”
“Tune Control Systems in Simulink”

1-108

TuningGoal.StepTracking class

TuningGoal.StepTracking class

Package: TuningGoal

Step response requirement for control system tuning

Description

Use TuningGoal.StepTracking to specify a target step response from specified inputs to specified
outputs of a control system. Use this tuning goal with control system tuning commands such as
systune or Looptune.

Construction

Req = TuningGoal.StepTracking(inputname,outputname, refsys) creates a tuning goal
that constrains the step response between the specified signal locations to match the step response of
a stable reference system, refsys. The constraint is satisfied when the relative difference between
the tuned and target responses falls within a tolerance specified by the RelGap property of the
tuning goal (see “Properties” on page 1-112). inputname and outputname can describe a SISO or
MIMO response of your control system. For MIMO responses, the number of inputs must equal the
number of outputs.

Req = TuningGoal.StepTracking(inputname,outputname,tau) specifies the desired step
response as a first-order response with time constant tau:

1/tau

Req.ReferenceModel = S+ 1/tau”

Req = TuningGoal.StepTracking(inputname,outputname,tau,overshoot) specifies the
desired step response as a second-order response with natural period tau, natural frequency 1/tau,
and percent overshoot overshoot:

(1/tau)?
s% + 2(zeta/tau)s + (1/tau

Req.ReferenceModel =)2 .

The damping is given by zeta = cos(atan2(pi, -log(overshoot/100))).
Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

» Ifyou are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:

* Any model input.
* Any linear analysis point marked in the model.

1-109

1 Classes

1-110

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

* Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:
* Any input of the genss model
* Any AnalysisPoint location in the control system model
For example, if you are tuning a control system model, T, then inputname can be any input name
in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then

inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out in

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

+ Ifyou are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:
* Any model output.
* Any linear analysis point marked in the model.

* Any linear analysis point in an s1Tuner interface associated with the Simulink model. Use
addPoint to add analysis points to the s1Tuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use { 'y1', 'y2'} to
designate a two-channel output.

* Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

* Any output of the genss model

TuningGoal.StepTracking class

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.QutputName. Also, if T contains an AnalysisPoint block with a location named
AP _u, then outputname can include 'AP_u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out imn

AnalysizPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

refsys

Reference system for target step response, specified as a dynamic system model, such as a tf, zpk,
or ss model. refsys must be stable and must have DC gain of 1 (zero steady-state error).

refsys can be continuous or discrete. If refsys is discrete, it can include time delays which are
treated as poles at z = 0.

refsys can be MIMO, provided that it is square and that its DC singular value (sigma)is 1. If
refsys is a MIMO model, then its number of inputs and outputs must match the dimensions of
inputname and outputname.

For best results, refsys should also include intrinsic system characteristics such as non-minimum-
phase zeros (undershoot).

tau
Time constant or natural period of target step response, specified as a positive scalar.

If you use the syntax Req = TuningGoal.StepTracking(inputname,outputname, tau) to
specify a first-order target response, then tau is the time constant of the response decay. In that
case, the target is the step response of the system given by:

1/tau

Req.ReferenceModel = S+ 1/tau”

If you use the syntax Req =

TuningGoal.StepTracking(inputname, outputname, tau,overshoot) to specify a second-
order target response, then tau is the inverse of the natural frequency of the response. In that case,
the target is the step response of the system given by:

(1/tau)?
s? + 2(zeta/tau)s + (1/tau

Req.ReferenceModel =)2 .

The damping of the system is given by zeta = cos(atan2(pi, -log(overshoot/100))).

1-111

1 Classes

1-112

overshoot

Percent overshoot of target step response, specified as a scalar value in the range (0,100).

Properties
ReferenceModel

Reference system for target step response, specified as a SISO or MIMO state-space (ss) model.
When you use the tuning goal to tune a control system, the step response from inputname to
outputname is tuned to match this target response to within the tolerance specified by the RelGap
property.

If you use the refsys input argument to create the tuning goal, then the value of ReferenceModel
is ss(refsys).

If you use the tau or tau and overshoot input arguments, thenReferenceModel is a state-space
representation of the corresponding first-order or second-order transfer function.

ReferenceModel must be stable and have unit DC gain (zero steady-state error). For best results,
ReferenceModel should also include intrinsic system characteristics such as non-minimum-phase
zeros (undershoot).

RelGap

Maximum relative matching error, specified as a positive scalar value. This property specifies the
matching tolerance as the maximum relative gap between the target and actual step responses. The
relative gap is defined as:

_ "y(t) - yref(t)uz
BT =@,

V(t) - Vredt) is the response mismatch, and 1 - y..At) is the step-tracking error of the target model.
| - ||, denotes the signal energy (2-norm).

Increase the value of RelGap to loosen the matching tolerance.
Default: 0.1

InputScaling

Reference signal scaling, specified as a vector of positive real values.

For a MIMO tracking requirement, when the choice of units results in a mix of small and large signals
in different channels of the response, use this property to specify the relative amplitude of each entry
in the vector-valued step input. This information is used to scale the off-diagonal terms in the transfer
function from reference to tracking error. This scaling ensures that cross-couplings are measured
relative to the amplitude of each reference signal.

For example, suppose that Req is a tuning goal that signals {'y1', 'y2'} track reference signals
{'rl','r2'}. Suppose further that you require the outputs to track the references with less than
10% cross-coupling. If rl1 and r2 have comparable amplitudes, then it is sufficient to keep the gains
from rl to y2 and r2 and y1 below 0.1. However, if rl is 100 times larger than r2, the gain from r1l

TuningGoal.StepTracking class

to y2 must be less than 0.001 to ensure that rl1 changes y2 by less than 10% of the r2 target. To
ensure this result, set the InputScaling property as follows.

Req.InputScaling = [100,1];

This tells the software to take into account that the first reference signal is 100 times greater than
the second reference signal.

The default value, [] , means no scaling.
Default: []
Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the
transfer function that the tuning goal constrains. The initial value of the Input property is set by the
inputname input argument when you construct the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the
transfer function that the tuning goal constrains. The initial value of the Output property is set by
the outputname input argument when you construct the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,

then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

1-113

1 Classes

1-114

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples

Step Response Requirement with Specified Tolerance

Create a requirement for the step response from a signal named 'r' to a signal named 'y"'.
Constrain the step response to match the transfer function H = 10/(s+10), but allow 20% relative
variation between the target the tuned responses.

H = tf(10,[1 10]);
Req = TuningGoal.StepResp('r','y',H);

By default, this requirement allows a relative gap of 0.1 between the target and tuned responses. To
change the relative gap to 20%, set the RelGap property of the requirement.

Req.RelGap = 0.2;
Examine the requirement.

viewGoal(Req);

TuningGoal.StepTracking class

Requirement 1: Target response to step command

1 T t T -—-J__._._-m——
=

Amplitude

=
el
T
[
1

:

E I 1 i i i i
0 0.1 0.2 0. 0.4 0.5 0.6
Time (seconds)

ad

The dashed line shows the target step response specified by this requirement. You can use this
requirement to tune a control system model, T, that contains valid input and output locations named
'r'and 'y'. If you do so, the command viewGoal (Req, T) plots the achieved step response from
'r' to 'y' for comparison to the target response.

First-Order Step Response With Known Time Constant

Create a requirement that specifies a first-order step response with time constant of 5 seconds.
Create the requirement for the step response from a signal named 'r' to a signal named 'y"'.

Req = TuningGoal.StepResp('r','y"',5);

When you use this requirement to tune a control system model, T, the time constant 5 is taken to be
expressed in the prevailing units of the control system. For example, if T is a genss model and the
property T.TimeUnit is 'seconds’', then this requirement specifies a target time constant of 5
seconds for the response from the input 'r' to the output 'y' of 'T"'.

The specified time constant is converted into a reference state-space model stored in the
ReferenceModel property of the requirement.

refsys = tf(Req.ReferenceModel)

refsys

0.2

1-115

1 Classes

Continuous-time transfer function.
As expected, refsys is a first-order model.

Examine the requirement. The viewGoal command displays the target response, which is the step
response of the reference model.

viewGoal(Req);

Requirement 1: Target response to step command

1 T t |-‘-—-J-_._._._.__

Amplitude

!

I: r i 1 1 1 1

5 10 15 20 25 30
Time (seconds)

L]
[#p

The dashed line shows the target step response specified by this requirement, a first-order response
with a time constant of five seconds.

Second-Order Step Response With Known Natural Period and Overshoot

Create a requirement that specifies a second-order step response with a natural period of 5 seconds,
and a 10% overshoot. Create the requirement for the step response from a signal named 'r' to a
signal named 'y"'.

Req = TuningGoal.StepResp('r','y"',5,10);

When you use this requirement to tune a control system model, T, the natural period 5 is taken to be
expressed in the prevailing units of the control system. For example, if T is a genss model and the

1-116

TuningGoal.StepTracking class

property T.TimeUnit is 'seconds', then this requirement specifies a target natural period of 5
seconds for the response from the input 'r' to the output 'y' of 'T"'.

The specified parameters of the response is converted into a reference state-space model stored in
the ReferenceModel property of the requirement.

refsys = tf(Req.ReferenceModel)

refsys

s™2 + 0.2365 s + 0.04

Continuous-time transfer function.
As expected, refsys is a second-order model.

Examine the requirement. The viewGoal command displays the target response, which is the step
response of the reference model.

viewGoal(Req);

Requirement 1: Target response to step command

12 T T T T T T T T
.f#.---_-"-hh_
T4 Il P SR S
S R R TRRRrS ¥ 2 IR maseesen nessts i PR U I—
F
Fi
08} L4 .
f
W I
Ecc :r
g '
< !
I
04t , 1
)
!
02F .
)
‘
c*! - - - - - - - -
0 5 10 15 20 25 30 35 40 45

Time (seconds)

The dashed line shows the target step response specified by this requirement, a second-order
response with 10% overshoot and a natural period of five seconds.

1-117

1 Classes

1-118

Tracking Goal with Limited Model Application and Additional Loop Openings

Create a tuning goal that specifies a first-order step response with time constant of 5 seconds. Set the
Models and Openings properties to further configure the tuning goal’s applicability.

Req = TuningGoal.StepTracking('r','y"',5);
Req.Models = [2 3];
Req.0Openings = 'OuterLoop’

When tuning a control system that has an input 'r', an output 'y"', and an analysis-point location
'"OuterLoop’, you can use Req as an input to Llooptune or systune. Setting the Openings
property specifies that the step response from 'r' to 'y' is measured with the loop opened at
'OuterLoop'. When tuning an array of control system models, setting the Models property restricts
how the tuning goal is applied. In this example, the tuning goal applies only to the second and third
models in an array.

Tips

» This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from
Input to Output, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x). Here, x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.StepTracking, f(x) is given by:

_ 5160 - Trept9)),
RelGap %(Tref(s) -1) ||2 '

T(s,x) is the closed-loop transfer function from Input to Output with parameter values x, and T,.AS)
is the reference model specified in the ReferenceModel property. || - ||, denotes the H, norm (see

norm).

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R20164a, this functionality required a Robust Control Toolbox license.

TuningGoal.StepTracking class

See Also

looptune | systune | looptune (for slTuner) | systune (for slTuner) | viewGoal |
evalGoal | TuningGoal.Tracking | TuningGoal.Overshoot

Topics
“Time-Domain Specifications”
“PID Tuning for Setpoint Tracking vs. Disturbance Rejection”

1-119

1 Classes

1-120

TuningGoal.Tracking class

Package: TuningGoal

Tracking requirement for control system tuning

Description

Use TuningGoal.Tracking to specify a frequency-domain tracking requirement between specified
inputs and outputs. This tuning goal specifies the maximum relative error (gain from reference input
to tracking error) as a function of frequency. Use this tuning goal for control system tuning with
tuning commands such as systune or Looptune.

You can specify the maximum error profile directly by providing a transfer function. Alternatively, you
can specify a target DC error, peak error, and response time. These parameters are converted to the
following transfer function that describes the maximum frequency-domain tracking error:

(PeakError)s + w (DCError)

MaxError =
S+ we

Here, w, is 2/(response time). The following plot illustrates these relationships for an example set of
values.

Requirement 1: Tracking error as a function of frequency

! Relative error {abs)
o

1074 107 1072 107! 13° 10

Frequency (rad/s) ru: B

Construction

Reg = TuningGoal.Tracking(inputname,outputname, responsetime,dcerror,
peakerror) creates a tuning goal Req that constrains the tracking performance from inputname to
outputname in the frequency domain. This tuning goal specifies a maximum error profile as a
function of frequency given by:

TuningGoal.Tracking class

(PeakError)s + w (DCError)

MaxError =

The tracking bandwidth w, = 2/responsetime. The maximum relative steady-state error is given by
dcerror, and peakerror gives the peak relative error across all frequencies.

You can specify a MIMO tracking requirement by specifying signal names or a cell array of multiple
signal names for inputname or outputname. For MIMO tracking requirements, use the
InputScaling property to help limit cross-coupling. See “Properties” on page 1-123.

Req = TuningGoal.Tracking(inputname,outputname,maxerror) specifies the maximum
relative error as a function of frequency. You can specify the target error profile (maximum gain from
reference signal to tracking error signal) as a smooth transfer function. Alternatively, you can sketch
a piecewise error profile using an frd model.

Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

« Ifyou are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:
* Any model input.
* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the sl Tuner interface. Use getPoints to get the list of
analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

* Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:
* Any input of the genss model
* Any AnalysisPoint location in the control system model
For example, if you are tuning a control system model, T, then inputname can be any input name
in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then

inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out imn

AnalysizsPoint

1-121

1 Classes

1-122

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

* Ifyou are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:
* Any model output.
* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1l' to
designate that point as an output signal when creating tuning goals. Use {'y1"', 'y2'} to
designate a two-channel output.

* Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:
* Any output of the genss model
* Any AnalysisPoint location in the control system model
For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OutputName. Also, if T contains an AnalysisPoint block with a location named

AP_u, then outputname can include 'AP _u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out in

AnalysisPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

responsetime

Target response time, specified as a positive scalar value. The tracking bandwidth is given by w, = 2/
responsetime.Express the target response time in the time units of the models to be tuned. For
example, when tuning a model T, if T. TimeUnit is 'minutes’, then express the target response
time in minutes.

TuningGoal.Tracking class

dcerror

Maximum steady-state fractional tracking error, specified as a positive scalar value. For example,
dcerror = 0.01 sets a maximum steady-state error of 1%.

If inputname or outputname are vector-valued, dcerror applies to all I/O pairs from inputname to
outputname.

Default: 0.001
peakerror

Maximum fractional tracking error across all frequencies, specified as a positive scalar value greater
than 1.

Default: 1
maxerror
Target tracking error profile as a function of frequency, specified as a SISO numeric LTI model.

maxerror is the maximum gain from reference signal to tracking error signal. You can specify
maxerror as a smooth transfer function (tf, zpk, or ss model). Alternatively, you can sketch a
piecewise error profile using an frd model. When you do so, the software automatically maps the
error profile to a zpk model. The magnitude of the zpk model approximates the desired error profile.
Use show(Req) to plot the magnitude of the zpk model.

maxerror must be a SISO LTI model. If inputname or outputname are cell arrays, maxerror
applies to all I/O pairs from inputname to outputname.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero
Ts), you can specify maxerror as a discrete-time model with the same Ts. If you specify maxerror
in continuous time, the tuning software discretizes it. Specifying the error profile in discrete time
gives you more control over the error profile near the Nyquist frequency.

Properties
MaxError

Maximum error as a function of frequency, expressed as a SISO zpk model. This property stores the
maximum tracking error as a function of frequency (maximum gain from reference signal to tracking
error signal).

If you use the syntax Req = TuningGoal.Tracking(inputname,outputname,maxerror), then
the MaxError property is the zpk equivalent or approximation of the LTT model you supplied as the
maxerror input argument.

If you use the syntax Req =
TuningGoal.Tracking(inputname,outputname, resptime,dcerror,peakerror), then the
MaxError is a zpk transfer function given by:

(PeakError)s + w.(DCError)

MaxError =
S+ we

1-123

1 Classes

1-124

MaxError is a SISO LTI model. If inputname or outputname are cell arrays, MaxError applies to
all I/O pairs from inputname to outputname.

Use show(Req) to plot the magnitude of MaxError.
Focus
Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

InputScaling
Reference signal scaling, specified as a vector of positive real values.

For a MIMO tracking requirement, when the choice of units results in a mix of small and large signals
in different channels of the response, use this property to specify the relative amplitude of each entry
in the vector-valued step input. This information is used to scale the off-diagonal terms in the transfer
function from reference to tracking error. This scaling ensures that cross-couplings are measured
relative to the amplitude of each reference signal.

For example, suppose that Req is a tuning goal that signals {'y1', 'y2'} track reference signals
{'rl','r2'}. Suppose further that you require the outputs to track the references with less than
10% cross-coupling. If rl and r2 have comparable amplitudes, then it is sufficient to keep the gains
from rlto y2 and r2 and y1 below 0.1. However, if rl is 100 times larger than r2, the gain from r1l
to y2 must be less than 0.001 to ensure that rl1 changes y2 by less than 10% of the r2 target. To
ensure this result, set the InputScaling property as follows.

Req.InputScaling = [100,1];

This tells the software to take into account that the first reference signal is 100 times greater than
the second reference signal.

The default value, [] , means no scaling.
Default: []
Input

Reference signal names, specified as a character vector or cell array of character vectors specifying
the names of the signals to be tracked, populated by the inputname argument.

Output

Output signal names, specified as a character vector or cell array of character vectors specifying the
names of the signals that must track the reference signals, populated by the outputname argument.

TuningGoal.Tracking class

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
s1Tuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples
Tracking Goal With Response Time and Maximum Steady-State Tracking Error

Create a tracking goal specifying that a signal 'theta' track a signal 'theta ref'. The required
response time is 2, in the time units of the control system you are tuning. The maximum steady-state
error is 0.1%.

Req = TuningGoal.Tracking('theta ref', 'theta',2,0.001);

1-125

1 Classes

Since peakerror is unspecified, this tuning goal uses the default value, 1.

Tracking Goal With Maximum Tracking Error as a Function of Frequency

Create a tracking goal specifying that a signal 'theta' track a signal 'theta ref'. The maximum
relative error is 0.01 (1%) in the frequency range [0,1]. The relative error increases to 1 (100%) at
the frequency 100.

Use an frd model to specify the error profile as a function of frequency.

frd([0.01 0.01 1],[0 1 100]);
TuningGoal.Tracking('theta ref', 'theta',err);

err
Req

The software converts err into a smooth function of frequency that approximates the piecewise
specified profile. Display this function using viewGoal.

viewGoal(Req)
Requirement 1: Tracking error as a function of frequency
10’ Wi
”
,
r
F
-
”
10° ’
o,
— ¢
a2 ’
[1+] -
= s
E -
— «
$ 10 i
s
= y
iz ”
¥ i
= Ll
0% ===
= = —Maxerror|
1|:-5 4 I I 4 I -
10 10° 10 10° 10° 10*
Frequency (rad/s)

The dashed line is the target error profile stored in MaxError, and the shaded region indicates where
the tuning goal is violated.

Tips

» This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from
Input to Output, evaluated with loops opened at the points identified in Openings. The

1-126

TuningGoal.Tracking class

dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x), where x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.Tracking, f(x) is given by:
fx) = IWE(s)(T(s,X) =)|,

or its discrete-time equivalent. Here, T(s,x) is the closed-loop transfer function from Input to
Output, and | - |, denotes the H, norm (see getPeakGain). W is a frequency weighting function

derived from the error profile you specify in the tuning goal. The gains of Wz and 1/MaxError
roughly match for gain values between -20 dB and 60 dB. For numerical reasons, the weighting
function levels off outside this range, unless you specify a reference model that changes slope outside
this range. This adjustment is called regularization. Because poles of Wg close tos = 0 or s = Inf
might lead to poor numeric conditioning of the systune optimization problem, it is not recommended
to specify error profiles with very low-frequency or very high-frequency dynamics.

To obtain W, use:
WF = getWeight(Req,Ts)

where Req is the tuning goal, and Ts is the sample time at which you are tuning (Ts = 0 for
continuous time). For more information about regularization and its effects, see “Visualize Tuning
Goals”.

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune | systune | systune (for slTuner) | Looptune (for slTuner) | viewGoal |
evalGoal | TuningGoal.Gain | TuningGoal.LoopShape | slTuner

Topics

“Time-Domain Specifications”

“Visualize Tuning Goals”

“Tune Control Systems Using systune”

“Tune Control Systems in Simulink”

“PID Tuning for Setpoint Tracking vs. Disturbance Rejection”

1-127

1 Classes

“Decoupling Controller for a Distillation Column”
“Digital Control of Power Stage Voltage”
“Tuning of a Two-Loop Autopilot”

1-128

TuningGoal.Transient class

TuningGoal.Transient class

Package: TuningGoal

Transient matching requirement for control system tuning

Description

Use the TuningGoal.Transient object to constrain the transient response from specified inputs to
specified outputs. This tuning goal specifies that the transient response closely match the response of
a reference model. Specify the closeness of the required match using the RelGap property of the
tuning goal (see “Properties” on page 1-131). You can constrain the response to an impulse, step, or
ramp input signal. You can also constrain the response to an input signal given by the impulse
response of an input filter you specify.

Construction

Reqg = TuningGoal.Transient (inputname,outputname, refsys) requires that the impulse
response from inputname to outputname closely matches the impulse response of the reference
model refsys. Specify the closeness of the required match using the RelGap property of the tuning
goal (see “Properties” on page 1-131). inputname and outputname can describe a SISO or MIMO
response of your control system. For MIMO responses, the number of inputs must equal the number
of outputs.

Req = TuningGoal.Transient (inputname,outputname, refsys,inputtype) specifies
whether the input signal that generates the constrained transient response is and impulse, step, or
ramp signal.

Req = TuningGoal.Transient (inputname,outputname, refsys,inputfilter) specifies the
input signal for generating the transient response that the tuning goal constrains. Specify the input
signal as a SISO transfer function, inputfilter, that is the Laplace transform of the desired time-
domain input signal. The impulse response of inputfilter is the desired input signal.

Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

» Ifyou are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:
* Any model input.
* Any linear analysis point marked in the model.

* Any linear analysis point in an s1Tuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an slTuner interface to your model.

1-129

1 Classes

1-130

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

* Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:
* Any input of the genss model
* Any AnalysisPoint location in the control system model
For example, if you are tuning a control system model, T, then inputname can be any input name
in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP _u, then

inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out in

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

» If you are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:
* Any model output.
* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use {'y1', 'y2'} to
designate a two-channel output.

» Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

* Any output of the genss model
* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OutputName. Also, if T contains an AnalysisPoint block with a location named

TuningGoal.Transient class

AP_u, then outputname can include 'AP u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out imn

AnalysisPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

refsys

Reference system for target transient response, specified as a dynamic system model, such as a tf,
zpk, or ss model. The desired transient response is the response of this model to the input signal
specified by inputtype or inputfilter. The reference model must be stable, and the series
connection of the reference model with the input shaping filter must have no feedthrough term.

inputtype

Type of input signal that generates the constrained transient response, specified as one of the
following values:

* 'impulse' — Constrain the response at outputname to a unit impulse applied at inputname.

* 'step' — Constrain the response to a unit step. Using 'step' is equivalent to using the
TuningGoal.StepTracking design goal.

* 'ramp' — Constrain the response to a unit ramp, u = t.
Default: 'impulse’
inputfilter

Custom input signal for generating the transient response, specified as a SISO transfer function (tf
or zpk) model that represents the Laplace transform of the desired input signal. inputfilter must
be continuous, and can have no poles in the open right-half plane.

The frequency response of inputfilter gives the signal spectrum of the desired input signal, and
the impulse response of inputfilter is the time-domain input signal.

For example, to constrain the transient response to a unit-amplitude sine wave of frequency w, set
inputfilterto tf(w,[1,0,w”2]). This transfer function is the Laplace transform of sin(wt).

The series connection of refsys with inputfilter must have no feedthrough term.

Properties
ReferenceModel

Reference system for target transient response, specified as a SISO or MIMO state-space (ss) model.
When you use the tuning goal to tune a control system, the transient response from inputname to

1-131

1 Classes

outputname is tuned to match this target response to within the tolerance specified by the RelGap
property.

The refsys argument to TuningGoal.Transient sets the value of ReferenceModel to
ss(refsys).

InputShaping

Input signal for generating the transient response, specified as a SISO zpk model that represents the
Laplace transform of the time-domain input signal. InputShaping must be continuous, and can have
no poles in the open right-half plane. The value of this property is populated using the inputtype or
inputfilter arguments used when creating the tuning goal.

For tuning goals created using the inputtype argument, InputShaping takes the following values:

inputtype InputShaping
"impulse’ 1

'step’ 1/s

"ramp' 1/s?

For tuning goals created using an inputfilter transfer function, InputShaping takes the value
zpk(inputfilter).

The series connection of ReferenceModel with InputShaping must have no feedthrough term.
Default: 1

RelGap

Maximum relative matching error, specified as a positive scalar value. This property specifies the
matching tolerance as the maximum relative gap between the target and actual transient responses.

The relative gap is defined as:

".V(t) - J/ref(t) "2
9% = reren®l;

Y(t) - Yref(t) is the response mismatch, and 1 - yeqr(t) is the transient portion of y,.r (deviation from

steady-state value or trajectory). | - ||, denotes the signal energy (2-norm). The gap can be
understood as the ratio of the root-mean-square (RMS) of the mismatch to the RMS of the reference
transient

Increase the value of RelGap to loosen the matching tolerance.

Default: 0.1

InputScaling

Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued input signals when

the choice of units results in a mix of small and large signals. This information is used to scale the
closed-loop transfer function from Input to Output when the tuning goal is evaluated.

1-132

TuningGoal.Transient class

Suppose T(s) is the closed-loop transfer function from Input to Output. The tuning goal is evaluated
for the scaled transfer function D, 'T(s)D;. The diagonal matrices D, and D; have the OutputScaling
and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued output signals when
the choice of units results in a mix of small and large signals. This information is used to scale the
closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The tuning goal is evaluated
for the scaled transfer function D, 'T(s)D;. The diagonal matrices D, and D; have the OutputScaling
and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: []
Input

Input signal names, specified as a as a cell array of character vectors that indicate the inputs for the
transient responses that the tuning goal constrains. The initial value of the Input property is
populated by the inputname argument when you create the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that indicate the outputs where
transient responses that the tuning goal constrains are measured. The initial value of the Output
property is populated by the outputname argument when you create the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

1-133

1 Classes

1-134

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq’;

Default: []

Examples

Transient Response Requirement with Specified Input Type and Tolerance

Create a requirement for the transient response from a signal named 'r' to a signal named 'u".
Constrain the impulse response to match the response of transfer function refsys = 1/(s + 1), but
allow 20% relative variation between the target and tuned responses.

refsys = tf(1,[1 1]);
Reql = TuningGoal.Transient('r','u',refsys);

When you do not specify a response type, the requirement constrains the transient response. By
default, the requirement allows a relative gap of 0.1 between the target and tuned responses. To
change the relative gap to 20%, set the RelGap property of the requirement.

Reql.RelGap = 0.2;
Examine the requirement.

viewGoal(Reql)

TuningGoal.Transient class

Requirement 1: Target transient response
1 T T T T T T T T

Amplitude

=

[
T
#
I

o
¥
'

-

-

T o e |- I} i

L]
=k
[
l'..n.'l-r

4 5 6 7 8
Time (seconds)

[1]

The dashed line shows the target impulse response specified by this requirement. You can use this
requirement to tune a control system model, T, that contains valid input and output locations named
'r'and 'u'. If you do so, the command viewGoal (Reql, T) plots the achieved impulse response
from 'r' to 'u' for comparison to the target response.

Create a requirement that constrains the response to a step input, instead of the impulse response.
Req2 = TuningGoal.Transient('r','u',refsys, 'step');
Examine this requirement.

viewGoal(Req2)

1-135

1 Classes

1-136

Requirement 1: Target transient response

1 . : T . .

Amplitude

L
:

E 1 i i i i
4 5
Time (seconds)

7 8

o b
w

L]
=k
[
Lad

Req? is equivalent to the following step tracking requirement:

Reqg3 = TuningGoal.StepTracking('r','u',refsys);

Constrain Transient Response to Custom Input Signal

Create a requirement for the transient response from 'r' to 'u'. Constrain the response to a
sinusoidal input signal, rather than to an input, step, or ramp.

To specify a custom input signal, set the input filter to the Laplace transform of the desired signal.
For example, suppose you want to constrain the response to a signal of sinwt. The Laplace transform
of this signal is given by:

. . w
inputfilter = —.
P s2 + w?

Create a requirement that constrains the response at 'u' to a sinusoidal input of natural frequency 2
rad/s at ' r'. The response should match that of the reference system refsys = 1/(s + 1).

refsys = tf(1,[1 11);

w = 2;

inputfilter = tf(w,[1 0 w"2]);

Req = TuningGoal.Transient('u','r',refsys,inputfilter);

Examine the requirement to see the shape of the target response.

TuningGoal.Transient class

viewGoal (Req)

Requirement 1: Target transient response

o=
o

Amplitude

7 8

06 : ' ' ' '
0 1 2 3 4 5
Time (seconds)

o |
w

Transient Response Goal with Limited Model Application and Additional Loop Openings

Create a tuning goal that constrains the impulse response. Set the Models and Openings properties
to further configure the tuning goal’s applicability.

refsys = tf(1,[1 11);

Req = TuningGoal.Transient('r','u',refsys);
Reqg.Models = [2 3];

Req.0Openings = 'OuterLoop’

When tuning a control system that has an input (or analysis point) ' r', an output (or analysis point)
"u', and another analysis point at location 'OuterLoop’, you can use Req as an input to Looptune
or systune. Setting the Openings property specifies that the impulse response from 'r' to 'y"' is
computed with the loop opened at 'OuterLoop'. When tuning an array of control system models,
setting the Models property restricts how the tuning goal is applied. In this example, the tuning goal
applies only to the second and third models in an array.

Tips

* When you use this tuning goal to tune a continuous-time control system, systune attempts to
enforce zero feedthrough (D = 0) on the transfer that the tuning goal constrains. Zero
feedthrough is imposed because the H, norm, and therefore the value of the tuning goal (see
“Algorithms” on page 1-138), is infinite for continuous-time systems with nonzero feedthrough.

1-137

1 Classes

1-138

systune enforces zero feedthrough by fixing to zero all tunable parameters that contribute to the
feedthrough term. systune returns an error when fixing these tunable parameters is insufficient
to enforce zero feedthrough. In such cases, you must modify the tuning goal or the control
structure, or manually fix some tunable parameters of your system to values that eliminate the
feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software’s
approach of zeroing all parameters that contribute to the overall feedthrough might be
conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you
want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of
the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free properties of the
block parametrization. For example, consider a tuned state-space block:

C = tunableSS('C',1,2,3);
To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the parameter.

C.D.Value = 0;
C.D.Free = false;

For more information on fixing parameter values, see the Control Design Block reference pages,
such as tunableSS.

» This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from
Input to Output, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x), where x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.Transient, f(x) is based upon the relative gap between the tuned response and
the target response:

|Y(t) = Yrer(®)]l,

— Wresen @l

V(t) - Yreft) is the response mismatch, and 1 - y.eq(t) is the transient portion of y,.r (deviation from
steady-state value or trajectory). | - ||, denotes the signal energy (2-norm). The gap can be

understood as the ratio of the root-mean-square (RMS) of the mismatch to the RMS of the reference
transient

Version History
Introduced in R2016a

TuningGoal.Transient class

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune | systune | systune (for slTuner) | Llooptune (for slTuner) | viewGoal |
evalGoal | TuningGoal.StepTracking | TuningGoal.StepRejection | slTuner

Topics

“Time-Domain Specifications”

“Tune Control Systems Using systune”
“Tune Control Systems in Simulink”

1-139

1 Classes

1-140

TuningGoal.Variance class

Package: TuningGoal

Noise amplification constraint for control system tuning

Description

Use TuningGoal.Variance to specify a tuning goal that limits the noise amplification from
specified inputs to outputs. The noise amplification is defined as either:

* The square root of the output variance, for a unit-variance white-noise input
» The root-mean-square of the output, for a unit-variance white-noise input

* The H, norm of the transfer function from the specified inputs to outputs, which equals the total
energy of the impulse response

These definitions are different interpretations of the same quantity. TuningGoal.Variance imposes
the same limit on these quantities.

You can use TuningGoal.Variance for control system tuning with tuning commands, such as
systune or Looptune. Specifying this tuning goal allows you to tune the system response to white-
noise inputs. For stochastic inputs with a nonuniform spectrum (colored noise), use
TuningGoal.WeightedVariance instead.

After you create a tuning goal, you can further configure the tuning goal by setting “Properties” on
page 1-142 of the object.

Construction

Req = TuningGoal.Variance(inputname,outputname,maxamp) creates a tuning goal that
limits the noise amplification of the transfer function from inputname to outputname to the scalar
value maxamp.

When you tune a control system in discrete time, this tuning goal assumes that the physical plant and
noise process are continuous. To ensure that continuous-time and discrete-time tuning give consistent
results, maxamp is interpreted as a constraint on the continuous-time H, norm. If the plant and noise
processes are truly discrete and you want to constrain the discrete-time H, norm to the value
maxamp, set the third input argument to maxamp/sqrt(Ts), where Ts is the sample time of the
model you are tuning.

Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

+ Ifyou are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:

* Any model input.

TuningGoal.Variance class

* Any linear analysis point marked in the model.

* Any linear analysis point in an s1Tuner interface associated with the Simulink model. Use
addPoint to add analysis points to the s1Tuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:

* Any input of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then inputname can be any input name
in T.InputName. Also, if T contains an AnalysisPoint block with a location named AP u, then

inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out in

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

If you are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:

* Any model output.

* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use {'y1"', 'y2'} to
designate a two-channel output.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

1-141

1 Classes

1-142

* Any output of the genss model

* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OutputName. Also, if T contains an AnalysisPoint block with a location named

AP_u, then outputname can include 'AP u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out imn

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

maxamp

Maximum noise amplification from inputname to outputname, specified as a positive scalar value.
This value specifies the maximum value of the output variance at the signals specified in
outputname, for unit-variance white noise signal at inputname. This value corresponds to the
maximum H, norm from inputname to outputname.

When you tune a control system in discrete time, this tuning goal assumes that the physical plant and
noise process are continuous, and interprets maxamp as a bound on the continuous-time H, norm.
This ensures that continuous-time and discrete-time tuning give consistent results. If the plant and
noise processes are truly discrete, and you want to bound the discrete-time H, norm instead, specify

the value maxamp/,/T;. T, is the sample time of the model you are tuning.

Properties

MaxAmplification

Maximum noise amplification, specified as a positive scalar value. This property specifies the
maximum value of the output variance at the signals specified in Qutput, for unit-variance white
noise signal at Input. This value corresponds to the maximum H, norm from Input to Output. The
initial value of MaxAmplification is set by the maxamp input argument when you construct the
tuning goal.

InputScaling

Input signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued input signals when

the choice of units results in a mix of small and large signals. This information is used to scale the
closed-loop transfer function from Input to Output when the tuning goal is evaluated.

TuningGoal.Variance class

Suppose T(s) is the closed-loop transfer function from Input to Output. The tuning goal is evaluated
for the scaled transfer function D, 'T(s)D;. The diagonal matrices D, and D; have the OutputScaling
and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.

Default: []

OutputScaling

Output signal scaling, specified as a vector of positive real values.

Use this property to specify the relative amplitude of each entry in vector-valued output signals when
the choice of units results in a mix of small and large signals. This information is used to scale the
closed-loop transfer function from Input to Output when the tuning goal is evaluated.

Suppose T(s) is the closed-loop transfer function from Input to Output. The tuning goal is evaluated
for the scaled transfer function D, 'T(s)D;. The diagonal matrices D, and D; have the OutputScaling
and InputScaling values on the diagonal, respectively.

The default value, [] , means no scaling.
Default: []
Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the
transfer function that the tuning goal constrains. The initial value of the Input property is set by the
inputname input argument when you construct the tuning goal.

Output

Output signal names, specified as a cell array of character vectors that identify the outputs of the
transfer function that the tuning goal constrains. The initial value of the Output property is set by
the outputname input argument when you construct the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

1-143

1 Classes

1-144

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}
Name
Name of the tuning goal, specified as a character vector.

For example, if Req is a tuning goal:
Req.Name = 'LoopReq';

Default: []

Examples

Constrain Noise Amplification Evaluated with a Loop Opening

Create a requirement that constrains the amplification of the variance from the analysis point AP2 to
the output y of the following control system, measured with the outer loop open.

+

r S C| 4:/%_’ Cz > GE
Al e

AP,

k4

G, "y

F)

Create a model of the system. To do so, specify and connect the numeric plant models G1 and G2, and
the tunable controllers C1 and C2. Also specify and connect the AnalysisPoint blocks AP1 and AP2
that mark points of interest for analysis and tuning.

Gl = tf(10,[1 10]1);

G2 = tf([1 2],[1 0.2 10]);
C1l = tunablePID('C','pi');
C2 = tunableGain('G',1);
AP1 = AnalysisPoint('AP1");
AP2 = AnalysisPoint('AP2");

T = feedback(Gl*feedback(G2*C2,AP2)*C1,AP1);

Create a tuning requirement that constrains the noise amplification from the implicit input associated
with the analysis point, AP2, to the output y.

TuningGoal.Variance class

Req = TuningGoal.Variance('AP2','y"',0.1);
This constraint limits the amplification to a factor of 0.1.

Specify that the transfer function from AP2 to y is evaluated with the outer loop open when tuning to
this constraint.

Req.0Openings = {'AP1'};

Use systune to tune the free parameters of T to meet the tuning requirement specified by Req. You
can then validate the tuned control system against the requirement using viewGoal (Req, T).

Tips

* When you use this tuning goal to tune a continuous-time control system, systune attempts to
enforce zero feedthrough (D = 0) on the transfer that the tuning goal constrains. Zero
feedthrough is imposed because the H, norm, and therefore the value of the tuning goal (see
“Algorithms” on page 1-145), is infinite for continuous-time systems with nonzero feedthrough.

systune enforces zero feedthrough by fixing to zero all tunable parameters that contribute to the
feedthrough term. systune returns an error when fixing these tunable parameters is insufficient
to enforce zero feedthrough. In such cases, you must modify the tuning goal or the control
structure, or manually fix some tunable parameters of your system to values that eliminate the
feedthrough term.

When the constrained transfer function has several tunable blocks in series, the software’s
approach of zeroing all parameters that contribute to the overall feedthrough might be
conservative. In that case, it is sufficient to zero the feedthrough term of one of the blocks. If you
want to control which block has feedthrough fixed to zero, you can manually fix the feedthrough of
the tuned block of your choice.

To fix parameters of tunable blocks to specified values, use the Value and Free properties of the
block parametrization. For example, consider a tuned state-space block:

C = tunableSsS('C',1,2,3);
To enforce zero feedthrough on this block, set its D matrix value to zero, and fix the parameter.

C.D.Value = 0;
C.D.Free = false;

For more information on fixing parameter values, see the Control Design Block reference pages,
such as tunableSS.

« This tuning goal imposes an implicit stability constraint on the closed-loop transfer function from
Input to Output, evaluated with loops opened at the points identified in Openings. The
dynamics affected by this implicit constraint are the stabilized dynamics for this tuning goal. The
MinDecay and MaxRadius options of systuneOptions control the bounds on these implicitly
constrained dynamics. If the optimization fails to meet the default bounds, or if the default bounds
conflict with other requirements, use systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x). The vector x is the vector of free (tunable) parameters in the control

1-145

1 Classes

system. The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the
tuning goal is a hard constraint.

For TuningGoal.Variance, f(x) is given by:

_ 1
fx) = H MaxAmplification T(s, X)Hz'
T(s,x) is the closed-loop transfer function from Input to Output. || - ||, denotes the H, norm (see
norm).

For tuning discrete-time control systems, f(x) is given by:

_ 1
fo) = H MaxAmplification\/TsT(Z' X)

2

T, is the sample time of the discrete-time transfer function T(z,x).

Version History
Introduced in R2016a

R2016a: Functionality moved from Robust Control Toolbox
Behavior changed in R2016a

Prior to R2016a, this functionality required a Robust Control Toolbox license.

See Also

looptune | systune | Llooptune (for slTuner) | systune (for slTuner) |slTuner |
viewGoal | evalGoal | norm | TuningGoal.WeightedVariance

Topics

“Frequency-Domain Specifications”

“Active Vibration Control in Three-Story Building”
“Fault-Tolerant Control of a Passenger Jet”

1-146

TuningGoal.WeightedPassivity class

TuningGoal.WeightedPassivity class

Package: TuningGoal

Frequency-weighted passivity constraint

Description

A system is passive if all its I/O trajectories (u(t),y(t)) satisfy:

_g "o umdt > 0,

forall T > 0. TuningGoal.WeightedPassivity enforces the passivity of the transfer function:
H(s) = WL(s)T(s)Wr(s),

where T is a closed-loop response in the control system being tuned. W; and Wy are weighting
functions used to emphasize particular frequency bands. Use TuningGoal .WeightedPassivity
with control system tuning commands such as systune.

Construction

Req = TuningGoal.WeightedPassivity(inputname, outputname,WL,WR) creates a tuning
goal for enforcing passivity of the transfer function:

H(s) = WL(s)T(s)Wr(s),

where T is the closed-loop transfer function from the specified inputs to the specified outputs. The
weights WL and WR can be matrices or LTI models.

By default, the tuning goal enforces passivity of the weighted transfer function H. You can also
enforce input and output passivity indices, with a specified excess or shortage of passivity. (See
getPassiveIndex for more information about passivity indices.) To do so, set the IPX and OPX
properties of the tuning goal. See “Weighted Passivity and Input Passivity” on page 1-152.

Input Arguments
inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

+ Ifyou are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:
* Any model input.
* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

1-147

1 Classes

1-148

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

* Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:
* Any input of the genss model
* Any AnalysisPoint location in the control system model
For example, if you are tuning a control system model, T, then inputname can be any input name
in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP _u, then

inputname can include 'AP_u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out in

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

» If you are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:
* Any model output.
* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use {'y1', 'y2'} to
designate a two-channel output.

» Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

* Any output of the genss model
* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OutputName. Also, if T contains an AnalysisPoint block with a location named

TuningGoal.WeightedPassivity class

AP_u, then outputname can include 'AP u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out in

AnalysizsPoint

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

WL, WR

Input and output weighting functions, specified as scalars, matrices, or SISO or MIMO numeric LTI
models.

The functions WL and WR provide the weights for the tuning goal. The tuning goal ensures passivity of
the weighted transfer function:

H(s) = WL(s)T(s)Wr(s),

where T(s) is the transfer function from inputname to outputname. The function WL provides the
weighting for the output channels of T(s), and WR provides the weighting for the input channels. You
can specify:

* Scalar weighting — use a scalar or numeric matrix.

* Frequency-dependent weighting — use a SISO or MIMO numeric LTI model. For example:

WL
WR

tf(1,[1 0.01]);
10;

If WL or WR is a matrix or a MIMO model, then inputname and outputname must be vector signals.
The dimensions of the vector signals must be such that the dimensions of T(s) are commensurate with
the dimensions of WL and WR. For example, if you specify WR = diag([1l 10]), then inputname
must include two signals. Scalar values and SISO LTI models, however, automatically expand to any
input or output dimension.

If you are tuning in discrete time (that is, using a genss model or s1Tuner interface with nonzero
Ts), you can specify the weighting functions as discrete-time models with the same Ts. If you specify
the weighting functions in continuous time, the tuning software discretizes them. Specifying the
weighting functions in discrete time gives you more control over the weighting functions near the
Nyquist frequency.

Avalue of WL = [] or WR = [] is interpreted as the identity.

Default: []

1-149

1 Classes

1-150

Properties
WL

Frequency-weighting function for the output channels of the transfer function to constrain, specified
as a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set
by the WL input argument when you construct the tuning goal.

WR

Frequency-weighting function for the input channels of the transfer function to constrain, specified as
a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set by
the WR input argument when you construct the tuning goal.

IPX

Target passivity at the inputs listed in inputname, specified as a scalar value. The input passivity
index is defined as the largest value of v for which the trajectories {u(t),y(t)} of the weighted transfer
function H satisfy:

ﬁTy(t)TU(t)dt > vﬁTu(t)Tu(t)dt,

forall T > 0.

By default, the tuning goal enforces strict passivity of the weighted transfer function. To enforce an
input passivity index with a specified excess or shortage of passivity, set the IPX property of the
tuning goal. When you do so, the tuning software:

* Ensures that the weighted response is input strictly passive when IPX > 0. The magnitude of IPX
sets the required excess of passivity.

» Allows the weighted response to be not input strictly passive when IPX < 0. The magnitude of IPX
sets the permitted shortage of passivity.

See “Weighted Passivity and Input Passivity” on page 1-152 for an example. See getPassiveIndex
for more information about passivity indices.

Default: 0
0PX
Target passivity at the outputs listed in outputname, specified as a scalar value. The output passivity

index is defined as the largest value of p for which the trajectories {u(t),y(t)} of the weighted transfer
function H satisfy:

T T T T
[v uwde > o [y yitrat,
forall T > 0.
By default, the tuning goal enforces strict passivity of the weighted transfer function. To enforce an

output passivity index with a specified excess or shortage of passivity, set the OPX property of the
tuning goal. When you do so, the tuning software:

TuningGoal.WeightedPassivity class

* Ensures that the weighted response is output strictly passive when OPX > 0. The magnitude of
IPX sets the required excess of passivity.

» Allows the weighted response to be not output strictly passive when OPX < 0. The magnitude of
IPX sets the permitted shortage of passivity.

See “Weighted Passivity and Input Passivity” on page 1-152 for an example. See getPassiveIndex
for more information about passivity indices.

Default: 0
Focus
Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

Input

Input signal names, specified as a cell array of character vectors. The input signal names specify the
input locations for determining passivity, initially populated by the inputname argument.

Output

Output signal names, specified as a cell array of character vectors. The output signal names specify
the output locations for determining passivity, initially populated by the outputname argument.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an s1Tuner

1-151

1 Classes

1-152

interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples

Weighted Passivity and Input Passivity

Create a tuning goal that enforces the passivity of the transfer function:

Ts)(5)

where T(s) is the transfer function from an input 'd' to outputs ['y'; 'z'] in a control system
model.

10

HES) =15 10

WL = tf(1,[1 0]1);
WR = diag([1 10]);
TG = TuningGoal.WeightedPassivity('d',{'y"','z"'},WL,WR);

Use TG with systune to enforce that weighted passivity requirement.

Suppose that instead of enforcing overall passivity of the weighted transfer function H, you want to
ensure that H is input strictly passive with an input feedforward passivity index of at least 0.1. To do
so, set the IPX property of TG.

TG.IPX = 0.1;

Tips
* Use viewGoal to visualize this tuning goal. For enforcing passivity with IPX = 0 and OPX = 0,
viewGoal plots the relative passivity indices as a function of frequency (see passiveplot).

These are the singular values of (I — H(jw))(I — H(jw))_l. The weighted transfer function H is
passive when the largest singular value is less than 1 at all frequencies.

TuningGoal.WeightedPassivity class

For nonzero IPX or OPX, viewGoal plots the relative index as described in “Algorithms” on page
1-153.

* This tuning goal imposes an implicit minimum-phase constraint on the transfer function H + I,
where H is the weighted closed-loop transfer function from Input to Output, evaluated with
loops opened at the points identified in Openings. The transmission zeros of H + I are the
stabilized dynamics for this tuning goal. The MinDecay and MaxRadius options of
systuneOptions control the bounds on these implicitly constrained dynamics. If the optimization
fails to meet the default bounds, or if the default bounds conflict with other requirements, use
systuneOptions to change these defaults.

Algorithms

When you tune a control system using a TuningGoal, the software converts the tuning goal into a
normalized scalar value f(x), where x is the vector of free (tunable) parameters in the control system.
The software then adjusts the parameter values to minimize f(x) or to drive f(x) below 1 if the tuning
goal is a hard constraint.

For TuningGoal.WeightedPassivity, for a closed-loop transfer function T(s, x) from
inputname to outputname, and the weighted transfer function H(s,x) = WL*T (s, x)*WR, f(x) is
given by:

R

_ _ 108
f) = T3RR Rmax=10".

R is the relative sector index (see getSectorIndex) of [H(s,x);I1], for the sector represented by:

20 —I)

Q=|_7 2

using the values of the OPX and IPX properties for p and v, respectively. R, is fixed at 10°, included
to avoid numerical errors for very large R.

Version History
Introduced in R2016a

See Also

looptune | systune | systune (for slTuner) | Llooptune (for slTuner) | viewGoal |
evalGoal | TuningGoal.Passivity | slTuner | getPassiveIndex | passiveplot

Topics

“About Passivity and Passivity Indices”
“Vibration Control in Flexible Beam”
“Tune Control Systems Using systune”
“Tune Control Systems in Simulink”

1-153

1 Classes

1-154

TuningGoal.WeightedGain class

Package: TuningGoal

Frequency-weighted gain constraint for control system tuning

Description

Use TuningGoal.WeightedGain to limit the weighted gain from specified inputs to outputs. The
weighted gain is the maximum across frequency of the gain from input to output, multiplied by
weighting functions that you specify. You can use the TuningGoal.WeightedGain tuning goal for
control system tuning with tuning commands such as systune or Looptune.

After you create a tuning goal, you can configure it further by setting “Properties” on page 1-156 of
the object.

Construction

Req = TuningGoal.WeightedGain(inputname,outputname,WL,WR) creates a tuning goal that
specifies that the closed-loop transfer function, H(s), from the specified input to output meets the
requirement:

[[WL($)H(s)Wr(s)|].. < 1.

The notation ||*||., denotes the maximum gain across frequency (the H,, norm).
Input Arguments

inputname

Input signals for the tuning goal, specified as a character vector or, for multiple-input tuning goals, a
cell array of character vectors.

* Ifyou are using the tuning goal to tune a Simulink model of a control system, then inputname
can include:
* Any model input.
* Any linear analysis point marked in the model.

* Any linear analysis point in an s1Tuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an slTuner interface to your model.

For example, suppose that the slTuner interface contains analysis points ul and u2. Use 'ul’ to
designate that point as an input signal when creating tuning goals. Use {'ul', 'u2'} to
designate a two-channel input.

+ Ifyou are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then inputname can include:

* Any input of the genss model
* Any AnalysisPoint location in the control system model

TuningGoal.WeightedGain class

For example, if you are tuning a control system model, T, then inputname can be any input name
in T. InputName. Also, if T contains an AnalysisPoint block with a location named AP_u, then
inputname can include 'AP _u'. Use getPoints to get a list of analysis points available in a
genss model.

If inputname is an AnalysisPoint location of a generalized model, the input signal for the
tuning goal is the implied input associated with the AnalysisPoint block:

out in

+

AnalysizsPoint -

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

outputname

Output signals for the tuning goal, specified as a character vector or, for multiple-output tuning goals,
a cell array of character vectors.

If you are using the tuning goal to tune a Simulink model of a control system, then outputname
can include:

* Any model output.
* Any linear analysis point marked in the model.

* Any linear analysis point in an slTuner interface associated with the Simulink model. Use
addPoint to add analysis points to the slTuner interface. Use getPoints to get the list of
analysis points available in an s1Tuner interface to your model.

For example, suppose that the slTuner interface contains analysis points y1 and y2. Use 'y1' to
designate that point as an output signal when creating tuning goals. Use {'y1', 'y2'} to
designate a two-channel output.

If you are using the tuning goal to tune a generalized state-space (genss) model of a control
system, then outputname can include:

* Any output of the genss model
* Any AnalysisPoint location in the control system model

For example, if you are tuning a control system model, T, then outputname can be any output
name in T.OutputName. Also, if T contains an AnalysisPoint block with a location named
AP_u, then outputname can include 'AP u'. Use getPoints to get a list of analysis points
available in a genss model.

If outputname is an AnalysisPoint location of a generalized model, the output signal for the
tuning goal is the implied output associated with the AnalysisPoint block:

out imn

AnalysizsPoint

1-155

1 Classes

1-156

For more information about analysis points in control system models, see “Mark Signals of Interest
for Control System Analysis and Design”.

WL, WR
Frequency-weighting functions, specified as scalars, matrices, or SISO or MIMO numeric LTI models.

The functions WL and WR provide the weights for the tuning goal. The tuning goal ensures that the
gain H(s) from the specified input to output satisfies the inequality:

[|WL(s)H(s)WR(S)||.. < 1.

WL provides the weighting for the output channels of H(s), and WR provides the weighting for the
input channels. You can specify scalar weights or frequency-dependent weighting. To specify a
frequency-dependent weighting, use a numeric LTI model. For example:

WL
WR

tf(1,[1 0.01]);
10;

If you specify MIMO weighting functions, then inputname and outputname must be vector signals.
The dimensions of the vector signals must be such that the dimensions of H(s) are commensurate
with the dimensions of WL and WR. For example, if you specify WR = diag([1 10]), then
inputname must include two signals. Scalar values, however, automatically expand to any input or
output dimension.

If you are tuning in discrete time (that is, using a genss model or slTuner interface with nonzero
Ts), you can specify the weighting functions as discrete-time models with the same Ts. If you specify
the weighting functions in continuous time, the tuning software discretizes them. Specifying the
weighting functions in discrete time gives you more control over the weighting functions near the
Nyquist frequency.

Avalue of WL = [] or WR = [] is interpreted as the identity.

Properties
wL

Frequency-weighting function for the output channels of the transfer function to constrain, specified
as a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set
by the WL input argument when you construct the tuning goal.

WR

Frequency-weighting function for the input channels of the transfer function to constrain, specified as
a scalar, a matrix, or a SISO or MIMO numeric LTI model. The initial value of this property is set by
the WR input argument when you construct the tuning goal.

Focus
Frequency band in which tuning goal is enforced, specified as a row vector of the form [min,max].

Set the Focus property to limit enforcement of the tuning goal to a particular frequency band.
Express this value in the frequency units of the control system model you are tuning (rad/TimeUnit).
For example, suppose Req is a tuning goal that you want to apply only between 1 and 100 rad/s. To
restrict the tuning goal to this band, use the following command:

TuningGoal.WeightedGain class

Req.Focus = [1,100];

Default: [0, Inf] for continuous time; [0, pi/Ts] for discrete time, where Ts is the model sample
time.

Stabilize
Stability requirement on closed-loop dynamics, specified as 1 (true) or 0 (false).

By default, TuningGoal.Gain imposes a stability requirement on the closed-loop transfer function
from the specified inputs to outputs, in addition to the gain requirement. If stability is not required or
cannot be achieved, set Stabilize to false to remove the stability requirement. For example, if the
gain constraint applies to an unstable open-loop transfer function, set Stabilize to false.

Default: 1(true)
Input

Input signal names, specified as a cell array of character vectors that identify the inputs of the
transfer function that the tuning goal constrains. The initial value of the Input property is set by the
inputname input argument when you construct the tuning goal.

OQutput

Output signal names, specified as a cell array of character vectors that identify the outputs of the
transfer function that the tuning goal constrains. The initial value of the Output property is set by
the outputname input argument when you construct the tuning goal.

Models
Models to which the tuning goal applies, specified as a vector of indices.

Use the Models property when tuning an array of control system models with systune, to enforce a
tuning goal for a subset of models in the array. For example, suppose you want to apply the tuning
goal, Req, to the second, third, and fourth models in a model array passed to systune. To restrict
enforcement of the tuning goal, use the following command:

Req.Models = 2:4;

When Models = NaN, the tuning goal applies to all models.
Default: NaN

Openings

Feedback loops to open when evaluating the tuning goal, specified as a cell array of character vectors
that identify loop-opening locations. The tuning goal is evaluated against the open-loop configuration
created by opening feedback loops at the locations you identify.

If you are using the tuning goal to tune a Simulink model of a control system, then Openings can
include any linear analysis point marked in the model, or any linear analysis point in an slTuner
interface associated with the Simulink model. Use addPoint to add analysis points and loop
openings to the s1Tuner interface. Use getPoints to get the list of analysis points available in an
slTuner interface to your model.

1-157

1 Classes

1-158

If you are using the tuning goal to tune a generalized state-space (genss) model of a control system,
then Openings can include any AnalysisPoint location in the control system model. Use
getPoints to get the list of analysis points available in the genss model.

For example, if Openings = {'ul', 'u2'}, then the tuning goal is evaluated with loops open at
analysis points ul and u2.

Default: {}

Name

Name of the tuning goal, specified as a character vector.
For example, if Req is a tuning goal:

Req.Name = 'LoopReq';

Default: []

Examples

Constrain Weighted Gain of Closed-Loop System

Create a tuning goal requirement that constrains the gain of a closed-loop SISO system from its
input, r, to its output, y. Weight the gain at its input by a factor of 10 and at its output by the
frequency-dependent weight 1/(s + 0.01).

WL tf(1,[1 0.01]1);
WR 10;
Req = TuningGoal.WeightedGain('r','y"',WL,WR);

You can use the requirement Req with systune to tune the free parameters of any control system
model that has an input signal named ' r' and an output signal named 'y"'.

You can then use viewGoal to validate the tuned control system against the requirement.

Constrain Weighted Gain Evaluated with a Loop Opening

Create a requirement that constrains the gain of the outer loop of the following control system,
evaluated with the inner loop open.

+ +

T) CI Jf_—« CI . GE - G] .y
AP, Lo

n'JH.P|

F)

Create a model of the system. To do so, specify and connect the numeric plant models, G1 and G2, the
tunable controllers C1 and C2. Also, create and connect the AnalysisPoint blocks that mark points
of interest for analysis or tuning, AP1 and AP2.

TuningGoal.WeightedGain class

Gl = tf(10,[1 101);

G2 = tf([1 2],[1 0.2 10]1);
Cl = tunablePID('C','pi');
C2 = tunableGain('G',1);

AP1 = AnalysisPoint('AP1");

AP2 = AnalysisPoint('AP2");

T = feedback(Gl*feedback(G2*C2,AP2)*C1,AP1);
T.InputName = 'r';

T.OutputName = 'y';

Create a tuning requirement that constrains the gain of this system from r to y. Weight the gain at the
output by s/(s +0.5).

WL = tf([1 0],[1 0.5]);
Req = TuningGoal.WeightedGain('r','y"',WL,[]);

This requirement is equivalent to Req = TuningGoal.Gain('r','y',1/WL). However, for MIMO
systems, you can use TuningGoal.WeightedGain to create channel-specific weightings that cannot
be expressed as TuningGoal.Gain requirements.

Specify that the transfer function from r to y be evaluated with the outer loop open for the purpose of
tuning to this constraint.

Req.0Openings = 'AP1';

By default, tuning using TuningGoal.WeightedGain imposes a stability requirement as well as the
gain requirement. Practically, in some control systems it is not possible to achieve a stable inner loop.
When this occurs, remove the stability requirement for the inner loop by setting the Stabilize
property to false.

Req.Stabilize = false;

The tuning algorithm still imposes a stability requirement on the overall tuned control system, but not
on the inner loop alone.

Use systune to tune the free parameters of T to meet the tuning requirement specified by Req. You
can then validate the tuned control system against the requirement using the command
viewGoal (